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STATISTICAL ANALYSIS PLAN 
 
Power and Sample size  
 
In a prior study, Edwards et al. found a hazard ratio of 0.71 when assessing the effect of SPT on the 
reduction of dementia risk as compared to the no contact control group and a hazard ratio of 0.75 
when compared to memory training (Edwards et al., 2017).  These hazard ratios correspond to 29% 
and 25% risk reduction, respectively.  Analyses of ACTIVE data indicate that among those with 
normal cognitive function at baseline, 15.6% of participants randomized to SPT met either MCI or 
dementia criteria by three years as compared to 21.4% of controls, representing a 32% risk reduction 
of MCI or dementia, OR=0.68 95%CI=0.49-0.94, p=.02.  After simulating a reduction in incidence of 
MCI or dementia of 15%, 20%, and 25% in the intervention group across the study period, we 
powered our study to detect an effect size of 20% risk reduction of MCI or dementia (i.e., OR=0.80).  
Given the previously observed effect sizes, this is a conservative assumption.  We plan for an attrition 
rate of 20%.  The attrition rate of 20% is based on prior SPT studies. As examples, ACTIVE had a 
5.5% attrition rate per year of follow-up, and the 3-year assessment of the SKILL study had 22% 
attrition.   
 
We powered our study based on at least 10.5% of participants in the control arm converting to either 
MCI or dementia during the 3-year follow-up period, which is equivalent to the 3.5% per year 
conversion rate to MCI among healthy adults aged 70 to 75 years reported previously (Roberts et al., 
2012).  The 70- to 75-year age bracket corresponds to the median age group in our older adult 
samples. In comparison, among those in the ACTIVE study with normal baseline cognition, 17.3% 
overall met MCI or dementia criteria at three years, rendering our predicted conversion rate 
conservative. 
 
Power was estimated using conventional a-priori methods. We computed sample size and power 
using PASS 12 software for comparing two binomial proportions. For aim 1, power calculations 
indicate that at a .05 level of significance with a 20% attrition rate, the two-group, randomized design 
will require a total sample size of 7600 participants to ensure at least 82% power to detect a 20% 
reduction from an estimated 3-year incidence rate of 10.5% for conversion to MCI or dementia.  
Given the anticipated 20% attrition of the total sample of 7600, and the 10.5% conversion rate, we 
expect to have a final sample of 6080 participants, of whom about 640 will exhibit MCI or dementia 
across the 3 years of follow-up under the null hypothesis (i.e., 3.5% per year conversion rate).  
 
For aim 2, we will explore if the extent of the amyloid burden or ApoE4 status modify the effects of 
SPT in a sample of converters to MCI or dementia.  For this exploratory aim, a formal sample size 
and power calculation is not performed.  We will calculate the effect sizes and the 95% confidence 
intervals for the interactions. 
 
 
Randomization 
 
For allocation concealment, Dr. Ji implemented the randomization, which is stratified by site.  The 
randomizations are generated by using the randomization module in REDCap.  The random 
assignments are stored on REDCap and are password protected.  An unblinded study statistician 
will be the only person who can access the randomization list.  To disseminate the random 
assignments, Dr. Ji created a link for the Site Adminstrators to access the REDCap randomization 
system.  The Site Administrators are able to retrieve one assignment at a time.  It is not be possible 
for the Site Administrators to predict the next assignment.  Investigators are blind to participants’ 
randomized conditions. The study team makes concerted, consistent efforts to maintain blinding.  All 
participants randomized will be included in the analysis data set, irrespective of intervention 



adherence. The study team will make every effort to attempt to evaluate individuals randomized at 
the 3-year follow up, irrespective of adherence.   
Data Management and Data Quality Assurance 
 
Please see the Data Safety and Monitoring Plan for detail.  The Health Informatics Institute (HII) will 
implement data management and quality assurance.  The HII is directed by Co-I Krischer who will 
supervise a staff of 8 with effort devoted to this project including positions of statistician, software 
developer, data architect, quality assurance officer, data engineer, systems engineer, data manager, 
and study monitor.  HII will develop, maintain, and generate the study databases.  The design will 
employ .Net as the web interface and Oracle REDCap as the backend. The HII will develop a secure, 
efficient, centralized, customizable, scalable, and coordinated web-based data management platform 
for the integration of the data to be collected, including participant characteristics, questionnaires, and 
specimen tracking.  The HII platform will provide web-based data capture complemented by 
automated quality assurance (QA) measures preserving the utility of project data for downstream 
data integration and analyses.  In addition to the HII Platform real-time tracking of data quality and 
completeness, the HII will regularly generate reports to allow for remote data auditing and promote 
data curation and QA.  Regular study monitoring and site visits will also be conducted for QA as 
described in the Data Safety and Monitoring Plan.   
 
 
Data Analysis 
 
Dr. Krischer will oversee the data management team and statisticians who will conduct the interim 
data analyses for the Data Safety Monitoring Committee (DSMC) meetings and the final data 
analyses at the end of the study, in consultation with the MPIs and executive committee.  We will 
follow established standards and guidelines on clinical trial data analysis and reporting such as the 
CONSORT Guideline and the Intent-to-Treat Principle (ITT).  A CONSORT diagram will be produced.  
For baseline analysis, descriptive statistics including means, standard deviations, frequencies, 
percentages, histograms, boxplots, etc. for the entire sample as well as the intervention and control 
groups will be generated, compiled, and reviewed.  
 
Data issues such as abnormal values or outliers will be investigated and reconciled by collaborations 
among the research team.  Given the relatively large sample size, we expect the treatment arms to 
be balanced in their baseline characteristics due to the randomization. However, as a check on the 
randomization, baseline characteristics will be compared by two sample t-tests or nonparametric tests 
for continuous variables and Chi-Square Test or Fisher’s Exact Test for categorical variables.  
Unbalanced baseline factors will be recorded and included in the outcome analysis as covariates.  
Sex as a biological variable will also be examined as a covariate.  The level of significance for the 
primary hypotheses will be set at two-tailed .05.  In the presence of missing data on the outcome 
variable, we will follow the Intent-to-Treat (ITT) Principle, as described above.  That is, all randomized 
individuals will be included in the planned analyses to the extent that they have data available, 
irrespective of adherence to the intervention to which they were assigned.  The planned sample size 
includes provision for those who drop out, thus ensuring the study power.  As a check on potential 
endpoint ascertainment bias, percentages of missing outcome data in the intervention and the control 
groups will be calculated and compared according to baseline characteristics.  And then the 
comparison of the characteristics of patients with complete data vs. those with missing data will be 
performed to observe if there are systematic differences.  Second, multiple imputation (MI) will be 
performed to impute the missing values and the previously proposed analyses will be run 
subsequently.  The MI analysis should address the missing at random (MAR) data.  In case there is 
potentially nonignorable missing data such as considerable different attrition rates in the intervention 
vs. control groups, nonignorable missing data models such as the selection model approach or the 



pattern mixture model approach will be performed as sensitivity analysis of our proposed statistical 
data analysis plan. 
 
Aim 1. To ascertain the effectiveness of SPT to reduce incidence of MCI or dementia  
 
For Aim 1, a Chi-square test will be performed to compare whether the proportions of MCI or 
dementia at the end of the trial are statistically different by randomization. To further address Aim 1, 
we will estimate the risk of conversion to MCI or dementia as a function of the intervention using 
binary logistic regression.  Results will be presented in the form of odds ratios, which will represent 
risk of conversion to MCI or dementia.  An odds ratio below 1.00 will indicate reduction in risk as a 
function of assignment to the intervention group.  A 95% confidence interval will be used.  In addition 
to the p value for statistical significance, point estimates and confidence interval of the differences of 
the proportions will also be reported to show the direction and magnitude of the effects.  If there are 
unbalanced factors identified in the baseline analyses, then logistic regression analysis will be 
performed with group assignment as the main predictor and the unbalanced baseline factor(s) as 
covariates.  Adjusted OR and its 95% confidence interval for the group assignment will be estimated 
to account for the unbalanced covariates.  Secondary subgroup analyses based upon site, sex, and 
age will be explored.  As well, a “per protocol” analysis is planned to examine the intervention effect in 
the subset of participants who were adherent, completing at least 75% of the assigned sessions.  
Although measuring time to event within Cox proportional hazards regression is an alternative 
approach, we will not be able to apply Cox regression as exact timing of MCI/dementia incidence will 
not be known. 
 
In the proposed trial, those participants who show evidence of cognitive decline will receive detailed 
neuropsychological and clinical examinations and diagnoses.  We acknowledge that by using the 
MoCA as a screening test and the diagnosis of MCI or dementia as a gold standard, then testing only 
the individuals who exhibit cognitive decline may lead to verification bias.  To explore this issue 
further, we will estimate the proportion of those who screen positive (i.e., MoCA score below 26) who 
do not meet the primary end point of MCI/dementia diagnosis, arriving at an estimate of false 
positives.  Stratified random sampling will be used to identify a cohort of 100 cognitively-normal 
participants (stratified by site) who screen negative (i.e., a MoCA score of 26 or higher) at follow-up to 
arrive at an estimate of false negatives.  Given that the established sensitivity of the MoCA is 90% for 
MCI and 100% for dementia, we expect to find about 10 cases of MCI and no cases of dementia in 
this cognitively-normal subsample (Nasreddine et al., 2005).  Thus, we expect a false negative rate of 
~10%.  Using PASS software, we computed the comparison cohort sample size using an exact 
Clopper-Pearson 95% confidence interval for a rate of 10%.  Results indicate that with a subsample 
of n=100, we can detect a false negative rate ranging from 5.0-17.4%.  We will apply the statistical 
method for correcting verification bias as outlined in Zhou, McClish and Obuchowski (2011).  To 
minimize systematic difference in those who screened positive for cognitive impairment on MoCA and 
the subsample of 100 screening negative, we will use binary logistic regression to compute the 
propensity scores for the MoCA positive and the MoCA negative groups based on nearest neighbor 
matching while adjusting age, sex, and education. The propensity score method will be carried out in 
the SAS procedure PSMATCH.  Once the propensity scores are estimated, we will stratify the MoCA 
positives and the MoCA negatives into five subgroups based on the quintiles of the estimated 
propensity scores.  The goal is to gain insights in factors that might be contributing to the treatment 
effect comparisons evaluating the MoCA as a tool to identify those in need of more comprehensive 
clinical evaluation. 
 
We acknowledge that death represents a competing risk in the proposed analyses.  Therefore, we will 
apply the Semi-Markov modeling approach developed by Kryscio et al. (2013) to adjust for mortality 
in our data analysis of MCI/dementia conversion.  Of course, another issue is attrition.  We will 
examine time to attrition in survival analysis.  To fully explore the impact of competing risks, we will 



apply joint modeling of survival (mortality risk) and longitudinal data in modeling cognitive status 
(normal vs. MCI/dementia) over time (See Arbeev, Akushevich, Kulminski, Ukraintseva, & Yashin, 
2014).   
 
 
Exploratory Aim 2.  To explore if amyloid burden or ApoE4 status modify the effects of SPT 
 
For Aim 2 a logistic regression model will be fitted using clinical diagnosis of cognitive status 
(MCI/dementia vs. normal) as the primary dependent variable, randomization to the intervention vs. 
control arm (SPT vs. computer games) as the independent variable, and interaction terms between 
randomized arm and ApoE 4, and between randomized arm and amyloid burden, to test for 
moderation effects.  A statistically significant interaction (p<.05) will be used as criteria for determining 
moderation effects of ApoE4 or amyloid burden.  For significant interactions, odds ratios and 95% CIs 
in strata defined by the moderator (ApoE4 positive vs. negative; high vs. low amyloid burden based 
on SUVR cutpoint of 1.25) will be reported separately to characterize moderation effects (Bullilch et 
al., 2017).  
 
Interim Analysis  
 
Interim analyses will include monitoring of adverse events and study progress (e.g., enrollment goals, 
sample diversity, protocol deviations) which will be conducted and presented to the DSMC on an 
annual basis.  Monitoring of early futility and analysis of efficacy on the primary endpoint will be 
conducted when 50% of the target study population has been followed for the planned three years 
and will be reviewed for assessment of effectiveness.   
 
The Lan-DeMets (1983) spending function with an O’Brien-Fleming boundary will be used to protect 
the type I error probability from early and multiple testing and to assess the significance of the interim 
results that emerge during the trial (Cox, 1972; Diggle, Liang, & Zeger, 1994; Simon, Wittes, & 
Ellenberg, 1985).  The spending function that approximates the O’Brien-Fleming boundaries is:    
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is the type I error for the comparison of the treatment arms based upon the observed rates of 
conversion to MCI or dementia.  The monitoring plan will allow for early termination based on the 
treatment effect on incidence rates using the ANCOVA model that incorporates pre-specified 
covariates. 
 
The interim analysis will also identify if there is a serious lack of evidence of a treatment effect (i.e. 
futility analysis). The boundaries are based on the paper by Lachin (2009). The active intervention 
arm should be “closed” based on the futility of rejecting the null hypothesis at the completion of the 
trial if the Wald test of the treatment effect coefficient is <=0.1. Lachin showed that a one time use of 

the boundary for the design parameters above ( 1 1 3.00Z Zα βθ − −≡ + = ) raises the type II error minimally. 
Furthermore, by the laws of probability a single use of each rule will increase the type II error no more 
than the sum of the increase (i.e., 0.00414+0.00611 = 0.0103). 
 
The application of the results of the interim analysis will be considered in the context of the planned 
neurological and clinical evaluations. These are relatively expensive and logistically demanding and 
their contribution to the study objectives might be reconsidered in light of the interim analysis.   
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