

**IOBP Pivotal Trial
Statistical Analysis Plan
BP aspart/lispro vs. Standard Care**

Version 4.0

Protocol Version 10.0

Author: Zoey Li

Date: December 9, 2021

Revision History

The following table outlines changes made to the Statistical Analysis Plan.

Version Number	Author	Senior Statistician	Effective Date	Study Stage
1.0	Zoey Li	Peter Calhoun	December 18, 2020	Pre-randomization.
2.0	Zoey Li	Peter Calhoun	March 19, 2021	Enrollment.
3.0	Zoey Li	Peter Calhoun	May 25, 2021	Enrollment.
4.0	Zoey Li	Peter Calhoun	December 9, 2021	Enrollment completed. Changes made before unblinding of results to study investigators

Version Number	Revision Description
1.0	Original version
2.0	<ul style="list-style-type: none"> - Removed requirement of baseline data to be 60 days prior to randomization. - Added sub-analyses excluding participants using closed loop systems at baseline. - Updated per-protocol CGM wear requirements for Control group
3.0	<ul style="list-style-type: none"> - Added sensitivity analyses for participants not randomized due to protocol deviation - Added sub-analyses for participants with HbA1c >7.0% - Account for lab HbA1c measurements measured at alternate labs - Added analysis restricting to periods of iLet use only for participants who discontinued iLet use but continued in the study.
4.0	<ul style="list-style-type: none"> - Added statistical tests for site effects. - Clarified subgroup analyses by different age cohorts - Added additional clarification on which outcomes will have confidence intervals. - Revised non-CL cohort at baseline sub-analyses. - Moved transition phase analyses, BP aspart/lispro vs. SC comparison, and BP Fiasp vs. BP aspart/lispro comparisons to separate SAPs. - Removed condition to combine the BP aspart/lispro and BP Fiasp groups; the BP groups will be analyzed separately. - Added additional CGM-measured hyperglycemic event definition.

	<ul style="list-style-type: none">- Added safety analyses for pediatric cohort- Added baseline SH/DKA covariate to SH/DKA safety analyses.
--	---

Approvals

Role	Digital Signature or Handwritten Signature/Date
Author: Zoey Li	
Senior Statistician: Peter Calhoun	
JCHR Sponsor Representative: Roy Beck	

1. Contents

1. Contents	5
2. Consistency of Statistical Analysis Plan with Protocol/Analyses Planned for Primary Manuscript	7
3. Study Overview	7
4. Statistical Hypotheses	7
5. Sample Size.....	8
6. Efficacy Outcome Measures	9
6.1 Primary and Key Secondary Efficacy Endpoints.....	9
6.2 Additional Secondary Efficacy Endpoints.....	9
6.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis	9
6.2.2 Other Secondary Efficacy Endpoints	9
7. Outcome Calculations	11
7.1 Analysis Windows	11
7.2 CGM Metrics	13
7.3 Closed Loop Use.....	14
8. Description of Statistical Methods.....	14
8.1 General Approach	14
8.2 Analysis Cohorts	14
9. Analysis of the Primary and Secondary Efficacy Endpoints	15
9.1 HbA1c Analyses (Superiority).....	15
9.2 Time <54 mg/dL (Noninferiority)	16
9.3 Secondary CGM and HbA1c Metrics (Superiority)	16
9.4 Hierarchical Analyses	17
9.5 Sensitivity Analyses.....	18
9.6 Questionnaires and Other Outcomes Analyses.....	18
10. Safety Analyses.....	19
10.1 Safety Tabulations Specific to the BP Group	20
11. Additional Tabulations and Analyses	20
11.1 Tabulations Specific to the BP Group	20
11.2 Baseline Descriptive Statistics	20
12. Planned Interim Analyses	21
13. Subgroup Analyses	22

13.1 Sub-Analyses	23
13.2 Missing Data in Subgroup Analyses.....	23
14. Multiple Comparisons/Multiplicity	23
15. Direct Likelihood	24
16. Additional Exploratory Analyses.....	24
16.1 Other Analyses, Tabulations, and Figures	25

1 **2. Consistency of Statistical Analysis Plan with Protocol/Analyses**
2 **Planned for Primary Manuscript**

3 This SAP is consistent with the study protocol stats chapter (version indicated on the title page)
4 with the exception of the following change:

5 • The BP Fiasp Group and the BP aspart/lispro Group will not be pooled for secondary
6 analyses

7
8 Separate analysis plans will be written for the analyses involving the BP Fiasp Group, the
9 Transition Phase, and the BG Run Test Ancillary Study.

10
11 **All outcomes are intended to be included in the primary manuscript unless flagged with
12 ‘***’.**

13 **3. Study Overview**

14 The IOBP Pivotal trial is a multi-center randomized control trial that tests the efficacy and safety
15 of an insulin-only configuration of the iLet Bionic Pancreas (BP) system versus a Control group
16 using CGM during a 13-week study period.

17 The sample size is expected to include ~220 in the BP Group (using aspart/lispro) and ~110 in
18 the Standard Care Control Group with 50% adults and 50% pediatric participants.

19 Following the initial screening visit, there will be the following visits:

20 a) Randomization Visit
21 b) Day 1-2 Phone Call
22 c) Week 1 Phone Call
23 d) Week 2 Visit
24 e) Week 6 Visit
25 f) Week 10 Visit
26 g) Week 13 Visit

27
28 **4. Statistical Hypotheses**

29 The primary outcome is:

30 • Superiority in HbA1c at 13 weeks

32 Only the primary outcome needs to be met to declare device efficacy. The key secondary
33 outcome is:

34 • Non-inferiority in CGM-measured time <54 mg/dL calculated over 13 weeks

35
36 Primary and key secondary outcome analyses will combine pediatric and adult participants into a
37 single analysis. The study hypotheses can be stated as follows:

38
39 HbA1c Outcome:

40 • *Null Hypothesis:* There is no difference in the mean HbA1c at 13 weeks between BP
41 aspart/lispro and Control Group
42 • *Alternative Hypothesis:* There is a nonzero difference in the mean HbA1c at 13 weeks
43 between BP aspart/lispro and Control Group

44
45 Time <54 mg/dL Outcome:

46 • *Null Hypothesis:* There is a mean difference of at least 1% in the percentage of time spent
47 with a sensor glucose level below 54 mg/dL between the BP aspart/lispro and Control
48 Group over the 13 weeks
49 • *Alternative Hypothesis:* There is a mean difference of less than 1% in the percentage of
50 time spent with a sensor glucose level below 54 mg/dL between the BP aspart/lispro and
51 Control Group over the 13 weeks

52
53
54

5. Sample Size

55 The sample size of 440 for the RCT was selected to provide sufficient exposure to the iLet BP
56 system for regulatory purposes, with respect to different age groups and for use of both insulin
57 aspart/lispro and Fiasp. RCT completion is expected for 200 participants randomized to BP
58 aspart/lispro Group and 100 to the Control Group.

59
60 The primary and key secondary analyses for BP aspart/lispro vs. Control will include both the
61 pediatric and adult participants in a single analysis. Superiority for HbA1c at 13 weeks and non-
62 inferiority for time <54 mg/dL measured with CGM at intervals over the 13 weeks are
63 considered the primary and key secondary endpoints, respectively. Statistical power for each
64 endpoint was computed assuming the following:

65 • HbA1c: Statistical power is >99%, assuming true mean HbA1c difference of 0.4% between
66 BP aspart/lispro and Control Group, standard deviation of 13-week HbA1c of 0.8%,
67 correlation between baseline and 13-week HbA1c of 0.40, two-sided type 1 error of 5%

68 • Time <54 mg/dL: Statistical power is 99%, assuming no true difference in mean time <54
69 mg/dL between BP aspart/lispro and Control Group, a non-inferiority margin of 1%, standard
70 deviation of percent time <54 mg/dL of 2.0%, correlation between baseline and follow-up of
71 0.40, and one-sided type 1 error of 0.025%

72
73 A separate document details the justification of these power calculations.
74

75 **6. Efficacy Outcome Measures**

76 **6.1 Primary and Key Secondary Efficacy Endpoints**

77 1. HbA1c at 13 weeks (superiority, primary endpoint)
78 2. CGM time < 54 mg/dL (non-inferiority, key secondary endpoint)

79
80 Efficacy of the tested device will be declared if superiority in HbA1c is met.
81

82 To preserve the overall type 1 error, a hierarchical gatekeeping testing procedure will be used
83 with HbA1c at 13 weeks tested first. If the HbA1c analysis results in a statistically significant
84 result ($p < 0.05$), then testing will proceed to the CGM time <54 mg/dL analysis.

85 **6.2 Additional Secondary Efficacy Endpoints**

86 **6.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis**

87 Assuming both the primary and key secondary endpoints meet statistical significance as
88 described above, the following CGM-measured secondary endpoints will be tested for
89 superiority in a hierarchical fashion as described in Section 9.4.

90 3. Mean glucose
91 4. Time 70-180 mg/dL
92 5. Time >180 mg/dL
93 6. Time >250 mg/dL
94 7. Standard deviation
95 8. Time <70 mg/dL
96 9. Time <54 mg/dL
97 10. Coefficient of variation
98

99 **6.2.2 Other Secondary Efficacy Endpoints**

100 The following endpoints are considered exploratory. Type 1 error for these endpoints will be
101 controlled using the false discovery rate (FDR).

102
103 Percentage improvements/increases/decreases are absolute unless otherwise noted.

104

105 HbA1c:

- 106 • HbA1c <7.0% at 13 weeks
- 107 • HbA1c <7.0% at 13 weeks in participants with baseline HbA1c >7.5%
- 108 • HbA1c <7.5% at 13 weeks
- 109 • HbA1c <8.0% at 13 weeks
- 110 • HbA1c >9.0% at 13 weeks
- 111 • HbA1c improvement from baseline to 13 weeks >0.5%
- 112 • HbA1c improvement from baseline to 13 weeks >1.0%
- 113 • HbA1c relative improvement from baseline to 13 weeks >10%
- 114 • HbA1c improvement from baseline to 13 weeks >1.0% or HbA1c <7.0% at 13 weeks

115

116 CGM-Measured:

117 *Continuous Outcomes:*

- 118 • Time in range 70-140 mg/dL
- 119 • Time in range 70-120 mg/dL
- 120 • Time <60 mg/dL
- 121 • Area over the curve (70 mg/dL)
- 122 • Low blood glucose index (LBGI)
- 123 • CGM-measured hypoglycemic events
- 124 • CGM-measured hyperglycemic events
- 125 • Time >300 mg/dL
- 126 • Area under the curve (180 mg/dL)
- 127 • High blood glucose index (HBGI)
- 128 • Mean of daily difference

129 *Binary Outcomes:*

- 130 • Time in range 70-180 mg/dL >70%
- 131 • Time in range 70-180 mg/dL improvement from baseline to 13 weeks ≥5%
- 132 • Time in range 70-180 mg/dL improvement from baseline to 13 weeks ≥10%
- 133 • Time <70 mg/dL <4%
- 134 • Time <54 mg/dL <1%

135

136 Combined Secondary Outcomes:

137 *Continuous Outcomes:*

- 138 • BGRI = LBGI + HBGI

139 *Binary Outcomes:*

- Improvement in HbA1c $> 0.5\%$ without an increase in time $< 54 \text{ mg/dL}$ by $> 0.5\%$ OR improvement in time $< 54 \text{ mg/dL}$ by $> 0.5\%$ without an increase in HbA1c by $> 0.5\%$
- Improvement in time 70–180 mg/dL by $>10\%$ without an increase in time $< 54 \text{ mg/dL}$ by $> 0.5\%$ OR improvement in time $< 54 \text{ mg/dL}$ by $> 0.5\%$ without a decrease in time 70–180 mg/dL by $> 10\%$
- Mean glucose $<154 \text{ mg/dL}$ and time $<54 \text{ mg/dL} <1\%$
- Time in range 70–180 mg/dL $>70\%$ and time $<54 \text{ mg/dL} <1\%$

Other Secondary Outcomes:

- Questionnaires scores on each questionnaire that is administered to both treatment groups (see Section 9.6)***
- Insulin
 - Total daily insulin (units/kg)
 - Percentage change in the TDD of insulin over the first two-week period relative to the TDD of insulin in the last two-week period (BP aspart/lispro group only)
- Weight and Body Mass Index (BMI)
- From the weekly questionnaires, number of hypoglycemic events requiring carbohydrate treatment per 24 hours
- From the weekly questionnaires, grams of carbohydrate taken specifically to prevent or treat hypoglycemic events per 24 hours

7. Outcome Calculations

7.1 Analysis Windows

The target dates for pertinent visits used in defining efficacy analysis, safety, HbA1c, height and weight, and questionnaire allowable analysis windows are as follows:

Visit	Target Date	Allowable Analysis Window	Central Lab HbA1c Measured	Height/Weight Measured	Questionnaires Given
Screening	Same as Screening Visit day	-	No	Yes*	Yes
Randomization	Same as Randomization Visit day	-	Yes	Yes, if randomization date different from screening date*	No

Week 13	Randomization Visit day + 91 days	-14 to +28 days	Yes	Yes	Yes
---------	-----------------------------------	-----------------	-----	-----	-----

166 *For measurements that are taken at both screening and randomization, prioritize the measurement at randomization
 167 to be used as the baseline value.

168
 169 For weekly questionnaires, target dates will be every 7 days after the Randomization Visit date.
 170 These target dates will be given a window of ± 3 days.

171
 172 The analysis windows for device data (i.e. CGM and insulin) inclusion for each period are as
 173 follows:

Period	Device Data Analysis Windows	
	Start Date-Time	End Date-Time*
Baseline/Pre- Randomization†	End date-time minus 14 24-hour days	Final CGM reading prior to midnight of the Randomization Visit day.
RCT (Weeks 1-13)	Midnight of Randomization Visit day + 1 day	Earliest of: - Midnight of Week 13 Visit day - Start date-time + 91 full days
RCT First 2 Weeks	Midnight of Randomization Visit day + 1 day	Start date-time + 14 full days
RCT Last 2 Weeks	End date-time minus 14 days.	Earliest of: - Midnight of Week 13 Visit day - Start date-time + 91 full days
RCT First 4 Weeks	Midnight of Randomization Visit day + 1 day	Start date-time + 28 days
RCT 2nd and 3rd 4- Week Periods	End date-time of previous 4-week period	Start date-time + 28 days

175 *With the exception of the “RCT Last 2 Weeks” period, if midnight of latest contact date occurs earlier
 176 than the specified end date-time, then midnight of the latest contact date will be used.

177 †Assumes that CGM data are available for the 14 days immediately preceding randomization. If at least
 178 10 days of data are not present within the 14 days, then the time period is extended to include 14 days of
 179 data.

180
 181 The safety analysis windows for each period are as follows:

- 182 • Pre-randomization: Enrollment until randomization.
- 183 • RCT: Randomization Visit day to Week 13 visit day.

185 **7.2 CGM Metrics**

186 Baseline values for each CGM metric will be computed from either the participant's personal
187 Dexcom G6 data or from the G6 wear prior to randomization. The most recent two weeks of
188 CGM data prior to randomization will be included in the calculation of baseline CGM metrics.

189

190 If the subject has <168 hours of CGM data, then the baseline metrics will not be calculated and
191 will be set to missing; this is not expected to occur as participants with <85% of CGM values
192 during 14 days of CGM wear will need to complete a period of CGM wear to be eligible for
193 randomization.

194

195 CGM metrics from the other periods will use all CGM data available. If a subject has <168
196 hours of CGM data, then post-randomization CGM metrics will not be calculated and will be set
197 to missing. The primary and secondary analyses utilize a direct likelihood model to account for
198 missing CGM metrics data, as described in Section 9.

199

200 Percentage of CGM values that fall within a specified range will be calculated by dividing the
201 number of CGM values that fall within the range by the total number of CGM readings.

202

203 A CGM-measured hypoglycemic event is defined as ≥ 15 consecutive minutes with a CGM
204 glucose value <54 mg/dL. The hypo event ends when there are ≥ 15 consecutive minutes with a
205 CGM glucose value ≥ 70 mg/dL, at which point the participant becomes eligible for another hypo
206 event.

207

208 Two separate definitions of CGM-measured hyperglycemic events will be calculated and
209 assessed:

- 210 1) ≥ 15 consecutive minutes with a CGM glucose value >300 mg/dL. The hyper event ends
211 when there are ≥ 15 consecutive minutes with a CGM glucose value ≤ 250 mg/dL, at
212 which point the participant becomes eligible for another hyper event.
- 213 2) ≥ 90 cumulative minutes with a CGM glucose value >300 mg/dL within a 120-minute
214 period. The hyperglycemia event ends when there are ≥ 15 consecutive minutes with a
215 CGM glucose value ≤ 180 mg/dL, at which point the participant becomes eligible for
216 another hyper event.

217

218 The amount of time with CGM data will be calculated as the number of CGM values multiplied
219 by 5 minutes, with the exception that there can only be one value within a 5-minute period.

220 Percentage of time CGM is used will be calculated as the amount of time of CGM readings
221 divided by the total possible time the participant could have used the CGM (end date-time minus

222 start date-time from the analysis window tables in Section 7.1). Note that this denominator
223 includes sensor warm up periods with no CGM values, so this metric will serve as a conservative
224 estimate of CGM use.

225

226 Mean of daily differences is the mean of the absolute differences between daily mean glucose.

227 **7.3 Closed Loop Use**

228 For calculating closed loop use, the numerator will be number of hours in which the CL insulin
229 delivery system was on and available, and the denominator is the period end date-time minus
230 start date-time. Note the denominator includes time in which the pump is turned off or not in use,
231 thus this metric would reflect a real-world percentage of time in which the participant actively
232 used the device.

233

234 **8. Description of Statistical Methods**

235 **8.1 General Approach**

236 For all outcomes, mean and standard deviation or summary statistics appropriate to the
237 distribution will be reported.

238

239 All p-values will be two-sided. Standard residual diagnostics will be performed for all analyses.
240 If residuals are highly skewed, then an appropriate alternative transformation or nonparametric
241 analysis based on ranks will be performed instead.

242

243 All analyses will compare the BP with aspart/lispro group with the Control Group.

244 **8.2 Analysis Cohorts**

245 *Primary and Secondary Analyses:*

- 246 • All randomized participants and participants assigned to an RCT treatment group will be
247 analyzed for the intention-to-treat (ITT) efficacy analyses and all safety analyses.
- 248 • Safety outcomes will be reported for the pre-randomization period for all enrolled
249 participants.

250

251 *Per Protocol Analysis:*

- 252 • A per-protocol analysis will be restricted to participants with:
 - 253 a) Baseline and 13-week HbA1c central lab measurements available,
 - 254 b) For participants in the Control Group, at least 80% of CGM data available in the 13-week
255 RCT wear period defined in Section 7.1,

256 c) No glucose-lowering medications used other than those acceptable in the protocol,
257 d) No major protocol deviation that could impact outcome measures, and
258 e) For participants in the BP group, closed loop mode is active for at least 80% of the time
259 during the 13 weeks and announce a meal bolus on average at least 2 times per day when
260 the system is being used.

261 This analysis will only involve the primary and key secondary outcomes and will only be done if
262 >5% of subjects are excluded based on this criterion.

263

264 *While-on-Treatment Analysis:*

- 265 • A while-on-treatment analysis will include all participants assigned/randomized to an RCT
266 treatment group. For participants who discontinued the iLet device in the BP group, HbA1c
267 and CGM metrics will only include data prior to iLet discontinuation.

268

269 This analysis will only involve the hierarchical outcomes. Any missing endpoints will be handled
270 by the method of direct likelihood.

271

272 **9. Analysis of the Primary and Secondary Efficacy Endpoints**

273 The primary analysis will include both the pediatric and adult participants in a single analysis.
274 All analyses comparing the BP aspart/lispro with the Control Group will follow the intention-to-
275 treat (ITT) principle with the data from each participant analyzed according to the treatment
276 assigned by randomization. Participants not randomized due to a protocol deviation and
277 assigned to the BP Group will be analyzed according to the BP group assignment and a
278 sensitivity analysis will be performed reanalyzing these participants as part of the Control group.

279

9.1 HbA1c Analyses (Superiority)

280 Only lab HbA1c measurements will be used in the analyses. If a hemoglobin variant is present
281 such that the primary central lab is unable to measure HbA1c using its methodology, the sample
282 may be analyzed at a separate lab using the boronate affinity method or another method which is
283 not affected by the hemoglobin variant. Summary statistics appropriate to the distribution will be
284 reported for HbA1c at baseline, at 6 weeks, and at Week 13 as well as for differences from
285 baseline by treatment group. If both venous and capillary central lab measurements are available
286 for the same timepoint, the venous value will be used in the analyses. Scatterplots of the baseline
287 HbA1c vs. week 13 HbA1c and baseline HbA1c vs. change in HbA1c will be produced for the
288 Control and BP aspart/lispro groups.

289

290 HbA1c at 13 weeks will be compared between the BP aspart/lispro and Control Groups using a
291 linear mixed effects regression model adjusting for baseline HbA1c, age, and clinical center

292 (random factor). A 95% confidence interval will be reported. HbA1c is expected to be normally
293 distributed, but regression diagnostics will be performed to check the residuals and an
294 appropriate alternative transformation or nonparametric analysis based on ranks will be
295 performed if the residuals have a skewed distribution. In the event that some HbA1c values are
296 not available at 13 weeks, then the linear mixed effect regression model will use the method of
297 direct likelihood to incorporate information from baseline and 6 weeks measurements to
298 calculate the maximum likelihood at 13 weeks. Further details on direct likelihood are provided
299 in Section 15.

300

301 **9.2 Time <54 mg/dL (Noninferiority)**

302 Summary statistics appropriate to the distribution will be reported for % time <54 mg/dL at
303 baseline and over the 13-week follow-up period as well as for differences from baseline by
304 treatment group. Scatterplots of the baseline time <54 mg/dL vs. 13-week time <54 mg/dL and
305 baseline time <54 mg/dL vs. change in time <54 mg/dL will be produced for the Control and BP
306 aspart/lispro groups. If % time <54 mg/dL is skewed and does not display well in a scatterplot,
307 then boxplots will be produced instead.

308

309 Time below 54 mg/dL will be calculated over 13 weeks for each subject as described in Section
310 7. A two-sided 95% confidence interval on the mean difference in % time <54 mg/dL between
311 BP aspart/lispro and Control Group will be performed based on a linear mixed effects regression
312 model adjusting for baseline % time <54 mg/dL, age, and clinical center (random factor).
313 Noninferiority will be assessed by comparing the upper bound of this confidence interval to a
314 noninferiority limit of 1%. Missing data will be handled by the method of direct likelihood (see
315 Section 15). Residuals values will be examined for an approximate normal distribution. If the
316 values are highly skewed, then an appropriate alternative transformation or nonparametric
317 analysis based on ranks will be performed instead. A two-sided p-value will be reported, and a
318 5% significance level will be used to declare significance.

319

320 Since noninferiority is typically framed in terms of a one-sided test, it is worth noting that the left
321 half of a two-sided test at alpha = 0.05 gives the same rejection region as a one-sided test at alpha
322 = 0.025. Therefore, reporting a two-sided 95% confidence interval will provide flexibility to test
323 for inferiority if noninferiority cannot be declared while maintaining the overall type 1 error rate
324 of 5%.

325 **9.3 Secondary CGM and HbA1c Metrics (Superiority)**

326 Summary statistics appropriate to the distribution will be reported for the CGM-measured
327 metrics at baseline and during follow up as well as for differences from baseline by treatment

328 group. Scatterplots or boxplots of the secondary efficacy endpoints included in the hierarchy
329 will be produced at baseline and over 13 weeks for the Control and BP aspart/lispro groups.
330
331 Secondary continuous CGM metrics will be calculated as described in Section 7. CGM metric
332 differences between BP and Control Groups will be compared using a linear mixed effects
333 regression model adjusting for the baseline value of the metric, age, and clinical center (random
334 effect). A 95% confidence interval for the treatment group difference will be reported. Residual
335 values will be examined for an approximate normal distribution. If residuals are highly skewed,
336 then an appropriate alternative transformation or nonparametric analysis based on ranks will be
337 performed instead. Missing data will be handled using direct likelihood (see Section 15).
338
339 For the binary secondary outcomes, *p*-values will be produced from logistic regression models
340 adjusting for the same factors mentioned above for the primary analyses (i.e., baseline value of
341 the outcome, age, and clinical center as a random effect). A 95% confidence interval for the
342 treatment group adjusted risk difference will be produced using parametric bootstrapping.
343
344 Participant-level cumulative distribution plots of HbA1c and % time in range 70-180 mg/dL by
345 treatment group will be produced.

346 **9.4 Hierarchical Analyses**

347 To preserve the overall type 1 error for the primary and key secondary efficacy endpoints as
348 defined in Section 6.1 and additional secondary efficacy endpoints listed in Section 6.2.1, a
349 hierarchical testing procedure will be used. If the primary analysis for HbA1c results in a
350 statistically significant result ($p < 0.05$), then testing at the 0.05 level will proceed to the next
351 outcome metric. This process continues iteratively moving to the next variable down on the list
352 until a non-significant result is observed, or all 10 variables have been tested. If a non-
353 significant result is encountered, then formal statistical hypothesis testing is terminated and any
354 variables lower on the list will not be formally tested.
355
356 Regardless of the results of the hierarchical testing, summary statistics appropriate to the
357 distribution will be tabulated by treatment group for each hierarchical outcome. A 95%
358 confidence interval for the treatment group difference also will be calculated for all hierarchical
359 outcomes listed above. However, a confidence interval that excludes zero will not be considered
360 a statistically significant result if an outcome variable higher on the hierarchical list failed to
361 reach statistical significance.

362 **9.5 Sensitivity Analyses**

- 363 • Covariate Adjustment: The primary analysis includes a pre-specified list of covariates. As
364 an additional sensitivity analysis, any baseline demographic or clinical characteristics
365 observed to be imbalanced between treatment groups will be added as covariates to the
366 analyses of the primary endpoint. The determination of a meaningful baseline imbalance
367 will be based on clinical judgment and not a p-value.
- 368 • Missing Data: All randomized participants will be included in the primary and key
369 secondary analyses according to ITT and any missing data will be handled using direct
370 likelihood. It is worth emphasizing that any statistical method for handling missing data
371 makes a number of untestable assumptions. The goal will be to minimize the amount of
372 missing data in this study so that results and conclusions will not be sensitive to which
373 statistical method is used. To that end, the following methods will be performed:
 - 374 ○ Multiple imputation with a pattern mixture model assuming the dropout trajectory
375 of the BP Group was that of the Control Group.
 - 376 ○ Available cases only.
- 377 • The primary analysis will be recalculated switching non-randomized participants
378 assigned to the BP Group due to a protocol deviation to the Control group.

380 **9.6 Questionnaires and Other Outcomes Analyses**

381 Questionnaire scoring will be detailed in the Questionnaire Scoring Appendix.

382 Summary statistics of total and subscale scores appropriate to the distribution will be tabulated
383 by visit and treatment group. For questionnaires administered to both randomization groups,
384 comparisons will be made using similar linear models as described above for the primary and
385 key secondary outcomes. If questionnaires include a total score, separate models will be run for
386 the total score and any subscales, with the exception of the Clarke Hypoglycemia Awareness
387 questionnaire. The models for comparing DTSQ scores between treatment groups will use a
388 combined score calculated as the DTSQ-S score plus the DTSQ-C score. It will still adjust for
389 the baseline DTSQ-S score.

390
391 Similarly, for carbohydrate, total daily insulin, weight and BMI metrics, comparisons will be
392 made using similar linear models as described above for the primary HbA1c analysis (Section
393 9.1). Percentage change in the TDD of insulin over the first two-week period relative to the TDD
394 of insulin in the last two-week period will not be tested because this metric is limited to BP
395 group only. A 95% confidence interval will be reported for treatment group mean difference in
396 total daily insulin, body weight, and body mass index.

397

398 **10. Safety Analyses**

399 All randomized participants will be included in the safety analyses and all of their post-
400 randomization safety events will be reported. Separately, any adverse events occurring between
401 screening and randomization will be reported.

402

403 All reportable adverse events will be tabulated by treatment group. Details will be provided in a
404 listing of each event, including Medical Dictionary for Regulatory Activities (MedDRA) term
405 and MedDRA System Organ Class. Safety analyses for the RCT will include events occurring
406 on or after randomization until and including the 13-week visit, latest contact date, or Day 98
407 from randomization, whichever occurs first. Analysis windows for the RCT and other periods are
408 further detailed in Section 7.1.

409

410 Formal statistical testing only will be performed for selected safety endpoints. For the following
411 outcomes, mean and standard deviation (SD) or summary statistics appropriate to the distribution
412 will be tabulated by treatment group and formal statistical comparisons will be performed if there
413 are enough events (at least 5 events combined between the BP aspart/lispro and Control Group):

- 414 • Number of SH events and SH event rate per 100 person-years
- 415 • Number of DKA events and DKA event rate per 100 person-years
- 416 • Other serious adverse events
- 417 • Worsening of HbA1c from baseline to 13 weeks by >0.5%

418

419 If enough events occur for the severe hypoglycemia (SH), DKA, and other serious adverse event
420 (SAE) outcomes, the numbers of events will be compared between the two treatment groups
421 during the RCT using a Poisson regression model adjusting for baseline age and HbA1c, and site
422 as a random effect. For SH, the model will additionally control for whether or not the participant
423 experienced at least 1 SH event prior to randomization. For DKA, the model will additionally
424 control for whether or not the participant experienced at least 1 DKA event prior to
425 randomization. If distribution is zero-inflated or the variance is greater than its mean, then a
426 zero-inflated Poisson or negative binomial regression model will be considered. For worsening
427 of HbA1c from baseline to 13 weeks by >0.5%, a logistic regression model adjusting for baseline
428 age and HbA1c and site as a random effect will be used to compare the two treatment groups.

429

430 Since the Control Group is not provided with a study blood glucose meter or blood ketone meter,
431 no treatment group comparisons of meter data will be performed. Additionally, no formal
432 statistical comparison will be made of all reported adverse events combined since there are

433 specific requirements in the protocol for reporting certain events in real-time for the BP Group
434 but not the Control Group, and adverse device effects are only reported for the BP Group.

435

436 No adjustments for multiple comparisons will be made for any safety analyses.

437 **10.1 Safety Tabulations Specific to the BP Group**

438 For the BP group, the following will be tabulated :

439 • Adverse device effects (ADE)
440 • Serious adverse device events (SADE)
441 • Unanticipated adverse device effects (UADE)

442

443 **11. Additional Tabulations and Analyses**

444 The following tabulations will be performed according to treatment group:

445 • Baseline demographics and clinical characteristics
446 • A flow chart accounting for all participants for all visits
447 • Visit completion rates for each follow-up visit
448 • Protocol deviations
449 • Modifications in insulin delivery type in the Control Group (e.g. change between
450 MDI/CSII) during the study
451 • Number and reasons for unscheduled visits and phone calls
452 • CGM usage

453 **11.1 Tabulations Specific to the BP Group**

454 The following will be tabulated in the BP group:

455 • Number of participants who stopped BP use and reasons
456 • % time in closed loop
457 • % CGM capture while iLet is on
458 • % time device was autonomously dosing while iLet is on
459 • Total daily insulin dose by week during the first month and then by month, and also
460 according to baseline HbA1c
461 • Participant completed surveys specific to BP Group
462 • Device malfunctions requiring study team contact and other reported device issues

463 **11.2 Baseline Descriptive Statistics**

464 Baseline demographic and clinical characteristics of the study cohort will be summarized. The
465 following descriptive statistics will be tabulated overall and by randomization group:

466 • Age in years at randomization
467 • Gender
468 • Race
469 • Ethnicity
470 • Type I diabetes duration in years at randomization
471 • BMI (if available and participant is ≥ 18 yr)
472 • BMI percentile (if available and participant is < 18 yr)
473 • HbA1c (% mmol/L)
474 • C-peptide
475 • Current insulin modality
476 • Past amount of pump use for patients using pump at enrollment
477 • Daily insulin units
478 • CGM use status at enrollment
479 • Time range of most recent severe hypoglycemic event
480 • Number of severe hypoglycemic events in the last 12 months
481 • Number of severe hypoglycemic events involving seizure/coma over lifetime
482 • Number of severe hypoglycemic events involving seizure/coma in the last 12 months
483 • Time range of most recent DKA event
484 • Number of DKA events in the last 12 months
485 • Number of glucose tests per day
486 • Other non-insulin blood sugar control medications taken

487
488 For continuous variables, summary statistics appropriate to the distribution will be given. For
489 discrete variables, number and percentage will be reported for each category. For participants
490 who have multiple screening visits due to an extended period between initial screening and
491 randomization, the baseline data closest to randomization will be used.

492
493 **12. Planned Interim Analyses**

494 No formal interim efficacy analyses are planned as study recruitment is expected to be rapid and
495 the duration of follow up short. The DSMB will review safety data at intervals, with no formal
496 stopping rules other than the guidelines provided in the participant-level and study-level stopping
497 criteria detailed in the protocol.

498
499 Upon completion of the RCT, the efficacy and safety analyses will be performed in preparation
500 for PMA submission.

501

502 13. Subgroup Analyses

503 In exploratory analyses, the primary and key secondary outcomes plus % time in range 70-180
504 mg/dL and mean glucose will be assessed separately for interaction with certain baseline
505 variables. Subgroup analyses will assess the effectiveness of BP by the following patient
506 characteristics:

- 507 • Age (6-<13, 13-<18, 18-<26, 26-<50, \geq 50 years old)
- 508 • Baseline HbA1c (<7.0%, 7.0 to <8.0%, 8.0 to <9.0%, 9.0 to <10.0%, \geq 10.0%)
- 509 • CGM use and insulin modality prior to enrollment. Subgroups will be determined based
510 on CGM and insulin delivery mode (i.e. hardware and how it is being used) after all
511 participants have been randomized and before data analyses are conducted.
- 512 • Baseline % time <70 mg/dL
- 513 • Baseline % time >180 mg/dL
- 514 • Baseline % time in range 70-180 mg/dL
- 515 • Sex
- 516 • Combined race/ethnicity
- 517 • T1D Duration
- 518 • BMI subgroups as follows:
 - 519 ○ Underweight – BMI index <18.5 for adults or BMI percentile <5th percentile for
520 pediatric participants
 - 521 ○ Normal weight – BMI index 18.5 to <24.9 for adults or BMI percentile in the 5th
522 to <85th percentile for pediatric participants
 - 523 ○ Overweight – BMI index \geq 24.9 for adults or BMI percentile \geq 85th percentile for
524 pediatric participants.
- 525 • Education
- 526 • C-peptide
- 527 • Site (tests for random effects interaction with treatment group)

528

529 For continuous variables, results will be displayed in subgroups based on cutpoints although the
530 analysis will utilize the variable as continuous, except for age which will be analyzed in the pre-
531 defined age groups specified above. If there is insufficient sample size in a given subgroup, the
532 cutpoints for continuous measures may be adjusted per the observed distribution of values.
533 Cutpoint selection for display purposes will be made masked to the outcome data.

534

535 A *p*-value for the subgroup-by-treatment interaction effect will be produced for each outcome
536 assessed using a linear mixed effects regression model similar to the one for the primary HbA1c

537 analysis (Section 9.1).

538

539 **13.1 Sub-Analyses**

540 All primary and hierarchical secondary variables will be evaluated within the following
541 subgroups:

- 542 • Adults ≥ 18 years old
- 543 • Pediatric participants < 18 years old
- 544 • Non-closed loop users at baseline, if this subgroup makes up $< 75\%$ of the randomized
545 cohort
- 546 • Participants with HbA1c $> 7.0\%$ at baseline

547

548 *p*-values and 95% confidence intervals for the treatment group difference for these outcomes will
549 be produced within each subgroup using a linear mixed effects regression model similar to the
550 one for the primary HbA1c analysis (Section 9.1).

551

552 **13.2 Missing Data in Subgroup Analyses**

553 For all subgroup analyses, missing data will be handled using direct likelihood (Section 15). If
554 residuals are skewed, then an appropriate alternative transformation or nonparametric analysis
555 based on ranks will be performed instead.

556

557 Interpretation of the subgroup analyses will be made with caution, particularly if the primary
558 analysis is not significant.

559

560 **14. Multiple Comparisons/Multiplicity**

561 Hierarchical Analyses

562 The hierarchical testing procedure described above in Section 9.4 will be used to control the
563 overall Type 1 error for the primary and key secondary endpoints plus the eight additional
564 hierarchical secondary efficacy outcomes identified in Section 6.

565

566 All Other Secondary Analyses

567 For the other secondary analyses, the false discovery rate will be controlled using the adaptive
568 Benjamini-Hochberg procedure. Analyses will be grouped into the following categories:

569

- 570 • Other Secondary Exploratory Analyses – HbA1c, Insulin, Carbohydrate, and
BMI/Weight

571 • Other Secondary Exploratory Analyses – CGM-Measured
572 • Sub-Analyses – Adults, Pediatric Participants, Non-CL Users at Baseline Participants,
573 Participants with HbA1c >7.0%
574 • Subgroup Analyses – Analyses by Baseline Characteristics and Site Effects
575 • Questionnaires

576

577 P-values from the safety analyses, per-protocol, and sensitivity analyses will not be adjusted for
578 multiple comparisons.

579

580 **15. Direct Likelihood**

581 The direct likelihood method uses baseline data to estimate missing 13-week values via
582 maximum likelihood. This involves adding a visit variable and a treatment by visit interaction
583 effect to the model. The baseline version of the outcome will be included as part of the outcome
584 (i.e. not as a fixed effect covariate), but the treatment effect will be constrained to be zero at
585 baseline. Other baseline covariates added to the model will be treated as fixed effects.

586

587 **16. Additional Exploratory Analyses**

588 Additional analyses comparing treatment groups will include:

589

590 • ***Comparison of aspart/lispro BP Group versus Control Group in adults ≥ 18 years old
591 and separately for participants < 18 years old for the safety outcomes described for the
592 main RCT analyses. *p*-values will be produced using similar models as detailed in
593 Section 10.

594

595 • Separate CGM analyses for daytime and nighttime. The following CGM metrics will be
596 tabulated separately for daytime and nighttime by period (i.e. baseline and follow-up),
597 and also by 4-week follow-up periods:
598 ○ Mean glucose
599 ○ Glucose SD
600 ○ Glucose coefficient of variation
601 ○ % time in range 70-180 mg/dL
602 ○ % time above 180 mg/dL
603 ○ % time above 250 mg/dL
604 ○ % time below 70 mg/dL
605 ○ % time below 54 mg/dL

605

For the time-of-day analyses, at least 126 hours of daytime CGM data and at least 42 hours of nighttime CGM data will be required. Boxplots of % time 70-180 mg/dL and % time <54 mg/dL by time of day and by 4-week period will be produced.

606

607 ● ***Intersubject variability of HbA1c

608

609 **16.1 Other Analyses, Tabulations, and Figures**

610

611 ● ***Scatterplots of HbA1c and % time 70-180 mg/dL vs. CGM and closed loop use and
612 change in HbA1c and time 70-180 mg/dL versus CGM and closed loop use.

613

614

**IOBP Pivotal Trial
Statistical Analysis Plan
BP Fiasp**

Version 1.0

Protocol Version 10.0

Author: Zoey Li

Date: October 28, 2021

Revision History

The following table outlines changes made to the Statistical Analysis Plan.

Version Number	Author	Senior Statistician	Effective Date	Study Stage
1.0	Zoey Li	Peter Calhoun	October 28, 2021	Enrollment completed. SAP created before unblinding of results to study investigators.

Version Number	Revision Description
1.0	Original version

Approvals

Role	Digital Signature or Handwritten Signature/Date
Author: Zoey Li	
Senior Statistician: Peter Calhoun	
JCHR Sponsor Representative: Roy Beck	

1. Contents

1. Contents	4
2. Consistency of Statistical Analysis Plan with Protocol/Analyses Planned for Manuscript.....	5
3. Study Overview	5
4. Statistical Hypotheses	5
5. Sample Size.....	6
6. Analysis of Efficacy and Safety Endpoints	7
7. Comparison of the BP Fiasp vs. BP aspart/lispro Groups	7

1 **2. Consistency of Statistical Analysis Plan with Protocol/Analyses**
2 **Planned for Manuscript**

3 This SAP is consistent with the study protocol stats chapter (version indicated on the title page)
4 with the exception of the following change(s):

- 5 • CGM-measured hyperglycemic events definition revised.
- 6 • The BP Fiasp Group and the BP aspart/lispro Group will not be pooled for secondary
7 analyses.

9 **3. Study Overview**

10 The IOBP Pivotal trial is a multi-center randomized control trial that tests the efficacy and safety
11 of an insulin-only configuration of the iLet Bionic Pancreas (BP) system versus a Control group
12 using CGM during a 13-week study period.

14 The sample size is expected to include ~110 adults in the BP Fiasp Group, ~110 adults in the BP
15 aspart/lispro group, and ~55 adults in the Standard Care Control Group.

17 Following the initial screening visit, there will be the following visits:

- 18 a) Randomization Visit
- 19 b) Day 1-2 Phone Call
- 20 c) Week 1 Phone Call
- 21 d) Week 2 Visit
- 22 e) Week 6 Visit
- 23 f) Week 10 Visit
- 24 g) Week 13 Visit

27 **4. Statistical Hypotheses**

28 The primary outcome is:

- 29 • Superiority in HbA1c at 13 weeks between the BP Fiasp and Control Group.

31 Only the primary outcome needs to be met to declare device efficacy. The key secondary
32 outcome is:

- 33 • Non-inferiority in CGM-measured time <54 mg/dL calculated over 13 weeks between the
34 BP Fiasp and Control Group.

36 The study hypotheses can be stated as follows:

37

38 HbA1c Outcome:

39 • *Null Hypothesis:* There is no difference in the mean HbA1c at 13 weeks between BP
40 Fiasp and Control Group

41 • *Alternative Hypothesis:* There is a nonzero difference in the mean HbA1c at 13 weeks
42 between BP Fiasp and Control Group

43

44 Time <54 mg/dL Outcome:

45 • *Null Hypothesis:* There is a mean difference of at least 1% in the percentage of time spent
46 with a sensor glucose level below 54 mg/dL between the BP Fiasp and Control Group
47 over the 13 weeks

48 • *Alternative Hypothesis:* There is a mean difference of less than 1% in the percentage of
49 time spent with a sensor glucose level below 54 mg/dL between the BP Fiasp and Control
50 Group over the 13 weeks

51

52 **5. Sample Size**

53 The sample size of 440 for the RCT was selected to provide sufficient exposure to the iLet BP
54 system for regulatory purposes, with respect to different age groups and for use of both insulin
55 aspart/lispro and Fiasp. RCT completion is expected for 100 adults randomized to the BP Fiasp
56 group, 100 adults randomized to BP aspart/lispro Group, and 50 adults randomized to the
57 Control Group.

58

59 Superiority for HbA1c at 13 weeks and non-inferiority for time <54 mg/dL measured with
60 CGM at intervals over the 13 weeks are considered the primary and key secondary endpoints,
61 respectively. Statistical power for each endpoint was computed assuming the following:

62

63 • HbA1c: Statistical power is 91%, assuming true mean HbA1c difference of 0.4% between
64 BP Fiasp and Control Group, standard deviation of 13-week HbA1c of 0.8%, correlation
65 between baseline and 13-week HbA1c of 0.40, two-sided type 1 error of 5%

66 • Time <54 mg/dL: Statistical power is 86%, assuming no true difference in mean time <54
67 mg/dL between BP Fiasp and Control Group, a non-inferiority margin of 1%, standard
68 deviation of percent time <54 mg/dL of 2.0%, correlation between baseline and follow-up of
69 0.40, and one-sided type 1 error of 0.025%

70

71 A separate document details the justification of these power calculations.

72

73 **6. Analysis of Efficacy and Safety Endpoints**

74 All efficacy analyses (including exploratory analyses and tabulation-only analyses) and safety
75 analyses comparing the BP Fiasp vs. Control group will be the same as described in the BP
76 aspart/lispro vs Control Group SAP detailed separately in the Appendix, with the following
77 difference:

78 • All analyses comparing BP Fiasp vs. Control are restricted to adults only

79 **80 7. Comparison of the BP Fiasp vs. BP aspart/lispro Groups**

81 All efficacy analyses (including exploratory analyses and tabulation-only analyses) and safety
82 analyses comparing the BP Fiasp vs. BP aspart/lispro group will be the same as described in the
83 BP Aspart/lispro vs Control Group SAP detailed separately in the Appendix, with the following
84 differences:

85 • All analyses comparing BP Fiasp vs. BP aspart/lispro are restricted to adults only
86 • The study was not formally powered for these analyses, so primary and hierarchical
87 secondary outcomes will be in its own FDR category when comparing BP Fiasp vs. BP
88 aspart/lispro.
89 • Sensitivity, per-protocol, and while-on-treatment analyses will not be performed for BP Fiasp
90 vs BP aspart/lispro comparisons.

91 All analyses comparing the BP Fiasp vs. BP aspart/lispro group will be considered exploratory.

92 **93 94 8. Multiple Comparisons**

95 The BP Fiasp vs. Control hierarchical analyses detailed in Section 6 will be controlled for
96 multiple comparisons using the hierarchical method as described in the BP Aspart/lispro vs
97 Control Group SAP in the Appendix. This BP Fiasp vs. Control hierarchy will be given an initial
98 $\alpha=0.05$.

99
100 The false discovery rate for all other BP Fiasp vs. Control group efficacy comparisons detailed in
101 Section 6 and the BP Fiasp vs. BP aspart/lispro group comparisons detailed in Section 7 will be
102 controlled using the adaptive Benjamini-Hochberg false discovery rate correction procedure. The
103 BP Fiasp vs. Control analyses and BP Fiasp vs. BP aspart/lispro analyses will be considered
104 separate, each with their own FDR categories that parallel the BP aspart/lispro vs. Control FDR
105 categories described in the BP Aspart/lispro vs. Control Group SAP detailed separately in the
106 Appendix.