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Lay summary

Introduction: The World Health Organization estimates that 270-360 million operations are
performed every year worldwide. Death and complications after surgery are a big challenge. In
Canada, out of every 1000 major surgeries, 16 patients die in hospital after surgery. In the United
States, for every 1000 operations, 67 patients unexpectedly need life support in the Intensive
Care Unit. With population aging and limited resources, strategies to improve health after
surgery are ever more important.

Vital signs, such as blood pressure and heart rate, show how the body is doing. Vital
signs change during surgery because of patient, surgical, and anesthetic factors.
Anesthesiologists can change vital signs with medications. However, we are only starting to
understand which, and what ranges of, vital signs under anesthesia are associated with better
health. Machine learning is a tool that can provide new ways to understand data. With better
understanding, we can work to improve outcomes after surgery.

Objective: We will analyze vital signs during surgeries for their links to death, complications
(heart, lung, kidney, brain, infection), Intensive Care Unit admission, length of hospital stay, and
hospital readmission. We will determine which, and what levels of, vital signs may be harmful.
We predict that blood pressure, heart rate, oxygen level, carbon dioxide level, and the need for
medications to change blood pressure will interact to be associated with death after surgery.

Methods: After obtaining Research Ethics Board approval, we will analyze data from all
patients who are at least 45 years old and had an operation (with the exception of heart surgery)
with an overnight stay at the QEII health centre from January 1, 2013 to December 1, 2017.
There are approximately eligible 35,000 patients. We will use machine learning to model the
data and test how well our model explains outcomes after surgery.

Significance: Our use of machine learning in a large, broad surgery population dataset could
detect new relationships and strategies that may inform current practice, and generate ideas for
future research. A better understanding of the impact of vital signs during surgeries may unveil
methods to improve outcomes and resource allocation after surgery. The results may suggest
ways to identify high-risk patients who should be monitored more closely after surgery. If our
model performs well, it may motivate other researchers to use machine learning in health data
research. The model we plan to develop will be based on information at the QEII, so it may be
relevant to the care of Nova Scotians and beyond.
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Protocol

Introduction

Surgical rates are increasing worldwide, with the World Health Organization estimating 270-360
million operations globally in 2012 (1). Surgical mortality and morbidity remain a significant
concern. Worldwide, more than 4.2 million patients die within 30 days of surgery every year,
accounting for 7.7% of the global deaths (2). In Canada 2016-2017, for every 1000 major
surgeries performed, 16 patients die in hospital after surgery (3). Unplanned ICU admission
occurred after 6.7% of non-cardiac surgeries in a large American cohort study (4). During the
intraoperative period, there may be severe hemodynamic (vital sign) derangements (e.g.
abnormalities in blood pressure, heart rate, and oxygen level) that could play a significant role in
postoperative mortality. However, due to the quantity and complexity of perioperative data, the
threshold for harm of potentially modifiable intraoperative hemodynamic factors remain
incompletely understood. Using machine learning techniques, this study will investigate the
impact of multiple hemodynamic variables in the perioperative context.

Background and significance

Postoperative outcomes result from a complex interplay of patient, surgical, and anesthetic
factors. Several validated preoperative risk stratification scores exist, including the Revised
Cardiac Risk Index (RCRI), Portsmouth-Physiology and Operative Severity Score for the
enUmeration of Mortality (POSSUM), Surgical Risk Scale, and National Surgical Quality
Improvement Program (NSQIP) (5—7). However, the derivation process of these models did not
include intraoperative hemodynamic variables and thus may not be responsive to the impact of
intraoperative hemodynamic derangements.

The Surgical Apgar Score (SAS) is a simple 10-point score involving intraoperative
variables of estimated blood loss, blood pressure, and heart rate for composite mortality and
morbidity. The SAS has varying predictive accuracy across surgical specialties (8,9) and its
addition has not significantly improved preoperative risk prediction (10). Since the initial
publication of the SAS in 2007 (11), there has been increasing interest in elucidating the role of
intraoperative hemodynamics on mortality and morbidity, including hypotension (12,13), heart
rate (14,15), anesthetic depth (16), end-tidal carbon dioxide (17) and oxygen saturation (18). A
recent systematic review on hypotension found that due to heterogeneity and methodological
limitations, one cannot conclude based on available evidence that intraoperative hypotension
causes adverse outcomes (12). The impact of blood pressure perioperatively is physiologically
complex, with factors including autoregulation, microvascular dysfunction, and limitations of
measurement (19).

Our understanding of the impact of intraoperative hemodynamics remains limited as they
have been mostly evaluated in isolation. The interactions between intraoperative hemodynamic
variables have not been systematically evaluated for association with postoperative outcomes.
Hemodynamics are a reflection of physiology, surgical stress, and medications. If found to be
predictive of outcomes, automatically recorded hemodynamic variables could provide robust,
objective risk stratification within intraoperative anesthesia information systems.

We would like to leverage machine learning to elucidate hemodynamic contributors in
the perioperative surgical, physiologic and pharmacologic milieu in the non-cardiac surgery
population. Machine learning refers to a set of advanced statistical techniques to evaluate the
correlations and associations within large data sets (20). This includes logistic regression with
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variable selection, where the most important predictors are chosen from a set of predictors to
build a parsimonious model (21). Another machine learning technique is Principal Component
Analysis (PCA), which finds groups of correlated predictors amongst a large set of potential
predictors (i.e. dimensionality reduction) (21). The most important groups of predictors could
then be placed in a model. Other modeling techniques we will use include classification trees,
which predict outcomes based on input variables through classification, random forest to show
which predictor has the highest importance, and association rule learning to help profiles of
linked predictors (21).

Foundational papers on machine learning of intraoperative data have reported
inconsistent results. Prasad et al. analyzed data from 101 patients undergoing liver
transplantation and showed that intraoperative hemodynamic data improved the prediction of
mortality and acute renal failure compared to preoperative information alone (22). On the
contrary, Lee et al. found that a deep neural network model predicted in-hospital mortality,
though not better than conventional models such as the Risk Stratification Index (23). It is
important for clinicians to understand the factors and processes by which the machine learning
algorithm built the model, to help with clinical decision making and hypothesis generation for
future research. Thus, we have chosen machine learning techniques that generate interpretable
models. Our use of a large population database and advanced machine learning methods may
help improve our understanding of the crucial relationships amongst hemodynamic variables and
complex perioperative data.

The results of this study may help synthesize complex intraoperative clinical information
and unveil novel therapeutic strategies. Derived from data from the QEII Hospitals, the results
would be directly applicable to the care of Nova Scotians. The models may lead to the creation
of objective risk stratification scores calculated at the end of surgery, to identify high risk
patients for increased postoperative follow-up and monitoring. Moreover, if models created
using machine learning perform well, machine learning may be used more frequently to reveal
the patterns within complex, large perioperative datasets. Hemodynamics are potentially
modifiable risk factors. Future research includes prospective studies on whether targeted
hemodynamic goals, increased postoperative follow-up of high-risk patients, and real-time
machine learning precision medicine could improve outcomes after surgeries.

Specific aims

1. To use machine learning techniques to investigate systematically intraoperative
hemodynamic predictors of postoperative 30-day all-cause mortality (primary outcome)
and major in-hospital morbidity. Hemodynamic predictors to be studied are blood
pressure, heart rate, oxygen saturation, end-tidal carbon dioxide, and medications to
adjust blood pressure. Please see “Outcomes” section below for full list of secondary
outcomes.

2. To evaluate performance of machine learning models created and compare the
performance of the best model to the Surgical Apgar Score.

Hypothesis

Controlling for other predictors, the durations of mean arterial pressure (MAP) <65mmHg, heart
rate <60 or >100 beats per minute (BPM), hemodynamic medications use, oxygen saturation
(Sp0O2) <88%, and end-tidal carbon dioxide (EtCO2) <30 or >45 will be associated with
postoperative 30-day all-cause mortality (primary hypothesis) and 30-day major in-hospital
morbidity (secondary hypothesis). Note that blood pressure, heart rate, vasopressors and
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inotropic medications, oxygen saturation, and end-tidal are considered key indicators of
hemodynamics. We have chosen conventional ranges commonly used in practice, and will
perform sensitivity analysis of different definitions of each hemodynamic variable.

In addition, the model for hemodynamic predictors of postoperative mortality developed
from machine learning will perform better in terms of discrimination (C-statistics), calibration
(Hosmer-Lemeshow test), and risk reclassification (Yates slope and integrated discrimination
improvement) than the Surgical Apgar Score.
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Methodology

Study Design Overview

This is a retrospective population cohort study. Following approval from the Research Ethics
Board, we will analyze de-identified records of our study population. Since there are many
machine modelling techniques each with its benefits and drawbacks, we will create models
using interpretable machine learning techniques we believe will work the best for this study,
and test the performances of these models through internal validation. The models will be
compared to the Surgical Apgar Score in terms of discrimination, calibration, and risk
reclassification. The trial will be registered on ClinicalTrials.gov prior to receiving research
data and performing analysis. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) and Developing and Reporting Machine Learning
Predictive Models (24) guidelines will be followed.

Study Population

We will include all patients ages > 45 receiving their index (i.e. first) non-cardiac surgery with
an overnight stay at the Nova Scotia Health Authority Queen Elizabeth II (QEII) hospitals
(Victoria General and Halifax Infirmary) Halifax, Canada, from the past five years (i.e. January
1, 2013 to December 1, 2017). For patients who had multiple surgeries, only the first non-cardiac
surgery with an overnight stay at QEII will be included to avoid confounding from previous
surgical admissions (i.e. one surgical admission per patient). We chose December 1, 2017, as the
end date to allow for complete data 30 days after surgery: for data analysis in summer 2019, we
only have access to mortality data up to December 31, 2017

We will exclude patients with no intraoperative anesthetic records. Cardiac surgery
patients (identified by procedure anatomy “Heart” or “Cardiac” within Innovian) are excluded
since they have a unique set of considerations and complications due to having surgery directly
in the heart. To include the full spectrum of non-cardiac surgical patients, no specific surgeries
will be excluded except for deceased organ donation (“organ retrieval” in Innovian procedure
name, and American Society of Anesthesiologists classification for neurologically-deceased
organ donors, ASA=VI).

Preliminary analysis of our intraoperative database estimates approximately 35,000
patients in this cohort. For patients with multiple procedures, the date of the first surgical
procedure with an overnight stay will be used to identify the specific surgical admission of
interest.

Data Sources

The de-identified dataset will consist of databases from Innovian, Horizon Surgical Manager
(HSM), and Health Data Nova Scotia (HDNS). Innovian is the intraoperative anesthesia
electronic information management system used at the QEII, containing automated recordings of
intraoperative standard monitors, time-stamped anesthesiology entries of medications and
interventions, and perioperative laboratory tests. HSM contains vital signs and administrative
data at the anesthetic preoperative clinic, in the preoperative area prior to the surgery, and in the
recovery room after surgery.

The specific HDNS databases to which access is being requested are the Canadian
Institute for Health Information (CIHI) Discharge Abstract Database (DAD) and Vital Statistics.
DAD is a repository of clinical and administrative data from each hospitalization, including
preoperative diagnoses, surgery performed, postoperative complications, and investigations.

May 23, 2020 Hemodynamic Predictors Protocol Version #4 - Ke et al. REB#1024251 6



DAD includes the 25 most relevant diagnoses preoperatively and postoperatively. Nova Scotia
physician billings data will not provide any additional relevant information and are not necessary
for this project. The Vital Statistics database records all deaths within Nova Scotia. Innovian and
HSM data will be linked together by health card number and surgical date by the Innovian Data
Manager (Innovian-HSM dataset). The health card numbers will be sent to Medavie for
encryption. HDNS will link the Innovian-HSM dataset with the HDNS variables by encrypted
study IDs and surgery date. National and provincial privacy and data security policies will be
strictly followed.

Data linkage:

Step 1: Innovian
a. Include patients with surgery dates 2013 Jan 1 — 2017 Dec 1 inclusive
b. Include patients with age on date of surgery > 45
c. Exclude patients with procedure name that includes “organ retrieval” or ASA = VI, as
well as procedure anatomy “heart” or “cardiac”.
d. Eligible patients will be linked to HSM by health card number for the required variables
described in the Appendix.

Step 2: HDNS: CIHI DAD

a. Health card numbers of patients identified in Step 1 will be sent to Medavie for
encryption. Medavie will provide HDNS with encrypted health card numbers. HDNS
obtains Study ID and Surgery date from the Innovian-HSM dataset to perform linkage via
Study ID, encrypted health card number and procedure date (to ensure the data is from
the same surgical admission). The maximum allowable mismatch for the surgery dates in
Innovian and CIHI is +/- 1 day. The Innovian surgery date will be used as the gold
standard, since the record is done in real time and thus the most accurate.

b. Exclude patients with Length of Stay (LOS) < 1. If a patient had multiple surgeries, the
first surgery with a LOS >1 (i.e. at least overnight stay) will be included.

c. HDNS provides Innovian-HSM the final list of included patients (patient ID and surgery
date). Innovian-HSM will then send data for relevant variables to HDNS for linkage.

Data quality: Data reabstraction studies performed by the CIHI show high data quality, ranging
from 76 to 96% for coding consistency of interventions reported, significant diagnoses, and most
responsible diagnosis (25). Since intraoperative hemodynamic variables and laboratory are
automatically recorded into Innovian, no validation is necessary. It would not be possible to
retrospectively validate the anesthesiology physician entries into Innovian (e.g. use of
vasopressor medications) as most are not recorded elsewhere, but with medical-legal
requirements and more than 10 years of experience with Innovian at QEII, the error rates will
likely not significantly affect results.

Variables
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Please see Appendix for a detailed table of all variables.

L Main Predictors (“Exposures”)
At the time of surgery, anesthesiologists document the timing of key clinic information
(induction, intubation, start and end of surgery, emergence, extubation, and exit of the operating

room), medications and fluids administered, estimated blood loss, and type of anesthesia into the

intraoperative record. Hemodynamic factors are automatically recorded into the database every
minute. The following intraoperative hemodynamic factors will be included in model building:

Table 1. Exposures

Blood pressure Since there is no universal definition of low blood pressure under
anesthesia, we will use several different variables to determine the most
significant exposure by threshold and duration. Both Systolic Blood
Pressure (SBP) and Mean arterial pressure (MAP) have been used in
blood pressure research (12). In a recent study (26), different blood
pressure modeling techniques on the same dataset led to different
conclusions on the impact of hypotension on postoperative myocardial
infarction and kidney injury. Methods with the largest odds ratios were
absolute maximum decrease in MAP and mean episode area under
threshold. However, since the area under threshold is less interpretable

and difficult to calculate in everyday clinical practice, the duration under
threshold will be used.

SBP

1. Maximum change from preoperative SBP, in a) absolute change
(mmHg), and b) relative change (%)(emergency and elective cases
analyzed separately due to the lack of preoperative blood pressure
in the emergency group)

2. Cumulative duration (minutes) >20% below preoperative SBP

3. Longest single episode (minutes) below a) 80, b) 90, and ¢)100
mmHg

4. Cumulative duration (minutes) below a) 80, b) 90, and ¢)100
mmHg

MAP

1. Maximum change from preoperative MAP, in a) absolute change
(mmHg), and b) relative change (%) (emergency and elective
cases analyzed separately due to the lack of preoperative blood
pressure in the emergency group. Note that since the HSM
database only contains SBP and DBP, not MAP, MAP will be
calculated using MAP = 1/3*SBP + 2/3*DBP)

2. Cumulative duration (minutes) >20% below preoperative MAP

3. Longest single episode (minutes) below a) 60, b) 65, ¢) 70, and d)
80mmHg

4. Cumulative duration (minutes) below a) 60, b) 65, c) 70, and d)
80mmHg
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medications for
blood pressure)

Heart rate Since both fast and slow heart rate may be harmful and there is no
universal definition of abnormal heart rate under anesthesia, we will
model using a variety of methods.

1. Maximum change (BPM) from preoperative heart rate (positive
and negative)

2. Relative change (%) from preoperative heart rate (positive and
negative)

3. Maximum pulse variation (maximum heart rate minus minimum
heart rate)

4. Longest single episode (minutes) a) below 60, and b) above
100BPM

5. Cumulative duration (minutes) a) below 60, and b) above
100BPM

Use of 1. Vasopressor/inotrope use (yes vs. no): phenylephrine,

hemodynamic norepinephrine, epinephrine, vasopressin, dobutamine, or

medications (i.e. milrinone

special 2. Infusion of any vasopressor/inotropes above (yes vs. no)

(identified by unit of weight over time)

3. Phenylephrine/ephedrine bolus (yes vs. no) (identified by unit of
weight only)

4. Vasodilator use (yes vs. no): labetalol, esmolol, nitroglycerin,
nitroprusside

5. Infusion of any vasodilator above (yes vs. no) (identified by unit
of weight over time)

Oxygen
saturation by
pulse oximetry:
SpO2

1. Longest single episode (minutes) below a) 88, and b) 90%
2. Cumulative duration (minutes) below a) 88, and b) 90%

End-tidal (i.e.
exhaled) Carbon
dioxide: EtCO2

1. Longest single episode (minutes) a) below 30, and b) above
45mmHg

2. Cumulative duration (minutes) a) below 30, and b) above
45mmHg

May 23, 2020 Hemodynamic Predictors Protocol Version #4 - Ke et al. REB#1024251

9



11 Outcomes
Primary: 30-day all-cause postoperative mortality (binary)

Secondary:
1. Major 30-day in-hospital morbidity, both in terms of the individual category (yes/no), and

an overall composite (i.e. yes for any of the 6 categories vs. no). We have included major

morbidity outcomes where increased monitoring would be beneficial, using International

Statistical Classification of Diseases (ICD) 10 codes and based on published protocol on

patient safety indicators (27).

1. Cardiac: composite of acute myocardial infarction, cardiac arrest, ventricular
tachycardia, congestive heart failure, pulmonary edema, complete heart block,
shock excluding septic shock

2. Respiratory: composite of pneumonia, pulmonary embolism, acute respiratory

failure, respiratory arrest, Mechanical Ventilation > 96 hours

Acute Kidney Injury

Cerebrovascular: composite of strokes and transient ischemic attacks

Delirium

6. Septic Shock

2. Postoperative ICU admission (yes/no)

3. Prolonged Postoperative Length of Stay (LOS) (greater than vs. less than or equal to
CIHI Expected Length of Stay (ELOS) as assigned by the Case Mix Grouping) [note that
the LOS includes the day of surgery]

4. Hospital readmission within 30 days (yes/no)

Intraoperative mortality (yes/no)

6. Days alive and out of hospital at 30 days postoperatively (28)

bk w

b

III.  Other predictors included into model
The following potential perioperative predictors will be evaluated as covariates during model
building. Statistically significant predictors will be retained in the model.
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Table 2. Other predictors

Preoperative 1. Demographics: age on date of surgery, sex, obesity (body mass
index>30)

2. Indicators of preoperative comorbidities: since no comorbidity score
has perfect performance, a variety of models will be evaluated and
the most significant predictive score will be retained in the model.
e American Society of Anesthesiologist class
e RCRI score(29), and specific components via ICD codes (history

of ischemic heart disease, congestive heart failure,
cerebrovascular disease, diabetes, chronic kidney disease, and
CCI and Case Mix Group codes of suprainguinal vascular,
intraperitoneal, or intrathoracic surgery) using previously
published methods (30)(31)

e Elixhauser comorbidity index (32) and Charleson Comorbidity
Index (33): calculated using diagnoses from the previous three
years according to standard algorithm by HDNS. Reported as
both total score and individual categories

e Hospital Frailty Risk Score (34): based on ICD codes

e Preoperative blood pressure: ICD diagnosis of hypertension and
by measured blood pressure

e Preoperative heart rate: Innovian and HSM

e Chronic Obstructive Lung Disease (ICD code): since it may
affect the interpretation of results of SpO> and EtCO;

3. Indicators of surgical complexity
e CIHI DAD Case Mix Group (CMG) class (also contains

categories that include medical complexity)

e Main Surgical Service

e Procedural Index for Mortality Risk (PIMR) (35): according to
CCI

e Procedure: CCI codes

e Preoperative ICU admission

e Emergency surgery: as determined by DAD Method of Entry =
emergency department or transferred from another institution)

Intraoperative e Anesthetic factors
o Type of anesthesia: General vs. regional vs. neuraxial vs.
sedation (multiple concurrent types possible)
o Measures of anesthetic depth
= Age-adjusted inspired Minimal Alveolar

Concentration (MAC) — summed from all volatile
anesthetics used (36). Since MAC is available for
every 15 seconds, the average MAC for each case (i.e.
time-weighted) will be used.
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= Bi-spectral Index (BIS): duration in minutes for BIS
<46 (37)
o Temperature: duration (minutes) a) < 36°C, and b) > 38°C
(38)
o Crystalloid administration >1L: volume in mL
e Surgical factors
o Duration
o Laparoscopy
o Bleeding: Estimated blood loss (mL), lowest Hemoglobin day
within 2 days after surgery (g/L) (including day of surgery),
Red Blood Cell transfusion (mL)
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Analysis plan
Statistics will be analyzed directly on the HDNS Citadel secure server using SAS Software 9.4
(SAS Institute, Inc., NC) and R version 3.5.3 (https://www.r-project.org/).

Cohort characteristics

Descriptive statistics will be performed on all proposed predictors and outcome variables listed
above. Continuous variables will be listed as mean with standard deviation, and categorical
variables as frequency counts and percentages. Mortality will also be described in terms of
causes, location (in- vs. out-of-hospital), and timing (intraoperative vs. postoperative, and by
postoperative day).

Data processing and artifact removal

New variables will be created through calculation or dichotomization, as described in the
variables section above and Appendix 1. Patients with age >120 or < 45 will be flagged for
further investigation of data validity and potential removal. Artifact removal from hemodynamic
variables will be performed by the Innovian Database Manager in SQL, prior to creation of
exposure variables (Table 1) and data linkage. Input of hemodynamic variables of interest (blood
pressure, heart rate, EtCO>, and SpO) as well as BIS and end tidal volatile from intraoperative
monitors were automatically recorded every 15 seconds into Innovian. Continuous values were
captured every 15 seconds as medians of 8 values captured every 2 seconds, while discrete
values (e.g. NIBP) were captured as is at the moment. The maximum incidence of artifact was
found to be 0.1% for heart rate, 0.4% for SpO2, 2.9% for noninvasive blood pressure, and 15%
for invasive blood pressure in a previous study (39), and this is likely an overestimate due to the
strict definition of artifacts. A systematic review and cohort study showed that while a variety of
different artefact algorithms affected the defined incidence of intraoperative hypotension, it did
not significantly affect the model between hypotension and outcome (40). Importantly, duration-
based hypotension definitions were less affected by artefact filtering algorithms than depth
thresholds (40).

To reduce artifacts outside of anesthesia time (e.g. arterial line is plugged in prior to patient
arrival), the variables below will only be taken during a defined “Surgery Duration”. This
Duration starts at the first valid recorded SpO- (that is subsequently valid for 1 minute), and ends
after the last valid SpO: (that has been valid for 1 minute).

e Blood pressure
1. Step 1, removal of individual artifacts: Note that non-invasive (NIBP) and invasive
blood pressure values (IABP) will be treated separately. Potential artifacts will be
removed (changed to missing data) in the following order:
1. Missing any of SBP, DBP, or MAP, or where any of SBP, DBP, and MAP
are equal to each other
2. Apply 3 different artifact algorithms simultaneously to identify artifacts:
e Multi-Centre Perioperative Outcomes Group (MPOG) algorithm
e For IABP only: MAP value greater than 50% from the values
before and after will be deleted, as previously described by Sun et
al (41).
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e The following blood pressure artifact removal rules as described
by Salmasi et al (41) will also be applied: “SBP less than or equal
to DBP + 5 mmHg”, and “abrupt changes defined by SBP change
greater than or equal to 80 mmHg within 1 min in either direction
or abrupt SBP changes greater than or equal to 40 mmHg within
2 min in both directions.”

3. To remove artifacts prior to arterial line insertion, for IABP data only, the
first MAP readings must be >40, and the first SBP reading must be >60.

4. For each BP measurement, if any of SBP or MAP has been labelled as an
artifact, then remove the entire measurement

5. If an entire case has been identified as null after artifact removal (i.e. no
valid BP for the entire case), the entire case and studyID will be deleted.

2. Step 2. Concatenation. The final blood pressure will be taken from IABP or NIBP,
whichever is available after artifact removal. If both non-invasive (NIBP) and invasive
blood pressure values (IABP) are available for the same 15 second interval, the higher
reading will be taken. Otherwise, the only blood pressure that is valid will be used.

3. Clarification re. “Baseline” blood pressure: The HSM and first Innovian BP will be
modeled separately during analysis, i.e. each patient will have two “baseline”
measurements, coded by the variables “MAP_first Innovian” and “MAP_preop HSM”.

1. All patients will have the variable of a first Innovian BP (after artifact
clean up). The first Innovian BP is used since the second BP may be
postinduction. This has the limitation that the the first intraoperative BP
may not reflect the true baseline (42); however, practically this would be
the blood pressure that would be available in similar clinical situations.

2. Only some patients will have HSM BP (i.e. at preoperative clinic or in the
preadmission area). Since the HSM does not contain MAP, MAP will be
calculated using MAP = (2/3 DBP) + (1/3 SBP).

e [Ifapatient does not have a HSM BP, the variable value will be
coded as missing (not zero).

e Heart rate

1. Artifact removal:

1. The heart rate will be collected from the pulse oximeter instead of ECG, to
reduce risk of electric cautery artifact and non-transmitted conduction.

2. Heart rate > 170 or < 30 BPM will be removed. To reduce the influence
from outlier artifacts (e.g. temporary disconnection or adjustment of a
monitor), single episodes of deviation in any variable greater than 50%
above or below the preceding value will be flagged. If the flagged heart
rate from the pulse oximeter and ECG (and/or arterial line) differ by >10,
the heart rate will be removed as artifact.

2. Clarification about “Baseline” heart rate: similar to BP above, the HSM and first
Innovian HR will be modeled separately during analysis, i.e. each patient will have two
“baseline” HR. All patients will have the variable of a first Innovian HR (after artifact
clean up). Only some patients will have HSM HR (i.e. preoperative clinic or in the
preadmission area). If a patient does not have a HSM HR, the variable value will be
coded as missing (not zero).
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e EtCO: will only be analyzed in cases involving general anesthesia. Values > 120 or <5
mmHg will be removed as artifact.

e SpO:2 >100% or < 50% will be removed as artifact.

e Temperature < 30 or > 43 degrees Celsius will be removed as artifact.

¢ End tidal volatile concentrations (including nitrous oxide) will be converted to summed
age-adjusted MAC (36). The total age-adjusted MAC < 0.2 and >2.5, at each 15 second
interval, will be removed as artifact prior to calculation of the time-weighted average (15
second time intervals).

For each automatically recorded variable from Innovian, at least 3 cases will be reviewed to
ensure correct artifact labeling. We will quantify the percentages of artifacts flagged and
removed per case for each variable monitored.

Artifact Removal Sub-study: Derivation of a machine learning algorithm for artifact
removal for invasive blood pressure data

Rationale

While putting together the Innovian dataset for our study, we found that existing artifact (noise)
removal algorithm has limitations at removing invasive arterial blood pressure (IABP) artifacts.
Current algorithms are based on clinician-generated rules (40). We plan to use machine learning
algorithms to improve artifact detection.

Objective

Our goal is to derive an artifact removal algorithm for [ABP using machine learning of
hemodynamic data.

Methodology

For this sub-study, we will include patients with IABP recorded. There are approximately 6000
patients with IABP recordings. We will exclude patients who do not have any recording of the
required hemodynamic variables: IABP systolic, IABP mean, IABP diastolic, non-invasive
blood pressure (NIBP) systolic, NIBP mean, NIBP diastolic, IABP heart rate, ECG heart rate,
SpO2 heart rate, and SpO2 (oxygen saturation).

To label the dataset with “gold-standard” answers, we will use a random sample of 60 cases
(chosen by random number generator) for which the artifacts (anomalies) will be manually
labeled by anesthesiologists on the study team, blinded to the final artifact removal algorithm.

The problem of artifact detection (anomaly detection) will be addressed for two target variables:

IABP mean and IABP systolic. We will use the same methodology to conduct the analysis for
artifacts detection in these two target variables.
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For each target variable the problem will be tackled in two approaches: as a univariate time
series and as a multivariate time series. In the univariate series approach, we will only take into
consideration the data of the time series representing either the IABP mean or the IABP

systolic artifacts. For the multivariate approach, we will include the information of the following
variables IABP systolic, [ABP mean, IABP diastolic, NIBP systolic, NIBP mean, NIBP diastolic,
IABP heart rate, ECG heart rate, SpO2 heart rate, and SpO2 (oxygen saturation).

In the univariate case, the anomaly detection will be carried out using several statistical
approaches, and machine learning approaches.

Methods to apply for anomaly detection in the univariate time series case:

1) Statistical-based approaches: ARIMA model, simple, double and triple Exponential
Smoothing and Outlier Detection using Prediction Confidence Interval (PCI). Anomalies will be
detected by evaluating the deviation of the predicted point to the observed one.

2) ML-based approaches: DBSCAN, LOF, isolation Forest, One-Class Support Vector Machine,
XGBoost and neural networks.

Regarding the anomaly detection in the multivariate time series case we will apply several
machine learning-based techniques such as isolation forest, One-Class Support Vector Machine,
XGBoost and different neural networks.

Regarding the performance evaluation, we will split the data set into train/test (70%) and
validation (30%). This means we will use 42 cases for train and test and 18 cases for

validation. The performance evaluation in the train/test part of the data will be carried out using
100 repetitions of bootstrapping method and we will assess the performance on following
metrics: Fi, precision, recall, specificity, Negative Predicted Value (NPV), False Discovery Rate
(FDR), G-Mean, AUC-ROC, AUC-PR.

The derived algorithm will be applied to the full sample (~6000 excluding the 60 cases used
above), and the percentage of hypotension defined will be quantified according to published
comparisons (1). This will also be compared to the results of the MPOG algorithm.

Analysis will be performed in Python.
Research Ethics Considerations

This sub-study will use the existing Innovian dataset, but using only the following completely
de-identified variables:

1. Study ID

2. Time stamps for each hemodynamic variable (dates will be removed, and placeholders will be
used to denote surgery times that happened overnight that bridges two dates)

3. Required timestamped hemodynamic variables for modelling:

IABP systolic
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IABP mean

IABP diastolic

NIBP systolic

NIBP mean

NIBP diastolic

IABP heart rate

ECG heart rate

SpO2 heart rate

SpO2 (oxygen saturation)

Data analysis will be performed by Dr. Paula Branco (member of the current study team as a
post-doc, currently faculty member at University of Ottawa) and her Co-op student Mengqi Wu
will receive the de-identified, limited Innovian dataset securely and directly from our Innovian
manager using the NSHA encrypted institutional email (SENDNS). The files will be stored in a
password-protected computer and permanently deleted according to NSHA policy once analysis
is complete (estimated to be end of September 2020).

Missing data
Since intraoperative hemodynamics are automatically recorded and mortality reporting is

mandatory, we do not expect significant missing data for the key hemodynamic predictors and
primary outcomes. For disease conditions, patients without ICD codes are assumed to not have
the disease; the same applies for medications. For the other variables of interest, if there is less
than 5% missing data, no processing will be performed. Between 5-20%, missing data will be
imputed using group mean (43) for continuous variables. At greater than 20% missing data, the
variable will be removed from analysis with potential causes evaluated and reported.

Creating the models

We will divide the cohort temporally (approximately 80:20 ratio) into two groups:
derivation/training group (approx. January 1, 2013 — Dec 31, 2016), and validation group
(approx. Jan 1, 2017 — December 1, 2017). This temporal approach to the model building vs.
validation groups will also mirror the real-life application of machine learning, where data from
the past is used to predict future outcomes. Splines will be used for the hemodynamic predictors
involving time as a unit.

In the derivation/training set, we will create models for the primary outcome using
machine learning techniques, including logistic regression with variable selection, classification
trees, and Principal Component Analysis (PCA)(21). We have chosen these techniques to obtain
interpretable results, i.e. being able to understand the process by which the algorithm decision
making occurred. Also, these techniques demonstrate different approaches and perspectives to
better understand the relationships amongst the variables.

Logistic regression with variable selection (e.g. LASSO, Elastic Net) identifies the most
important predictors to create a parsimonious model. Classification trees predict outcomes
based on input variables through classification. Random forest is an ensemble method of
classification trees; while it is not directly interpretable, it can show which predictor has the
highest importance. Association rule learning will be used to find new patterns. PCA is used for
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dimensionality reduction and is particularly helpful in this study to better understand profiles of
correlated variables, and to narrow down on what the most important predictors are when a
multitude of predictors exist. PCA reveals components (i.e. groups of correlated predictors),
with the most important components accounting for the most variation within the data.
Components found to account for the most variances (Eigenvalue >1) in a scree plot represent
the most important sets of predictors. They will be further analyzed using Cronbach Alpha to
assess for internal consistency within components. Note that since PCA is a method of
unsupervised learning where the outcome is not defined, in the first PCA model, all variables
(including both primary and secondary outcomes) will be inputted into PCA with the significant
components reported. This is to generate profiles of correlated predictors and outcomes.
Structural equation modeling will be used. In an unrelated, second PCA model, PCA will be
used to reduce dimensionality of predictor variables (i.e. exposures and covariates only), and
the most correlated predictors within key components will be entered into a logistic regression
the primary outcome.

Class Imbalance
Since patients with the primary outcome of mortality only accounts for an estimated 1.7% of the
sample, significant class imbalance exists (i.e. not a 1:1 ratio between patients with vs. without
mortality). This results in the machine learning to be more focused on the majority class (i.e.
patients without mortality) and impacts the predictive power for mortality.

Several techniques exist to make the learning algorithms to focus on the important class
(44). Among these, pre-processing techniques are a powerful tool enabling the use of any
standard learning algorithm by modifying the training set. The goal is to obtain a more balanced
training set through weighting, undersampling and/or oversampling. We will explore different
resampling techniques to rebalance the training set. Regarding undersampling, we will explore
both random and informed undersampling (remove examples near the decision border through
nearest neighbours computation and use a clustering algorithm to guide the selection of
examples). For oversampling, we will explore the introduction of replicas (randomly or by
weighting) and the generation of synthetic data through the introduction of Gaussian Noise,
SMOTE, and other SMOTE-based techniques. We will also examine the combination of these
techniques. All of these techniques are only applied on the training set used to learn the model,
and they are never applied on the test set. Thus, the model, although learned in a more balanced
scenario is always evaluated only in real data and in a real imbalanced scenario.

We will also apply cost-sensitive learning. The assignment of higher costs to type II
errors during learning has the potential to improve the results, reducing this type of error.
The effect of class rebalancing (at a variety of ratios and trough a variety of techniques) on
model performance will be examined, and the impact of these adjustments on model
performance will be reported.

Evaluating model performance

Using the derivation/testing set, the performances of machine learning models generated will be
evaluated by cross validation. To account for potential temporal effects and concept drift,
Monte Carlo and prequential evaluation will be used (45). In addition, each model will be
evaluated in terms of discrimination, calibration, and risk reclassification (21,46). Discrimination
will be calculated through C-statistics using area under curve (AUC) of receiver operating
characteristic curve (ROC). Calibration will be represented graphically using observed vs.
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expected event rates in risk estimate deciles, and by the Hosmer-Lemeshow statistic. Brier score
will be computed for discrimination and calibration. Risk reclassification will be quantified
through Yates slope and integrated discrimination improvement. R-squared will be reported.

The performance of all models created will be evaluated in the validation set as part of
internal validation using the same metrics of discrimination, calibration, and risk
reclassification, and compared to the Surgical Apgar Score. Since there will likely be significant
class imbalance and ROC curves may overestimate model performance, for each model,
precision and recall curves (PRC), F score, average precision, and AUC will also be reported
and compared. The best performing model will also be used to analyze for predictors for
secondary outcomes. Sensitivity (recall, true positive rate), specificity, positive predictive value
(precision), G-mean, negative predictive values, False Discovery Rates (FDR), optimism, and
measures of association of hemodynamic thresholds for primary and secondary outcomes will be
computed. Bayesian network causal inference analysis may be performed, to help increase
interpretability.

Sensitivity and subgroup analysis

Sensitivity analysis will be performed for different definitions of hemodynamic
derangements. Subgroup analysis will be performed based on age, sex, high preoperative risk
(most significant indicator of preoperative comorbidity in Table 2, based on final model), RCRI,
frailty (HFRS), preoperative hypertension, a select list of intermediate-high risk, gender-neutral
elective surgery (please see Appendix — RCRI Protocol Table 1), emergency surgery, and type of
anesthesia.

Power calculation

The 2016-2017 in-hospital mortality after major surgery in Nova Scotia is 1.7% (47). Using the
Events Per Variable criterion (EPV) of at least 10 outcomes per predictor in the sample, the 1.7%
mortality (408) out of an estimated sample size of 24,000 for the derivation/training group means
that our model would be valid for up to 41 predictors for the primary outcome. However, the
EPV may over or underestimate the limitations of the EPV criterion (48), square root of the
mean squared prediction error (rMPSE) and mean absolute prediction error (MAPE) will be
calculated based on the number of predictors, sample size and events fraction (49) with the
caveat that this model has not been externally validated . Full power calculation will be
performed once we receive the final sample size.

Strengths

This study involves a large, recent population dataset with nearly complete follow up for the
primary outcome. There has been more than 10 years of experience with intraoperative
anesthetic electronic recording system, with a high likelihood of provider proficiency with
anesthetic intraoperative electronic documentation. This dataset is unique in North America for
its degree of intraoperative details, pairing of clinical and administrative data, and robust data
quality. Our use of machine learning could detect new network relationships and strategies that
may inform current practice as well as future research.

Limitations

This study involves two academic provincial adult non-obstetric tertiary care centres in one
hospital system, which may represent a sicker population. Validation in other centres would
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increase generalizability. The retrospective nature of this database study makes it susceptible to
random error, bias, and confounding. There may be cluster effects from health providers and
hospitals, however the large sample size allows for robust power and minimizes random error.
There is a potential for misclassification, measurement, and ascertainment bias. Due to the lack
of universal screening for morbidity (e.g. troponin biomarker for myocardial injury and
infarction, and Brain-Natriuretic Peptide for preoperative cardiac risk stratification), only
mortality will be included as primary outcome. The lack of postoperative hemodynamic data
creates non-informative censoring (i.e. unbiased since the data is missing for all patients).
Numerous other predictors have been adjusted for through multivariate logistic regression but
unknown confounders and confounding by indication may remain. The retrospective data reflects
a snapshot of evolving practice, though secular effects may remain limited over the five-year
study period. Future prospective validation of the prediction model will increase external
validity.

Future directions

Future research includes prospective multicentre validation of our findings. Based on this model,
a real-time risk prediction tool could be incorporated into electronic anesthesia management
systems, while a simple score could be developed for clinicians. In addition, randomized studies
could shed light on whether targeted hemodynamics, increased postoperative follow-up based on
risk stratification, and real-time machine learning precision medicine could improve mortality,
morbidity, and patient-reported outcomes after surgeries.
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Feasibility

Budget overview

Budget Item Amount | Details

A. Personnel/third party service $800 Mentorship from data analyst Lynn

providers Lethbridge.

B. Equipment SAS and R software will be provided by
$0 HDNS.

C. Materials, supplies and $5895 Health Data Nova Scotia data request and

administrative services linkage with Innovian and HSM.

Medavie patient ID encryption (required by

HDNS)
$75
D. Knowledge translation and $1600 | Poster presentation at a conference
dissemination
Total $8370

Additional budget details

Budget Item A: Lynn Lethbridge is a data analyst within the Department of Surgery with
extensive experience with HDNS. She has been contracted to mentor Dr Ke’s data analysis for
16 hours at $50/hour ($800).

Budget Item C: We will request Discharge Abstracts Database and Vital Statistics data from
Health Data Nova Scotia (HDNS) (please see confirmation of feasibility and quote attached).
HDNS will link this dataset with our institutional Innovian (intraoperative anesthesia electronic
record) by MSI and provide us with a complete de-identified dataset. No server purchase is
necessary since the HDNS data will be provided on Citadel. Details from HDNS regarding
Citadel: "Analyses will be carried out remotely on the HDNS Windows server "Citadel".
Connection to Citadel occurs through Remote Desktop Connection (RDC). Citadel only accepts
connections from approved DAL NetIDs to access specific project data housed in our Hadoop
based research cluster. Other external connections such as the internet or USB devices are
disabled, and no data may be transferred between the local PC and the remote session."

Budget Item D: Presentation at a conference: Poster printing $200, flights and accommodation
$1000, registration fee $400.

Funding: $5000 Nova Scotia Health Authority Research Fund (awarded), the rest to be covered
by the Dalhousie Department of Anesthesia
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Benefits

This interdisciplinary study brings together investigators from diverse disciplines and locations,
with expertise from Dalhousie anesthesiology, epidemiology, and Big Data Institute, as well as
Harvard and University of Toronto. The research project is locally-based and relevant, with
findings that may spark further research and inform anesthesiology perioperative practice.

The QEII hospitals are tertiary referral centres taking care of some of the sickest patients
of the province. Better understanding of intraoperative predictors may unveil strategies to
improve outcome and improve resource allocation after surgery. Moreover, this model may be
generalizable to other hospitals, placing the Nova Scotia Health Authority and Dalhousie
University as a leading innovator in this area, as large population-level outcomes research will
likely continue to be at the forefront of health research.

Research team roles and responsibilities

Dr. Ke is completing the Harvard T.H. Chan School of Public Health Summer-Only Master of
Science in Epidemiology. This consists of coursework over three summers (2018-2020) and
online. The courses focus on epidemiology and advanced statistics, and with mentorship from
Harvard and Dalhousie faculty Dr. Ke has been learning the theoretical knowledge and practical
coding skills to independently analyze this project. She has protected research time to complete
this project.

This proposed thesis project is co-supervised by Dalhousie and Harvard faculty. Dr. E.
Francis Cook at the Harvard School of Public Health for his expertise in epidemiology, risk
prediction, and data mining. Dr. George has extensive research experience in anesthesiology and
has been building capacity in Big Data anesthesiology research at Dalhousie. Dr. David
MacDonald at Dalhousie anesthesiology has expertise in perioperative medicine and will bring
clinical and research knowledge. We also draw on the guidance of Dr. William Scott Beattie
(anesthesiology professor at University of Toronto) who has published extensively in database
studies involving perioperative outcomes, Dr. Robin Urquhart (Community Health &
Epidemiology) for her experiences with Health Data Nova Scotia (HDNS) and epidemiology,
Dr. Stan Matwin (Director at the Dalhousie Big Data Institute) for his expertise in machine
learning and Big Data, Dr. Paula Branco (Post-doctoral fellow at Dalhousie Computer Science)
for her specialty in machine learning and class imbalance, Dr. Luis Torgo (Professor at
Dalhousie Computer Science) for his expertise in analytics of spacio-temporal data, Dr. Dan
Mclssac from Ottawa for his specialty in perioperative database research, George Campanis and
Paul Brousseau for their experience with Innovian and medical informatics, and Lynn Lethbridge
(Department of Surgery) for HDNS data analysis mentorship.

Knowledge translation and dissemination

The models derived from this project will undergo further prospective internal and external
validation prior to being incorporated into clinical practice. Based on an externally validated
model, a real-time risk prediction tool could be incorporated into electronic anesthesia
management systems, while a simple score could be developed for clinicians. This project will
be presented locally at the Dalhousie Anesthesia Research Day, as well as at a national or
international anesthesiology conference. In addition, the methodology of optimization of class
imbalance will be published in a machine learning journal, and the overall project will be
published in an anesthesiology journal. Once published, a Visual Abstract and a patient-focused
infographic of results will be disseminated on social media.

May 23, 2020 Hemodynamic Predictors Protocol Version #4 - Ke et al. REB#1024251 22



May 23, 2020 Hemodynamic Predictors Protocol Version #4 - Ke et al. REB#1024251 23



Ethical considerations

Use of Personal Health Information (PHI)

This is a minimal-risk study. De-identified patient data meeting the inclusion and exclusion
criteria will be obtained from Innovian and Health Data Nova Scotia. This project satisfies all of
the requirements for waiver of consent under the Tri-Council Policy Statement (TCPS 2) and
Nova Scotia Personal Health Information Act (please see Request for Waiver of Consent
appendix). The population size is estimated to be 35,000, which would be impracticable since
this is an incredibly large population to contact for consent. Also, the cohort of interest includes
patients aged 45 and older who have undergone surgery, and it is therefore expected that some
patients would have died. Obtaining consent for these individuals would not only result in the re-
identification of these patients, but also their next-of-kin who would give consent on their behalf.
We have submitted a request for waiver of consent to the REB.

Measures will be in place to minimize the risk of breach in privacy and confidentiality (please
see below). Due to the large sample size and the collection of common perioperative outcomes,
accidental identification of a specific person from de-identified data is unlikely. There is no other
adverse event, harm, or risk anticipated.

Health Data Nova Scotia will create a database of linked data using the Provincial Health Card
number and date of surgery. The database we receive will be de-identified. PHI collected include
the following and will be used in the most de-identified form:

1. Date of surgery (for patients with multiple surgeries, information from only the first
surgery will be collected): in order to divide the cohort into derivation, training, and
validation groups by date of surgery

2. Age on date of surgery, Sex: potential covariates in the model

3. Procedures (Current Procedural Terminology (CPT) codes: a potential covariate in the
model

Measures Taken to Protect Personal Health Information and Study Data

e Cohort creation: The linked dataset will be created by HDNS through experienced
personnel and established process, and follow Tri-Council guidelines. The dataset we
receive for analysis will not contain any direct identifiers such as health card number
and date of birth.

e Controlled access: Only authorized researchers in Nova Scotia will have access to
de-identified person-level data. Aggregate data will be used as early as possible.
While Dr. Ke is in Boston, if needed, Health Data Nova Scotia will perform data
analysis on patient-level data using SAS protocol from team and send the rest of the
team aggregate data for interpretation. The rest of the team will only have access to
aggregate results after statistical analysis, with no identifiable information. All de-
identified person-level electronic data will be securely stored in the HDNS secure
server “Citadel”, where analysis will be performed without needing to download data
from the secure server.
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o Details from HDNS regarding Citadel: "Analyses will be carried out remotely
on the HDNS Windows server "Citadel". Connection to Citadel occurs
through Remote Desktop Connection (RDC). Citadel only accepts
connections from approved DAL NetIDs to access specific project data
housed in our Hadoop based research cluster. Other external connections such
as the internet or USB devices are disabled, and no data may be transferred
between the local PC and the remote session."

e Removal of all personal identifiers in electronic data: This will be performed by
the HDNS prior to the release of the analytic dataset to the project team.

e The results of the study (prototypes, publications, posters, presentations) will not
contain any personal data: Only aggregate data of cell counts greater than 5 will be
reported. As per HDNS policy, manuscripts will be submitted to HDNS for approval
prior to publication to ensure privacy and confidentiality.

Storage and Retention of Personal Health Information and Study Data

De-identified electronic person-level data will be securely stored in Citadel, the HDNS server.
(please see above). Paper material will be stored in a locked cabinet in the Halifax Infirmary
Anesthesiology Research Office. Regulatory documents (no-PHI) will be stored in the secure
(locked; access limited) anesthesia research office. Electronic records will be kept in password
protected files on a password protected computer on the NSHealth network.

After study completion, according to HDNS protocol, researchers will no longer have
access to Citadel but the data will be kept within HDNS for a minimum of seven years. Paper
records will be securely shredded in accordance to NSHA policy. All electronic files will be
permanently erased by the according to NSHA IT policy at the end of the retention period (7
years).

How do benefits outweigh harm

The results of this study may help synthesize complex intraoperative clinical information and
unveil novel therapeutic strategies. Derived from data from the QEII Hospitals, the results would
be directly applicable to the care of Nova Scotians. The QEII hospitals are tertiary referral
centres taking care of some of the sickest patients of the province. Better understanding of
intraoperative predictors may unveil strategies to improve outcome and improve resource
allocation after surgery.

The models may lead to the creation of objective risk stratification scores calculated at the end of
surgery, to identify high risk patients for increased postoperative follow-up and monitoring.
Moreover, if models created using machine learning perform well, machine learning may be
used more frequently to reveal the patterns within complex, large population perioperative
datasets. Hemodynamics are potentially modifiable risk factors. Future research includes
prospective studies on whether targeted hemodynamic goals, increased postoperative follow-up
of high-risk patients, and real-time machine learning precision medicine could improve outcomes
after surgeries.

With any database analysis project, a potential harm would be a breach in confidentiality and
privacy. With robust measures detailed above to protect privacy and confidentiality strictly
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followed, the risk of breaches is minimal. The many benefits of this study outweigh the unlikely
occurrence of potential harms.
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Source
Dataset

Variable

Level of
Identific
ation

Time Span

Why is this element required in the
analysis?

Information for inclusion and data linkage

Innovian

Date of
surgery

Patient

Jan 1, 2013
to Dec 1,
2017

Part of HDNS data linkage with
Innovian to ensure only variables from
the surgical admission of interest (first
surgery admission with LOS>1) is
included. This Date of Surgery will be
used to confirm linkage with
“PDATE” from CIHI DAD to ensure
that data from the correct surgical
admission is included The maximum
allowable mismatch for the surgery
dates in Innovian and CIHI is +/- 1
day. The Innovian surgery date will be
used as the gold standard, since the
record is done in real time and thus the
most accurate.

The date of surgery will also be used
to divide the cohort temporally into
the derivation/training group (January
1, 2013 — November 30, 2016), and
validation group (December 1, 2016 —
December 1, 2017)

Innovian

Patient ID:
encrypted
health card
number

Patient

Jan 1, 2013
to Dec 1,
2017

HDNS data linkage with Innovian.
The dataset given to us will not
contain Patient ID, but rather a Study
ID.

Innovian

Age: on date
of surgery

Patient

Jan 1, 2013
to Dec 1,
2017

Age >45 part of inclusion criteria.
Also, as age may impact outcomes,
this will be included as a covariate in
our models

Innovian

Organ
donation:
Procedure
name

Patient

Jan 1, 2013
to Dec 1,
2017

Patients with procedure name that
includes “organ donor” or “organ
donation” will be excluded, since they
are already declared brain dead and
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containing
the word
“Organ
donor” or
“Organ
donation” or
“DCD”

will not reflect the usual surgical
population.

[Derived by
Innovian]
Innovian | Cardiac Patient Jan 1, 2013 As defined by ProcedureAnatomy =
surgery to Dec 1, “heart” or “cardiac”. Cardiac surgery
[Derived by 2017 patients are excluded since they are
Innovian] receiving surgery directly on the heart
and have a unique set of complications
that may not reflect the usual surgical
population.
Innovian | ASA: Patient Jan 1, 2013 Patients with ASA VI (i.e. patient with
American to Dec 1, neurologic brain death for organ
Society of 2017 donation) will be excluded. Also, as
Anesthesmlo this may affect outcomes, it will be
gist class (I to ) .
Vi) included as a covariate in our models.
CIHI PATIENT_I | Patient Jan 1, 2013 HDNS data linkage with Innovian-
DAD D: encrypted to Dec 1, HSM. The dataset given to us will not
health card 2017 contain Patient ID, but rather a Study
number ID.
For HDNS
internal use
Vital PATIENT _I | Patient Jan 1, 2013 HDNS data linkage with Vital
Statistics | D: encrypted to Dec 1, Statistics. The dataset given to us will
health card 2017 not contain Patient ID, but rather a
number Study ID.
For HDNS
internal use
CIHI PDATE[1- Patient Jan 1, 2013 HDNS data linkage with Innovian
DAD n]: procedure to Dec 1, surgery date, to ensure that only the
date 2017 admission corresponding to the

surgery admission of interest (first
surgery admission with LOS>1) is
included.
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The PDATE matching the date of
procedure (+/- 1 day) from Innovian
will be used. The corresponding
number (e.g. PDATEI) will be used
for all procedure-related codes (e.g.
PCODEI, PDSERV1).

Note that except for preoperative
comorbidity data, where we would
need data for 3 years prior to PDATE,
for all other variables we only need
data within 30 days after PDATE.

CIHI LOS: Length | Patient Jan 1, 2013 Part of inclusion criteria: if a patient
DAD of Stay (after to Dec 1, had multiple surgeries, the first
surgery) 2018 (to surgery with a LOS >1 (i.e. at least
account for overnight stay). To calculate ratio of
Derived by prolonged LOS to Expected Length of Stay
HDNS: LOS postop | (ELOS) as secondary outcome.
discharge from the end | We have chosen to standardize LOS to
date minus of inclusion | only include duration of stay after
PDATE +1 date) surgery, since there are many factors
(includes day that may prolong a patient’s stay prior
of surgery) to surgery.
Additional Demographic Information
CIHI SEX: Patient Jan 1, 2013 As sex may affect outcomes, this will
DAD Patient sex to Dec 1, be included as a covariate in our
2017 models
M = Male
F = Female
HSM BMI: Body | Patient Jan 1, 2010 Dichotomized according to WHO
Mass Index to Dec 1, definition for obesity: BMI>30. This
[Derived by 2017 will be combined with ICD code to
Innovian] create a binary Obesity variable
(please see below).
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CIHI Obesity Patient Jan 1, 2010 Binary variable (yes/no), “yes”
DAD [Derived by to Dec 1, defined by: BMI >30, and if BMI
HDNS] 2017 missing, obesity ICD code
(DXCODE[1-n] = E66). As BMI may
affect outcomes, this will be included
as a covariate in our models. The BMI
data from HSM-Innovian will take
precedent over DXCODE: i.e. first
identify patients BMI>30 (coded as
obesity = yes), BMI <=30, and
BMI=missing data. For patients with
BMI=missing, patients with ICD E66
will also be coded as obesity = yes.
Additional Measures of Perioperative Comorbidity
CIHI DXCODE | Patient Jan 1, 2010 Diagnosis codes are required for the
DAD [1-n]: to Dec 31, following purposes:
diagnosis 2017 (3 years o H]?NS will use DXCODE
code before and (with “DXTYPE[I-n] = 1",
. . OR “DXTYPRE[I1-n] =2
including 30 AND DXPRE[1-n] = 5", OR
days after “DXTYPE[I-n] = 3 AND
date of DXPRE[I-n] =5, OR
surgery) “DXTYPE[1-n] = M AND
DXPRE[1-n] = 5”) within
three years before date of
surgery to calculate the
Elixhauser comorbidity
index, Charleson
Comorbidity Index, RCRI,
and Hospital Frailty Risk
Score (see below). The
entirety of DXCODES do
not need to be disclosed to
the research team since
HDNS will perform the
calculations.

e Specific comorbid conditions
will be included as covariates
in the analysis

e To examine post-operative
comorbidity
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Comorbidity covariates:

We need the following DXCODE
(with “DXTYPE[I-n] = 1", OR
“DXTYPRE[I-n] = 2 AND DXPRE/1-
n] =5", OR“DXTYPE[I-n] = 3 AND
DXPRE[I-n] =5”, OR “DXTYPE[I-
n] =M AND DXPRE[I-n] = 5")
within 3 years before PDATE:

Disease categories for RCRI (please
see “RCRI”); hypertension (I110-115),
COPD (127.8, 127.9, J40.x—-J47 x,
J60.x-J67 %, J68.4, J70.1, J70.3),
Obesity (E66)

Postoperative outcomes:

We need the following DXCODE
(with “DXTYPE [1-n]=2" Excluding
“DXTYPE [1-n]=2 AND DXPRE [1-
n]=5", OR “DXTYPE [1-n]=3”
excluding “DXTYPE [1-n]=3 AND
DXPRE [1-n]=5", OR “DXTYPE[I-
n] =M AND DXPRE[I-n] = 6") to
include into model as individual,
categorical, and composite secondary

outcome:

Cardiac: acute myocardial infarction
(I21 to 122, 124), cardiac arrest (146.0,
146.1, 146.9), ventricular tachycardia
(I47.2), shock (R57, T81.1) excluding
septic shock (R57.2), congestive heart
failure (150.0, 150.1, 150.9), pulmonary
edema (J81), complete heart block
(144.2)

Respiratory: pneumonia (J13 to J18,
J69.0, J69.8, J95.4), pulmonary
embolism (126), acute respiratory

failure (J95.1, J95.2, J96.0),
respiratory arrest (R9.2)
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Cerebrovascular: strokes and
transient ischemic attacks (160 to 169,
G45)
Delirium (F5)
Acute Kidney injury (N17)
Septic shock (R57.2)
CIHI DXPRE [1- | Patient Jan 1, 2010 To categorize the type of the
DAD nj: to Dec 31, corresponding DXCODE (please see
diagnosis 2017 (3 years above):
prefix before and
. . C = Cause of death
including 30 Q = Query Diagnosis/Etiology
days after 5 = Comorbidity arose before
date of qualifying intervention
surgery) 6 = Comorbidity arose during or after
qualifying intervention
8 = Palliative Care
CIHI DXTYPE Patient Jan 1, 2010 To categorize the type of the
DAD [1-n]: to Dec 31, corresponding DXCODE (please see
diagnosis 2017 (3 years above):
type
l‘aefore‘and M = Most Responsible Diagnosis
including 30 1 = Pre-admit comorbidity
days after 2 = Post-admit comorbidity
date of 3 = Secondary Diagnosis
surgery)
CIHI- Admit-date Patient 1Jan2010 to | For 3-year look-back window with:
DAD 31Dec2017 either admission date or discharge date
is between surgery date (B) and 3
years before B (A), assuming that
A<B.
For 30-day follow-up window with:
Either admission date or discharge
date is between surgery date (B) and
30 days after B (C), assuming that
B<C.
CIHI- Discharge da | Patient 1Jan2010 to | For 3-year look-back window with:
DAD te 31Dec2017 either admission date or discharge date
is between surgery date (B) and 3
years before B (A), assuming that
A<B.
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For 30-day follow-up window with:
Either admission date or discharge
date is between surgery date (B) and
30 days after B (C), assuming that
B<C.

CIHI
DAD

ECI:
Elixhauser
comorbidity
index

[Derived by
HDNS]

Patient

Jan 1, 2010
to Dec 1,
2017 (3 years
before and
including
date of

surgery)

To be computed by the HDNS
according to protocol (32) using
DXCODES (please see above), to be
included into model as covariate.
Please report both total score, and
any of the following individual
categories:

Congestive heart failure
Cardiac arrhythmias

Valvular disease

Pulmonary circulation disorders
Peripheral vascular disorders
Hypertension, uncomplicated
Hypertension, complicated
Paralysis

Other neurological disorders
Chronic pulmonary disease
Diabetes, uncomplicated
Diabetes, complicated
Hypothyroidism

Renal failure

Liver disease

Peptic Ulcer Disease Excluding
Bleeding

AIDS/HIV

Lymphoma

Metastatic cancer

Solid tumor without metastasis
Rheumatoid arthritis/ collagen
vascular diseases
Coagulopathy

Obesity

Weight loss

Fluid and electrolyte disorders
Blood loss anemia

Deficiency anemia

Alcohol abuse

Drug abuse

Psychoses

July 4, 2019

Hemodynamic Predictors Protocol - Ke et al. REB#1024251

39



Depression

CIHI
DAD

CCI:
Charleson
Comorbidity
Index

[Derived by
HDNS]

Patient

Jan 1, 2010
to Dec 31,
2017 (3 years
before and
including 30
days after
date of

surgery)

To be computed by the HDNS
according to protocol (33) using
DXCODES (please see above), to be
included into model as covariate.

Please report both total score, and
any of the following individual
categories:

Myocardial infarction
Congestive heart failure
Peripheral vascular disease
Cerebrovascular disease
Dementia

Chronic pulmonary disease
Rheumatic disease

Mild liver disease

Moderate or severe liver disease
Diabetes without chronic
complication

Diabetes with chronic complication
Hemiplegia or paraplegia

Renal disease

Any malignancy, including
lymphoma and leukemia, except
malignant neoplasm of skin
Metastatic solid tumor

Peptic Ulcer Disease Excluding
Bleeding

AIDS/HIV

CIHI
DAD

RCRI:
Revised
Cardiac Risk
Index

[Derived by
HDNS]

Patient

Jan 1, 2010
to Dec 1,
2017 (3 years
before and
including
date of

surgery)

As RCRI has been shown to affect
outcomes (29), it will be included as a
covariate. This is based on DXCODE
ICD codes (identified above) of
history of ischemic heart disease,
congestive heart failure,
cerebrovascular disease, diabetes on
insulin, chronic kidney disease
creatinine >176.8 pmol/L, and a list of
Canadian Classification of Health
Interventions (CCI codes) of
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suprainguinal vascular, intraperitoneal,
or intrathoracic surgery (30).
Detailed protocol will be sent to the
HDNS. Please provide both the names
of the categories and the total score
(i.e. for each patient, positive for any
of the categories of cerebrovascular
disease, ischemic heart disease,
congestive heart failure, chronic
kidney disease, diabetes, and diabetes
on insulin; as well as the total RCRI
score (1 point for each positive
category).
CIHI High risk Patient 3 years Binary variable (yes/no)
DAD surgery as before and As this may affect outcomes, it will be
per RCRI: including included as a covariate by itself and as
IS 35 ;gllﬁffma date of part of the Revised Cardiac Risk Index
intraperit (’) nea surgery (i.e. | (RCRI) score calculation.
1, or Jan 1, 2010
intrathoracic to Dec 1,
surgery 2017)
[Flag -
Derived by
HDNS]
HSM Preoperative | Patient 3 years Due to the difficulty of obtaining this
insulin use before and data from ICD codes (the code for
(yes/no) including this, Z79.4, only came to existence in
[Derived by date of . 201.8), tl}iS will help identify patients
Innovian: yes surgery (i.e. | on insulin for the RCRI score.
= any insulin Jan 1, 2010
use in the to Dec 1,
preoperative 2017)
medication
list]
Innovian | Preoperative | Patient 3 years This will help identify patients who
(from Creatinine before and satisfy the chronic kidney disease
linked (umol/L) including category (Pre-operative
lab date of creatinine >176.8 pmol/L) to calculate
database) surgery (i.e. | the RCRI score.
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Jan 1, 2010

to Dec 1,
2017)

CIHI HFRS: Patient 3 years As the HFRS has been shown to affect

DAD Hospital before and outcomes, it will be included as a
Frailty Risk including covariate. HDNS will calculate using
Score date of DXCODE according to a published
[Derived by surgery (i.e. | protocol (34).

HDNS] Jan 1, 2010 Detailed protocol will be sent to the
to Dec 1, HDNS.
2017)

Innovian | Preoperative | Patient Jan 1, 2013 As preoperative high blood pressure

and mean arterial to Dec 1, may affect the interpretation of the

HSM pressure 2017 threshold of harm for intraoperative
(MAP) blood pressure (12), preoperative
[Derived by MAP will be used in the calculation of
Innovian] change in MAP (absolute and %).

HSM contains blood pressure of
elective surgery patients at the
anesthetic clinic and prior to entering
the operating room, while Innovian
contains the first blood pressure of all
patients in the operative room. The
lowest blood pressure from either
Innovian or HSM will be used.

HSM Preoperative | Patient Jan 1, 2013 As preoperative high blood pressure
systolic blood to Dec 1, may affect the interpretation of the
pressure 2017 threshold of harm for intraoperative
(SBP) blood pressure (12), preoperative SBP
[Derived by will be used in the calculation of
Innovian] change in SBP (absolute and %).

HSM contains blood pressure of
elective surgery patients at the
anesthetic clinic and prior to entering
the operating room. The first Innovian
blood pressure will be used for
emergency surgery patients, since
HSM pressure will not be available.
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Innovian | First systolic | Patient Jan 1, 2013 Emergency and elective cases will be
blood to Dec 1, analyzed separately for the variables
pressure 2017 containing relative SBP changes,
(SBP) recognizing the lack of preoperative
[Derived by blood pressure in the emergency
Innovian] group. For patients with BP recorded

on HSM (i.e. preoperative clinic or in
the preadmission area), the lowest of
the HSM or first Innovian BP will be
used as baseline. For emergency
surgery patients without previously
recorded blood pressure, the first
Innovian BP will be used (since the
second BP may be postinduction),
with the limitation that this may not
reflect the true baseline (42); however,
practically this would be the blood
pressure that would be available in
similar clinical situations.

HSM Preoperative | Patient Jan 1, 2013 Since the HSM database only contains
mean arterial to Dec 1, SBP and DBP, not MAP, MAP will be
pressure 2017 calculated using MAP = 1/3*SBP +
(MAP) 2/3*DBP
[Derived by
Innovian]

Innovian | First mean Patient Jan 1, 2013 Emergency and elective cases will be
arterial to Dec 1, analyzed separately for the variables
pressure 2017 containing relative MAP changes,
(MAP) recognizing the lack of preoperative
[Derived by blood pressure in the emergency
Innovian] group. For patients with BP recorded

on HSM (i.e. preoperative clinic or in
the preadmission area), the lowest of
the HSM or first Innovian BP will be
used as baseline. For emergency
surgery patients without previously
recorded blood pressure, the first
Innovian BP will be used (since the
second BP may be postinduction),
with the limitation that this may not
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reflect the true baseline (42); however,
practically this would be the blood
pressure that would be available in
similar clinical situations.

HSM

Preoperative
heart rate

Patient

Jan 1, 2013
to Dec 1,
2017

As this may affect the level of harm
from the intraoperative heart rate, it
will be used in the calculation of
change in heart rate (absolute and %)

HSM contains heart rate of elective
surgery patients at the anesthetic clinic
and prior to entering the operating
room, while Innovian contains the
initial heart rate of all patients in the
operative room. The lowest heart rate
from either Innovian or HSM will be
used.

Innovian

Preoperative
heart rate

Patient

Jan 1, 2013
to Dec 1,
2017

As this may affect the level of harm
from the intraoperative heart rate, it
will be used in the calculation of
change in heart rate (absolute and %)

HSM contains heart rate of elective
surgery patients at the anesthetic clinic
and prior to entering the operating
room, while Innovian contains the
initial heart rate of all patients in the
operative room. The lowest heart rate
from either Innovian or HSM will be
used.

CIHI
DAD

Emergency
surgery

[Derived by
HDNS]

ENTRYCO
D: method of
entry

Patient

Jan 1, 2013
to Dec 1,
2017

ENTRYCOD =E (i.e. emergency
department) and/or ADFROM = [any
except 085 (QEII) — i.e. transferred
from another institution] excluding
elective admission (flag) will be used
to identify surgeries as emergency
surgery. As the emergency nature of
surgery has been shown to affect
outcomes, it will be included as a
covariate.
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ADFROM:
Institution
from Number
CIHI ADTYPE: Patient Jan 1, 2013 This variable will be used internally
DAD Admission to Dec 1, by HDNS to create a flag for elective
Type 2017 admission. This will not be included in
the dataset. This will help identify
patients who did not have emergency
surgery.
Indicator of surgical complexity
CIHI CMG: Case | Patient Jan 1, 2013 All CMG will be included into
DAD Mix GTOHP to Dec 1, modeling to determine the CMG with
(“a grouping 2017 the highest postoperative risk.
methodology
developed by
CIHI that
categorizes
acute care
patients into
groups based
on
similarities of
diagnosis,
intervention,
LOS, and
resource
requirements.
")
CIHI PIMR: Patient Jan 1, 2013 As the PIMR has been shown to affect
DAD Procedural to Dec 1, outcomes, it will be included as a
Index for 2017 covariate. HDNS will calculate using
11\{41(s)lr<t ality DXCODE according to a published
protocol (35).
[Derived by Detailed protocol will be sent to the
HDNS] HDNS.
CIHI Subgroup Patient Jan 1, 2013 To create a list of intermediate to high
DAD analysis flag: to Dec 1, risk, gender neutral elective surgeries
intermed.iate 2017 for subgroup analysis. Detailed list of
to high risk, CClI codes will be sent to the HDNS.
gender
neutral
elective
surgeries
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[Derived by
HDNS based
on PCODE)]

CIHI
DAD

PCODE|1-
n]: Procedure
[1-n] Code,
according to
Classification
of Health
Interventions
(CCI).

The one
PCODE
correspondin
g to the
specific
PDATE will
be obtained,
1.e. the
correspondin
g number
(e.g.
PDATEI)
will be used
for all
procedure-
related codes
(i.e.
PCODE1)

Patient

Jan 1, 2013
to Dec 1,
2017

Covariate in model

The PCODE corresponding to the
included PDATE for each patient will
be included for modeling as a
covariate.

CIHI
DAD

PDSERV[1-
n]: Procedure
[1-n] Doctor
service

The one
PDSERV
correspondin
g to the
specific
PDATE will

Patient

Jan 1, 2013
to Dec 1,
2017

The one PDSERYV corresponding to
the included PDATE allows us to
determine the surgical service, and
since the type of surgery may affect
outcomes, it will be included as a
covariate. We will include the
following PDSERV:

00030 General Surgery

00031 Cardiac Surgery

00032 Neurosurgery

00034 Orthopedic Surgery

00035 Plastic Surgery
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be obtained,
1.e. the
correspondin
g number
(e.g.
PDATEI)
will be used
for all

00036 Thoracic Surgery

00037 Vascular Surgery

00039 Urology

00050 Obstetrics and Gynecology
00059 Colorectal Surgery

00060 Otolaryngology

00073 General Surgical Oncology

procedure-
related codes
(e.g.
PDSERV1)
Intraoperative variables
Innovian | SBP: Patient Jan 1, 2013 Exposure variable to be included into
Systolic to Dec 1, modeling. The following variables will
blood 2017 be derived by Innovian:
pressure 5. Maximum change from
preoperative SBP, in a)
[Derived by absolutg change (mmHg), and
Innovian as b) relative change
) (%)(emergency and elective
mu?tlple cases analyzed separately due
variables — to the lack of preoperative
see right] blood pressure in the
emergency group)
6. Cumulative duration (minutes)
>20% below preoperative SBP
7. Longest single episode
(minutes) below a) 80, b) 90,
and ¢)100 mmHg
8. Cumulative duration (minutes)
below a) 80, b) 90, and ¢)100
mmHg
Innovian | MAP: Mean | Patient Jan 1, 2013 Exposure variable to be included into
Arterial to Dec 1, modeling. The following variables will
Pressure 2017 be derived by Innovian:
1. Maximum change from
preoperative MAP, in a)
absolute change (mmHg), and
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[Derived by
Innovian as
multiple
variables —
see right]

b) relative change (%)
(emergency and elective cases
analyzed separately due to the
lack of preoperative blood
pressure in the emergency
group. Note that since the
HSM database only contains
SBP and DBP, not MAP, MAP
will be calculated using MAP
= 1/3*SBP + 2/3*DBP)

2. Cumulative duration (minutes)
>20% below preoperative
MAP

3. Longest single episode
(minutes) below a) 60, b) 65,
¢) 70, and d) 80mmHg

4. Cumulative duration (minutes)
below a) 60, b) 65, c¢) 70, and
d) 80mmHg

Innovian

HR: Heart
rate

[Derived by
Innovian as
multiple
variables —
see right]

Patient

Jan 1, 2013
to Dec 1,
2017

Exposure variable to be included into
modeling. Emergency and elective
cases analyzed separately due to the
lack of preoperative heart rate in the
emergency group. The following
variables will be derived by Innovian:

6. Maximum change (BPM) from
preoperative heart rate
(positive and negative)

7. Relative change (%) from
preoperative heart rate
(positive and negative)

8. Maximum pulse variation
(maximum heart rate minus
minimum heart rate)

9. Longest single episode
(minutes) a) below 60, and b)
above 100BPM

10. Cumulative duration (minutes)
a) below 60, and b) above
100BPM

Innovian

Use of
hemodynami
c
medications

Patient

Jan 1, 2013
to Dec 1,
2017

Exposure variable to be included into
modeling. The following variables will
be derived by Innovian:

6. Vasopressor/inotrope use (yes
vs. no): phenylephrine,
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norepinephrine, epinephrine,
[Derived by vasopressin, dobutamine, or
Innovian as milrinone
. 7. Infusion of any

multiple .

) vasopressor/inotropes above
Varla'bles B (yes vs. no) (identified by unit
see right] of weight over time)

8. Phenylephrine/ephedrine bolus
(yes vs. no) (identified by unit
of weight only)

9. Vasodilator use (yes vs. no):
labetalol, esmolol,
nitroglycerin, nitroprusside

10. Infusion of any vasodilator
above (yes vs. no) (identified
by unit of weight over time)

Innovian | SpO2: Patient Jan 1, 2013 Exposure variable to be included into
Oxygen to Dec 1, modeling. The following variables will
saturation by 2017 be derived by Innovian:
pulse 3. Longest single episode
oximetry (minutes) below a) 88, and b)
[Derived by 90% ) ) .
Innovian as 4. Cumulative duration (minutes)

. below a) 88, and b) 90%
multiple
variables —
see right]

Innovian | EtCOz2: End- | Patient Jan 1, 2013 Exposure variable to be included into
tidal (i.e. to Dec 1, modeling. The following variables will
exhaled) 2017 be derived by Innovian:

] 1. Longest single episode
[Derived by (minutes) a) <35, and b) >45
Innovian as 2. Cumulative duration (minutes)
multiple below a) <35, and b) >45
variables —
see right]

HSM Duration of | Patient Jan 1, 2013 As this may affect outcomes, it will be
surgery to Dec 1, included as a covariate

2017

Innovian | Type of Patient Jan 1, 2013 Categorical variable: general,
anesthesia to Dec 1, neuraxial, peripheral nerve block,

2017 and/or managed anesthesia care [i.e.
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sedation] — multiple concurrent
possible). As this may affect
outcomes, it will be included as a
covariate.
Innovian will be used instead of the
CIHI ANATYP (Anaesthetic Type),
since anesthetic type is a mandatory
field in Innovian and will allow for
multiple concurrent anesthetic types.
Innovian | Average Patient Jan 1, 2013 Age-adjusted MAC will be calculated
MAC- to Dec 1, by Innovian from the end-tidal % of
adjusted: 2017 all inspired volatiles according to
Minimal published protocol (36). The MAC,
Alveolar available every 15 seconds will be
Concentratio averaged (i.e. time-averaged MAC).
n adjusted by The averaged MAC will be included
age as a covariate.
[Derived by
Innovian]
Innovian | BIS : Bi- Patient Jan 1, 2013 Duration in minutes for BIS <46. As
spectral to Dec 1, deep anesthesia (low BIS) may affect
Index 2017 outcomes (50), it will be included as a
covariate.
[Derived by
Innovian]
Innovian | Laparoscopy | Patient Jan 1, 2013 Binary variable (yes/no), as defined by
-booked to Dec 1, “laparoscope” or “laparoscopic” in
2017 procedure name.
[Derived by
Innovian]
DAD Laparoscopy | Patient Jan 1, 2013 Flag: STATUS[1-n] = C “Converted
converted to to Dec 1, from endoscopic to open”
open flag 2017
STATUSJ1- Since Innovian procedure names are
nj usually from OR booking, procedures
where laparoscopy was converted to
[Flag by open would be included in the
HDNS] laparoscopy (booked) variable.
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DAD Laparoscopy | Patient Jan 1, 2013 This is derived from as “laparoscopy-
-actual to Dec 1, booked” excluding “laparoscopy
[Derived by 2017 converted to open flag”
HDNS] As this may affect outcomes, it will be
included as a covariate.
Innovian | Temperatur | Patient Jan 1, 2013 Exposure variable to be included into
e to Dec 1, modeling. The following variables will
[Derived by 2017 be derived by Innovian: duration
Innovian as (minutes) a) <36°C, and b) > 38°C
multiple (38)
variables —
see right]
Innovian | EBL: Patient Jan 1, 2013 As this may affect outcomes, it will be
, HSM Estimated to Dec 1, included as a covariate.
blood loss 2017
(mL)
Innovian | Crystalloid Patient Jan 1, 2013 As this may affect outcomes, it will be
use >1000m to Dec 1, included as a covariate.
L 2017
Derived by Innovian as a continuous
[Derived by variable in mL, if
Innovian] Crystalloid >1000mL:
Crystalloid = Ringer Lactate + Normal
Saline + Plasmalyte + Normosol
Note: this includes the total volume
from infusions marked by mL/hour x
hour infused
Innovian | Hemoglobin: | Patient Jan 1, 2013 As this may affect outcomes, it will be
lowest to Dec 1, included as a covariate.
Hemoglobin 2017
within 2
days after
OR (g/L)
(including
day of OR)
[Derived by
Innovian]
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Innovian | PRBC: Red | Patient Jan 1, 2013 As this may affect outcomes, it will be
Blood Cell to Dec 1, included as a covariate.
transfusion 2017
(mL)
Innovian | Surgical Patient Jan 1, 2013 0 points 1 point 2 points 3 points
APGAR to Dec 1, Estimated
Score 2017 blood loss > 1,000 S0171L90 101600
[Derived by (Lm::t .
Innovian arterial <10 0.5 55-69
based on tmHe)
variables
already e (elfcta:t:?;tin) -85 76785 66775
requested] Surgical score (0-10) = sum of all
points
The Surgical APGAR Score is an
existing, validated method of risk
stratification at the end of surgery, and
will be compared to the machine
learning models.
Mortality
Vital Mortality Patient Jan 1, 2013 Binary outcome (yes/no), derived from
Statistics | (30-day all to Dec 31, DOD within 30 days from PDATE.
cause) 2017 This is needed to compute 30-day all-
cause mortality. Primary outcome for
[Derived by the study to be used for modeling.
HDNS based
on DOD
from Vital
Statistics]
CIHI OPDEATH: | Patient Jan 1, 2013 OPDEATH will be described in
DAD operative to Dec 31, descriptive statistics.
death 2017
1 = Died in Operating Room
2 = Did Not Die in Operating Room
Vital DOD: Date | Patient Jan 1, 2013 For internal use by HDNS to compute
Statistics | of death to Dec 31, 30-day all-cause mortality (primary
2017 outcome), and the Number of
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postoperative day of death (i.e. Date of
death minus PDATE).
CIHI Number of | Patient Jan 1, 2013 Derived discrete (n =1, 2, 3... 30)
DAD postoperativ to Dec 31, variable, of the patients with 30-day
e day of 2017 mortality = yes. This variable is
death defined as DOD [if <30 days after
PDATE] minus PDATE.
[Derived by
HDNS based Survival statistics will be performed
ff)rlz)rg%lia | (% vs. postoperative day)
Statistics]
CIHI In-hospital | Patients | Jan 1, 2013 Derived binary variable (yes/no). Of
DAD death to Dec 31, those who died within 30 days after
[Derived by 2017 surgery, descriptive stgtistics will be
HDNS based performed for in-hospital vs. out-of-
on hospital mortality (yes/no)
“DISCHAR
GE: “Yes” if DISCHARGE =7 or 8:
Discharge 7 = Died
disposition”] 8 = Cadaver donor admitted for
organ/tissue retrieval
Else = “no”
Vital UCAUSE: Patient Jan 1, 2013 For patients who died within 30 days
Statistics | Underlying | who died | to Dec 31, of surgery, we are interested in the
Cause of within 30 | 2017 cause of death. The UCAUSE will
Death days only be used internally by HDNS to
after create flags for these causes of death
surgery as categorized according to ICD codes
as follows:
acute myocardial infarction (121 to
122, 124), cardiac arrest (146.0, 146.1,
146.9), ventricular tachycardia (147.2),
shock (R57, T81.1) excluding septic
shock (R57.2), congestive heart failure
(I50.0, 150.1, 150.9), pulmonary edema
(J81), complete heart block (144.2),
pneumonia (J13 to J18, J69.0, J69.8,
J95.4), pulmonary embolism (126),
acute respiratory failure (J95.1, J95.2,
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J96.0), respiratory arrest (R9.2),
strokes and transient ischemic
attacks (160 to 169,

G45), Delirium (F05), Acute kidney
injury (N17), Septic shock (R57.2)

Causes not fitting the above secondary
outcomes will be categorized
according to standard ICD categories:
Infectious diseases (A00-B99)
Neoplasm (C00-D48)

Diseases of the blood and blood-
forming organs and certain disorders
involving the immune mechanism
(D50-D8&9)

Endocrine, nutritional and metabolic
diseases (E00-E90)

Mental and behavioural disorders
(FO0-F99)

Diseases of the nervous system (G0O0-
G99)

Diseases of the circulatory system
(100-199)

Diseases of the respiratory system
(J0OO0-J99)

Diseases of the digestive system (K00-
K93)

Diseases of the skin and subcutaneous
tissue (L00-L99)

Diseases of the musculoskeletal
system and connective tissue (M0O-
M99)

Diseases of the genitourinary system
(NO0-N99)

Pregnancy, childbirth and the
puerperium (000-099)

Congenital malformations,
deformations and chromosomal
abnormalities (Q00-Q99)
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Injury, poisoning and certain other
consequences of external causes (S00-
T98)

External causes of morbidity and
mortality (VO1-Y98)

Causes not fitting any of the above
categories will be coded as UCAUSE
= other

Descriptive statistics will be
performed for causes.

Vital
Statistics

All causes of
death (case
1-13)

Patient
who died
within 30
days
after
surgery

Jan 1, 2013
to Dec 31,
2017

For patients who died within 30 days
of surgery, we are interested in the
cause(s) of death. However, since the
UCAUSE may be missing or not
reflect the whole picture, we would
also like to request all causes of death.
This will only be used internally by
HDNS to create flag(s) for these
causes of death as categorized
according to ICD codes as follows
(note that each patient may have
multiple flags):

acute myocardial infarction (121 to
122, 124), cardiac arrest (146.0, 146.1,
146.9), ventricular tachycardia (147.2),
shock (R57, T81.1) excluding septic
shock (R57.2), congestive heart failure
(I50.0, 150.1, 150.9), pulmonary edema
(J81), complete heart block

(I44.2), pneumonia (J13 to J18, J69.0,
J69.8, J95.4), pulmonary embolism
(I26), acute respiratory failure (J95.1,
J95.2, J96.0), respiratory arrest (R9.2),
strokes and transient ischemic attacks
(160 to 169,

G45), Delirium (F05), Acute kidney
injury (N17), Septic shock (R57.2)
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Causes not fitting the above secondary
outcomes will be categorized
according to standard ICD categories:
Infectious diseases (A00-B99)
Neoplasm (C00-D48)

Diseases of the blood and blood-
forming organs and certain disorders
involving the immune mechanism
(D50-D8&9)

Endocrine, nutritional and metabolic
diseases (E00-E90)

Mental and behavioural disorders
(FO0-F99)

Diseases of the nervous system (G0O0-
G99)

Diseases of the circulatory system
(100-199)

Diseases of the respiratory system
(J00-199)

Diseases of the digestive system (K00-
K93)

Diseases of the skin and subcutaneous
tissue (L00-L99)

Diseases of the musculoskeletal
system and connective tissue (M0O-
M99)

Diseases of the genitourinary system
(NO0-N99)

Pregnancy, childbirth and the
puerperium (O00-099)

Congenital malformations,
deformations and chromosomal
abnormalities (Q00-Q99)

Injury, poisoning and certain other
consequences of external causes (S00-
T98)

External causes of morbidity and
mortality (VO1-Y98)
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Causes not fitting any of the above
categories will be coded as UCAUSE
= other

Descriptive statistics will be
performed for causes.

Additional Postoperative Morbidity (in addition to DXCODE above)

CIHI
DAD

FLAG _HE
ARTRESUS
: Heart
Resuscitatio
n Flag

Patient

Jan 1, 2013
to Dec 31,
2017

Part of secondary outcomes to be
included into model. Descriptive
statistics will be performed for this
subcategory, within the category of
cardiac complications, and an overall
composite measure of each category.
0=No

1=Yes

CIHI
DAD

FLAG_ME
CHVEN_G
E96:

Mechanical

Ventilation >
96 hours

Patient

Jan 1, 2013
to Dec 31,
2017

Part of secondary outcomes to be
included into model. Descriptive
statistics will be performed for this
subcategory, within the category of
respiratory complications, and an
overall composite measure of each
category.

0 =No

1=Yes

CIHI
DAD

Composite
morbidity

[Derived by
HDNS]

Patient

Jan 1, 2013
to Dec 31,
2017

Binary variable (yes/no) derived based
on any of the following:
FLAG_HEARTRESUS,

FLAG _MECHVEN_GE96, or ICD
code of any of: acute myocardial
infarction (121 to 122, 124), cardiac
arrest (146.0, 146.1, 146.9), ventricular
tachycardia (I47.2), shock (R57,
T81.1) excluding septic shock (R57.2),
congestive heart failure (I150.0, 150.1,
[50.9), pulmonary edema (J81),
complete heart block

(I44.2), pneumonia (J13 to J18, J69.0,
J69.8, J95.4), pulmonary embolism
(I26), acute respiratory failure (J95.1,
J95.2, J96.0), respiratory arrest (R9.2),
strokes and transient ischemic attacks
(160 to 169,
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G45), Delirium (F05), Acute kidney
injury (N17), Septic shock (R57.2)
Part of secondary outcomes to be
included into model. Descriptive
statistics will be performed.

CIHI ICU Patient Jan 1, 2013 Two variables to be derived:

DAD admission to Dec 31, 1. Preoperative ICU (yes/no)
[Derived by 2017 2. Postoperative ICU (yes/no)
HDNS]

Preoperative ICU admission (yes/no)
SCUNUM|1 1s a covariate to be included into the
-n]: Special model. Postoperative ICU admission
Care (yes/no) is a secondary outcome to be
Unit Num included into model. Descriptive
“The SCU statistics will be performed.
Unit Number
is a code Derivation process:
identifying ICU = yes include the following
the type of SCUNUM:
special care 10 = Medical Intensive Care Nursing
unit where Unit
the patient 20 = Surgical Intensive Care Nursing
receives Unit
critical 25 = Trauma Intensive Care Nursing
care.” Unit
30 = Combined Medical/Surgical
[Derived by Intensive Care Nursing
HDNS] Unit
35 = Burn Intensive Care Nursing Unit
40 = Cardiac Intensive Care Nursing
Unit Surgery
45 = Coronary Intensive Care Nursing
Unit
80 = Respirology Intensive Care
Nursing Unit
Else ICU =no
If the SCU Admit Date is on or before
PDATE, then it would be defined as
Preoperative AND postoperative ICU
admission. Else, postoperative ICU
admission only.
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CIHI READMIT: | Patient Jan 1, 2013 Readmission within 30 days of
DAD Readmission to Dec 31, PDATE (yes/no) is a secondary
Code (within 2017 outcome to be included into model.
30 days after Descriptive statistics will be
PDATE) performed.
[Derived by Derived:
HDNS] Postoperative readmission = yes
include the following:
1 = Planned readmission from
previous acute care
2 = Unplanned readmission within 7
days following discharge from acute
care
3 = Unplanned readmission 8§ — 28
days following discharge from acute
care
4 = <=7 days, unplanned
5 = New patient
9 = None of the above.
Else Postoperative readmission = no
CIHI LOS:ELOS | Patient Jan 1, 2013 This will be dichotomized by HDNS:
DAD Ratio of to Dec 31, LOS:ELOS >1 (yes/no). This is a
Length of 2017 secondary outcome to be included into
Stay (LOS) model. Descriptive statistics will be
to Expected
Length of performed.
Stay (ELOS)
as assigned
by the Case
Mix
Grouping
[Derived by
HDNS]
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