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Lay summary  
 

Introduction: The World Health Organization estimates that 270-360 million operations are 

performed every year worldwide. Death and complications after surgery are a big challenge. In 

Canada, out of every 1000 major surgeries, 16 patients die in hospital after surgery. In the United 

States, for every 1000 operations, 67 patients unexpectedly need life support in the Intensive 

Care Unit. With population aging and limited resources, strategies to improve health after 

surgery are ever more important.  

Vital signs, such as blood pressure and heart rate, show how the body is doing. Vital 

signs change during surgery because of patient, surgical, and anesthetic factors. 

Anesthesiologists can change vital signs with medications. However, we are only starting to 

understand which, and what ranges of, vital signs under anesthesia are associated with better 

health. Machine learning is a tool that can provide new ways to understand data. With better 

understanding, we can work to improve outcomes after surgery.  

 

Objective: We will analyze vital signs during surgeries for their links to death, complications 

(heart, lung, kidney, brain, infection), Intensive Care Unit admission, length of hospital stay, and 

hospital readmission. We will determine which, and what levels of, vital signs may be harmful. 

We predict that blood pressure, heart rate, oxygen level, carbon dioxide level, and the need for 

medications to change blood pressure will interact to be associated with death after surgery.  

 

Methods: After obtaining Research Ethics Board approval, we will analyze data from all 

patients who are at least 45 years old and had an operation (with the exception of heart surgery) 

with an overnight stay at the QEII health centre from January 1, 2013 to December 1, 2017. 

There are approximately eligible 35,000 patients. We will use machine learning to model the 

data and test how well our model explains outcomes after surgery.  

 

Significance: Our use of machine learning in a large, broad surgery population dataset could 

detect new relationships and strategies that may inform current practice, and generate ideas for 

future research. A better understanding of the impact of vital signs during surgeries may unveil 

methods to improve outcomes and resource allocation after surgery. The results may suggest 

ways to identify high-risk patients who should be monitored more closely after surgery. If our 

model performs well, it may motivate other researchers to use machine learning in health data 

research. The model we plan to develop will be based on information at the QEII, so it may be 

relevant to the care of Nova Scotians and beyond.  

  

 

  



May 23, 2020 Hemodynamic Predictors Protocol Version #4 - Ke et al. REB#1024251 

  

3 

Protocol  
 

Introduction 

Surgical rates are increasing worldwide, with the World Health Organization estimating 270-360 

million operations globally in 2012 (1). Surgical mortality and morbidity remain a significant 

concern. Worldwide, more than 4.2 million patients die within 30 days of surgery every year, 

accounting for 7.7% of the global deaths (2). In Canada 2016-2017, for every 1000 major 

surgeries performed, 16 patients die in hospital after surgery (3). Unplanned ICU admission 

occurred after 6.7% of non-cardiac surgeries in a large American cohort study (4). During the 

intraoperative period, there may be severe hemodynamic (vital sign) derangements (e.g. 

abnormalities in blood pressure, heart rate, and oxygen level) that could play a significant role in 

postoperative mortality. However, due to the quantity and complexity of perioperative data, the 

threshold for harm of potentially modifiable intraoperative hemodynamic factors remain 

incompletely understood. Using machine learning techniques, this study will investigate the 

impact of multiple hemodynamic variables in the perioperative context. 

 

Background and significance 

Postoperative outcomes result from a complex interplay of patient, surgical, and anesthetic 

factors. Several validated preoperative risk stratification scores exist, including the Revised 

Cardiac Risk Index (RCRI), Portsmouth-Physiology and Operative Severity Score for the 

enUmeration of Mortality (POSSUM), Surgical Risk Scale, and National Surgical Quality 

Improvement Program (NSQIP) (5–7). However, the derivation process of these models did not 

include intraoperative hemodynamic variables and thus may not be responsive to the impact of 

intraoperative hemodynamic derangements.  

The Surgical Apgar Score (SAS) is a simple 10-point score involving intraoperative 

variables of estimated blood loss, blood pressure, and heart rate for composite mortality and 

morbidity. The SAS has varying predictive accuracy across surgical specialties (8,9) and its 

addition has not significantly improved preoperative risk prediction (10). Since the initial 

publication of the SAS in 2007 (11), there has been increasing interest in elucidating the role of 

intraoperative hemodynamics on mortality and morbidity, including hypotension (12,13), heart 

rate (14,15), anesthetic depth (16), end-tidal carbon dioxide (17) and oxygen saturation (18). A 

recent systematic review on hypotension found that due to heterogeneity and methodological 

limitations, one cannot conclude based on available evidence that intraoperative hypotension 

causes adverse outcomes (12). The impact of blood pressure perioperatively is physiologically 

complex, with factors including autoregulation, microvascular dysfunction, and limitations of 

measurement (19).  

Our understanding of the impact of intraoperative hemodynamics remains limited as they 

have been mostly evaluated in isolation. The interactions between intraoperative hemodynamic 

variables have not been systematically evaluated for association with postoperative outcomes. 

Hemodynamics are a reflection of physiology, surgical stress, and medications. If found to be 

predictive of outcomes, automatically recorded hemodynamic variables could provide robust, 

objective risk stratification within intraoperative anesthesia information systems.   

We would like to leverage machine learning to elucidate hemodynamic contributors in 

the perioperative surgical, physiologic and pharmacologic milieu in the non-cardiac surgery 

population. Machine learning refers to a set of advanced statistical techniques to evaluate the 

correlations and associations within large data sets (20). This includes logistic regression with 
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variable selection, where the most important predictors are chosen from a set of predictors to 

build a parsimonious model (21). Another machine learning technique is Principal Component 

Analysis (PCA), which finds groups of correlated predictors amongst a large set of potential 

predictors (i.e. dimensionality reduction) (21). The most important groups of predictors could 

then be placed in a model. Other modeling techniques we will use include classification trees, 

which predict outcomes based on input variables through classification, random forest to show 

which predictor has the highest importance, and association rule learning to help profiles of 

linked predictors (21).   

Foundational papers on machine learning of intraoperative data have reported 

inconsistent results. Prasad et al. analyzed data from 101 patients undergoing liver 

transplantation and showed that intraoperative hemodynamic data improved the prediction of 

mortality and acute renal failure compared to preoperative information alone (22). On the 

contrary, Lee et al. found that a deep neural network model predicted in-hospital mortality, 

though not better than conventional models such as the Risk Stratification Index (23). It is 

important for clinicians to understand the factors and processes by which the machine learning 

algorithm built the model, to help with clinical decision making and hypothesis generation for 

future research. Thus, we have chosen machine learning techniques that generate interpretable 

models. Our use of a large population database and advanced machine learning methods may 

help improve our understanding of the crucial relationships amongst hemodynamic variables and 

complex perioperative data.   

The results of this study may help synthesize complex intraoperative clinical information 

and unveil novel therapeutic strategies. Derived from data from the QEII Hospitals, the results 

would be directly applicable to the care of Nova Scotians. The models may lead to the creation 

of objective risk stratification scores calculated at the end of surgery, to identify high risk 

patients for increased postoperative follow-up and monitoring. Moreover, if models created 

using machine learning perform well, machine learning may be used more frequently to reveal 

the patterns within complex, large perioperative datasets. Hemodynamics are potentially 

modifiable risk factors. Future research includes prospective studies on whether targeted 

hemodynamic goals, increased postoperative follow-up of high-risk patients, and real-time 

machine learning precision medicine could improve outcomes after surgeries.  

Specific aims 

1. To use machine learning techniques to investigate systematically intraoperative 

hemodynamic predictors of postoperative 30-day all-cause mortality (primary outcome) 

and major in-hospital morbidity. Hemodynamic predictors to be studied are blood 

pressure, heart rate, oxygen saturation, end-tidal carbon dioxide, and medications to 

adjust blood pressure. Please see “Outcomes” section below for full list of secondary 

outcomes.  

2. To evaluate performance of machine learning models created and compare the 

performance of the best model to the Surgical Apgar Score.  

 

Hypothesis 

Controlling for other predictors, the durations of mean arterial pressure (MAP) <65mmHg, heart 

rate <60 or >100 beats per minute (BPM), hemodynamic medications use, oxygen saturation 

(SpO2) <88%, and end-tidal carbon dioxide (EtCO2) <30 or >45 will be associated with 

postoperative 30-day all-cause mortality (primary hypothesis) and 30-day major in-hospital 

morbidity (secondary hypothesis). Note that blood pressure, heart rate, vasopressors and 
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inotropic medications, oxygen saturation, and end-tidal are considered key indicators of 

hemodynamics. We have chosen conventional ranges commonly used in practice, and will 

perform sensitivity analysis of different definitions of each hemodynamic variable. 

In addition, the model for hemodynamic predictors of postoperative mortality developed 

from machine learning will perform better in terms of discrimination (C-statistics), calibration 

(Hosmer-Lemeshow test), and risk reclassification (Yates slope and integrated discrimination 

improvement) than the Surgical Apgar Score. 
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Methodology  

Study Design Overview 

This is a retrospective population cohort study. Following approval from the Research Ethics 

Board, we will analyze de-identified records of our study population. Since there are many 

machine modelling techniques each with its benefits and drawbacks, we will create models 

using interpretable machine learning techniques we believe will work the best for this study, 

and test the performances of these models through internal validation. The models will be 

compared to the Surgical Apgar Score in terms of discrimination, calibration, and risk 

reclassification. The trial will be registered on ClinicalTrials.gov prior to receiving research 

data and performing analysis. Transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) and Developing and Reporting Machine Learning 

Predictive Models (24) guidelines will be followed.  

 

Study Population 

We will include all patients ages ≥ 45 receiving their index (i.e. first) non-cardiac surgery with 

an overnight stay at the Nova Scotia Health Authority Queen Elizabeth II (QEII) hospitals 

(Victoria General and Halifax Infirmary) Halifax, Canada, from the past five years (i.e. January 

1, 2013 to December 1, 2017). For patients who had multiple surgeries, only the first non-cardiac 

surgery with an overnight stay at QEII will be included to avoid confounding from previous 

surgical admissions (i.e. one surgical admission per patient). We chose December 1, 2017, as the 

end date to allow for complete data 30 days after surgery: for data analysis in summer 2019, we 

only have access to mortality data up to December 31, 2017  

We will exclude patients with no intraoperative anesthetic records. Cardiac surgery 

patients (identified by procedure anatomy “Heart” or “Cardiac” within Innovian) are excluded 

since they have a unique set of considerations and complications due to having surgery directly 

in the heart. To include the full spectrum of non-cardiac surgical patients, no specific surgeries 

will be excluded except for deceased organ donation (“organ retrieval” in Innovian procedure 

name, and American Society of Anesthesiologists classification for neurologically-deceased 

organ donors, ASA=VI).  

Preliminary analysis of our intraoperative database estimates approximately 35,000 

patients in this cohort.  For patients with multiple procedures, the date of the first surgical 

procedure with an overnight stay will be used to identify the specific surgical admission of 

interest. 

 

Data Sources 

The de-identified dataset will consist of databases from Innovian, Horizon Surgical Manager 

(HSM), and Health Data Nova Scotia (HDNS). Innovian is the intraoperative anesthesia 

electronic information management system used at the QEII, containing automated recordings of 

intraoperative standard monitors, time-stamped anesthesiology entries of medications and 

interventions, and perioperative laboratory tests. HSM contains vital signs and administrative 

data at the anesthetic preoperative clinic, in the preoperative area prior to the surgery, and in the 

recovery room after surgery.  

The specific HDNS databases to which access is being requested are the Canadian 

Institute for Health Information (CIHI) Discharge Abstract Database (DAD) and Vital Statistics. 

DAD is a repository of clinical and administrative data from each hospitalization, including 

preoperative diagnoses, surgery performed, postoperative complications, and investigations. 
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DAD includes the 25 most relevant diagnoses preoperatively and postoperatively. Nova Scotia 

physician billings data will not provide any additional relevant information and are not necessary 

for this project. The Vital Statistics database records all deaths within Nova Scotia. Innovian and 

HSM data will be linked together by health card number and surgical date by the Innovian Data 

Manager (Innovian-HSM dataset). The health card numbers will be sent to Medavie for 

encryption. HDNS will link the Innovian-HSM dataset with the HDNS variables by encrypted 

study IDs and surgery date. National and provincial privacy and data security policies will be 

strictly followed. 

 

Data linkage:   

 

Step 1: Innovian 

a. Include patients with surgery dates 2013 Jan 1 – 2017 Dec 1 inclusive 

b. Include patients with age on date of surgery  45 

c. Exclude patients with procedure name that includes “organ retrieval” or ASA = VI, as 

well as procedure anatomy “heart” or “cardiac”.  

d. Eligible patients will be linked to HSM by health card number for the required variables 

described in the Appendix.  

 

Step 2: HDNS: CIHI DAD 

a. Health card numbers of patients identified in Step 1 will be sent to Medavie for 

encryption. Medavie will provide HDNS with encrypted health card numbers. HDNS 

obtains Study ID and Surgery date from the Innovian-HSM dataset to perform linkage via 

Study ID, encrypted health card number and procedure date (to ensure the data is from 

the same surgical admission). The maximum allowable mismatch for the surgery dates in 

Innovian and CIHI is +/- 1 day. The Innovian surgery date will be used as the gold 

standard, since the record is done in real time and thus the most accurate.  

b. Exclude patients with Length of Stay (LOS)  1. If a patient had multiple surgeries, the 

first surgery with a LOS >1 (i.e. at least overnight stay) will be included. 

c. HDNS provides Innovian-HSM the final list of included patients (patient ID and surgery 

date). Innovian-HSM will then send data for relevant variables to HDNS for linkage.   

 

Data quality: Data reabstraction studies performed by the CIHI show high data quality, ranging 

from 76 to 96% for coding consistency of interventions reported, significant diagnoses, and most 

responsible diagnosis (25). Since intraoperative hemodynamic variables and laboratory are 

automatically recorded into Innovian, no validation is necessary. It would not be possible to 

retrospectively validate the anesthesiology physician entries into Innovian (e.g. use of 

vasopressor medications) as most are not recorded elsewhere, but with medical-legal 

requirements and more than 10 years of experience with Innovian at QEII, the error rates will 

likely not significantly affect results.  

 

 

Variables 
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Please see Appendix for a detailed table of all variables.  

 

I. Main Predictors (“Exposures”) 

At the time of surgery, anesthesiologists document the timing of key clinic information 

(induction, intubation, start and end of surgery, emergence, extubation, and exit of the operating 

room), medications and fluids administered, estimated blood loss, and type of anesthesia into the 

intraoperative record. Hemodynamic factors are automatically recorded into the database every 

minute. The following intraoperative hemodynamic factors will be included in model building: 

 

Table 1. Exposures 

Blood pressure  Since there is no universal definition of low blood pressure under 

anesthesia, we will use several different variables to determine the most 

significant exposure by threshold and duration. Both Systolic Blood 

Pressure (SBP) and Mean arterial pressure (MAP) have been used in 

blood pressure research (12). In a recent study (26), different blood 

pressure modeling techniques on the same dataset led to different 

conclusions on the impact of hypotension on postoperative myocardial 

infarction and kidney injury. Methods with the largest odds ratios were 

absolute maximum decrease in MAP and mean episode area under 

threshold. However, since the area under threshold is less interpretable 

and difficult to calculate in everyday clinical practice, the duration under 

threshold will be used.  

 

SBP 

1. Maximum change from preoperative SBP, in a) absolute change 

(mmHg), and b) relative change (%)(emergency and elective cases 

analyzed separately due to the lack of preoperative blood pressure 

in the emergency group) 

2. Cumulative duration (minutes) 20% below preoperative SBP 

3. Longest single episode (minutes) below a) 80, b) 90, and c)100 

mmHg 

4. Cumulative duration (minutes) below a) 80, b) 90, and c)100 

mmHg 

 

MAP 

1. Maximum change from preoperative MAP, in a) absolute change 

(mmHg), and b) relative change (%) (emergency and elective 

cases analyzed separately due to the lack of preoperative blood 

pressure in the emergency group. Note that since the HSM 

database only contains SBP and DBP, not MAP, MAP will be 

calculated using MAP = 1/3*SBP + 2/3*DBP) 

2. Cumulative duration (minutes) 20% below preoperative MAP 

3. Longest single episode (minutes) below a) 60, b) 65, c) 70, and d) 

80mmHg 

4. Cumulative duration (minutes) below a) 60, b) 65, c) 70, and d) 

80mmHg 
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Heart rate Since both fast and slow heart rate may be harmful and there is no 

universal definition of abnormal heart rate under anesthesia, we will 

model using a variety of methods. 

1. Maximum change (BPM) from preoperative heart rate (positive 

and negative) 

2. Relative change (%) from preoperative heart rate (positive and 

negative) 

3. Maximum pulse variation (maximum heart rate minus minimum 

heart rate)  

4. Longest single episode (minutes) a) below 60, and b) above 

100BPM 

5. Cumulative duration (minutes) a) below 60, and b) above 

100BPM  

Use of 

hemodynamic 

medications (i.e. 

special 

medications for 

blood pressure) 

1. Vasopressor/inotrope use (yes vs. no): phenylephrine, 

norepinephrine, epinephrine, vasopressin, dobutamine, or 

milrinone 

2. Infusion of any vasopressor/inotropes above (yes vs. no) 

(identified by unit of weight over time) 

3. Phenylephrine/ephedrine bolus (yes vs. no) (identified by unit of 

weight only)  

4. Vasodilator use (yes vs. no): labetalol, esmolol, nitroglycerin, 

nitroprusside    

5. Infusion of any vasodilator above (yes vs. no) (identified by unit 

of weight over time)  

Oxygen 

saturation by 

pulse oximetry: 

SpO2 

1. Longest single episode (minutes) below a) 88, and b) 90% 

2. Cumulative duration (minutes) below a) 88, and b) 90%  

 

End-tidal (i.e. 

exhaled) Carbon 

dioxide: EtCO2 

 

1. Longest single episode (minutes) a) below 30, and b) above 

45mmHg   

2. Cumulative duration (minutes) a) below 30, and b) above 

45mmHg  
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II. Outcomes  

Primary: 30-day all-cause postoperative mortality (binary) 

 

Secondary:  

1. Major 30-day in-hospital morbidity, both in terms of the individual category (yes/no), and 

an overall composite (i.e. yes for any of the 6 categories vs. no). We have included major 

morbidity outcomes where increased monitoring would be beneficial, using International 

Statistical Classification of Diseases (ICD) 10 codes and based on published protocol on 

patient safety indicators (27). 

1. Cardiac: composite of acute myocardial infarction, cardiac arrest, ventricular 

tachycardia, congestive heart failure, pulmonary edema, complete heart block, 

shock excluding septic shock 

2. Respiratory: composite of pneumonia, pulmonary embolism, acute respiratory 

failure, respiratory arrest, Mechanical Ventilation  96 hours 

3. Acute Kidney Injury  

4. Cerebrovascular: composite of strokes and transient ischemic attacks 

5. Delirium 

6. Septic Shock  

2. Postoperative ICU admission (yes/no) 

3. Prolonged Postoperative Length of Stay (LOS) (greater than vs. less than or equal to 

CIHI Expected Length of Stay (ELOS) as assigned by the Case Mix Grouping) [note that 

the LOS includes the day of surgery] 

4. Hospital readmission within 30 days (yes/no) 

5. Intraoperative mortality (yes/no)  

6. Days alive and out of hospital at 30 days postoperatively (28)  

 

 

III. Other predictors included into model   

The following potential perioperative predictors will be evaluated as covariates during model 

building. Statistically significant predictors will be retained in the model.  
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Table 2. Other predictors  

Preoperative 1. Demographics: age on date of surgery, sex, obesity (body mass 

index>30) 

2. Indicators of preoperative comorbidities: since no comorbidity score 

has perfect performance, a variety of models will be evaluated and 

the most significant predictive score will be retained in the model.  

• American Society of Anesthesiologist class 

• RCRI score(29), and specific components via ICD codes (history 

of ischemic heart disease, congestive heart failure, 

cerebrovascular disease, diabetes, chronic kidney disease, and 

CCI and Case Mix Group codes of suprainguinal vascular, 

intraperitoneal, or intrathoracic surgery) using previously 

published methods (30)(31) 

• Elixhauser comorbidity index (32) and Charleson Comorbidity 

Index (33): calculated using diagnoses from the previous three 

years according to standard algorithm by HDNS. Reported as 

both total score and individual categories  

• Hospital Frailty Risk Score (34): based on ICD codes 

• Preoperative blood pressure: ICD diagnosis of hypertension and 

by measured blood pressure  

• Preoperative heart rate: Innovian and HSM   

• Chronic Obstructive Lung Disease (ICD code): since it may 

affect the interpretation of results of SpO2 and EtCO2 

      3.    Indicators of surgical complexity  

• CIHI DAD Case Mix Group (CMG) class (also contains 

categories that include medical complexity) 

• Main Surgical Service 

• Procedural Index for Mortality Risk (PIMR) (35): according to 

CCI 

• Procedure: CCI codes 

• Preoperative ICU admission  

• Emergency surgery: as determined by DAD Method of Entry = 

emergency department or transferred from another institution) 

  

 

Intraoperative  • Anesthetic factors  

o Type of anesthesia: General vs. regional vs. neuraxial vs. 

sedation (multiple concurrent types possible)   

o Measures of anesthetic depth 

▪ Age-adjusted inspired Minimal Alveolar 

Concentration (MAC) – summed from all volatile 

anesthetics used (36). Since MAC is available for 

every 15 seconds, the average MAC for each case (i.e. 

time-weighted) will be used.    
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▪ Bi-spectral Index (BIS): duration in minutes for BIS 

<46 (37) 

o Temperature: duration (minutes) a) < 36C, and b) > 38C 

(38)  

o Crystalloid administration >1L: volume in mL 

• Surgical factors  

o Duration 

o Laparoscopy  

o Bleeding: Estimated blood loss (mL), lowest Hemoglobin day 

within 2 days after surgery (g/L) (including day of surgery), 

Red Blood Cell transfusion (mL) 
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Analysis plan 

Statistics will be analyzed directly on the HDNS Citadel secure server using SAS Software 9.4 

(SAS Institute, Inc., NC) and R version 3.5.3 (https://www.r-project.org/).  

 

Cohort characteristics 

Descriptive statistics will be performed on all proposed predictors and outcome variables listed 

above. Continuous variables will be listed as mean with standard deviation, and categorical 

variables as frequency counts and percentages. Mortality will also be described in terms of 

causes, location (in- vs. out-of-hospital), and timing (intraoperative vs. postoperative, and by 

postoperative day).  

 

Data processing and artifact removal 

New variables will be created through calculation or dichotomization, as described in the 

variables section above and Appendix 1. Patients with age >120 or  45 will be flagged for 

further investigation of data validity and potential removal. Artifact removal from hemodynamic 

variables will be performed by the Innovian Database Manager in SQL, prior to creation of 

exposure variables (Table 1) and data linkage. Input of hemodynamic variables of interest (blood 

pressure, heart rate, EtCO2, and SpO2) as well as BIS and end tidal volatile from intraoperative 

monitors were automatically recorded every 15 seconds into Innovian. Continuous values were 

captured every 15 seconds as medians of 8 values captured every 2 seconds, while discrete 

values (e.g. NIBP) were captured as is at the moment.  The maximum incidence of artifact was 

found to be 0.1% for heart rate, 0.4% for SpO2, 2.9% for noninvasive blood pressure, and 15% 

for invasive blood pressure in a previous study (39), and this is likely an overestimate due to the 

strict definition of artifacts. A systematic review and cohort study showed that while a variety of 

different artefact algorithms affected the defined incidence of intraoperative hypotension, it did 

not significantly affect the model between hypotension and outcome (40).  Importantly, duration-

based hypotension definitions were less affected by artefact filtering algorithms than depth 

thresholds (40).  

 

To reduce artifacts outside of anesthesia time (e.g. arterial line is plugged in prior to patient 

arrival), the variables below will only be taken during a defined “Surgery Duration”. This 

Duration starts at the first valid recorded SpO2  (that is subsequently valid for 1 minute), and ends 

after the last valid SpO2  (that has been valid for 1 minute).  

 

 

• Blood pressure 

1. Step 1, removal of individual artifacts: Note that non-invasive (NIBP) and invasive 

blood pressure values (IABP) will be treated separately. Potential artifacts will be 

removed (changed to missing data) in the following order: 

1. Missing any of SBP, DBP, or MAP, or where any of SBP, DBP, and MAP 

are equal to each other 

2. Apply 3 different artifact algorithms simultaneously to identify artifacts: 

• Multi-Centre Perioperative Outcomes Group (MPOG) algorithm  

• For IABP only: MAP value greater than 50% from the values 

before and after will be deleted, as previously described by Sun et 

al (41). 

https://www.r-project.org/
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•  The following blood pressure artifact removal rules as described 

by Salmasi et al (41) will also be applied: “SBP less than or equal 

to DBP + 5 mmHg”, and “abrupt changes defined by SBP change 

greater than or equal to 80 mmHg within 1 min in either direction 

or abrupt SBP changes greater than or equal to 40 mmHg within 

2 min in both directions.” 

3. To remove artifacts prior to arterial line insertion, for IABP data only, the 

first MAP readings must be >40, and the first SBP reading must be >60.  

4. For each BP measurement, if any of SBP or MAP has been labelled as an 

artifact, then remove the entire measurement 

5. If an entire case has been identified as null after artifact removal (i.e. no 

valid BP for the entire case), the entire case and studyID will be deleted.  

2. Step 2. Concatenation. The final blood pressure will be taken from IABP or NIBP, 

whichever is available after artifact removal. If both non-invasive (NIBP) and invasive 

blood pressure values (IABP) are available for the same 15 second interval, the higher 

reading will be taken. Otherwise, the only blood pressure that is valid will be used.  

3. Clarification re. “Baseline” blood pressure: The HSM and first Innovian BP will be 

modeled separately during analysis, i.e. each patient will have two “baseline” 

measurements, coded by the variables “MAP_first_Innovian” and “MAP_preop_HSM”.  

1. All patients will have the variable of a first Innovian BP (after artifact 

clean up). The first Innovian BP is used since the second BP may be 

postinduction. This has the limitation that the the first intraoperative BP 

may not reflect the true baseline (42); however, practically this would be 

the blood pressure that would be available in similar clinical situations.  

2. Only some patients will have HSM BP (i.e. at preoperative clinic or in the 

preadmission area). Since the HSM does not contain MAP, MAP will be 

calculated using MAP = (2/3 DBP) + (1/3 SBP).  

• If a patient does not have a HSM BP, the variable value will be 

coded as missing (not zero).  

• Heart rate 

1. Artifact removal: 

1. The heart rate will be collected from the pulse oximeter instead of ECG, to 

reduce risk of electric cautery artifact and non-transmitted conduction.  

2. Heart rate > 170 or < 30 BPM will be removed. To reduce the influence 

from outlier artifacts (e.g. temporary disconnection or adjustment of a 

monitor), single episodes of deviation in any variable greater than 50% 

above or below the preceding value will be flagged. If the flagged heart 

rate from the pulse oximeter and ECG (and/or arterial line) differ by >10, 

the heart rate will be removed as artifact.  

2. Clarification about “Baseline” heart rate: similar to BP above, the HSM and first 

Innovian HR will be modeled separately during analysis, i.e. each patient will have two 

“baseline” HR. All patients will have the variable of a first Innovian HR (after artifact 

clean up). Only some patients will have HSM HR (i.e. preoperative clinic or in the 

preadmission area). If a patient does not have a HSM HR, the variable value will be 

coded as missing (not zero).  
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• EtCO2 will only be analyzed in cases involving general anesthesia. Values > 120 or < 5 

mmHg will be removed as artifact.  

• SpO2  > 100% or < 50% will be removed as artifact.  

• Temperature < 30 or > 43 degrees Celsius will be removed as artifact.  

• End tidal volatile concentrations (including nitrous oxide) will be converted to summed 

age-adjusted MAC (36). The total age-adjusted MAC < 0.2 and >2.5, at each 15 second 

interval, will be removed as artifact prior to calculation of the time-weighted average (15 

second time intervals).  

 

For each automatically recorded variable from Innovian, at least 3 cases will be reviewed to 

ensure correct artifact labeling. We will quantify the percentages of artifacts flagged and 

removed per case for each variable monitored. 

 

 

Artifact Removal Sub-study: Derivation of a machine learning algorithm for artifact 

removal for invasive blood pressure data  

Rationale 

While putting together the Innovian dataset for our study, we found that existing artifact (noise) 

removal algorithm has limitations at removing invasive arterial blood pressure (IABP) artifacts. 

Current algorithms are based on clinician-generated rules (40). We plan to use machine learning 

algorithms to improve artifact detection.  

Objective 

Our goal is to derive an artifact removal algorithm for IABP using machine learning of 

hemodynamic data.  

Methodology 

For this sub-study, we will include patients with IABP recorded. There are approximately 6000 

patients with IABP recordings. We will exclude patients who do not have any recording of the 

required hemodynamic variables: IABP systolic, IABP mean, IABP diastolic, non-invasive 

blood pressure (NIBP) systolic, NIBP mean, NIBP diastolic, IABP heart rate, ECG heart rate, 

SpO2 heart rate, and SpO2 (oxygen saturation). 

To label the dataset with “gold-standard” answers, we will use a random sample of 60 cases 

(chosen by random number generator) for which the artifacts (anomalies) will be manually 

labeled by anesthesiologists on the study team, blinded to the final artifact removal algorithm. 

The problem of artifact detection (anomaly detection) will be addressed for two target variables: 

IABP mean and IABP systolic. We will use the same methodology to conduct the analysis for 

artifacts detection in these two target variables. 
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For each target variable the problem will be tackled in two approaches: as a univariate time 

series and as a multivariate time series. In the univariate series approach, we will only take into 

consideration the data of the time series representing either the IABP mean or the IABP 

systolic artifacts. For the multivariate approach, we will include the information of the following 

variables IABP systolic, IABP mean, IABP diastolic, NIBP systolic, NIBP mean, NIBP diastolic, 

IABP heart rate, ECG heart rate, SpO2 heart rate, and SpO2 (oxygen saturation).  

In the univariate case, the anomaly detection will be carried out using several statistical 

approaches, and machine learning approaches. 

Methods to apply for anomaly detection in the univariate time series case: 

1) Statistical-based approaches: ARIMA model, simple, double and triple Exponential 

Smoothing and Outlier Detection using Prediction Confidence Interval (PCI). Anomalies will be 

detected by evaluating the deviation of the predicted point to the observed one. 

2) ML-based approaches: DBSCAN, LOF, isolation Forest, One-Class Support Vector Machine, 

XGBoost and neural networks. 

Regarding the anomaly detection in the multivariate time series case we will apply several 

machine learning-based techniques such as isolation forest, One-Class Support Vector Machine, 

XGBoost and different neural networks. 

Regarding the performance evaluation, we will split the data set into train/test (70%) and 

validation (30%). This means we will use 42 cases for train and test and 18 cases for 

validation. The performance evaluation in the train/test part of the data will be carried out using 

100 repetitions of bootstrapping method and we will assess the performance on following 

metrics: F1, precision, recall, specificity, Negative Predicted Value (NPV), False Discovery Rate 

(FDR), G-Mean, AUC-ROC, AUC-PR. 

The derived algorithm will be applied to the full sample (~6000 excluding the 60 cases used 

above), and the percentage of hypotension defined will be quantified according to published 

comparisons (1). This will also be compared to the results of the MPOG algorithm.  

 

Analysis will be performed in Python.  

 

Research Ethics Considerations  

 

This sub-study will use the existing Innovian dataset, but using only the following completely 

de-identified variables:  

 

1. Study ID 

2. Time stamps for each hemodynamic variable (dates will be removed, and placeholders will be 

used to denote surgery times that happened overnight that bridges two dates) 

3. Required timestamped hemodynamic variables for modelling: 

IABP systolic  
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IABP mean 

IABP diastolic 

NIBP systolic  

NIBP mean 

NIBP diastolic 

IABP heart rate  

ECG heart rate 

SpO2 heart rate 

SpO2 (oxygen saturation) 

 

Data analysis will be performed by Dr. Paula Branco (member of the current study team as a 

post-doc, currently faculty member at University of Ottawa) and her Co-op student Mengqi Wu 

will receive the de-identified, limited Innovian dataset securely and directly from our Innovian 

manager using the NSHA encrypted institutional email (SENDNS). The files will be stored in a 

password-protected computer and permanently deleted according to NSHA policy once analysis 

is complete (estimated to be end of September 2020). 

 

 

 

Missing data 

Since intraoperative hemodynamics are automatically recorded and mortality reporting is 

mandatory, we do not expect significant missing data for the key hemodynamic predictors and 

primary outcomes. For disease conditions, patients without ICD codes are assumed to not have 

the disease; the same applies for medications. For the other variables of interest, if there is less 

than 5% missing data, no processing will be performed. Between 5-20%, missing data will be 

imputed using group mean (43) for continuous variables. At greater than 20% missing data, the 

variable will be removed from analysis with potential causes evaluated and reported.  

 

Creating the models  

We will divide the cohort temporally (approximately 80:20 ratio) into two groups: 

derivation/training group (approx. January 1, 2013 – Dec 31, 2016), and validation group 

(approx. Jan 1, 2017 – December 1, 2017). This temporal approach to the model building vs. 

validation groups will also mirror the real-life application of machine learning, where data from 

the past is used to predict future outcomes. Splines will be used for the hemodynamic predictors 

involving time as a unit.  

In the derivation/training set, we will create models for the primary outcome using 

machine learning techniques, including logistic regression with variable selection, classification 

trees, and Principal Component Analysis (PCA)(21). We have chosen these techniques to obtain 

interpretable results, i.e. being able to understand the process by which the algorithm decision 

making occurred. Also, these techniques demonstrate different approaches and perspectives to 

better understand the relationships amongst the variables.  

Logistic regression with variable selection (e.g. LASSO, Elastic Net) identifies the most 

important predictors to create a parsimonious model. Classification trees predict outcomes 

based on input variables through classification. Random forest is an ensemble method of 

classification trees; while it is not directly interpretable, it can show which predictor has the 

highest importance. Association rule learning will be used to find new patterns. PCA is used for 
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dimensionality reduction and is particularly helpful in this study to better understand profiles of 

correlated variables, and to narrow down on what the most important predictors are when a 

multitude of predictors exist. PCA reveals components (i.e. groups of correlated predictors), 

with the most important components accounting for the most variation within the data. 

Components found to account for the most variances (Eigenvalue 1) in a scree plot represent 

the most important sets of predictors. They will be further analyzed using Cronbach Alpha to 

assess for internal consistency within components. Note that since PCA is a method of 

unsupervised learning where the outcome is not defined, in the first PCA model, all variables 

(including both primary and secondary outcomes) will be inputted into PCA with the significant 

components reported. This is to generate profiles of correlated predictors and outcomes. 

Structural equation modeling will be used. In an unrelated, second PCA model, PCA will be 

used to reduce dimensionality of predictor variables (i.e. exposures and covariates only), and 

the most correlated predictors within key components will be entered into a logistic regression 

the primary outcome.  

 

Class Imbalance 

Since patients with the primary outcome of mortality only accounts for an estimated 1.7% of the 

sample, significant class imbalance exists (i.e. not a 1:1 ratio between patients with vs. without 

mortality). This results in the machine learning to be more focused on the majority class (i.e. 

patients without mortality) and impacts the predictive power for mortality.  

Several techniques exist to make the learning algorithms to focus on the important class 

(44). Among these, pre-processing techniques are a powerful tool enabling the use of any 

standard learning algorithm by modifying the training set. The goal is to obtain a more balanced 

training set through weighting, undersampling and/or oversampling. We will explore different 

resampling techniques to rebalance the training set. Regarding undersampling, we will explore 

both random and informed undersampling (remove examples near the decision border through 

nearest neighbours computation and use a clustering algorithm to guide the selection of 

examples). For oversampling, we will explore the introduction of replicas (randomly or by 

weighting) and the generation of synthetic data through the introduction of Gaussian Noise, 

SMOTE, and other SMOTE-based techniques. We will also examine the combination of these 

techniques.  All of these techniques are only applied on the training set used to learn the model, 

and they are never applied on the test set. Thus, the model, although learned in a more balanced 

scenario is always evaluated only in real data and in a real imbalanced scenario. 

We will also apply cost-sensitive learning. The assignment of higher costs to type II 

errors during learning has the potential to improve the results, reducing this type of error. 

The effect of class rebalancing (at a variety of ratios and trough a variety of techniques) on 

model performance will be examined, and the impact of these adjustments on model 

performance will be reported. 

 

Evaluating model performance 

Using the derivation/testing set, the performances of machine learning models generated will be 

evaluated by cross validation. To account for potential temporal effects and concept drift, 

Monte Carlo and prequential evaluation will be used (45). In addition, each model will be 

evaluated in terms of discrimination, calibration, and risk reclassification (21,46). Discrimination 

will be calculated through C-statistics using area under curve (AUC) of receiver operating 

characteristic curve (ROC). Calibration will be represented graphically using observed vs. 
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expected event rates in risk estimate deciles, and by the Hosmer-Lemeshow statistic. Brier score 

will be computed for discrimination and calibration. Risk reclassification will be quantified 

through Yates slope and integrated discrimination improvement. R-squared will be reported.  

The performance of all models created will be evaluated in the validation set as part of 

internal validation using the same metrics of discrimination, calibration, and risk 

reclassification, and compared to the Surgical Apgar Score. Since there will likely be significant 

class imbalance and ROC curves may overestimate model performance, for each model, 

precision and recall curves (PRC), F score, average precision, and AUC will also be reported 

and compared. The best performing model will also be used to analyze for predictors for 

secondary outcomes. Sensitivity (recall, true positive rate), specificity, positive predictive value 

(precision), G-mean, negative predictive values, False Discovery Rates (FDR), optimism, and 

measures of association of hemodynamic thresholds for primary and secondary outcomes will be 

computed. Bayesian network causal inference analysis may be performed, to help increase 

interpretability. 

 

Sensitivity and subgroup analysis 

Sensitivity analysis will be performed for different definitions of hemodynamic 

derangements. Subgroup analysis will be performed based on age, sex, high preoperative risk 

(most significant indicator of preoperative comorbidity in Table 2, based on final model), RCRI, 

frailty (HFRS), preoperative hypertension, a select list of intermediate-high risk, gender-neutral 

elective surgery (please see Appendix – RCRI Protocol Table 1), emergency surgery, and type of 

anesthesia.   

 

Power calculation 

The 2016-2017 in-hospital mortality after major surgery in Nova Scotia is 1.7% (47). Using the 

Events Per Variable criterion (EPV) of at least 10 outcomes per predictor in the sample, the 1.7% 

mortality (408) out of an estimated sample size of 24,000 for the derivation/training group means 

that our model would be valid for up to 41 predictors for the primary outcome. However, the 

EPV may over or underestimate  the limitations of the EPV criterion (48), square root of the 

mean squared prediction error (rMPSE) and mean absolute prediction error (MAPE) will be 

calculated based on the number of predictors, sample size and events fraction (49) with the 

caveat that this model has not been externally validated . Full power calculation will be 

performed once we receive the final sample size. 

 

Strengths 

This study involves a large, recent population dataset with nearly complete follow up for the 

primary outcome. There has been more than 10 years of experience with intraoperative 

anesthetic electronic recording system, with a high likelihood of provider proficiency with 

anesthetic intraoperative electronic documentation. This dataset is unique in North America for 

its degree of intraoperative details, pairing of clinical and administrative data, and robust data 

quality. Our use of machine learning could detect new network relationships and strategies that 

may inform current practice as well as future research.  

 

Limitations 

This study involves two academic provincial adult non-obstetric tertiary care centres in one 

hospital system, which may represent a sicker population. Validation in other centres would 
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increase generalizability. The retrospective nature of this database study makes it susceptible to 

random error, bias, and confounding. There may be cluster effects from health providers and 

hospitals, however the large sample size allows for robust power and minimizes random error. 

There is a potential for misclassification, measurement, and ascertainment bias. Due to the lack 

of universal screening for morbidity (e.g. troponin biomarker for myocardial injury and 

infarction, and Brain-Natriuretic Peptide for preoperative cardiac risk stratification), only 

mortality will be included as primary outcome. The lack of postoperative hemodynamic data 

creates non-informative censoring (i.e. unbiased since the data is missing for all patients). 

Numerous other predictors have been adjusted for through multivariate logistic regression but 

unknown confounders and confounding by indication may remain. The retrospective data reflects 

a snapshot of evolving practice, though secular effects may remain limited over the five-year 

study period. Future prospective validation of the prediction model will increase external 

validity.  

 

Future directions 

Future research includes prospective multicentre validation of our findings. Based on this model, 

a real-time risk prediction tool could be incorporated into electronic anesthesia management 

systems, while a simple score could be developed for clinicians. In addition, randomized studies 

could shed light on whether targeted hemodynamics, increased postoperative follow-up based on 

risk stratification, and real-time machine learning precision medicine could improve mortality, 

morbidity, and patient-reported outcomes after surgeries. 
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Feasibility 

 

Budget overview 

 

Budget Item Amount Details 

A. Personnel/third party service 

providers 

$800 Mentorship from data analyst Lynn 

Lethbridge.   

B. Equipment 
$0 

SAS and R software will be provided by 

HDNS.   

C. Materials, supplies and 

administrative services 

$5895 

 

 

 

 

$75 

Health Data Nova Scotia data request and 

linkage with Innovian and HSM.  

 

Medavie patient ID encryption (required by 

HDNS) 

D. Knowledge translation and 

dissemination  

$1600 Poster presentation at a conference 

Total $8370  

 

 

Additional budget details 

Budget Item A: Lynn Lethbridge is a data analyst within the Department of Surgery with 

extensive experience with HDNS. She has been contracted to mentor Dr Ke’s data analysis for 

16 hours at $50/hour ($800).  

 

Budget Item C: We will request Discharge Abstracts Database and Vital Statistics data from 

Health Data Nova Scotia (HDNS) (please see confirmation of feasibility and quote attached). 

HDNS will link this dataset with our institutional Innovian (intraoperative anesthesia electronic 

record) by MSI and provide us with a complete de-identified dataset. No server purchase is 

necessary since the HDNS data will be provided on Citadel. Details from HDNS regarding 

Citadel: "Analyses will be carried out remotely on the HDNS Windows server "Citadel". 

Connection to Citadel occurs through Remote Desktop Connection (RDC). Citadel only accepts 

connections from approved DAL NetIDs to access specific project data housed in our Hadoop 

based research cluster. Other external connections such as the internet or USB devices are 

disabled, and no data may be transferred between the local PC and the remote session."     

 

Budget Item D: Presentation at a conference: Poster printing $200, flights and accommodation 

$1000, registration fee $400.  

 

Funding: $5000 Nova Scotia Health Authority Research Fund (awarded), the rest to be covered 

by the Dalhousie Department of Anesthesia  
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Benefits  

This interdisciplinary study brings together investigators from diverse disciplines and locations, 

with expertise from Dalhousie anesthesiology, epidemiology, and Big Data Institute, as well as 

Harvard and University of Toronto. The research project is locally-based and relevant, with 

findings that may spark further research and inform anesthesiology perioperative practice.  

The QEII hospitals are tertiary referral centres taking care of some of the sickest patients 

of the province. Better understanding of intraoperative predictors may unveil strategies to 

improve outcome and improve resource allocation after surgery. Moreover, this model may be 

generalizable to other hospitals, placing the Nova Scotia Health Authority and Dalhousie 

University as a leading innovator in this area, as large population-level outcomes research will 

likely continue to be at the forefront of health research.  

 

 

Research team roles and responsibilities 

Dr. Ke is completing the Harvard T.H. Chan School of Public Health Summer-Only Master of 

Science in Epidemiology. This consists of coursework over three summers (2018-2020) and 

online. The courses focus on epidemiology and advanced statistics, and with mentorship from 

Harvard and Dalhousie faculty Dr. Ke has been learning the theoretical knowledge and practical 

coding skills to independently analyze this project. She has protected research time to complete 

this project.  

  This proposed thesis project is co-supervised by Dalhousie and Harvard faculty. Dr. E. 

Francis Cook at the Harvard School of Public Health for his expertise in epidemiology, risk 

prediction, and data mining. Dr. George has extensive research experience in anesthesiology and 

has been building capacity in Big Data anesthesiology research at Dalhousie. Dr. David 

MacDonald at Dalhousie anesthesiology has expertise in perioperative medicine and will bring 

clinical and research knowledge. We also draw on the guidance of Dr. William Scott Beattie 

(anesthesiology professor at University of Toronto) who has published extensively in database 

studies involving perioperative outcomes, Dr. Robin Urquhart (Community Health & 

Epidemiology) for her experiences with Health Data Nova Scotia (HDNS) and epidemiology, 

Dr. Stan Matwin (Director at the Dalhousie Big Data Institute) for his expertise in machine 

learning and Big Data, Dr. Paula Branco (Post-doctoral fellow at Dalhousie Computer Science) 

for her specialty in machine learning and class imbalance, Dr. Luis Torgo (Professor at 

Dalhousie Computer Science) for his expertise in analytics of spacio-temporal data, Dr. Dan 

McIssac from Ottawa for his specialty in perioperative database research, George Campanis and 

Paul Brousseau for their experience with Innovian and medical informatics, and Lynn Lethbridge 

(Department of Surgery) for HDNS data analysis mentorship.  

Knowledge translation and dissemination 

The models derived from this project will undergo further prospective internal and external 

validation prior to being incorporated into clinical practice. Based on an externally validated 

model, a real-time risk prediction tool could be incorporated into electronic anesthesia 

management systems, while a simple score could be developed for clinicians. This project will 

be presented locally at the Dalhousie Anesthesia Research Day, as well as at a national or 

international anesthesiology conference. In addition, the methodology of optimization of class 

imbalance will be published in a machine learning journal, and the overall project will be 

published in an anesthesiology journal. Once published, a Visual Abstract and a patient-focused 

infographic of results will be disseminated on social media.  
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Ethical considerations 

Use of Personal Health Information (PHI)  

This is a minimal-risk study. De-identified patient data meeting the inclusion and exclusion 

criteria will be obtained from Innovian and Health Data Nova Scotia. This project satisfies all of 

the requirements for waiver of consent under the Tri-Council Policy Statement (TCPS 2) and 

Nova Scotia Personal Health Information Act (please see Request for Waiver of Consent 

appendix). The population size is estimated to be 35,000, which would be impracticable since 

this is an incredibly large population to contact for consent. Also, the cohort of interest includes 

patients aged 45 and older who have undergone surgery, and it is therefore expected that some 

patients would have died. Obtaining consent for these individuals would not only result in the re-

identification of these patients, but also their next-of-kin who would give consent on their behalf. 

We have submitted a request for waiver of consent to the REB.  

Measures will be in place to minimize the risk of breach in privacy and confidentiality (please 

see below). Due to the large sample size and the collection of common perioperative outcomes, 

accidental identification of a specific person from de-identified data is unlikely. There is no other 

adverse event, harm, or risk anticipated. 

Health Data Nova Scotia will create a database of linked data using the Provincial Health Card 

number and date of surgery. The database we receive will be de-identified. PHI collected include 

the following and will be used in the most de-identified form: 

1. Date of surgery (for patients with multiple surgeries, information from only the first 

surgery will be collected): in order to divide the cohort into derivation, training, and 

validation groups by date of surgery 

2. Age on date of surgery, Sex: potential covariates in the model  

3. Procedures (Current Procedural Terminology (CPT) codes: a potential covariate in the 

model   

 

 

Measures Taken to Protect Personal Health Information and Study Data 

• Cohort creation: The linked dataset will be created by HDNS through experienced 

personnel and established process, and follow Tri-Council guidelines. The dataset we 

receive for analysis will not contain any direct identifiers such as health card number 

and date of birth.  

• Controlled access: Only authorized researchers in Nova Scotia will have access to 

de-identified person-level data. Aggregate data will be used as early as possible. 

While Dr. Ke is in Boston, if needed, Health Data Nova Scotia will perform data 

analysis on patient-level data using SAS protocol from team and send the rest of the 

team aggregate data for interpretation. The rest of the team will only have access to 

aggregate results after statistical analysis, with no identifiable information. All de-

identified person-level electronic data will be securely stored in the HDNS secure 

server “Citadel”, where analysis will be performed without needing to download data 

from the secure server.  
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o Details from HDNS regarding Citadel: "Analyses will be carried out remotely 

on the HDNS Windows server "Citadel". Connection to Citadel occurs 

through Remote Desktop Connection (RDC). Citadel only accepts 

connections from approved DAL NetIDs to access specific project data 

housed in our Hadoop based research cluster. Other external connections such 

as the internet or USB devices are disabled, and no data may be transferred 

between the local PC and the remote session."  

• Removal of all personal identifiers in electronic data: This will be performed by 

the HDNS prior to the release of the analytic dataset to the project team. 

• The results of the study (prototypes, publications, posters, presentations) will not 

contain any personal data: Only aggregate data of cell counts greater than 5 will be 

reported. As per HDNS policy, manuscripts will be submitted to HDNS for approval 

prior to publication to ensure privacy and confidentiality.  

Storage and Retention of Personal Health Information and Study Data 

De-identified electronic person-level data will be securely stored in Citadel, the HDNS server. 

(please see above). Paper material will be stored in a locked cabinet in the Halifax Infirmary 

Anesthesiology Research Office. Regulatory documents (no-PHI) will be stored in the secure 

(locked; access limited) anesthesia research office. Electronic records will be kept in password 

protected files on a password protected computer on the NSHealth network. 

After study completion, according to HDNS protocol, researchers will no longer have 

access to Citadel but the data will be kept within HDNS for a minimum of seven years. Paper 

records will be securely shredded in accordance to NSHA policy. All electronic files will be 

permanently erased by the  according to NSHA IT policy at the end of the retention period (7 

years). 

 

How do benefits outweigh harm 

 

The results of this study may help synthesize complex intraoperative clinical information and 

unveil novel therapeutic strategies. Derived from data from the QEII Hospitals, the results would 

be directly applicable to the care of Nova Scotians. The QEII hospitals are tertiary referral 

centres taking care of some of the sickest patients of the province. Better understanding of 

intraoperative predictors may unveil strategies to improve outcome and improve resource 

allocation after surgery.  

The models may lead to the creation of objective risk stratification scores calculated at the end of 

surgery, to identify high risk patients for increased postoperative follow-up and monitoring. 

Moreover, if models created using machine learning perform well, machine learning may be 

used more frequently to reveal the patterns within complex, large population perioperative 

datasets. Hemodynamics are potentially modifiable risk factors. Future research includes 

prospective studies on whether targeted hemodynamic goals, increased postoperative follow-up 

of high-risk patients, and real-time machine learning precision medicine could improve outcomes 

after surgeries.  

With any database analysis project, a potential harm would be a breach in confidentiality and 

privacy. With robust measures detailed above to protect privacy and confidentiality strictly 
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followed, the risk of breaches is minimal. The many benefits of this study outweigh the unlikely 

occurrence of potential harms.  
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Source 

Dataset 

 

Variable 

 

Level of 

Identific

ation 

Time Span 
Why is this element required in the 

analysis? 

 

Information for inclusion and data linkage 

Innovian  Date of 

surgery 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Part of HDNS data linkage with 

Innovian to ensure only variables from 

the surgical admission of interest (first 

surgery admission with LOS>1) is 

included. This Date of Surgery will be 

used to confirm linkage with 

“PDATE” from CIHI DAD to ensure 

that data from the correct surgical 

admission is included The maximum 

allowable mismatch for the surgery 

dates in Innovian and CIHI is +/- 1 

day. The Innovian surgery date will be 

used as the gold standard, since the 

record is done in real time and thus the 

most accurate.  

  

The date of surgery will also be used 

to divide the cohort temporally into 

the derivation/training group (January 

1, 2013 – November 30, 2016), and 

validation group (December 1, 2016 – 

December 1, 2017)  

Innovian Patient_ID: 

encrypted 

health card 

number 

 

Patient Jan 1, 2013 

to Dec 1, 

2017 

HDNS data linkage with Innovian. 

The dataset given to us will not 

contain Patient_ID, but rather a Study 

ID.  

Innovian  Age: on date 

of surgery  

Patient Jan 1, 2013 

to Dec 1, 

2017 

Age ≥45 part of inclusion criteria. 

Also, as age may impact outcomes, 

this will be included as a covariate in 

our models 

Innovian  Organ 

donation: 

Procedure 

name 

Patient Jan 1, 2013 

to Dec 1, 

2017 

Patients with procedure name that 

includes “organ donor” or “organ 

donation” will be excluded, since they 

are already declared brain dead and 
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containing 

the word 

“Organ 

donor” or 

“Organ 

donation” or  

“DCD”  

[Derived by 

Innovian]  

will not reflect the usual surgical 

population.  

Innovian  Cardiac 

surgery 

[Derived by 

Innovian]  

 

Patient Jan 1, 2013 

to Dec 1, 

2017 

As defined by ProcedureAnatomy = 

“heart” or “cardiac”. Cardiac surgery 

patients are excluded since they are 

receiving surgery directly on the heart 

and have a unique set of complications 

that may not reflect the usual surgical 

population. 

Innovian   ASA: 

American 

Society of 

Anesthesiolo

gist class (I to 

VI) 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Patients with ASA VI (i.e. patient with 

neurologic brain death for organ 

donation) will be excluded. Also, as 

this may affect outcomes, it will be 

included as a covariate in our models.  

CIHI 

DAD 

PATIENT_I

D: encrypted 

health card 

number 

For HDNS 

internal use 

Patient Jan 1, 2013 

to Dec 1, 

2017 

HDNS data linkage with Innovian-

HSM. The dataset given to us will not 

contain Patient_ID, but rather a Study 

ID. 

Vital 

Statistics 

PATIENT_I

D: encrypted 

health card 

number 

For HDNS 

internal use 

Patient Jan 1, 2013 

to Dec 1, 

2017 

HDNS data linkage with Vital 

Statistics. The dataset given to us will 

not contain Patient_ID, but rather a 

Study ID. 

CIHI 

DAD  

PDATE[1-

n]: procedure 

date 

 

 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

HDNS data linkage with Innovian 

surgery date, to ensure that only the 

admission corresponding to the 

surgery admission of interest (first 

surgery admission with LOS>1) is 

included. 
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The PDATE matching the date of 

procedure (+/- 1 day) from Innovian 

will be used. The corresponding 

number (e.g. PDATE1) will be used 

for all procedure-related codes (e.g. 

PCODE1, PDSERV1). 

 

Note that except for preoperative 

comorbidity data, where we would 

need data for 3 years prior to PDATE, 

for all other variables we only need 

data within 30 days after PDATE.  

CIHI 

DAD 

LOS: Length 

of Stay (after 

surgery) 

 

Derived by 

HDNS: 

discharge 

date minus 

PDATE + 1 

(includes day 

of surgery) 

 

  

Patient Jan 1, 2013 

to Dec 1, 

2018 (to 

account for 

prolonged 

LOS postop 

from the end 

of inclusion 

date) 

Part of inclusion criteria: if a patient 

had multiple surgeries, the first 

surgery with a LOS >1 (i.e. at least 

overnight stay). To calculate ratio of 

LOS to Expected Length of Stay 

(ELOS) as secondary outcome.  

We have chosen to standardize LOS to 

only include duration of stay after 

surgery, since there are many factors 

that may prolong a patient’s stay prior 

to surgery.  

 

Additional Demographic Information 

CIHI 

DAD 

SEX:   

Patient sex  

 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As sex may affect outcomes, this will 

be included as a covariate in our 

models 

M = Male  

F = Female 

 

HSM  BMI: Body 

Mass Index  

[Derived by 

Innovian] 

 

Patient  Jan 1, 2010 

to Dec 1, 

2017 

Dichotomized according to WHO 

definition for obesity: BMI>30. This 

will be combined with ICD code to 

create a binary Obesity variable 

(please see below).  
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CIHI 

DAD  

Obesity  

[Derived by 

HDNS]  

  

Patient  Jan 1, 2010 

to Dec 1, 

2017 

Binary variable (yes/no), “yes” 

defined by: BMI >30, and if BMI 

missing, obesity ICD code 

(DXCODE[1-n] = E66). As BMI may 

affect outcomes, this will be included 

as a covariate in our models. The BMI 

data from HSM-Innovian will take 

precedent over DXCODE: i.e. first 

identify patients BMI>30 (coded as 

obesity = yes), BMI <=30, and 

BMI=missing data. For patients with 

BMI=missing, patients with ICD E66 

will also be coded as obesity = yes.  

 

Additional Measures of Perioperative Comorbidity 

CIHI 

DAD 

DXCODE 

[1-n]: 

diagnosis 

code  

 

Patient Jan 1, 2010 

to Dec 31, 

2017 (3 years 

before and 

including 30 

days after 

date of 

surgery) 

Diagnosis codes are required for the 

following purposes: 

• HDNS will use DXCODE 

(with “DXTYPE[1-n] = 1”, 

OR “DXTYPRE[1-n] = 2 

AND DXPRE[1-n] = 5”, OR 

“DXTYPE[1-n] = 3 AND 

DXPRE[1-n] = 5”, OR 

“DXTYPE[1-n] = M AND 

DXPRE[1-n] = 5”) within 

three years before date of 

surgery to calculate the 

Elixhauser comorbidity 

index, Charleson 

Comorbidity Index, RCRI, 

and Hospital Frailty Risk 

Score (see below). The 

entirety of DXCODES do 

not need to be disclosed to 

the research team since 

HDNS will perform the 

calculations.  

• Specific comorbid conditions 

will be included as covariates 

in the analysis  

• To examine post-operative 

comorbidity 
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Comorbidity covariates:  

We need the following DXCODE 

(with “DXTYPE[1-n] = 1”, OR 

“DXTYPRE[1-n] = 2 AND DXPRE[1-

n] = 5”, OR “DXTYPE[1-n] = 3 AND 

DXPRE[1-n] = 5”, OR “DXTYPE[1-

n] = M AND DXPRE[1-n] = 5”) 

within 3 years before PDATE: 

Disease categories for RCRI (please 

see “RCRI”); hypertension (I10-I15), 

COPD (I27.8, I27.9, J40.x–J47.x, 

J60.x–J67.x, J68.4, J70.1, J70.3), 

Obesity (E66) 

Postoperative outcomes:  

We need the following DXCODE 

(with “DXTYPE [1-n]=2” Excluding 

“DXTYPE [1-n]=2 AND DXPRE [1-

n]=5”, OR “DXTYPE [1-n]=3” 

excluding “DXTYPE [1-n]=3 AND 

DXPRE [1-n]=5”,  OR “DXTYPE[1-

n] = M AND DXPRE[1-n] = 6”) to 

include into model as individual, 

categorical, and composite secondary 

outcome: 

 

Cardiac: acute myocardial infarction 

(I21 to I22, I24), cardiac arrest (I46.0, 

146.1, I46.9), ventricular tachycardia 

(I47.2), shock (R57, T81.1) excluding 

septic shock (R57.2), congestive heart 

failure (I50.0, I50.1, I50.9), pulmonary 

edema (J81), complete heart block 

(I44.2) 

Respiratory: pneumonia (J13 to J18, 

J69.0, J69.8, J95.4), pulmonary 

embolism (I26), acute respiratory 

failure (J95.1, J95.2, J96.0), 

respiratory arrest (R9.2)  



July 4, 2019 Hemodynamic Predictors Protocol - Ke et al. REB#1024251 

  

 

38 

Cerebrovascular: strokes and 

transient ischemic attacks (I60 to I69, 

G45) 

Delirium (F5)  

Acute kidney injury (N17)  

Septic shock (R57.2)  

 

CIHI 

DAD 

DXPRE [1-

n]: 

diagnosis 

prefix 

Patient  Jan 1, 2010 

to Dec 31, 

2017 (3 years 

before and 

including 30 

days after 

date of 

surgery) 

To categorize the type of the 

corresponding DXCODE (please see 

above):  

 

C = Cause of death 

Q = Query Diagnosis/Etiology 

5 = Comorbidity arose before 

qualifying intervention 

6 = Comorbidity arose during or after 

qualifying intervention  

8 = Palliative Care  

CIHI 

DAD 

DXTYPE 

[1-n]: 

diagnosis 

type 

Patient  Jan 1, 2010 

to Dec 31, 

2017 (3 years 

before and 

including 30 

days after 

date of 

surgery) 

To categorize the type of the 

corresponding DXCODE (please see 

above):  

 

M =  Most Responsible Diagnosis 

1 = Pre-admit comorbidity 

2 = Post-admit comorbidity 

3 = Secondary Diagnosis 

CIHI-

DAD 

Admit-date 

 

Patient 1Jan2010 to 

31Dec2017 

 

For 3-year look-back window with: 

either admission date or discharge date 

is between surgery date (B) and 3 

years before B (A), assuming that 

A<B. 

 

For 30-day follow-up window with: 

Either admission date or discharge 

date is between surgery date (B) and 

30 days after B (C), assuming that 

B<C. 

 

CIHI-

DAD 

Discharge_da

te 

 

Patient 1Jan2010 to 

31Dec2017 

For 3-year look-back window with: 

either admission date or discharge date 

is between surgery date (B) and 3 

years before B (A), assuming that 

A<B. 
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For 30-day follow-up window with: 

Either admission date or discharge 

date is between surgery date (B) and 

30 days after B (C), assuming that 

B<C. 

CIHI 

DAD 

ECI: 

Elixhauser 

comorbidity 

index  

 

[Derived by 

HDNS] 

 

Patient  Jan 1, 2010 

to Dec 1, 

2017 (3 years 

before and 

including 

date of 

surgery)  

To be computed by the HDNS 

according to protocol (32) using 

DXCODES (please see above), to be 

included into model as covariate. 

Please report both total score, and 

any of the following individual 

categories: 

 

Congestive heart failure 

Cardiac arrhythmias 

Valvular disease 

Pulmonary circulation disorders 

Peripheral vascular disorders 

Hypertension, uncomplicated 

Hypertension, complicated 

Paralysis 

Other neurological disorders 

Chronic pulmonary disease 

Diabetes, uncomplicated 

Diabetes, complicated 

Hypothyroidism  

Renal failure 

Liver disease 

Peptic Ulcer Disease Excluding 

Bleeding 

AIDS/HIV 

Lymphoma 

Metastatic cancer 

Solid tumor without metastasis 

Rheumatoid arthritis/ collagen 

vascular diseases 

Coagulopathy 

Obesity  

Weight loss 

Fluid and electrolyte disorders 

Blood loss anemia  

Deficiency anemia  

Alcohol abuse 

Drug abuse  

Psychoses  
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Depression 

 

CIHI 

DAD 

CCI: 

Charleson 

Comorbidity 

Index 

 

[Derived by 

HDNS] 

 

Patient Jan 1, 2010 

to Dec 31, 

2017 (3 years 

before and 

including 30 

days after 

date of 

surgery) 

To be computed by the HDNS 

according to protocol (33) using 

DXCODES (please see above), to be 

included into model as covariate. 

 

Please report both total score, and 

any of the following individual 

categories: 

 

Myocardial infarction  

Congestive heart failure 

Peripheral vascular disease 

Cerebrovascular disease  

Dementia 

Chronic pulmonary disease  

Rheumatic disease 

Mild liver disease 

Moderate or severe liver disease 

Diabetes without chronic 

complication 

Diabetes with chronic complication 

Hemiplegia or paraplegia  

Renal disease 

Any malignancy, including 

lymphoma and leukemia, except 

malignant neoplasm of skin 

Metastatic solid tumor  

Peptic Ulcer Disease Excluding 

Bleeding 

AIDS/HIV 

CIHI 

DAD  

RCRI: 

Revised 

Cardiac Risk 

Index   

 

[Derived by 

HDNS] 

 

 

Patient  Jan 1, 2010 

to Dec 1, 

2017 (3 years 

before and 

including 

date of 

surgery)  

As RCRI has been shown to affect 

outcomes (29), it will be included as a 

covariate. This is based on DXCODE 

ICD codes (identified above) of 

history of ischemic heart disease, 

congestive heart failure, 

cerebrovascular disease, diabetes on 

insulin, chronic kidney disease 

creatinine >176.8 µmol/L, and a list of 

Canadian Classification of Health 

Interventions (CCI codes) of 
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suprainguinal vascular, intraperitoneal, 

or intrathoracic surgery (30).  

 

Detailed protocol will be sent to the 

HDNS. Please provide both the names 

of the categories and the total score 

(i.e. for each patient, positive for any 

of the categories of cerebrovascular 

disease, ischemic heart disease, 

congestive heart failure, chronic 

kidney disease, diabetes, and diabetes 

on insulin; as well as the total RCRI 

score (1 point for each positive 

category). 

CIHI 

DAD 

High risk 

surgery as 

per RCRI: 

Suprainguina

l vascular, 

intraperitonea

l, or 

intrathoracic 

surgery 

 

[Flag - 

Derived by 

HDNS] 

Patient  3 years 

before and 

including 

date of 

surgery (i.e. 

Jan 1, 2010 

to Dec 1, 

2017) 

Binary variable (yes/no)  

As this may affect outcomes, it will be 

included as a covariate by itself and as 

part of the Revised Cardiac Risk Index 

(RCRI) score calculation.  

HSM  Preoperative 

insulin use 

(yes/no)  

 

[Derived by 

Innovian: yes 

= any insulin 

use in the 

preoperative 

medication 

list] 

Patient 3 years 

before and 

including 

date of 

surgery (i.e. 

Jan 1, 2010 

to Dec 1, 

2017) 

Due to the difficulty of obtaining this 

data from ICD codes (the code for 

this, Z79.4, only came to existence in 

2018), this will help identify patients 

on insulin for the RCRI score.  

Innovian 

(from 

linked 

lab 

database)  

Preoperative 

Creatinine 

(µmol/L) 

Patient 3 years 

before and 

including 

date of 

surgery (i.e. 

This will help identify patients who 

satisfy the chronic kidney disease 

category (Pre-operative 

creatinine >176.8 µmol/L) to calculate 

the RCRI score.  
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Jan 1, 2010 

to Dec 1, 

2017) 

 

 

CIHI 

DAD 

HFRS: 

Hospital 

Frailty Risk 

Score  

 

[Derived by 

HDNS] 

Patient  3 years 

before and 

including 

date of 

surgery (i.e. 

Jan 1, 2010 

to Dec 1, 

2017) 

As the HFRS has been shown to affect 

outcomes, it will be included as a 

covariate. HDNS will calculate using 

DXCODE according to a published 

protocol (34).  

Detailed protocol will be sent to the 

HDNS. 

Innovian 

and 

HSM  

Preoperative 

mean arterial 

pressure 

(MAP)  

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As preoperative high blood pressure 

may affect the interpretation of the 

threshold of harm for intraoperative 

blood pressure (12), preoperative 

MAP will be used in the calculation of 

change in MAP (absolute and %). 

 

HSM contains blood pressure of 

elective surgery patients at the 

anesthetic clinic and prior to entering 

the operating room, while Innovian 

contains the first blood pressure of all 

patients in the operative room. The 

lowest blood pressure from either 

Innovian or HSM will be used.  

HSM   Preoperative 

systolic blood 

pressure 

(SBP)  

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As preoperative high blood pressure 

may affect the interpretation of the 

threshold of harm for intraoperative 

blood pressure (12), preoperative SBP 

will be used in the calculation of 

change in SBP (absolute and %). 

 

HSM contains blood pressure of 

elective surgery patients at the 

anesthetic clinic and prior to entering 

the operating room. The first Innovian 

blood pressure will be used for 

emergency surgery patients, since 

HSM pressure will not be available.  
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Innovian  First systolic 

blood 

pressure 

(SBP)  

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Emergency and elective cases will be 

analyzed separately for the variables 

containing relative SBP changes, 

recognizing the lack of preoperative 

blood pressure in the emergency 

group. For patients with BP recorded 

on HSM (i.e. preoperative clinic or in 

the preadmission area), the lowest of 

the HSM or first Innovian BP will be 

used as baseline. For emergency 

surgery patients without previously 

recorded blood pressure, the first 

Innovian BP will be used (since the 

second BP may be postinduction), 

with the limitation that this may not 

reflect the true baseline (42); however, 

practically this would be the blood 

pressure that would be available in 

similar clinical situations. 

HSM   Preoperative 

mean arterial 

pressure 

(MAP)  

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Since the HSM database only contains 

SBP and DBP, not MAP, MAP will be 

calculated using MAP = 1/3*SBP + 

2/3*DBP 

Innovian  First mean 

arterial 

pressure 

(MAP)  

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Emergency and elective cases will be 

analyzed separately for the variables 

containing relative MAP changes, 

recognizing the lack of preoperative 

blood pressure in the emergency 

group. For patients with BP recorded 

on HSM (i.e. preoperative clinic or in 

the preadmission area), the lowest of 

the HSM or first Innovian BP will be 

used as baseline. For emergency 

surgery patients without previously 

recorded blood pressure, the first 

Innovian BP will be used (since the 

second BP may be postinduction), 

with the limitation that this may not 
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reflect the true baseline (42); however, 

practically this would be the blood 

pressure that would be available in 

similar clinical situations. 

HSM Preoperative 

heart rate 

 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect the level of harm 

from the intraoperative heart rate, it 

will be used in the calculation of 

change in heart rate (absolute and %) 

 

HSM contains heart rate of elective 

surgery patients at the anesthetic clinic 

and prior to entering the operating 

room, while Innovian contains the 

initial heart rate of all patients in the 

operative room. The lowest heart rate 

from either Innovian or HSM will be 

used. 

Innovian  Preoperative 

heart rate 

 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect the level of harm 

from the intraoperative heart rate, it 

will be used in the calculation of 

change in heart rate (absolute and %) 

 

HSM contains heart rate of elective 

surgery patients at the anesthetic clinic 

and prior to entering the operating 

room, while Innovian contains the 

initial heart rate of all patients in the 

operative room. The lowest heart rate 

from either Innovian or HSM will be 

used. 

CIHI 

DAD 

Emergency 

surgery  

 

[Derived by 

HDNS]  

 

ENTRYCO

D: method of 

entry  

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

ENTRYCOD = E (i.e. emergency 

department) and/or ADFROM = [any 

except 085 (QEII) – i.e. transferred 

from another institution] excluding 

elective admission (flag) will be used 

to identify surgeries as emergency 

surgery. As the emergency nature of 

surgery has been shown to affect 

outcomes, it will be included as a 

covariate.  
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ADFROM: 

Institution 

from Number 

CIHI 

DAD 

ADTYPE:  

Admission 

Type   

Patient  Jan 1, 2013 

to Dec 1, 

2017 

This variable will be used internally 

by HDNS to create a flag for elective 

admission. This will not be included in 

the dataset. This will help identify 

patients who did not have emergency 

surgery.   

 

Indicator of surgical complexity 

CIHI 

DAD 

CMG: Case 

Mix Group 

(“a grouping 

methodology 

developed by 

CIHI that 

categorizes 

acute care 

patients into 

groups based 

on 

similarities of 

diagnosis, 

intervention, 

LOS, and 

resource 

requirements.

”) 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

All CMG will be included into 

modeling to determine the CMG with 

the highest postoperative risk.  

CIHI 

DAD 

PIMR: 

Procedural 

Index for 

Mortality 

Risk  

 

[Derived by 

HDNS] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As the PIMR has been shown to affect 

outcomes, it will be included as a 

covariate. HDNS will calculate using 

DXCODE according to a published 

protocol (35).  

Detailed protocol will be sent to the 

HDNS. 

CIHI 

DAD 

Subgroup 

analysis flag: 

intermediate 

to high risk, 

gender 

neutral 

elective 

surgeries  

Patient  Jan 1, 2013 

to Dec 1, 

2017 

To create a list of intermediate to high 

risk, gender neutral elective surgeries 

for subgroup analysis. Detailed list of 

CCI codes will be sent to the HDNS. 
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[Derived by 

HDNS based 

on PCODE] 

CIHI 

DAD 

PCODE[1-

n]: Procedure 

[1-n] Code, 

according to 

Classification 

of Health 

Interventions 

(CCI).  

The one 

PCODE 

correspondin

g to the 

specific 

PDATE will 

be obtained, 

i.e. the 

correspondin

g number 

(e.g. 

PDATE1) 

will be used 

for all 

procedure-

related codes 

(i.e. 

PCODE1) 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Covariate in model 

The PCODE corresponding to the 

included PDATE for each patient will 

be included for modeling as a 

covariate.  

CIHI 

DAD 

PDSERV[1-

n]: Procedure 

[1-n] Doctor 

service  

 

The one 

PDSERV 

correspondin

g to the 

specific 

PDATE will 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

The one PDSERV corresponding to 

the included PDATE allows us to 

determine the surgical service, and 

since the type of surgery may affect 

outcomes, it will be included as a 

covariate. We will include the 

following PDSERV: 

00030 General Surgery 

00031 Cardiac Surgery 

00032 Neurosurgery 

00034 Orthopedic Surgery  
00035 Plastic Surgery 
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be obtained, 

i.e. the 

correspondin

g number 

(e.g. 

PDATE1) 

will be used 

for all 

procedure-

related codes 

(e.g. 

PDSERV1) 

 

 

 

00036 Thoracic Surgery 

00037 Vascular Surgery 

00039 Urology  
00050 Obstetrics and Gynecology  
00059 Colorectal Surgery 

00060 Otolaryngology 

00073 General Surgical Oncology 

 

Intraoperative variables 

Innovian SBP: 

Systolic 

blood 

pressure  

 

[Derived by 

Innovian as 

multiple 

variables – 

see right] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian:  

5. Maximum change from 

preoperative SBP, in a) 

absolute change (mmHg), and 

b) relative change 

(%)(emergency and elective 

cases analyzed separately due 

to the lack of preoperative 

blood pressure in the 

emergency group) 

6. Cumulative duration (minutes) 

20% below preoperative SBP 

7. Longest single episode 

(minutes) below a) 80, b) 90, 

and c)100 mmHg 

8. Cumulative duration (minutes) 

below a) 80, b) 90, and c)100 

mmHg 

Innovian MAP: Mean 

Arterial 

Pressure  

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian: 

1. Maximum change from 

preoperative MAP, in a) 

absolute change (mmHg), and 
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[Derived by 

Innovian as 

multiple 

variables – 

see right] 

b) relative change (%) 

(emergency and elective cases 

analyzed separately due to the 

lack of preoperative blood 

pressure in the emergency 

group. Note that since the 

HSM database only contains 

SBP and DBP, not MAP, MAP 

will be calculated using MAP 

= 1/3*SBP + 2/3*DBP) 

2. Cumulative duration (minutes) 

20% below preoperative 

MAP 

3. Longest single episode 

(minutes) below a) 60, b) 65, 

c) 70, and d) 80mmHg 

4. Cumulative duration (minutes) 

below a) 60, b) 65, c) 70, and 

d) 80mmHg 

Innovian HR: Heart 

rate  

 

[Derived by 

Innovian as 

multiple 

variables – 

see right] 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. Emergency and elective 

cases analyzed separately due to the 

lack of preoperative heart rate in the 

emergency group. The following 

variables will be derived by Innovian: 

6. Maximum change (BPM) from 

preoperative heart rate 

(positive and negative) 

7. Relative change (%) from 

preoperative heart rate 

(positive and negative) 

8. Maximum pulse variation 

(maximum heart rate minus 

minimum heart rate)  

9. Longest single episode 

(minutes) a) below 60, and b) 

above 100BPM 

10. Cumulative duration (minutes) 

a) below 60, and b) above 

100BPM 

Innovian  Use of 

hemodynami

c 

medications  

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian:  

6. Vasopressor/inotrope use (yes 

vs. no): phenylephrine, 
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[Derived by 

Innovian as 

multiple 

variables – 

see right] 

 

norepinephrine, epinephrine, 

vasopressin, dobutamine, or 

milrinone 

7. Infusion of any 

vasopressor/inotropes above 

(yes vs. no) (identified by unit 

of weight over time) 

8. Phenylephrine/ephedrine bolus 

(yes vs. no) (identified by unit 

of weight only)  

9. Vasodilator use (yes vs. no): 

labetalol, esmolol, 

nitroglycerin, nitroprusside    

10. Infusion of any vasodilator 

above (yes vs. no) (identified 

by unit of weight over time) 

Innovian SpO2 : 

Oxygen 

saturation by 

pulse 

oximetry 

[Derived by 

Innovian as 

multiple 

variables – 

see right] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian:    

3. Longest single episode 

(minutes) below a) 88, and b) 

90% 

4. Cumulative duration (minutes) 

below a) 88, and b) 90%  

Innovian EtCO2: End-

tidal (i.e. 

exhaled)  

 

[Derived by 

Innovian as 

multiple 

variables – 

see right] 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian: 

1. Longest single episode 

(minutes) a) <35, and b) >45 

2. Cumulative duration (minutes) 

below a) <35, and b) >45 

 

HSM  Duration of 

surgery  

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect outcomes, it will be 

included as a covariate 

Innovian Type of 

anesthesia  

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Categorical variable: general, 

neuraxial, peripheral nerve block, 

and/or managed anesthesia care [i.e. 
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sedation] – multiple concurrent 

possible). As this may affect 

outcomes, it will be included as a 

covariate. 

Innovian will be used instead of the 

CIHI ANATYP (Anaesthetic Type), 

since anesthetic type is a mandatory 

field in Innovian and will allow for 

multiple concurrent anesthetic types.  

Innovian Average 

MAC-

adjusted: 

Minimal 

Alveolar 

Concentratio

n adjusted by 

age   

[Derived by 

Innovian] 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Age-adjusted MAC will be calculated 

by Innovian from the end-tidal % of 

all inspired volatiles according to 

published protocol (36). The MAC, 

available every 15 seconds will be 

averaged (i.e. time-averaged MAC). 

The averaged MAC will be included 

as a covariate. 

Innovian BIS : Bi-

spectral 

Index   

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Duration in minutes for BIS <46. As 

deep anesthesia (low BIS) may affect 

outcomes (50), it will be included as a 

covariate. 

Innovian  Laparoscopy

-booked 

 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Binary variable (yes/no), as defined by 

“laparoscope” or “laparoscopic” in 

procedure name.  

DAD   Laparoscopy 

converted to 

open flag 

STATUS[1-

n] 

 

[Flag by 

HDNS] 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Flag: STATUS[1-n] = C “Converted 

from endoscopic to open” 

 

Since Innovian procedure names are 

usually from OR booking, procedures 

where laparoscopy was converted to 

open would be included in the 

laparoscopy (booked) variable.  
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DAD   Laparoscopy

-actual  

[Derived by 

HDNS] 

 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

This is derived from as “laparoscopy-

booked” excluding “laparoscopy 

converted to open flag” 

As this may affect outcomes, it will be 

included as a covariate. 

Innovian Temperatur

e  

[Derived by 

Innovian as 

multiple 

variables – 

see right] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

Exposure variable to be included into 

modeling. The following variables will 

be derived by Innovian: duration 

(minutes) a) < 36C, and b) > 38C 

(38) 

Innovian

, HSM   

EBL: 

Estimated 

blood loss 

(mL) 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect outcomes, it will be 

included as a covariate. 

Innovian  Crystalloid 

use >1000m

L 

 

[Derived by 

Innovian] 

Patient Jan 1, 2013 

to Dec 1, 

2017 

As this may affect outcomes, it will be 

included as a covariate. 

 

Derived by Innovian as a continuous 

variable in mL, if 

Crystalloid >1000mL: 

Crystalloid = Ringer Lactate + Normal 

Saline + Plasmalyte + Normosol 

Note: this includes the total volume 

from infusions marked by mL/hour x 

hour infused 

Innovian  Hemoglobin: 

lowest 

Hemoglobin 

within 2 

days after 

OR (g/L) 

(including 

day of OR) 

[Derived by 

Innovian] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect outcomes, it will be 

included as a covariate. 
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Innovian PRBC: Red 

Blood Cell 

transfusion 

(mL) 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

As this may affect outcomes, it will be 

included as a covariate. 

Innovian  Surgical 

APGAR 

Score 

[Derived by 

Innovian 

based on 

variables 

already 

requested] 

Patient  Jan 1, 2013 

to Dec 1, 

2017 

0 points 1 point 2 points 3 points 4 points 

Estimated 
blood loss 

(mL) 

> 1,000 
601−1,00

0 
101−600 ≤ 100 

Lowest mean 

arterial 

pressure 
(mmHg) 

< 40 40−54 55−69 ≥ 70 

Lowest heart 

rate (beats/min) 
> 85 76−85 66−75 56−65 

Surgical score (0-10) = sum of all 

points  

The Surgical APGAR Score is an 

existing, validated method of risk 

stratification at the end of surgery, and 

will be compared to the machine 

learning models.  

 

Mortality 

Vital 

Statistics 

Mortality 

(30-day all 

cause) 

 

[Derived by 

HDNS based 

on DOD 

from Vital 

Statistics]  

 

Patient  Jan 1, 2013 

to Dec 31, 

2017 

Binary outcome (yes/no), derived from 

DOD within 30 days from PDATE. 

This is needed to compute 30-day all-

cause mortality. Primary outcome for 

the study to be used for modeling.   

 

CIHI 

DAD 

OPDEATH: 

operative 

death 

 

Patient Jan 1, 2013 

to Dec 31, 

2017 

OPDEATH will be described in 

descriptive statistics. 

1 = Died in Operating Room 

2 = Did Not Die in Operating Room 

Vital 

Statistics  

DOD: Date 

of death  

Patient  Jan 1, 2013 

to Dec 31, 

2017 

For internal use by HDNS to compute 

30-day all-cause mortality (primary 

outcome), and the Number of 

https://www-sciencedirect-com.ezproxy.library.dal.ca/science/article/pii/S1072751506017091?via%3Dihub#tblfn9
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postoperative day of death (i.e. Date of 

death minus PDATE).  

CIHI 

DAD 

Number of 

postoperativ

e day of 

death  

 

[Derived by 

HDNS based 

on DOD 

from Vital 

Statistics]  

Patient Jan 1, 2013 

to Dec 31, 

2017 

Derived discrete (n = 1, 2, 3… 30) 

variable, of the patients with 30-day 

mortality = yes. This variable is 

defined as DOD [if 30 days after 

PDATE] minus PDATE.   

 

Survival statistics will be performed 

(% vs. postoperative day) 

 

CIHI 

DAD  

 

 

 

 

 

 

 

In-hospital 

death  

[Derived by 

HDNS based 

on 

“DISCHAR

GE: 

Discharge 

disposition”]  

 

 

Patients   Jan 1, 2013 

to Dec 31, 

2017 

Derived binary variable (yes/no). Of 

those who died within 30 days after 

surgery, descriptive statistics will be 

performed for in-hospital vs. out-of-

hospital mortality (yes/no) 

 

“Yes” if DISCHARGE = 7 or 8:  

7 = Died  

8 = Cadaver donor admitted for 

organ/tissue retrieval 

 

Else = “no”  

Vital 

Statistics 

UCAUSE: 

Underlying 

Cause of 

Death 

 

 

Patient 

who died 

within 30 

days 

after 

surgery  

Jan 1, 2013 

to Dec 31, 

2017 

For patients who died within 30 days 

of surgery, we are interested in the 

cause of death. The UCAUSE will 

only be used internally by HDNS to 

create flags for these causes of death 

as categorized according to ICD codes 

as follows: 

acute myocardial infarction (I21 to 

I22, I24), cardiac arrest (I46.0, 146.1, 

I46.9), ventricular tachycardia (I47.2), 

shock (R57, T81.1) excluding septic 

shock (R57.2), congestive heart failure 

(I50.0, I50.1, I50.9), pulmonary edema 

(J81), complete heart block (I44.2), 

pneumonia (J13 to J18, J69.0, J69.8, 

J95.4), pulmonary embolism (I26), 

acute respiratory failure (J95.1, J95.2, 
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J96.0), respiratory arrest (R9.2), 

strokes and transient ischemic 

attacks (I60 to I69, 

G45), Delirium (F05), Acute kidney 

injury (N17), Septic shock (R57.2)  

 

Causes not fitting the above secondary 

outcomes will be categorized 

according to standard ICD categories:  

Infectious diseases (A00-B99) 

Neoplasm (C00-D48) 

Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism 

(D50-D89)  

Endocrine, nutritional and metabolic 

diseases (E00-E90) 

Mental and behavioural disorders 

(F00-F99) 

Diseases of the nervous system (G00-

G99) 

Diseases of the circulatory system 

(I00-I99) 

Diseases of the respiratory system 

(J00-J99) 

Diseases of the digestive system (K00-

K93) 

Diseases of the skin and subcutaneous 

tissue (L00-L99) 

Diseases of the musculoskeletal 

system and connective tissue (M00-

M99) 

Diseases of the genitourinary system 

(N00-N99) 

Pregnancy, childbirth and the 

puerperium (O00-O99) 

Congenital malformations, 

deformations and chromosomal 

abnormalities (Q00-Q99) 
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Injury, poisoning and certain other 

consequences of external causes (S00-

T98) 

External causes of morbidity and 

mortality (V01-Y98) 

 

Causes not fitting any of the above 

categories will be coded as UCAUSE 

= other 

 

Descriptive statistics will be 

performed for causes.  

Vital 

Statistics 

All causes of 

death (case 

1-13)  

 

 

Patient 

who died 

within 30 

days 

after 

surgery  

Jan 1, 2013 

to Dec 31, 

2017 

For patients who died within 30 days 

of surgery, we are interested in the 

cause(s) of death. However, since the 

UCAUSE may be missing or not 

reflect the whole picture, we would 

also like to request all causes of death. 

This will only be used internally by 

HDNS to create flag(s) for these 

causes of death as categorized 

according to ICD codes as follows 

(note that each patient may have 

multiple flags):  

acute myocardial infarction (I21 to 

I22, I24), cardiac arrest (I46.0, 146.1, 

I46.9), ventricular tachycardia (I47.2), 

shock (R57, T81.1) excluding septic 

shock (R57.2), congestive heart failure 

(I50.0, I50.1, I50.9), pulmonary edema 

(J81), complete heart block 

(I44.2), pneumonia (J13 to J18, J69.0, 

J69.8, J95.4), pulmonary embolism 

(I26), acute respiratory failure (J95.1, 

J95.2, J96.0), respiratory arrest (R9.2), 

strokes and transient ischemic attacks 

(I60 to I69, 

G45), Delirium (F05), Acute kidney 

injury (N17), Septic shock (R57.2)  
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Causes not fitting the above secondary 

outcomes will be categorized 

according to standard ICD categories:  

Infectious diseases (A00-B99) 

Neoplasm (C00-D48) 

Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism 

(D50-D89)  

Endocrine, nutritional and metabolic 

diseases (E00-E90) 

Mental and behavioural disorders 

(F00-F99) 

Diseases of the nervous system (G00-

G99) 

Diseases of the circulatory system 

(I00-I99) 

Diseases of the respiratory system 

(J00-J99) 

Diseases of the digestive system (K00-

K93) 

Diseases of the skin and subcutaneous 

tissue (L00-L99) 

Diseases of the musculoskeletal 

system and connective tissue (M00-

M99) 

Diseases of the genitourinary system 

(N00-N99) 

Pregnancy, childbirth and the 

puerperium (O00-O99) 

Congenital malformations, 

deformations and chromosomal 

abnormalities (Q00-Q99) 

Injury, poisoning and certain other 

consequences of external causes (S00-

T98) 

External causes of morbidity and 

mortality (V01-Y98) 
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Causes not fitting any of the above 

categories will be coded as UCAUSE 

= other 

 

Descriptive statistics will be 

performed for causes.  

 

Additional Postoperative Morbidity (in addition to DXCODE above) 

CIHI 

DAD 

FLAG_HE

ARTRESUS

: Heart 

Resuscitatio

n Flag  

 

 

Patient Jan 1, 2013 

to Dec 31, 

2017 

Part of secondary outcomes to be 

included into model. Descriptive 

statistics will be performed for this 

subcategory, within the category of 

cardiac complications, and an overall 

composite measure of each category.  

0 = No 

1 = Yes 

CIHI 

DAD 

FLAG_ME

CHVEN_G

E96: 

Mechanical 

Ventilation  

96 hours  

  

 

Patient Jan 1, 2013 

to Dec 31, 

2017 

Part of secondary outcomes to be 

included into model. Descriptive 

statistics will be performed for this 

subcategory, within the category of 

respiratory complications, and an 

overall composite measure of each 

category.  

0 = No 

1 = Yes 

CIHI 

DAD 

Composite 

morbidity  

 

[Derived by 

HDNS]  

 

Patient Jan 1, 2013 

to Dec 31, 

2017 

Binary variable (yes/no) derived based 

on any of the following: 

FLAG_HEARTRESUS, 

FLAG_MECHVEN_GE96, or ICD 

code of any of: acute myocardial 

infarction (I21 to I22, I24), cardiac 

arrest (I46.0, 146.1, I46.9), ventricular 

tachycardia (I47.2), shock (R57, 

T81.1) excluding septic shock (R57.2), 

congestive heart failure (I50.0, I50.1, 

I50.9), pulmonary edema (J81), 

complete heart block 

(I44.2), pneumonia (J13 to J18, J69.0, 

J69.8, J95.4), pulmonary embolism 

(I26), acute respiratory failure (J95.1, 

J95.2, J96.0), respiratory arrest (R9.2), 

strokes and transient ischemic attacks 

(I60 to I69, 
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G45), Delirium (F05), Acute kidney 

injury (N17), Septic shock (R57.2)  

 

Part of secondary outcomes to be 

included into model. Descriptive 

statistics will be performed. 

CIHI 

DAD 

ICU 

admission  

[Derived by 

HDNS] 

 

SCUNUM[1

-n]: Special 

Care 

Unit Num 

“The SCU 

Unit Number 

is a code 

identifying 

the type of 

special care 

unit where 

the patient 

receives 

critical 

care.”  

 

[Derived by 

HDNS] 

 

Patient Jan 1, 2013 

to Dec 31, 

2017 

Two variables to be derived:  

1. Preoperative ICU (yes/no) 

2. Postoperative ICU (yes/no) 

 

Preoperative ICU admission (yes/no) 

is a covariate to be included into the 

model. Postoperative ICU admission 

(yes/no) is a secondary outcome to be 

included into model. Descriptive 

statistics will be performed.  

 

Derivation process:  

ICU = yes include the following 

SCUNUM:  

10 = Medical Intensive Care Nursing 

Unit 

20 = Surgical Intensive Care Nursing 

Unit 

25 = Trauma Intensive Care Nursing 

Unit 

30 = Combined Medical/Surgical 

Intensive Care Nursing 

Unit 

35 = Burn Intensive Care Nursing Unit 

40 = Cardiac Intensive Care Nursing 

Unit Surgery  

45 = Coronary Intensive Care Nursing 

Unit  

80 = Respirology Intensive Care 

Nursing Unit 

 

Else ICU = no  

 

If the SCU Admit Date is on or before 

PDATE, then it would be defined as 

Preoperative AND postoperative ICU 

admission. Else, postoperative ICU 

admission only.  
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CIHI 

DAD 

READMIT: 

Readmission 

Code (within 

30 days after 

PDATE) 

[Derived by 

HDNS] 

Patient Jan 1, 2013 

to Dec 31, 

2017 

Readmission within 30 days of 

PDATE (yes/no) is a secondary 

outcome to be included into model. 

Descriptive statistics will be 

performed.   

 

Derived:  

Postoperative readmission = yes 

include the following:  

1 = Planned readmission from 

previous acute care   

2 = Unplanned readmission within 7 

days following discharge from acute 

care  

3 = Unplanned readmission 8 – 28 

days following discharge from acute 

care  

4 = <=7 days, unplanned 

5 = New patient 

9 = None of the above. 

Else Postoperative readmission = no 

CIHI 

DAD 

LOS:ELOS 

Ratio of 

Length of 

Stay (LOS) 

to Expected 

Length of 

Stay (ELOS) 

as assigned 

by the Case 

Mix 

Grouping 

[Derived by 

HDNS]  

Patient Jan 1, 2013 

to Dec 31, 

2017 

This will be dichotomized by HDNS: 

LOS:ELOS >1 (yes/no). This is a 

secondary outcome to be included into 

model. Descriptive statistics will be 

performed. 

 

 


