

STUDY PROTOCOL

Protocol Version: 1.0

Protocol Date: 15 June, 2025

Ethics Approval:

Approved by IREB, University of Lahore

Approval No: UOL/IREB/25/09/0030

Approval Date: June 30, 2025

Title: Static versus Dynamic Wrist-Hand Splints for Wrist Spasticity in subacute Stroke

Patients: A Randomized Clinical Trial

Introduction

Stroke, or cerebrovascular accident, occurs when blood supply to part of the brain is blocked or a cerebral vessel ruptures, resulting in loss of oxygen and essential nutrients. This often leads to paralysis, weakness, impaired coordination and balance, limited mobility, or even death ⁽¹⁻³⁾. Neurological damage disrupts motor control pathways, commonly manifesting as muscle weakness. Following initial injury, the brain undergoes spontaneous recovery through neural plasticity and reorganization ⁽⁴⁻⁶⁾. Stroke is a leading cause of disability globally, with 24.9 million people living with stroke and 11.6 million new cases reported annually in Western Europe ^(7,8).

Stroke is classified into ischemic ($\approx 80\%$) and hemorrhagic types ⁽⁹⁾. Ischemic stroke results from cerebral artery obstruction causing neuronal apoptosis and necrosis in motor regions, while hemorrhagic stroke involves vessel rupture, increased intracranial pressure, and secondary neuronal damage ⁽⁷⁾. Clinical symptoms include impaired speech, dysphagia, visual and sensory deficits, cognitive impairments, altered muscle tone with spasticity, and inability to walk or grasp objects ⁽¹⁰⁾.

Motor dysfunction, low muscle strength, joint stiffness, muscular hypertonia, and muscle contracture are common complications post-stroke ⁽¹¹⁻¹³⁾. Post-stroke upper limb spasticity frequently involves involuntary wrist and finger flexor contraction, limiting muscle lengthening and prehensile grasping ^{(14,15) (16,17)}. Approximately 85% of stroke patients experience delayed upper limb recovery, with wrist spasticity affecting 4–46% in chronic stages ^(18,19).

Rehabilitation through targeted exercises, occupational therapy, and constrained-induced movement therapy improves motor recovery ^(20,21). Orthotic interventions, including static and dynamic splints, prevent deformities, relieve spasticity, and enhance hand function ^(22,23). Dynamic splints utilize springs or pulleys to provide gentle, adjustable stretching, and have shown superior efficacy in reducing spasticity when used 6 hours daily ^(24,25). Despite evidence supporting both types, direct comparisons remain limited ^(26,27).

Rationale

This study evaluates the comparative effectiveness of static and dynamic wrist-hand splints in post-stroke rehabilitation, aiming to provide evidence-based guidance for clinicians to optimize treatment strategies and patient outcomes.

Materials and Methods

Study Design: A randomized controlled trial (RCT) compared static versus dynamic wrist-hand splints on spasticity, functional hand recovery, and pain in subacute stroke patients.

Setting: Markaz Bahali-E-Mazooran Rehabilitation Center, Faisalabad, with trained physiotherapists and occupational therapists supervising interventions.

Study Duration: Nine months; each participant underwent a structured 4-week intervention with assessments at baseline and post-intervention.

Sample Size: 25 participants initially targeted; after adjustment for dropout, 20 participants (10 per group) completed the study.

Sampling Technique: Purposive sampling; participants randomly assigned to groups via computer-generated randomization.

Inclusion Criteria: Adults 30–65 years, diagnosed with hemiplegic stroke within last 6 months, moderate to severe wrist spasticity (MAS ≥ 1).

Exclusion Criteria: Severe neurological or musculoskeletal disorders, cognitive impairment, contraindications to splint use, or inability to comply with protocols.

Outcome Measures: MAS, pain scores, grip strength, functional outcomes, and patient satisfaction at baseline and week 4.

Statistical Analysis: Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests, and repeated-measures ANCOVA used to evaluate changes and compare groups.

References

1. Bhagavatula S, Chang DSH. Comparing the Efficacy of Various Hand Splints in Post Stroke Recovery: A Brief Literature Review. 2021;10(1).
2. Chan RKY. SPLINTING FOR PERIPHERAL NERVE INJURY IN UPPER LIMB. Hand Surg. 2002 Dec;07(02):251–9.
3. Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020 Dec;2(1):17.
4. Zheng Y, Liu G, Yu L, Wang Y, Fang Y, Shen Y, et al. Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial. Clin Rehabil. 2020 Feb;34(2):194–204.
5. Anwer S, Waris A, Gilani SO, Iqbal J, Shaikh N, Pujari AN, et al. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare. 2022 Jan 19;10(2):190.
6. Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones. Biomolecules. 2024 Mar 4;14(3):305.

7. Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, et al. Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients' Neurorehabilitation: A Crossover Feasibility Study. *Front Hum Neurosci*. 2021 Jun 7;15:656975.
8. Wodu CO, Sweeney G, Kerr A. Exploring the reasons behind the low focus on upper limb rehabilitation in the early stages after a stroke: A qualitative study. *Journal of Hand Therapy*. 2025 Jan;38(1):52–60.
9. Boardsworth K, Rashid U, Olsen S, Rodriguez-Ramirez E, Browne W, Alder G, et al. Upper limb robotic rehabilitation following stroke: a systematic review and meta-analysis investigating efficacy and the influence of device features and program parameters. *J NeuroEngineering Rehabil*. 2025 Jul 16;22(1):164.
10. Demeco A, Foresti R, Frizziero A, Daracchi N, Renzi F, Rovellini M, et al. The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing. *Bioengineering*. 2023 Nov;10(11):1256.
11. Cui Y, Cheng S, Chen X, Xu G, Ma N, Li H, et al. Advances in the clinical application of orthotic devices for stroke and spinal cord injury since 2013. *Front Neurol*. 2023 Feb 17;14:1108320.
12. Song Q, Qin Q, Suen LKP, Liang G, Qin H, Zhang L. Effects of wearable device training on upper limb motor function in patients with stroke: a systematic review and meta-analysis. *J Int Med Res*. 2024 Oct;52(10):03000605241285858.
13. Hirata J, Yoshimura M, Inoue K. The effects of wrist hand orthosis use on upper limb activity and difficulty in activities of daily living: Influence of material and design differences. *Journal of Rehabilitation and Assistive Technologies Engineering*. 2025 Jul;12:20556683251372060.
14. Pritchard K, Edelstein J, Zubrenic E, Tsao L, Pustina K, Berendsen M, et al. Systematic review of orthoses for stroke-induced upper extremity deficits. *Topics in Stroke Rehabilitation*. 2019 Jul 4;26(5):389–98.
15. Ferrari ALM, Medola FO, Sandnes FE. How Do Orthoses Impact Ease of Donning, Handwriting, Typewriting, and Transmission of Manual Torque? A Study of Three Prefabricated Wrist-Hand Orthoses. *J Prosthet Orthot*. 2021 Jul;33(3):168–74.
16. Risangtuni AG, Suprijanto S, Nazaruddin YY, Mahyuddin AI. Dual-mode 3D printed dynamic wrist driven orthosis for hand therapy exercises. *Front Mech Eng*. 2023 Nov 22;9:1286304.
17. Trotobas C. Restoration of grasping functions through assistive orthoses for individuals with arm paralysis [Internet] [phdthesis]. Université de Montpellier; 2023 [cited 2024 Aug 1]. Available from: <https://inria.hal.science/tel-04455138>
18. Thorsen R, Ferrarin M. A Wearable Open-Source Neuroprosthesis/Neuro-Orthosis for Restoring Hand Function. *Sensors*. 2025 May 23;25(11):3282.
19. Umer U, Mian SH, Moiduddin K, Alkhalefah H. Exploring Orthosis Designs for 3D Printing Applying the Finite Element Approach: Study of Different Materials and

Loading Conditions. *Journal of Disability Research* [Internet]. 2023 [cited 2025 Oct 28];2(1). Available from: <https://scienceopen.com/hosted-document?doi=10.57197/JDR-2023-0011>

20. Yang YS, Tseng CH, Fang WC, Han IW, Huang SC. Effectiveness of a New 3D-Printed Dynamic Hand–Wrist Splint on Hand Motor Function and Spasticity in Chronic Stroke Patients. *JCM*. 2021 Sep 30;10(19):4549.
21. Mandeljc A, Rajhard A, Munih M, Kamnik R. Robotic Device for Out-of-Clinic Post-Stroke Hand Rehabilitation. *Applied Sciences*. 2022 Jan 21;12(3):1092.
22. Domenighetti S, Ozelie R. Material Matters: A Comparative Analysis of Hand Immobilization Orthoses Using 3D-Printed, Thermoplastic, and Fiberglass Cast. *The Open Journal of Occupational Therapy*. 2024 Oct 15;12(4):1–12.
23. Oud TAM, Lazzari E, Gijsbers HJH, Gobbo M, Nollet F, Brehm MA. Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. Lumenta DB, editor. *PLoS ONE*. 2021 Nov 18;16(11):e0260271.
24. Ledoux ED, Barth EJ. Design, modeling, and preliminary evaluation of a 3D-printed wrist–hand grasping orthosis for stroke survivors. *Wearable Technol*. 2024;5:e12.
25. Wong Y, Ada L, Månum G, Langhammer B. Upper limb practice with a dynamic hand orthosis to improve arm and hand function in people after stroke: a feasibility study. *Pilot Feasibility Stud*. 2023 Jul 27;9(1):132.
26. Agnelli Martinez LB, Martinez RA, Agnelli JAM, Elui VMC. Empirical practical evaluation instrument for thermoplastic materials for orthoses. *Cad Bras Ter Ocup*. 2023;31:e3544.
27. Moisan G, Zong-Hao Ma C. Advances in prosthetics and orthotics. *BMC Musculoskelet Disord*. 2024 Feb 12;25(1):135, s12891-024-07246-y.
28. Huber J, Slone S, Bazrgari B. An evaluation of 3D printable elastomers for post stroke dynamic hand bracing: a pilot study. *Assistive Technology*. 2023 Nov 2;35(6):513–22.
29. O'Brien L. Adherence to therapeutic splint wear in adults with acute upper limb injuries: a systematic review. *Hand Therapy*. 2010 Mar;15(1):3–12.
30. Tanczak N, Plunkett TK, Lin S, Kuenzler L, Lau M, Kuah WKC, et al. Feasibility of post-stroke hand rehabilitation supported by a soft robotic hand orthosis in-clinic and at-home. *J NeuroEngineering Rehabil*. 2025 Aug 21;22(1):183.