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1 Methodology

This methodology section covers the study design, which is a crossover longitudinal study.
Measurements are taken for each subject across time and treatment. First, the study design is
described in detail, common methodology for crossover and longitudinal studies is presented,
and then a statistical analysis methodology blending the two is proposed.

1.1 Study design

A four-way, placebo-controlled crossover study will be conducted to compare phytonutrient
bioavailability from two varieties of blueberries, blueberry-rich protein bar, and a placebo drink.
Each of the 28 participants will partake in a three-month long study with four feeding visits,
separated by washout periods lasting 7 days, ranging from 11 to 18 days. For each visit,
participants will provide blood (baseline, 1, 3, 6, 9, 24, 48 hours) and urine (48 hours prior, 24
hours prior, 0-9 hours, 9-24 hours, 24-48 hours) samples to be analyzed for biomarkers necessary
to measure bioavailability and other pharmacokinetic parameters. Figure 1 illustrates the steps a
participant takes for one feeding visit. The study has been reviewed and approved by the
Institutional Review Board at the North Carolina State University.
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Figure 1: Guideline of Dietary Restrictions of Prior and During the study

1.2 Methodology For Longitudinal Studies

Longitudinal studies involve repeated measurements of specified variables over a period of time.
Within each period £, each subject i will undergo 7 blood collections at time points of 0, 1, 3, 6,
9, 24, and 48 hours post-treatment and 5 urine collections at -48, -24 pre-intervention and 0-9, 9-
24 and 24-48 hours post-treatment tracking concentrations of pre-specified metabolites reported
as concentration versus time. Concentrations will be converted to corresponding
pharmacokinetic parameters: maximum serum concentration (Cmax), time at maximum
concentration (Tmax), the half-life [ti2], the area under the curve (AUC), area under the first
moment curve (AUMC), the clearance (CL), the volume of distribution (V4), and the mean
residence time (MRT) of blueberry-derived metabolites in the blood and urine using an
appropriate pharmacokinetic model (PK) [BAMStudy2020]. The software Phoenix WinNonlin is
planned to be used to fit the PK model. Using the calculated AUC and dosage D, the total
bioavailability for each metabolite can be determined [2]. Subject specified covariates (such as
gender, age, body mass index, treatment order, and sample type) may be significant in the PK



model and will be considered for potential inclusion. However, the exact nature of this model
will be determined as the study is completed and is beyond the scope of this statistical analysis
plan.

1.3 Methodology for Crossover Studies

In crossover studies, measurements are repeated across treatments. Each subject receives each
treatment with a washout period in between. We will use a toy example where Y ;i is the
outcome, i denotes the subject, j denotes the treatment, k& denotes the period, and / denotes the
sequence. For four treatments, A, B, C, D, there are a number of different treatment sequences
(e.g. ABCD, ACDB, BACD) and four periods. We account for variability from sequences and
periods in the model. An example of a crossover model is the following:

Yi = p + 01+ Bigy + o + v + ok T €ijua (3.1

where, u is the overall mean, fixed sequence effect is J;, fixed treatment effect is a;, fixed period
effect is yx, and By is the random individual subject effect for individual i nested in the sequence
[. The fixed interaction between treatment and period is o, and the random error from the
realization process or measurement error is gijkl. For the random effects, we assume pi(l) is
independent of ¢ijkl and we have flexibility in modeling the random errors. For example, it may
be reasonable for the residual error to have different variances based on treatment: Var(eiiw) #
Var(eizn). Naturally, one could add additional fixed effects for covariates or interactions between
covariates and treatments. Mean and covariance parameters are typically estimated through
maximum likelihood estimation (MLE). In SAS, PROC MIXED is a popular procedure to fit
these mixed effects models. Sophisticated inference including adjustments for multiple
comparisons can be carried out with PROC MIXED. In R, the nlme and Ime4 [1] packages can
be used to fit the models. The ImerTest package is a popular companion to Ime4 for statistical
inference [3].

1.4 Proposed Methodology for Crossover Longitudinal Studies

The model specified in (1.1) will serve as a framework for testing the differences of fixed effects
between treatments. Using the methodology outlined in Section 1.2, the appropriate PK
parameters for a given metabolite (ex. Bioavailability) will be calculated. The PK parameters
will be represented as the continuous responses Y in the model. Note that each measured PK
parameter is specified to a given subject / receiving treatment ; at a specified period k& within
sequence /.

It is of primary interest to test the potential differences in bioavailability of blueberry-
derived metabolites across treatments. Given the number of metabolites being tested, multiple
comparison adjustments will be necessary. There are a multitude of strategies for tackling such
problems each with their respective advantages and disadvantages. However, given the relatively
small sample size (n=28), controlling the family-wise error rate (FWER) across all metabolites



may drain requisite statistical power needed to detect any difference between treatments. It may
be beneficial to set up a smaller subset of metabolites prior to analysis that are of primary interest
and then investigate differences between the remaining metabolites in an exploratory nature.

2 Recommended Analysis/Design

2.1 Exploratory Analysis

In this section, we will walk through a toy example to show how we could build a model similar
to (1.1). In the subsequent section, we will build the model using the Ime4 package in R and
show how to conduct valid statistical inference using the ImerTest package in R.

For data manipulation, we mostly use the dplyr package and for plotting we mostly use
the ggplot2 package. These are part of the “tidyverse” [4].

For this example, we will use AUC48 from the plasma dataset as our outcome. First, we
examine the period effect using a boxplot.

Examining Period Effects for AUC48
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Since the sequence variable is not already in the dataset, we need to create it. An example
of creating the new variable is in the appendix.



Examining Sequence Effects for AUC48
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Now, we are interested in which in the effect age may have on the response. We can
examine this via a scatterplot.

Examining Age vs ALUC48
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A similar plot can easily be made for any other continuous covariate of interest. Based on
these summary statistics, we can gain insight on what additional covariate we may want to
include into the model.



2.2 Fitting the Model

The toy dataset provided serves to illustrate the proposed methodology of the actual analysis.
The dataset contains PK parameters from 15 subjects participating in a crossover design study
with three periods and two treatment groups, a blueberry treatment and a control group. At each
period, subjects had concentrations of 15 different metabolites measured via blood and urine
samples. Concentrations were converted to corresponding pharmacokinetic parameter using an
appropriate PK model. The primary purpose of the study was to compare the bioavailability of
the ten metabolites between the blueberry treatment and the control group.

We propose the following model for analysis:

l;r:” = [ -+ éf” + l'l":L + '_!i_i + (rl"r\.l_':,-'. + fuu

2.1)
Below are detailed descriptions of each term in the model:

e ;2 Overall mean.

e 40 Sequence Effect for metabolite n.

e o} Fixed treatment effect for metabolite n.

s 1 Period effect for metabolite n.

. u“..-_’l'k'. Interaction between treatment and period for metabolite.

o &, Random error from the realization process or measurement error.

n oy,

The effects 0 r, Tk ,and 7" can be considered fixed or random. We assume the random
effects are independent of each other. Here the response Yju, represents the bioavailability of
metabolite n. Additionally, i denotes the i-#4 subject in the dataset. If we are interested in the
model for just one metabolite, we can subset the dataset to just include observations for that one
metabolite and then fit a similar, smaller model. An example is:

Yijiw = p + 01 + aj + yk + &y (2.2)
Below are detailed descriptions of each term in the model:

e u: Overall mean.

e J;: Sequence Effect.

e o, Fixed treatment effect.

e yi: Period effect.

e ¢&ju: Random error from the realization process or measurement error.

Notice this is the same model as before without the interaction, but without the n
superscripts, since we only have one metabolite of interest.

This model can be fit using the Imer function in the Ime4 package of R. We will use the
smaller model with just one metabolite for demonstration. To add the effect of one variable, X 1,



we simple include it the model statement, Y ~ X 1, the first argument for the function. To
specify a random effects, we use (1|X 1) in the model statement. We can specify interactions
with X 1:X 2. Below is specific example of model in 2.2, using AUC as the response, and
treatment and period as fixed effects, and sequence as a random effect.

## fit the model

## response: AUC48

## Fixed Effects: Treatment, Period

## Random Effects: Sequence

fit <- Imer(AUC48 ~ Treatment + (1|seq) +
‘Visit Period’,
data=dat, REML = FALSE)

2.3 Interpreting Model Output

Using the ImerTest package in R, we can conduct hypothesis tests for fixed and random effects
in linear mixed effects models. The anova function provides F-tests on the fixed effects, letting
you evaluate if a fixed effect is useful for explaining the response. Using the above model, the
anova output is as follows:

> anova(fit)

Type II1I Analysis of Variance Table with Satterthwaite’s method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Treatment 158.70 15B8.70 1 177.99 17.746 4.005e-05 ***

“Visit Period‘ 391.38 195.69 2 178.34 21.883 3.170e-09 #*x*

Sipnif. codes: 0 f#*%x? 0.001 ‘#%* 0.01 ‘*=’ 0.05 *.7 0.1 * 7 1

Based on this, we can see that both treatment and period are useful for explaining the
response. Since treatment is binary (control, treatment) here, we can examine if administering the
treatment increases or decreases the response, on average. The summary function is one way to
do this. Below is selected output:

> summary (fit)
Fixed effects:

Estimate Std. Error df t wvalue Pr(>|t])
(Intercept) 0.02752 (0.84451 4.24374 0.033 0.975
TreatmentTreatment 1.91665 0.45498 17V7.99167 4.213 4.00e-05 #%%
‘Visit Period‘B -0.29409 0.55514 178.22795 =0.530 0.597
‘Visit Period‘C 3.24513 (.63618 178.66646 5.101 8.5Te~-07 **x*

Notice the estimate for the TreatmentTreatment is 1.91665. This indicates the model the
model estimates a 1.91655 increase in AUC if the Treatment is administered instead of the
control. The corresponding p-value is small, so we can be confident that the treatment increases
AUC, on average. To check if the random effects are useful for explaining the response. Since
we are not interested in specific levels of the random effects, we just want to check if
considerably variation is coming from the random effects. The ranova function runs a hypothesis
testing the variance against zero. For the ANOVA model, here is the output:



> ranoval(fit)
ANOVA-like table for random-effects: Single term deletions

Model :
AUCA8 ~ Treatment + ‘Visit Period’ + (1 | seq)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 6 -454.87 921.74
(1 | seqg) 5 -460.85 931.70 11.969 1 0.000541 **x*

Signif. codes: O ‘#*x’ 0.001 ‘**' 0.01 ' 0.056 .7 0.1 © * 1

This tells us that there is considerable variation between sequences. Some quick summary
statistics show us the mean AUC for the control then treatment sequence is 2.80 and the
treatment then control sequence is 0.50 (note this is just for this metabolite, not all metabolites
like the plot in 2.1). This intuitively shows why the sequence effect has a small p-value.



3 Code Appendix

First, we present the code for the plots.

## load in "tidyverse"
install.packages("tidyverse")
library(tidyverse)

## boxplot based on period
geplot (data=plasma) +
geom_boxplot (aes(x=‘Visit Period®,y=AUC48,fill = ‘Visit Period‘)) +
labs(x=“Period",y="AUC48") +
getitle("Examining Period Effects for AUC48") +
theme_minimal() +
theme(legend.position = "pone")

## create sequence variable

## find each individual’s first treatment
## create dataset with subject ID and trti
intl <- plasma #>%

filter(Visit=="Day 1") ¥%>%

mutate (trtl=Treatment) %>

select (“Subject ID*,trtl) %>%

unique ()

## create dataset with subject ID and trt2
int2 <- plasma %>Y%
filter (Visit=="Day 2") %>}
mutate (trt2=Treatment) %>
select (‘Subject ID*, Visit, trt2) ¥>¥%
unique ()

## combine datasets to make a subject ID and sequence dataset
seq_dataset <- bind_cols(intl,int2) ¥>¥

unite(seq,trtl,trt2) %>

select(‘Subject ID‘,seq)

## add the sequence column to the
plasma <- left_join(plasma,seq_dataset,by="Subject ID")

## plot
geplot(data=plasma) +
geom_boxplot (aes(x=seq,y=AUC48,fill=seq)) +
labs (x="Sequence",y="AUC48") +
ggtitle("Examining Sequence Effects for AUC48") +
theme_minimal() +
theme(legend.position = "none")

## scatterplot with age

ggplot (data=plasma) +
geom_point(aes(x=Age,y=AUC48)) +
#facet_wrap()
labs(x="Age" ,y="AUC48") +
ggtitle("Examining Age vs AUC48") +



theme_minimal() +
theme (legend.position = "nome")

Now the code to fit the models and examine their output:

## load in packages
install.packages("lme4d")
install.packages("lmerTest")
library (1lme4)

library (lmerTest)
library(tidyverse)

## subset dataset
dat <- plasma %>} filter(Metabolite=="1-M-Xan_108Q")

## fit the model

## response: AUC48

## Fixed Effects: Treatment, Period

## Random Effects: Sequence

fit <- lmer(AUC48 ~ Treatment + (1|seq) +
‘Visit Period’,
data=dat, REML = FALSE)

## examine fixed effects
anova(fit)
summary (fit)

## examine random effects
ranova(fit)

## summary stats to make sense of random effects
dat %>% group_by(seq) ¥>%
summarise(mean_AUC=mean(AUC48),
sd_AUC=sd (AUC48) ,
med_AUC=median (AUC48))
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