

Official Title

**Home Use of MD-Logic Automated Insulin Delivery System:
Safety and Efficacy**

Brief Title: Fuzzy Logic Automated Insulin Regulation (FLAIR)

NCT 03040414

Date: April 10, 2020

Fuzzy Logic Automated Insulin Regulation (FLAIR)

Statistical Analysis Plan

Version 1.1

April 10th, 2020 (Based on Protocol Version 7.0)

Revision History

The following table outlines changes made to the Statistical Analysis Plan.

Version Number	Author	Approver	Effective Date	Study Stage
1.0	Nathan Cohen	Peter Calhoun	05/16/2019	Protocol development
1.1	Ryan Bailey	Peter Calhoun	04/10/2020	Follow-Up

Version Number	Revision Description
1.1	Added a binary indicator for time in range (70-180 mg/dL) >70% and time below 54 mg/dL <1% as an exploratory outcome. Modified section 14.2 to clarify that gaps in the pump data greater than 90 minutes will not be used in the calculation of time in auto mode. Updated subscales for the diabetes distress survey in section 14.3. Added section 14.4 on pump settings.

Author: _____

Senior Statistician: _____

Jaeb Principal Investigator: _____

Investigator: _____

1 **1. Statistical and Analytical Plans**

2 This document outlines the statistical analyses to be performed for the FLAIR study. The
3 approach to sample size and statistical analyses for this study are detailed below.

4 This is a multicenter, randomized, two period crossover study to compare the efficacy and safety
5 of an automated insulin delivery (AID) system with a proportional-integral-derivative (PID)
6 algorithm (Minimed 670G 3.0; abbreviated as 670G) to an AID system with a PID algorithm
7 enhanced with a Fuzzy Logic algorithm (Minimed 670G 4.0 Advanced Hybrid Closed-Loop;
8 abbreviated as AHCL) in patients with type 1 diabetes. Approximately 112 individuals with type
9 1 diabetes aged 14-<30 years will enter the RCT, with the expectation that a minimum of 100
10 will complete both periods of the study. All participants will receive both interventions, and the
11 order of receiving them will be randomized based on a 1:1 ratio. Each period will last for 12
12 weeks.

13 Each of the two study periods consists of three visits and four phone contacts. Randomization
14 will be preceded by a run-in period where subjects must demonstrate competency and
15 compliance in using the study pump and CGM device. The run-in period will be divided into a
16 pump and a pump + CGM run-in phase. During the run-in period, a contact will occur at one
17 week, and a visit will occur at two weeks. The length of the pump and pump + CGM run-in
18 phase may vary depending on the participant's comfortability using the devices.

19 **2. Statistical Hypotheses**

20 In this study, there are two co-primary outcomes:

- 21 • Superiority in the percentage of time spent with sensor glucose levels above 180 mg/dL
22 during the daytime (6:00 AM to 11:59 PM)
- 23 • Non-inferiority in the percentage of time spent with sensor glucose levels below 54
24 mg/dL calculated over the full 24 hours of the day, with a non-inferiority limit of 2%
25 based on clinical judgment.

26 Separate analyses will be performed for each co-primary outcome, and both analyses must
27 produce a statistically significant result in order to declare benefit of the intervention.

28 For each of these analyses, the two corresponding pairs of null and alternative hypotheses are as
29 follows:

30 Hyperglycemic Outcome:

- 31 • *Null Hypothesis:* There is no difference in the percentage of time spent with sensor
32 glucose levels above 180 mg/dL between the two treatments during the daytime for the
33 entire study population.
- 34 • *Alternative Hypothesis:* There is a nonzero difference in the percentage of time spent
35 with sensor glucose levels above 180 mg/dL between the two treatments during the
36 daytime for the entire study population.

37 Hypoglycemic Outcome:

38 • *Null Hypothesis*: There is a mean difference of at least 2% in the percentage of time spent
39 with sensor glucose levels below 54 mg/dL between the AHCL system and the 670G
40 system over the full 24 hours of the day for the entire study population.
41 • *Alternative Hypothesis*: There is a mean difference of less than 2% in the percentage of
42 time spent with sensor glucose levels below 54 mg/dL between the AHCL system and the
43 670G system over the full 24 hours of the day for the entire study population.

44 **3. Sample Size**

45 The sample size calculation for this study is detailed in a separate document (in addition to the
46 protocol) and summarized below. Sample size was calculated based on the following
47 assumptions:

48 • 90% power
49 • 5% true absolute reduction in percent time > 180 mg/dL during the daytime with a
50 standard deviation of paired differences of 12% and a two-sided Type 1 error rate of 5%
51 • Non-inferiority limit of 2% for the treatment group comparison of percent time < 54
52 mg/dL with a standard deviation of paired differences of 1.3% and a one-sided Type 1
53 error rate of 2.5%

54 In the sample size calculation, an adjustment was made to account for the two co-primary
55 analyses. Analyses of both primary outcomes must have a significant result ($p < 0.05$) to declare
56 benefit of the intervention. The two co-primary outcomes therefore do not inflate the Type 1
57 error, but requiring both to be significant can inflate the Type 2 error. Therefore, a Bonferroni
58 correction was applied to the power calculations by adding the Type 2 error rate (i.e., 100%
59 minus power) for the two analyses. This represents a conservative estimate for composite power
60 as the probability that both tests will reject the null hypothesis.

61 With the above assumptions, sample size was calculated to be 65. For entry into the trial, this
62 was increased to 112 to provide greater precision for the primary and secondary analyses.

63 **4. Outcome Measures**

64 **Co-Primary Efficacy Endpoints*:**

65 1) Percentage of daytime (6:00 AM to 11:59 PM) spent with sensor glucose levels above
66 180 mg/dL (superiority)
67 2) Percentage of time spent with sensor glucose levels below 54 mg/dL over the full 24
68 hours of the day (non-inferiority)

69 *Both co-primary efficacy endpoints are calculated over each treatment period for the full 24
70 hours, daytime (6:00 AM – 11:59 PM), and nighttime (12:00 AM – 5:59 AM). They are also
71 calculated for each post-meal period measured for up to three hours after the start of a meal.

72 **Secondary Efficacy Endpoints:**

73 **CGM Metrics**

74 **Overall Glucose Control**

75 1) Mean glucose
76 2) Time in range 70 and 180 mg/dL

77 3) Time in range 70 and 140 mg/dL

78 *Hyperglycemic Outcomes*

79 4) Time above 180 (daytime is a co-primary outcome) and 250 mg/dL

80 5) Peak glucose and change from baseline to the peak (only calculated for post-meal
81 periods)

82 *Hypoglycemic Outcomes*

83 6) Time below 54 (over 24 hours is a co-primary outcome) and 70 mg/dL

84 *Glycemic Variability*

85 7) Coefficient of variation

86 Insulin Delivery Metrics

87 8) Total Daily Insulin Units

88 9) Basal Daily Insulin Units

89 10) Bolus Daily Insulin Units

90 11) Total Daily Insulin Units per Kilogram of Weight

91 12) Total Basal Insulin Units per Kilogram of Weight

92 13) Total Bolus Insulin Units per Kilogram of Weight

93 HbA1c Metrics

94 14) HbA1c

95 Clinical Metrics

96 15) BMI

97 Additional Exploratory Endpoints:

98 CGM Metrics:

99 *Continuous Outcomes:*

100 1) Time below 50 and 60 mg/dL

101 2) Time above 300 mg/dL

102 3) Area under the curve of sensor glucose levels above 180 mg/dL

103 4) Area over the curve of sensor glucose levels below 70 mg/dL

104 5) Standard deviation of sensor glucose levels

105 *Binary Outcome:*

106 1) Time in range (70-180 mg/dL) >70% and time below 54 mg/dL <1%.

107 HbA1c Metrics:

108 *Binary Outcomes:*

109 1) Improvement in HbA1c $\geq 0.5\%$

110 2) Improvement in HbA1c $\geq 1.0\%$

111 3) Relative reduction in HbA1c $\geq 10\%$

112 4) HbA1c $< 7.0\%$

113 All secondary efficacy and exploratory CGM metrics will be calculated over each treatment
114 period for the full 24 hours, daytime (6:00 AM – 11:59 PM), and nighttime (12:00 AM – 5:59
115 AM). They also will be calculated for each post-meal period measured for up to three hours after
116 the start of a meal. The same will be done for all secondary efficacy insulin endpoints. It is

117 important to note that all hypoglycemic outcomes are considered both efficacy and safety
118 outcomes.

119 **4.1 Calculation of the Co-Primary Outcomes**

120 As noted above, the co-primary outcomes are:

121 • Daytime Hyperglycemia (percent CGM readings above 180 mg/dL)
122 • Hypoglycemia (percent CGM readings below 54 mg/dL; daytime/nighttime combined)

123 For each co-primary outcome, a single value will be calculated for each subject for each period
124 by pooling all CGM readings in the first 84 days of each period or up to and including the 12-
125 week visit date (whichever comes first).

126 In these calculations, each period will start at the time that the subject turns on auto mode. If the
127 exact time is not known, then the period will start at midnight the day after the subject initiates it.
128 We expect auto mode to be initiated 6-10 days after the randomization visit in period 1 and 6-10
129 days after the first day of period 2. Participants who are 670G auto mode users at screening may
130 initiate auto mode at the beginning of a study period in which the 670 3.0 HCL pump is being
131 used. The end of the period will be defined as either 11:59 PM on the 12-week visit date or
132 exactly 2,016 hours (i.e. 24 hours/day*84 days) after auto mode is turned on, whichever comes
133 first. If the exact time that auto mode is turned on is unknown, then it will be defined as 11:59
134 PM on the 12-week visit date or 11:59 PM on the 84th day of the period, whichever comes first.
135 Data will not be truncated due to protocol deviations.

136 CGM readings will be used according to the time of day as follows:

137 *Hyperglycemic Outcome*

138 CGM readings will be limited to daytime values (between 6:00 AM and 11:59 PM, inclusively).

139 *Hypoglycemic Outcome*

140 All CGM readings will be used with no restriction according to time of day (i.e., all 24 hours).

141 The baseline value of each co-primary outcome will be calculated by pooling all CGM readings
142 from the last 14 days of the CGM run-in phase. As mentioned above, only readings occurring
143 between 6:00 AM and 11:59 PM (inclusively) during this period will be included in the
144 calculation of the hyperglycemic outcome. If less than 336 hours of CGM data are available
145 during this period, then an additional preceding day will be pooled one at a time until either 336
146 hours are available or 30 total days are reached (whichever comes first).

147 **4.1.1 Replication of Co-Primary Analyses Omitting the First Four Weeks of Each Period**

148 The co-primary analyses will be replicated after omitting the first four weeks of each crossover
149 period. In these analyses, the first and last day of each crossover period will be the same as
150 defined above. Therefore, each period in these analyses will start exactly 672 hours (i.e. 24
151 hours/day*28 days) after the start of the period as defined above. For each co-primary outcome
152 metric, a single value will be calculated by pooling all CGM data from this starting point to the
153 final day of the period, inclusively. Only daytime data (6:00 AM to 11:59 PM) will be included
154 in the calculation of the hyperglycemic outcome.

155 Other than the differences described above, replication of co-primary analyses omitting the first
156 four weeks of each period will be the same as the main analyses.

157 **4.2 Calculation of Secondary Outcomes**

158 All secondary CGM metrics calculated over the full 24 hours of the day will be computed
159 analogously as described above for the primary analysis. Baseline CGM metrics will also be
160 calculated analogously. The same subjects will be included as in the primary analysis. A similar
161 calculation will also be done for the daytime and nighttime metrics at baseline and during each
162 period, except readings will only be pooled if they fall within the appropriate time windows
163 (6:00 AM – 11:59 PM for daytime and 12:00 AM – 5:59 AM for nighttime).

164 Secondary insulin metrics calculated per kilogram of weight will be computed by dividing total
165 units by weight measured at randomization.

166 Missing data will not be imputed for any of the secondary analyses in this study, and data will
167 not be truncated due to protocol deviations. Secondary analyses will only include available cases.

168 **4.2.1 Calculation of Post-Meal Secondary Outcomes**

169 The start time of each meal will be defined as the time that the carbohydrate is entered into the
170 pump (t=0). If the next carbohydrate is entered into the pump less than three hours after t=0, then
171 the data will be pooled only from t=0 to the start time of the next meal.

172 We will assume that each subject will consume up to three meals per calendar day. If more than
173 three carbohydrates are entered into the pump in one day, then only the largest three will be
174 included in post-meal analyses. If less than three are consumed in one day, then only the meals
175 available for that day will be included.

176 The secondary CGM outcomes calculated during the post-meal periods will be computed by
177 pooling all CGM readings occurring up to three hours after the start of the meal. For the insulin
178 outcomes, all insulin data occurring during this time will be pooled. In the analyses, data will be
179 pooled across all meals within a given period to calculate post-prandial outcomes for each period
180 for each subject. Therefore, analyses of post-prandial endpoints will not be performed on a meal
181 level.

182 For peak glucose and change from baseline to the peak, the mean will be computed across all
183 meals to calculate the outcome. This will be done to ensure that the peak is not taken to be a
184 single reading from the entire period, because this value would be expected to be extremely large
185 for every subject.

186 At least 72 hours of post-prandial CGM data will be required to be included in secondary post-
187 meal CGM or insulin analyses.

188 **5. Analysis Datasets and Sensitivity Analyses**

189 **5.1 Analysis Cohorts**

- 190 • All analyses will be performed on an intention-to-treat basis with each period included in
191 the treatment arm assigned by randomization regardless of the actual treatment received.

192 The primary and secondary efficacy analyses for this study will include all randomized
193 subjects with at least 72 hours of CGM data in either period.
194 • All subjects with at least 72 hours of insulin data in either period will be included in
195 insulin analyses.
196 • A per-protocol analysis for the co-primary outcomes will be conducted by limiting to
197 subjects who used the CGM at least 80% of the time in both periods and who used auto
198 mode for at least 80% of the time in each treatment period, unless the sample size for the
199 analysis is at least 95% of the sample size in the primary analysis.
200 • All participants will be included in safety analyses, regardless of whether the study was
201 completed.

202 **6. Analysis of the Primary Efficacy Endpoints**

203 **6.1 Missing Data**

204 Missing data will not be imputed for the primary analysis in this study.

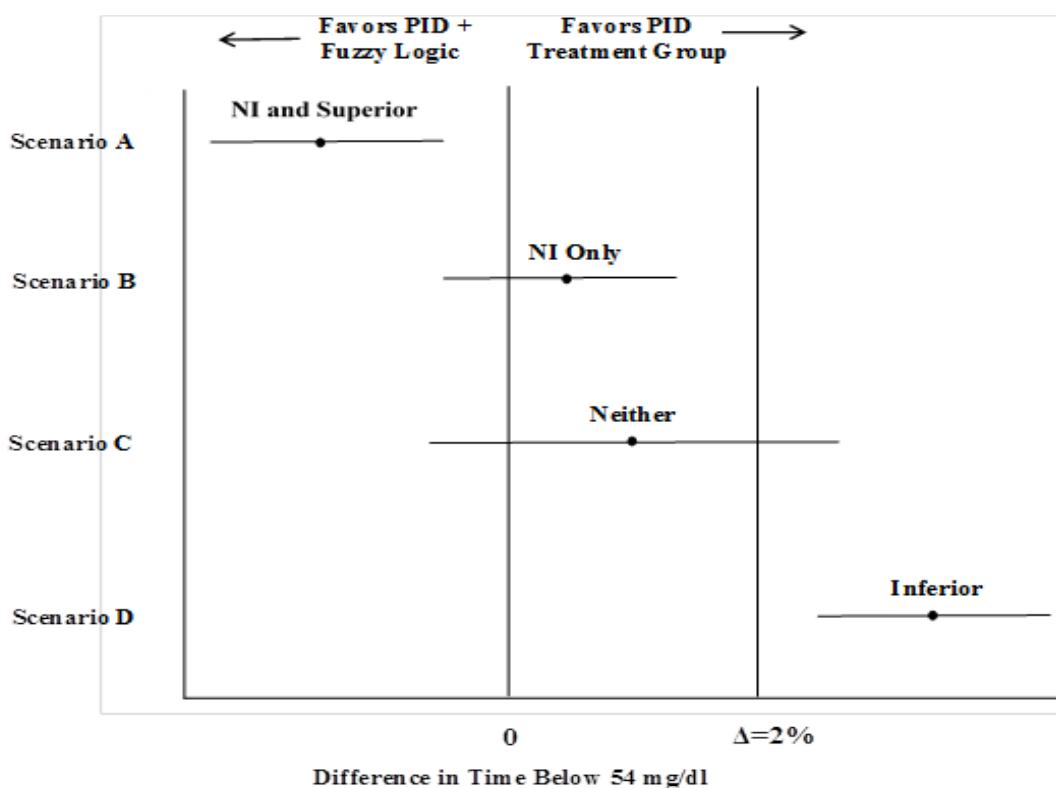
205 **6.2 Statistical Methods**

206 For each co-primary outcome, mean \pm SD or summary statistics appropriate to the distribution
207 will be reported by treatment period. A repeated measures least squares regression model with an
208 unstructured covariance structure will be fit for the two co-primary outcomes. Each of these
209 models will adjust for period, pre-study 670G system use, and HbA1c at randomization as fixed
210 effects. The models will include 3 time points: (1) baseline, (2) period 1 outcome, and (3) period
211 2 outcome. Prior 670G system use in auto-mode at the time of enrollment and HbA1c at
212 randomization will be included as covariates in the model because they will be used to stratify
213 randomization.

214 A separate model also will be built for each co-primary outcome with the inclusion of a period
215 by treatment interaction term to assess for the presence of a carryover effect.

216 All covariates obtained on a continuous scale will be entered into the models as continuous
217 variables, unless it is determined that a variable does not have a linear relationship with the
218 outcome. In such a case, categorization and/or transformation will be explored. All p-values will
219 be two-sided. For the co-primary analyses, the intervention will be deemed effective only if the
220 null hypotheses for both co-primary outcomes are rejected.

221 Standard residual diagnostics will be performed for all analyses. If values are highly skewed,
222 then a transformation or nonparametric methods will be used instead.


223 **6.2.1 Statistical Methods for Percent Time > 180 mg/dL during the Daytime (6:00 AM –
224 11:59 PM)**

225 For percent time > 180 mg/dL during the daytime, a 95% confidence interval will be reported for
226 the difference between the two treatment arms based on the least squares model. Residual values
227 will be examined for an approximate normal distribution. If values are highly skewed, then a
228 transformation or nonparametric methods will be used instead. Based on previous data, we do
229 not expect that a transformation will be necessary. A two-sided p-value will be reported, and a
230 5% significance level will be used to declare statistical significance.

231 **6.2.2 Statistical Methods for Percent Time < 54 mg/dL**
232 For percent time < 54 mg/dL, a two-sided 95% confidence interval will be reported for the
233 difference between the AHCL arm and the 670G arm based on the least squares model. Non-
234 inferiority will be assessed by comparing the upper limit of this confidence interval to a non-
235 inferiority limit of 2% (approximately 30 minutes per day). Residual values will be examined for
236 an approximate normal distribution. If values are highly skewed, then a transformation or
237 nonparametric methods will be used instead. A two-sided p-value will be reported, and a 5%
238 significance level will be used to declare statistical significance.

239 Since non-inferiority is typically framed in terms of a one-sided test, it is worth noting that the
240 left half of a two-sided test at alpha = 0.05 gives the same rejection region as a one-sided test at
241 alpha = 0.025. Therefore, reporting a two-sided 95% confidence interval will provide flexibility
242 to also test for inferiority if non-inferiority cannot be declared, or superiority if non-inferiority is
243 declared. Note that since all tests for non-inferiority/inferiority/superiority are based on the same
244 confidence interval, the overall type 1 error rate is maintained at 5%. The following figure shows
245 the inference to be drawn for various scenarios of the two-sided 95% confidence interval:

Interpretation of Various Scenarios of Non-inferiority (NI) and Superiority for Treatment Group Comparison of Time Below 54 mg/dl

* NI refers to non-inferiority of PID + Fuzzy Logic compared with PID with a non-inferiority limit of $\Delta=2\%$ time below 54 mg/dl.

246

247 **6.2.3 Boxplots of Monthly Trends**
248 Monthly trends for each co-primary outcome will be evaluated using boxplots. For each co-
249 primary outcome, we expect to have 12 weeks' worth of CGM data for each subject for each
250 treatment arm. This amounts to approximately three months' worth of data.
251 As mentioned above, each period will be defined from the time the subject initiates auto mode
252 until either 84 days have been included or the 12-week visit occurs (whichever comes first).
253 Therefore, the number of days included in each period may vary across subjects. In the monthly
254 boxplots, the first and second months will respectively include all CGM readings from the first
255 672 hours (i.e. 24 hours/day*28 days) and the next 672 hours. All remaining CGM readings will
256 be included in the third month.
257 After partitioning the data into three separate months in each period, a single value for each
258 month will be calculated for each co-primary outcome for each treatment arm by pooling all
259 CGM readings falling within the three disjoint windows of days that correspond to each of the
260 three months. For the hyperglycemic outcome, only readings falling between 6:00 AM and 11:59
261 PM will be included in the calculation. These calculated values will be used to generate boxplots
262 displayed by treatment arm and period for each of the three months over time. Only subjects with
263 at least 72 hours of CGM data in all three months will be included in the monthly boxplots.

264 **6.2.4 Summary Statistics by Hour of the Day**
265 Summary statistics appropriate to the distribution for each co-primary outcome will also be
266 displayed by treatment arm for each hour of the day. For each co-primary outcome for each
267 period, a single value for each hour of the day will be computed by pooling all CGM readings
268 falling within the specified hour. The hourly intervals will be left-closed and right-open (defined
269 as 00:00-<01:00, 01:00-<02:00, etc.). The start and end of each period will be defined in the
270 same way as described above. For the hyperglycemic outcome, summary statistics will not be
271 reported for the nighttime hours (12:00 AM to 5:59 AM). To be included in these analyses,
272 subjects must have at least one hour of CGM data in each hour interval for at least one period.

273 **7. Analysis of the Secondary Endpoints**

274 **7.1 Secondary CGM Outcomes**

275 For each secondary CGM outcome, mean \pm SD or summary statistics appropriate to the
276 distribution will be reported by treatment arm. All secondary CGM metrics calculated over the
277 full 24 hours of the day, daytime, and nighttime will be compared between treatment arms using
278 the same repeated measures least squares regression model described above for the co-primary
279 outcomes.

280 Replication of the primary outcome omitting the first four weeks of each period (as described in
281 section 4.1.1) will be considered a secondary analysis. In this analysis, the baseline value
282 included in the model will be the same baseline value as in the primary analysis.

283 The CGM outcomes listed in Section 4 under "Additional Exploratory Endpoints" will be
284 tabulated separately by treatment arm with no formal statistical comparison.

285 **7.2 Secondary Insulin Outcomes**

286 For each secondary insulin outcome, mean \pm SD or summary statistics appropriate to the
287 distribution will be reported by treatment arm. All secondary insulin metrics calculated over the
288 full 24 hours of the day, daytime, and nighttime will be compared between treatment arms using
289 the same repeated measures least squares regression model described above for the co-primary
290 outcomes.

291 The insulin outcomes listed in Section 4 under “Additional Exploratory Endpoints” will be
292 tabulated separately by treatment arm with no formal statistical comparison. For these outcomes,
293 change will be calculated from the start of the period.

294 **7.3 Secondary HbA1c Outcomes**

295 For HbA1c, a longitudinal model adjusting for period and pre-study 670G system use as fixed
296 effects will be used to compare treatments. The model will include three time points: (1)
297 baseline, (2) period 1 follow-up, (3) period 2 follow-up.

298 The binary HbA1c outcomes listed in Section 4 under “Additional Exploratory Endpoints” will
299 be tabulated separately by treatment arm with no formal statistical comparison. For these
300 outcomes, improvement in HbA1c will be assessed from the start of the period.

301 **7.4 Secondary Clinical Outcomes**

302 For BMI, the same model described in section 7.3 for HbA1c will be used for a treatment arm
303 comparison. The model will additionally adjust for HbA1c at randomization, age, and gender as
304 fixed effects.

305 **7.5 Boxplots of Monthly Trends**

306 For each of the following secondary outcomes computed over the full 24 hours of the day,
307 monthly trends will be evaluated using boxplots:

- 308 • Percentage of time spent with sensor glucose levels between 70 and 180 mg/dL
- 309 • Mean of sensor glucose levels
- 310 • Total Daily Insulin

311 For each of these secondary outcomes, we expect to have 12 weeks’ worth of data for each
312 subject for each treatment arm. This amounts to approximately three months’ worth of data. Each
313 period will be partitioned into three disjoint months using the same approach described in section
314 6.2.3. A single value for each of these three months will be calculated for each of these three
315 secondary outcomes for each treatment arm by pooling the CGM readings corresponding to each
316 month. These calculated values will be used to generate boxplots displayed by treatment arm and
317 period for each of the three months over time.

318 **7.6 Analysis Windows**

319 Only HbA1c and BMI measurements obtained within the following analysis windows at each
320 time point included in the analyses:

- 321 • 12 weeks: \pm 14 days from the 84th day of the period

322 **8. Safety Analyses**

323 **8.1 Definitions**

324 Reportable adverse events for this protocol include all serious adverse events (SAE), adverse
325 device effects, adverse events occurring in association with a study procedure, severe
326 hypoglycemia (SH), and diabetic ketoacidosis (DKA) as defined in the protocol.

327 **8.2 Adverse Events Summary**

328 All episodes of SH and of DKA along with any other reportable adverse events will be listed by
329 treatment arm from the time of enrollment to the last study visit. Separate listings will be
330 provided for pre-randomization events and for events occurring during each treatment arm.

331 **8.3 Comparison of Safety Outcomes between Treatment Arms**

332 Each of the following safety outcomes will be tabulated by treatment arm:

- 333 • Number of adverse events/participants with at least one event
 - 334 ▪ Number of events meeting definition of ADE
- 335 • Number of serious adverse events/participants with at least one event
 - 336 ▪ Number of SAEs meeting definition of UADE
- 337 • Listing of hospitalizations and reasons for the hospitalization
- 338 • Severe Hypoglycemic Events
 - 339 ▪ Number of severe hypoglycemic events as defined in the protocol/number of
340 participants with an event
 - 341 ▪ Number of severe hypoglycemic events associated with seizure or loss of
342 consciousness/number of participants with at least one event
- 343 • Diabetic Ketoacidosis
 - 344 ▪ Number of diabetic ketoacidosis events, as defined in the protocol/number of
345 participants with an event

346 Of the outcomes listed above, only the ones involving SH or DKA events will be compared
347 between treatment arms, if there are at least five events across the two treatment arms. The others
348 will only be tabulated by treatment arm.

349 All of the above safety outcomes will be tabulated for all subjects (including dropouts and
350 withdrawals) for their entire period of study participation. Any adverse events that occurred prior
351 to the start of period 1 (as defined above) will not be included in the treatment arm comparisons
352 listed above. Each period will inclusively consist of all days in between the start of the period
353 and the 12-week visit date.

354 If there are enough SH and DKA events associated with each treatment arm to allow for formal
355 statistical modeling, then treatment arm comparisons will be performed for the SH and DKA
356 outcomes listed above. For binary outcomes, repeated measures logistic regression models
357 adjusting for period, pre-study 670G system use, HbA1c at randomization, and whether the
358 subject experienced any events in the 12 months prior to enrollment will be used to compare
359 treatment groups. If the model does not converge, a mid-p binomial test will be considered. For
360 counts, the treatment groups will be compared using repeated measures Poisson regression
361 models adjusting for period, pre-study 670G system use, HbA1c at randomization, and whether
362 the subject experienced any events in the 12 months prior to enrollment.

363 **9. Adherence and Retention Analyses**

364 The following tabulations will be performed by treatment arm to assess protocol adherence for
365 this study:

- 366 • Number of protocol deviations by severity with brief descriptions listed for each
367 treatment arm
- 368 • Number of and reasons for unscheduled visits and phone calls for each treatment arm

369 Additionally, the following two flowcharts will be created:

- 370 • Flowchart displaying all dropouts prior to and post randomization in addition to treatment
371 arm completion to assess dropout rates
- 372 • Flowchart displaying the number of subjects completing and missing each visit by
373 treatment arm to assess visit completion rates

374 **10. Baseline Descriptive Statistics**

375 Baseline demographic and clinical characteristics of the cohort of all randomized subjects will be
376 summarized in a table. Descriptive statistics will be tabulated overall and by randomization
377 group. For continuous variables, summary statistics appropriate to the distribution will be given.
378 For discrete variables, number and percentage will be reported for each category.

379 The following baseline CGM metrics will be included in a separate table:

- 380 • Percentage of time in the target range (70-180 mg/dL)
- 381 • Mean glucose
- 382 • Coefficient of Variation
- 383 • Percentage of time below 54 mg/dL and below 70 mg/dL
- 384 • Percentage of time above 180 mg/dL and above 250 mg/dL
- 385 • Percentage of time above 180 mg/dL during the daytime (6:00 AM – 11:59 PM)
- 386 • Percentage of time above 180 mg/dL during the nighttime (12:00 AM – 5:59 AM)

387 These baseline metrics will be calculated in the manner described in sections 4.1 and 4.2.

388 Additionally, each of these baseline metrics will be calculated for the post-meal periods as
389 described in section 4.2.1, and will be reported in another table.

390 **11. Planned Interim Analyses**

391 No formal interim analyses or stopping guidelines are planned for this study.

392 The DSMB will review data for safety per the DSMB Standard Operating Procedures
393 approximately every six months. The data to be reviewed will include information regarding
394 adverse events, device issues, and protocol adherence/deviations as they may relate to participant
395 safety.

396 **12. Subgroup Analyses**

398 The treatment effect in subgroups based on baseline factors will be assessed for each co-primary
399 outcome. These analyses will be considered exploratory and will be conducted to determine
400 whether a similar trend to the overall treatment effect is seen in these subgroups. Assessment of
401 subgroup analyses will be interpreted with caution, particularly if the primary analysis does not
402 show significant results. The general approach for these subgroup analyses will be to add an

403 interaction term for the subgroup factor by treatment into the model used for the primary
404 analysis.

405 The following baseline factors will be assessed:

- 406 • Age: as a continuous variable and in 2 age groups: 14-<21 and 21-<30 years old
- 407 • Baseline HbA1c: as a continuous variable and in 2 groups: HbA1c $\leq 8.5\%$ and $\geq 8.6\%$
- 408 • Insulin method/CGM: 670G user, injection user with CGM, injection user without CGM,
409 pump user with CGM, and pump user without CGM
- 410 • T1D duration as a continuous variable
- 411 • Gender
- 412 • Race/ethnicity
- 413 • Random C-peptide level

414 Cut points for dichotomizing T1D duration and random C-peptide level variables will be set to
415 be the medians for display purposes.

416 In addition to the assessment for interaction, the co-primary analyses and all secondary analyses
417 described in sections 6 and 7 will be conducted separately in the two age groups and two HbA1c
418 groups. Analyses will only be replicated within these subgroups for efficacy outcomes where p-
419 values are being calculated. Exploratory endpoints will not be calculated within these subgroups.

420 **13. Multiple Comparisons/Multiplicity**

421 For the co-primary analyses, the intervention will be deemed effective only if the null hypotheses
422 for both co-primary outcomes are rejected. Therefore, the type I error rate is not inflated and
423 there will be no correction for multiple comparisons.

424 For the secondary analyses, the false discovery rate will be controlled using the adaptive Two
425 Stage Benjamini-Hochberg procedure. False discovery rate corrections will be applied within
426 each of the following categories:

- 427 • Secondary CGM Analyses
 - 428 ○ Over the full 24 hours of the day
 - 429 ○ During the daytime, nighttime, or post-meal periods
- 430 • Secondary Insulin Analyses, HbA1c Analyses, and Clinical Metrics
- 431 • Questionnaires
- 432 • Subgroup Analyses
 - 433 ○ Based on baseline factors
 - 434 ■ For the hyperglycemic outcome
 - 435 ■ For the hypoglycemic outcome
 - 436 ○ Within the 14-<21 age group
 - 437 ■ CGM Metrics
 - 438 • Over the full 24 hours of the day
 - 439 • During the daytime, nighttime, or post-meal periods
 - 440 ■ Insulin Metrics, HbA1c Metrics, and Clinical Metrics
 - 441 ○ Within the 21-<30 age group
 - 442 ■ CGM Metrics
 - 443 • Over the full 24 hours of the day

444 • During the daytime, nighttime, or post-meal periods
445 ▪ Insulin Metrics, HbA1c Metrics, or Clinical Metrics
446 ○ Within the HbA1c $\leq 8.5\%$ group
447 ▪ CGM Metrics
448 • Over the full 24 hours of the day
449 • During the daytime, nighttime, or post-meal periods
450 ▪ Insulin Metrics, HbA1c Metrics, or Clinical Metrics
451 ○ Within the HbA1c $\geq 8.6\%$ group
452 ▪ CGM Metrics
453 • Over the full 24 hours of the day
454 • During the daytime, nighttime, or post-meal periods
455 ▪ Insulin Metrics, HbA1c Metrics, or Clinical Metrics

456 A table containing the number of p-values broken down into each of these categories will also be
457 provided.

458 For safety analyses, the per-protocol analysis, tests for carryover effects, and intervention
459 compliance analyses, no adjustments for multiple comparisons will be made. For the replication
460 of the primary analyses omitting the first four weeks of each period (overall and within the age
461 and HbA1c groups), the p-values will be included in the appropriate daytime, nighttime, and
462 post-meal CGM category.

463 14. Additional Tabulations and Analyses

464 14.1 Device Issues

465 All reported device issues will be tabulated regardless of whether they were associated with
466 adverse events. Separate listings will be provided for pre-randomization events and for events
467 occurring during each treatment arm. For each device issue, the following information will be
468 listed:

- 469 • Onset date
- 470 • Type of device issue
- 471 • Description of the device issue

472 14.2 Amount of CGM and Auto Mode Use

473 Mean \pm SD or summary statistics appropriate to the distribution will be tabulated for the
474 percentage of time using the auto mode feature (over the entire period and with the CL system
475 active) and the CGM for each treatment arm. All CL system discontinuations will be listed in a
476 table by treatment arm.

477 The percentage of time using the CGM will be calculated by dividing the total number of
478 available CGM readings by the maximum possible number of readings based on the length of the
479 study period described in section 4.1.

480 The percentage of time using auto mode over the entire study period will be computed by
481 summing the gaps in between segments when auto mode is active and dividing by the total
482 length of the period as defined in section 4.1. For a particular segment, if auto mode is active at
483 the start of the segment, then the gap will be included in the numerator. However, if it is only
484 active at the end of the segment, the gap will not be included in the numerator. Gaps greater than

485 90 minutes long where auto mode is active at the start and end of the gap will not be counted in
486 the numerator because it is possible that the system may not have been on during those periods.

487 Additionally, the percentage of time using auto mode while using the CL system will be
488 calculated. In these calculations, the numerator will be calculated analogously as described
489 above. However, the denominator will be the sum of the gaps in between all segments (not the
490 total possible amount of minutes in the entire period).

491 For example, suppose the CL system provides the following sequence: Auto Mode Active
492 [0:00:00], Auto Mode Active [0:05:00], Auto Mode Active [0:10:00], Auto Mode Inactive
493 [0:14:00], Auto Mode Active [0:25:00], Auto Mode Active [0:30:00]}. In this case, the
494 denominator in the calculation is 30 minutes. During this time, auto mode was inactive from
495 0:14:00 to 0:25:00, and it was active for the other 19 minutes. Therefore, the percentage of time
496 using auto mode while using the CL system would be $100 * (19/30) = 63\%$.

497 The percentages of time using CGM and the time auto mode is active (over the entire period and
498 while using the CL system) will be compared between treatments using the same model
499 described above for the primary outcome.

500 Monthly values for CGM use and auto mode use (over the entire period and while using the CL
501 system) will also be calculated, and summary statistics will be reported for each of the three
502 months. The three months will be defined as in section 6.2.3. Within each month, CGM use and
503 auto mode use will be calculated analogously as described above. Treatment arm comparisons
504 will not be done for CGM use and auto mode use for any of the three months.

505 Scatter plots of CGM use and auto mode use by time in range (70-180 mg/dL), time > 180
506 mg/dL, and time < 54 mg/dL will be produced. Summary statistics for these metrics will also be
507 reported by CGM use and auto mode use.

508 **14.3 Analysis of Quality of Life Data**

509 Each of the following questionnaires will be administered to all participants who are adults or
510 adolescents at baseline and at the end of each period:

- 511 • Diabetes Distress Scale
 - 512 ○ Emotional Burden Subscale
 - 513 ○ Physician Related Distress Subscale
 - 514 ○ Regimen Related Distress Subscale
 - 515 ○ Interpersonal Distress Subscale
- 516 • Glucose Monitoring Satisfaction Survey
 - 517 ○ Openness Subscale
 - 518 ○ Emotional Burden Subscale
 - 519 ○ Behavioral Burden Subscale
 - 520 ○ Trust Subscale
- 521 • Hypoglycemia Confidence Survey
- 522 • Diabetes Technology Attitudes Survey
- 523 • INSPIRE Survey (separate versions for adolescents and adults)

524 The electronic data capture system for this study will not allow the subject to submit any
525 questionnaires until all items are completed. However, it is still possible to have missing data,
526 because each question will provide participants with the option to not answer. Analysis will be
527 limited to subjects who submit a questionnaire (no imputation).

528 For each full questionnaire and subscales, total scores (or mean scores depending on the scoring
529 instructions for the survey) will be calculated and summary statistics appropriate to the
530 distribution will be tabulated at each time point by treatment arm. For questionnaires and
531 subscales where the total score is calculated, only subjects completing the entire survey (or entire
532 subscale) will be included in the tabulations of summary statistics. Since it is possible for a
533 subject to complete all questions in a particular subscale but not in the whole survey, it is
534 possible that the N will differ between the full questionnaire and the subscales. The distribution
535 of responses for each individual question at each time point will also be tabulated. Total scores
536 for the full questionnaires and subscales will also be compared between treatments using the
537 same model described above for the primary outcome.

538 **14.4 Pump Settings**

539 The relationship between the following pump settings and time in range (70-180 mg/dL), time >
540 180 mg/dL and time < 54 mg/dL will be examined:

- 541 1) Active Insulin Time (AIT)
- 542 2) Set point
- 543 3) Insulin-Carbohydrate Ratio (ICR)

544 A participant should have a value of Insulin-Carbohydrate Ratio (ICR) for each auto-bolus
545 delivered. The average of all values will be calculated for each participant by period. An
546 average of Active Insulin Time will be calculated for each participant and will be weighted by
547 the amount of time spent at each value. Mean \pm SD or summary statistics appropriate to the
548 distribution will be reported for these metrics by treatment group. Summary statistics for the
549 CGM metrics will be reported by treatment group for categories of AIT and ICR.

550 Set point is the daily sensor glucose target while in auto mode. The only two possible values are
551 100 mg/dL and 120 mg/dL. The percentage of time a participant has spent with a set point of
552 100 mg/dL will be calculated for each participant. Scatter plots of percent time with a set point
553 of 100 mg/dL and time in range, time above 180 mg/dL and time below 54 mg/dL will be shown.