Risk of revision and other complications following knee arthroplasty in patients previously exposed to bariatric surgeries: Statistical Analysis Plan for a nationwide, register-based study

Authors:

Saber M. Saber^{1,2,4}, MD, PhD Fellow; Janne Petersen MSc, PhD, Associate Professor^{3,6}; Robin Christensen^{2,5}, MSc, PhD, Professor; Espen Solem, MD, PhD, Associate Professor^{3,4}; Line Lund Kårhus⁷, MD, PhD; Søren Overgaard, MD, DmSci, Professor^{1,4}

1. Department of Orthopaedic Surgery and Traumatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark; 2. Section for Biostatistics and Evidence-Based Research, the Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark; 3. Copenhagen Phase IV unit (Phase4CPH), Department of Clinical Pharmacology and Center of Clinical Research and Prevention at Copenhagen University Hospital, Bispebjerg and Frederiksberg; 4. University of Copenhagen, Department of Clinical Medicine, Faculty of Health and Medical Sciences; 5. Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Denmark; 6. Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark & 7. Center for clinical research and prevention, Copenhagen university hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark

Objectives

Based on the Danish national registers and databases. The objective of this study is to analyse the association between exposure to Bariatric Surgery (BAS) prior to knee arthroplasty (KA) and the following outcomes: 1) the risk of revision, 2) use of antibiotics and 3) mortality. Furthermore, we want to test whether the association is effect modified by BMI status at the time KA surgery (i.e., non-obese, obese and morbidly obese patients).

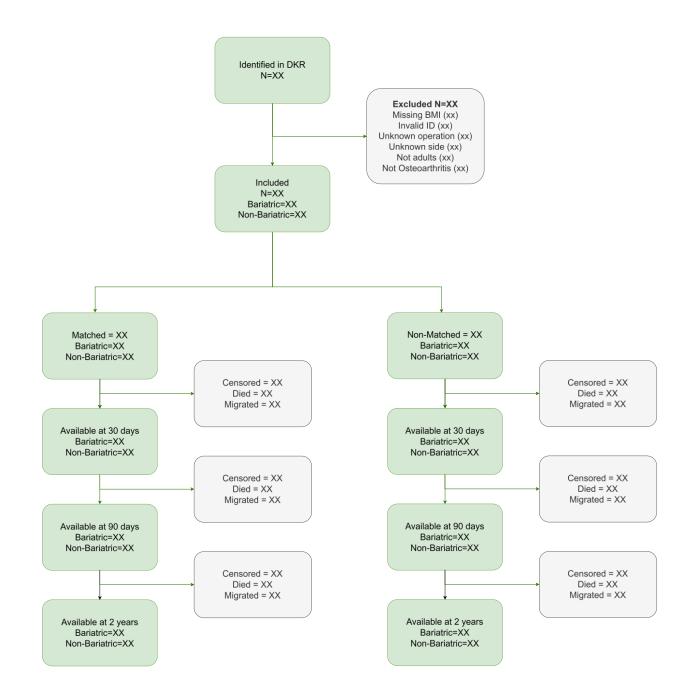
Exposure

We will identify our cohort as patients, who had a BAS before the date of index arthroplasty based on the NOMESCO (Nordic Medico-Statistical Committee) Classification of Surgical Procedures from the DNPR (KJDF10 & KJDF11 [gastric bypass]; KJDF20 & KJDF21 [gastric banding]; KJDF40, KJDF41, KJDF96 & KJDF97 [gastric sleeve]). The comparator (unexposed) group will be patients without BAS before KA.

Outcomes

- Revision due to any cause at two different observation periods within 1) 90 days and b) 2 years following KA. Revision surgery with debridement and/or exchange of at least one component will be based on a composite endpoint
- 2. Revision due to infection within 1) 90 days and b) 2 years following KA: our definition of infection is adapted from the European Bone and Joint Infection Society (EBJIS) criteria as at least one of the following:
 - A. Danish knee register-registered revision surgery due to infection.
 - B. At least 2 deep-tissue samples of phenotypically indistinguishable bacteria isolated from at least 3 deep-tissue samples
 - C. One or more positive intraoperative samples from a closed fluid aspirate AND a biopsy (fluid AND tissue) of phenotypically indistinguishable bacteria isolated.
- 3. Antibiotic use within 30- and 90-days following KA as measure of knee related infection will be defined as the use of one of the following oral antibiotics: dicloxacillin, flucloxacillin, phenoxymethylpenicillin, or amoxicillin as suggested by (Milandt et al. Clin Orthop Relat Res 477, 1372-1381 (2019)) Other antibiotics recommended by the international consensus for treating joint infections will also be considered knee-related: oral ciprofloxacin, roxithromycin, linezolid, cefuroxime and cefalexin.
- 4. Antibiotic use within 30- and 90-days following KA due to other causes: any oral antibiotic other than the forementioned ones.
- 5. Mortality registered in the Danish Civil Registration System by date up to 2 years following KA surgery.

Statistical Methods


We will use descriptive statistics for the baseline characteristics of the two groups stratified for BMI and the type of KA. To address possible survival bias, number of deaths in the exposed and non-exposed groups will be reported.

First, we will run a non-adjusted (crude) analysis comparing outcomes between patients exposed and unexposed to BAS. Then we will perform a propensity score matched analysis, where we do exact matching based on BMI (non-obese: BMI < 30 kg/m², obese: BMI 30-39 kg/m², morbidly obese: BMI \ge 40 kg/m²) and the type of KA (i.e., Total knee arthroplasty (TKA) or Unicondylar Knee arthroplasty (UKA)). Propensity scores will be estimated using a logistic regression model and will be based the forementioned covariates. We will use greedy match algorithm in a ratio of up to 1:5 of patients exposed to bariatric surgery and those who are not, in order to minimize the mean squared error of the estimated treatment effect in several scenarios, difference of maximum of 0.2 logit will be used in propensity score matching. Following that, we will do a propensity score matched analysis with interaction term for BMI.

For dichotomous outcomes, a cox regression will be performed to report Hazards Ratio (HR) with the corresponding two-sided 95% confidence intervals (CIs) and a p-value of <0.05 will be considered as statistically significant. The predetermined equivalence margin of increased risk is set to $\pm 1\%$ point for 95% confidence interval around the absolute risk.

To validate the propensity score matching, we will report the standardized differences of the means (or medians) of continuous variables or the prevalence of dichotomous baseline covariates between each set of groups by using the standardised differences. We will apply a standardized difference of ≥ 0.25 to indicate that there might be a meaningful imbalance in the baseline covariate.

Figure 1 will present the flowchart for the population.

	Un	matched			Matched		
			Std.	Non-			
	Non-Bariatric	Bariatric	Diff	Bariatric	Bariatric	Std. Dif	
Ν							
Age, years							
Female Sex, no. (%)							
BMI, kg/m2							
Obesity Group							
Non-Obese, no. (%)							
Obese, no. (%)							
Morbid Obese, no. (%)							
Type of operation							
Total knee arthroplasty							
Unicondylar Knee arthroplasty	,						
Highest completed Education							
<11 years, no. (%)							
11 to 15 years, no. (%)							
≥15 years, no. (%)							
Household income							
Lowest, no. (%)							
Low, no. (%)							
Medium, no. (%)							
High, no. (%)							
Comedications							
Antithrombotics, no. (%)							
Antibiotics, no. (%)							
Glucose-Lowering, no. (%)							
NSAIDs, no. (%)							
Antiresorptives, no. (%)							
ECM							
0, no. (%)							
1 to 2, no. (%)							
≥ 3, no. (%)							

Table 1 Baseline characteristics at time of knee arthroplasty

Abbreviations: BMI: body mass index; NSAIDs: Non-Steroidal anti-inflammatory drugs; ECM: Elixhauser Comorbidity measure; Std. Diff: Standardized Difference.

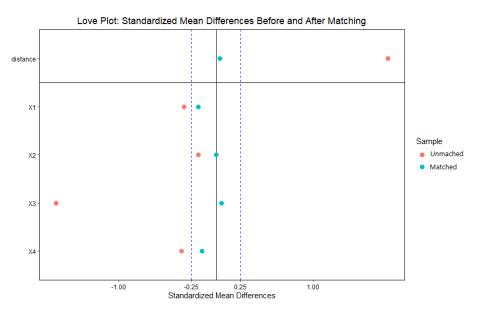
Table 2 Hazards ratios (HR) with 95% confidence interval (CI) for all outcomes performed comparing individuals with bariatric surgery with individuals without using crude and a propensity score matched analysis

	Bariatric	Non- Bariatric	Contrast between bariatric and non-bariatric	
	n/N total	n/N total	HR (95% CI)	P value
Risk of revision ≤ 90 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Risk of revision ≤ 2 years				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Risk of revision due to infection ≤ 90 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Risk of revision due to infection ≤ 2 years				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Risk of receiving knee-related antibiotics ≤ 30 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Risk of receiving knee-related antibiotics ≤ 90 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Risk of having non-knee-related antibiotics \leq 30 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Risk of having non-knee-related antibiotics ≤ 90 days				
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	xx
Risk of dying \leq 2 years				xx
Crude Analysis	xx/XX	xx/XX	xx (xx to xx)	хх
Propensity score matched analysis	xx/XX	xx/XX	xx (xx to xx)	хх

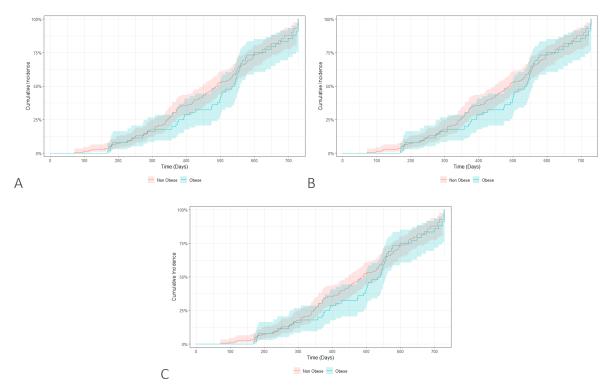
	Contrast between bariatric and non- bariatric	
	HR (95% CI)	P value
In non-obese		
Risk of revision ≤ 90 days	xx (xx to xx)	хх
Risk of revision \leq 2 years	xx (xx to xx)	xx
Risk of revision due to infection \leq 90 days	xx (xx to xx)	xx
Risk of revision due to infection ≤ 2 years	xx (xx to xx)	xx
Risk of receiving knee-related antibiotics ≤ 30 days	xx (xx to xx)	хх
Risk of receiving knee-related antibiotics ≤ 90 days	xx (xx to xx)	хх
Risk of having non-knee-related antibiotics ≤ 30 days	xx (xx to xx)	хх
Risk of having non-knee-related antibiotics ≤ 90 days	xx (xx to xx)	xx
Risk of dying ≤ 2 years		
In obese	xx (xx to xx)	xx
Risk of revision ≤ 90 days	xx (xx to xx)	xx
Risk of revision \leq 2 years	xx (xx to xx)	xx
Risk of revision due to infection ≤ 90 days	xx (xx to xx)	xx
Risk of revision due to infection ≤ 2 years	xx (xx to xx)	xx
Risk of receiving knee-related antibiotics ≤ 30 days	xx (xx to xx)	xx
Risk of receiving knee-related antibiotics ≤ 90 days	xx (xx to xx)	xx
Risk of having non-knee-related antibiotics ≤ 30 days	xx (xx to xx)	xx
Risk of having non-knee-related antibiotics ≤ 90 days	xx (xx to xx)	xx
Risk of dying ≤ 2 years	xx (xx to xx)	xx
In morbidly obese		
Risk of revision ≤ 90 days	xx (xx to xx)	xx
Risk of revision \leq 2 years	xx (xx to xx)	xx
Risk of revision due to infection \leq 90 days	xx (xx to xx)	xx
Risk of revision due to infection ≤ 2 years	xx (xx to xx)	хх
Risk of receiving knee-related antibiotics ≤ 30 days	xx (xx to xx)	xx
Risk of receiving knee-related antibiotics ≤ 90 days	xx (xx to xx)	хх
Risk of having non-knee-related antibiotics ≤ 30 days	xx (xx to xx)	xx
Risk of having non-knee-related antibiotics ≤ 90 days	xx (xx to xx)	xx
Risk of dying ≤ 2 years	xx (xx to xx)	хх

Table 3 Stratified analyses: Hazards ratios (HR) with 95% confidence interval (CI) for all outcomes in different obesity groups performed using a propensity score matched analysis with an interaction term for obesity group and the type of arthroplasty.

We will do sensitivity analyses to test whether the type of the surgery (TKA or UKA) will influence the outcomes, we will also test whether the gap between BAS and KA would influence the obtained result by limiting the gap ≤12 months, 13-24 months and >24 months. To investigate whether the type of Bariatric Surgery (BAS), such as gastric banding or gastric bypass, has an impact on the outcomes, we plan to conduct a sensitivity analysis. This will involve narrowing our focus to each specific type of BAS. This particular approach has not been previously applied, and the findings could prove to be significant.


Sensitivity analysis Table 1: Hazards ratios (HR) with 95% confidence interval (CI) for all outcomes in total or unicondylar knee arthroplasty performed using a propensity score matched analysis with an interaction term for obesity group and the type of arthroplasty.

	Contrast between bariatric and non- bariatric		
	HR (95% CI)	P value	
In total knee arthroplasty			
Risk of revision ≤ 90 days	xx (xx-xx)	xx	
Risk of revision \leq 2 years	xx (xx-xx)	хх	
Risk of revision due to infection ≤ 90 days	xx (xx-xx)	xx	
Risk of revision due to infection ≤ 2 years	xx (xx-xx)	xx	
Risk of receiving knee-related antibiotics ≤ 30 days	xx (xx-xx)	хх	
Risk of receiving knee-related antibiotics ≤ 90 days	xx (xx-xx)	хх	
Risk of having non-knee-related antibiotics ≤ 30 days	xx (xx-xx)	хх	
Risk of having non-knee-related antibiotics ≤ 90 days	xx (xx-xx)	хх	
Risk of dying ≤ 2 years			
In unicondylar knee arthroplasty	xx (xx-xx)	хх	
Risk of revision ≤ 90 days	xx (xx-xx)	xx	
Risk of revision \leq 2 years	xx (xx-xx)	хх	
Risk of revision due to infection \leq 90 days	xx (xx-xx)	xx	
Risk of revision due to infection ≤ 2 years	xx (xx-xx)	xx	
Risk of receiving knee-related antibiotics ≤ 30 days	xx (xx-xx)	хх	
Risk of receiving knee-related antibiotics ≤ 90 days	xx (xx-xx)	xx	
Risk of having non-knee-related antibiotics ≤ 30 days	xx (xx-xx)	xx	
Risk of having non-knee-related antibiotics ≤ 90 days	xx (xx-xx)	хх	
Risk of dying ≤ 2 years	xx (xx-xx)	xx	


Table 5 Sensitivity analyses showing Hazards ratios (HR) with 95% confidence interval (CI) for the risk of revision due to all causes within 2 years stratified for the gap between bariatric surgery and knee arthroplasty and the type of bariatric surgery

	bariatric an	Contrast between bariatric and non- bariatric		
	HR (95% CI)	P value		
Gap between Bariatric surgery and knee arthroplasty				
<12 months	xx (xx to xx)	хх		
13-24 months	xx (xx to xx)	хх		
>24 months	xx (xx to xx)	хх		
Type of bariatric surgery	xx (xx to xx)	хх		
Bypass operations	xx (xx to xx)	хх		
bariatric surgeries without bypass	xx (xx to xx)	хх		

Figure 2 will present a love plot to demonstrate the balance through all the included covariates using standardized differences of the mean both before and after propensity score matching.

Figure 3 will present cumulative incidence of having A) revision due to all causes; B) revision due to infection; C) death in patients with previous bariatric surgery vs. those without. All figures come from the propensity score matched population.

