

1 CUHK Achilles Tendon Disorder Registry

2 **Research Project Statement**

3 The Achilles tendon is one of our body's most important structures, and the 'Achilles heel' is
4 a real clinical problem. The management of its pathologies—spanning acute ruptures to
5 chronic tendinopathies—remains heterogeneous, with a critical absence of high-quality
6 longitudinal data to compare treatments and guide personalized rehabilitation strategies. To
7 address this evidence gap, we will establish a comprehensive prospective Achilles Tendon
8 Disorder Registry.

9 The registry will integrate our team's expertise in Achilles tendon research, which
10 encompasses standardized assessment tools, biomechanical studies, and treatment evaluation.
11 By systematically collecting outcome data, it will enable us to: determine the effectiveness of
12 different treatment methods, advance evidence-based knowledge, improve the quality of care,
13 enhance patient safety, achieve better patient outcomes, and reduce healthcare costs. This
14 longitudinal registry will monitor long term outcome of Achilles tendon problem, and track
15 Achilles tendon treatment outcomes, thereby helping to inform precision rehabilitation
16 strategies and reduce long-term disability in the future.

17 **Research Questions**

- 19 1. Does the baseline status (e.g., vascularity and elastography metrics) influence the
20 prognosis?
- 21 2. Does pre-existing Achilles tendinopathy increase the risk of acute Achilles tendon rupture?
- 22 3. Which group of patients is more responsive to which treatment?

23 **Hypothesis**

- 25 1. Baseline status (e.g., vascularity and elastography metrics) significantly influences
26 prognosis.
- 27 2. Pre-existing Achilles tendinopathy significantly increases the risk of acute Achilles tendon
28 rupture.
- 29 3. Different patient groups respond differently to various treatment methods.

31 **Research Methodology**

32 **Study setting**

33 This prospective cohort study will be conducted at the Prince of Wales Hospital in Hong
34 Kong. All self-reported, functional, and ultrasonographic outcomes will be assessed at
35 baseline, 6 weeks, 3 months, 6 months, and 1 year. Following the initial 1-year follow-up, all
36 self-reported outcomes will be assessed annually through online questionnaires at 2, 3, 4, and
37 5 years. All participants must provide written informed consent prior to enrolment. The
38 investigator will obtain and document consent before any study procedures are performed.
39 All eligible participants will be fully informed about the study and given ample time to
40 consider participation; the research team will answer all participant questions. The trial will
41 be conducted in accordance with the Declaration of Helsinki.

42 **Eligibility**

43 Inclusion:

- 45 • Adults (>18 years of age)

47

48 Exclusion:

49

50

51

52

53

54

- 55 Any physical or psychological comorbidity that would impair the ability to complete study assessments (e.g., significant neurological deficits) or preclude the provision of informed consent.
- Concomitant diseases that severely affect lower limb function or assessment (e.g., severe osteoarthritis of the knee or hip, prior lower limb amputation, peripheral vascular disease, active rheumatoid arthritis, lower limb paralysis, etc.)

56 **Outcome measures**

57 Baseline demographic data will be collected, including age (date of birth), gender (biological sex), occupation, recreational activity (Pre-injury and current activity levels -Tegner score), diagnosis (types of Achilles tendon problem) , treatment modalities already tried.

60 Time frames for collection include 0 weeks (baseline), 6 weeks, 3 months, 6 months, 1 year. Following the initial 1-year follow-up, all self-reported outcomes will be assessed annually through online questionnaires at 2, 3, 4, and 5 years.

64 **Primary Outcome: Victorian Institute of Sports Assessment (VISA-A) Questionnaire**

65 The primary outcome measure will be the Victorian Institute of Sport Assessment (VISA-A) questionnaire, available in either the original English or validated Chinese version, depending on the participant's native language. This specific scoring system developed for the Achilles tendon is the most widely used score for clinical Achilles research. The VISA-A is scored on a scale of 0 to 100; lower scores indicate more severity of symptoms, while a score of 100 indicates a healthy and pain-free Achilles tendon.

72 **Secondary Outcomes: Numeric Pain Rating Scale (NPRS); Foot and Ankle Outcome Scores (FAOS); Achilles tendon resting angle (ATRA); Royal London hospital test; Calf Muscle Strength; Heel raise test; Jump test; Foot pressure distribution; Ultrasonographic tendon thickness; Ultrasonographic tendon cross-sectional area; Ultrasonographic neovascularity; Ultrasonographic tendon elasticity; Ultrasonographic calf muscle quality; Photoacoustic imaging-derived tendon oxygenation and vascularity; Thermographic tendon temperature.**

80 **Numeric Pain Rating Scale (NPRS):** The Numeric Pain Rating Scale (NPRS; 0–10, where 10 represents maximum pain) will be used to assess pain levels, as pain is the primary symptom of midportion Achilles tendinopathy. Participants will report their “Worst pain during sports in the past two weeks,” “Worst pain during daily activities in the past two weeks.”

86 **Foot and Ankle Outcome Scores (FAOS):** The FAOS is a validated patient-reported scoring system used for general foot and ankle problems. It is split into five categories: symptoms, pain, daily activities, sporting function, and quality of life. Scores range from 0 to 100, with 0 being the lowest and 100 being the highest.

90 **Achilles tendon resting angle (ATRA):** The ATRA will measure participants' tendon length/tension. Participants should be positioned in a prone position with the knee flexed to 90 degrees. The assessor will use a dynamic joint goniometer to measure the angle at which the foot passively falls.

94 **Royal London hospital test:** The Royal London Hospital Test is used to help diagnose mid-portion Achilles tendinopathy. The patient lies prone with the foot relaxed, and the examiner

96 palpates the most tender spot on the Achilles tendon. The patient then moves the ankle
97 through dorsiflexion and plantarflexion. A positive test occurs if tenderness decreases during
98 dorsiflexion.

99 **Calf Muscle Strength:** The hand-held dynamometer will be used to quantify isometric
100 muscle strength during ankle dorsiflexion and plantarflexion. Participants will maintain
101 maximal isometric contraction for 3 seconds. Three trials will be recorded for each movement,
102 with 30-second rest intervals between trials to prevent fatigue.

103 **Heel raise test:** Participants will be instructed to keep the knee straight and rise as high as
104 possible on the toes each time until fatigue. Participants can place two fingertips per hand on
105 the wall to maintain balance. The rhythm will be set at a frequency of 30 heel rises per
106 minute by following a metronome. Total test duration (in seconds) will be recorded.

107 **Jump test:** Participants will perform three one-legged counter-movement jumps on a
108 pressure mat (Tekscan, USA) with jump height (cm) calculated from flight time. After
109 demonstration and submaximal practice jumps, the patient executed maximal jumps from a
110 standing position by rapidly squatting (flexing knee/hip/ankle) before exploding upward. The
111 highest jump was recorded, with NPRS-reported Achilles tendon pain immediately post-test.

112 **Foot pressure distribution:**

113 In foot pressure distribution examination, the scan (Tekscan, USA) will be masked and
114 divided the foot into eight regions including both forefoot, midfoot and hindfoot: hallux,
115 lesser toes, lateral and medial forefoot, lateral and medial midfoot, lateral and medial
116 hindfoot. Peak pressure and impulse in each region will be calculated to see the before-and-
117 after change. Additionally, the centre of pressure excursion index (CPEI) will also be
118 calculated to which reflects the excursion of the centre of pressure. The first and last points of
119 a centre of pressure curve will be connected to construct a line measured in the distal tertile
120 of the foot and normalized by the foot's width.

121 **Zebris Treadmill Gait and Stance Analysis:** The Zebris is a treadmill equipped with
122 advanced pressure sensors designed to analyze gait and stance. Subjects were instructed to
123 walk barefoot on the treadmill at their comfortable pace while maintaining a natural walking
124 pattern. During the test, the pressure distribution across the plantar surface of the feet was
125 recorded, capturing dynamic data such as force, timing, and spatial parameters of each step,
126 which ensures precise measurement of walking and stance characteristics, providing valuable
127 insights into balance, weight distribution, and movement symmetry for clinical or research
128 purposes.

129 **Achilles Ultrasonography:**

130 To ensure reproducibility, a standardised Achilles tendon ultrasound imaging protocol will be
131 used to perform the assessment at all time points in the trials. Subjects will lie prone on the
132 examination table with knees straight and ankles hanging in a relaxed position. The Achilles
133 tendons will be imaged bilaterally using an ultrasound machine equipped with a 12 MHz
134 linear transducer (Aixplorer, SuperSonic Imagine, Aix-En-Provence, France). All regions of
135 interest (ROIs) will be measured at: (1) the maximum thickness point, and (2) standardized
136 locations 2 cm, 4 cm, and 6 cm proximal to the insertion.

137 **Tendon thickness:** Using B-mode ultrasound scanning, the probe is moved from the medial
138 to the lateral aspect of the Achilles tendon until a planar image of the Achilles tendon is
139 clearly shown. The probe was adjusted straight perpendicular to the tendon fibres. A
140 greyscale sonogram is acquired, and the tendon thickness is measured at the maximum
141 thickness point and at 2, 4, 6 cm proximal to the insertion. Less than 5.3 mm was considered
142 a healthy value for the Achilles tendon.

143 **Tendon vascularity:** Vascularity will be documented using the Ohberg score. Using the
144 Doppler mode on the ultrasound machine, the transducer is placed vertically to obtain a
145 sagittal view of the softest area of the Achilles tendon. Pressure on the skin from the

146 transducer should be kept to a minimum to prevent occlusion of blood vessels. The colour
147 box is focused on the dorsal aspect of the tendon. The assessor will spend one minute
148 exploring the blood flow over the tendon to find the area of maximum Doppler flow. After
149 locating the area, sonograms are taken to determine the Öhberg score. The Öhberg score
150 ranges from 0 to 3 points. In this scoring system, the score is defined as 0 (no
151 neovascularisation, healthy), 1 (mild neovascularisation with a few single vessels), 2
152 (moderate neovascularisation with a moderate number of mostly transverse vessels), and 3
153 (multiple, mostly transverse vessels distributed throughout the depth of the tendon). Higher
154 scores indicate more Doppler blood flow in the peritendinous and intratendinous tissues.
155 Healthy tendons (Ohberg score of 0) have no blood vessels in the Achilles tendon.

156 **Tendon elasticity :**

157 Shear wave elastography (SWE) can be used to quantify soft tissue stiffness. Once the
158 optimal scan plane of the tendon is determined, the SWE function is activated. It enters
159 penetration mode and the measured stiffness range is normalized to 0-600 kPa. The SWE
160 color card (H × W: 1.4 cm × 1.3 cm) is placed immediately above the upper edge of the
161 calcaneus. After the color signal stabilized for five seconds, the elastogram was recorded and
162 stored. Tendon stiffness was measured using a Q-box stiffness meter. Depending on the size
163 of the tendon, the diameter of the circular measuring area (Q-box) is set to 2 mm, which
164 covers the Achilles tendon and excludes other adjacent soft tissues. The Q-box is located in
165 the center of the maximum thickness point and 2, 4, 6 cm proximal to the calcaneal insertion
166 site. For each Q-box, the average tendon stiffness (in kPa) is measured.

167 **Tendon oxygenation and vascularity:** The pathological tendon's oxygenation and
168 vascularity were quantified using a multiwavelength photoacoustic ultrasound (PAUS)
169 system equipped with a 7Hz probe and dual-wavelength LED sources (850nm/750nm). The
170 participant assumes a prone position with heels extended beyond the examination table. The
171 probe is positioned on the target tendon, with mode-specific presets selected ("Deep PA" for
172 vascularity at 850nm; "Deep Oxy" for oxygenation at 750nm). Each 20-second acquisition
173 captures 200 frames, with two repeated scans per mode to ensure data reliability.

174 **Thermographic tendon temperature:** Participants will be advised to avoid physical
175 exercise and hot baths before the procedure to ensure data reliability. Each participant will
176 rest in a seated position for 10 minutes followed by 2 minutes without socks. The room will
177 be maintained at 20-24°C. The infrared camera will be positioned one meter from the
178 participant, using a ThermaCam FLIR-T8210. Images will be analyzed with ThermaCAM
179 Researcher Pro 2.8 SR-1 software, and a rectangular area covering the Achilles tendon will
180 be used for temperature assessment.

181

182 **Sample size**

183 As a prospective registry study, this study plans to consecutively enroll all eligible patients
184 presenting to the Prince of Wales Hospital between 2025 and 2028. Based on the annual
185 patient volume, a minimum of 500 participants is expected to be recruited, which is
186 anticipated to provide sufficient statistical power for the planned multivariable analyses.

187

188 **Recruitment**

189 Participants will be recruited through multiple concurrent strategies. Our primary recruitment
190 site is the Prince of Wales Hospital. We will also utilize our sports medicine network, which
191 includes school sports teams, professional organizations (e.g., Kitchee Football Club), and an
192 extensive alumni network of doctors and sports medicine professionals from our MSc
193 program. Simultaneously, study advertisements will be distributed to all staff and students of
194 The Chinese University of Hong Kong through the CUHK Mass Mail System to ensure
195 comprehensive outreach.

196

197 **Data collection and management**198 **Plans to promote participant retention and complete follow-up:** The schedule for all the
199 outcome measure appointments will be provided from the beginning. For patients who have
200 missed their scheduled appointments for follow-up assessments, additional hours will be
201 extended to the evenings at the Sports Performance and Biomechanics laboratory at CUHK
202 so that participants may come for assessment (e.g., after work, rescheduled due to illness,
203 etc.).204 **Data management:** Data collected will be securely stored in password-protected computers
205 and archived for five years after publication. The Principal Investigator (PI) and research
206 assistants will oversee data collection, entry, and analysis. To ensure accuracy, a double data
207 entry method and range checks will be implemented. Data will be restored into an Excel files
208 and then transferred to SPSS software for analysis.209 **Confidentiality:** To ensure the highest level of privacy and security, the Sports Performance
210 and Biomechanics Laboratory stores all personal information and consent forms in securely
211 locked cabinets. Our online electronic database is protected by password-protected computers,
212 ensuring the utmost confidentiality. Access to the collected data is strictly limited to trusted
213 trial team members, with no access granted to participants. De-identified participant data may
214 be shared with other researchers upon reasonable request and after execution of appropriate
215 data sharing agreements, subject to approval by the ethics committee.

216 There is no plan for using biological specimens outside of this study plan.

217 **Statistical methods for primary and secondary outcomes:** Statistical analyses will be
218 performed using SPSS (version 28.0), with a two-sided significance level of $\alpha = 0.05$.
219 Continuous outcomes (e.g., VISA-A, NPRS, tendon thickness, dynamometry) will be
220 summarized as mean \pm standard deviation, assessed by Shapiro–Wilk test. Categorical
221 variables will be presented as frequencies and percentages.222 To address Q1 (prognostic influence of baseline status), multivariable linear or logistic
223 regression models will be constructed to evaluate the association between baseline metrics
224 (e.g., vascularity, elastography) and functional outcomes (e.g., VISA-A, heel raise capacity),
225 adjusting for covariates such as age, sex, and symptom duration.226 For Q2 (risk assessment), a Cox proportional hazards model or logistic regression will be
227 used to examine whether pre-existing tendinopathy (dichotomized: yes/no) predicts
228 subsequent acute rupture, with results reported as hazard ratios or odds ratios and 95%
229 confidence intervals.230 For Q3 (treatment responsiveness), interaction terms between patient subgroups (e.g., defined
231 by baseline severity, structural metrics) and treatment types will be incorporated into
232 regression models to identify effect modifiers. Should significant interactions be detected,
233 stratified analyses will be performed.234 **Interim analyses:** An interim analysis will be performed on the primary endpoint when 20%
235 of participants completed the 1-year follow-up. The interim analysis ensures that no serious
236 adverse event happened during the study period.237 **Methods in analysis to handle protocol non-adherence and any statistical methods to
238 handle missing data:** Missing data will be handled using multiple imputation under the
239 missing-at-random assumption. Sensitivity analyses will include complete-case assessments.
240 Model assumptions (e.g., linearity, proportionality) will be verified graphically and
241 analytically.242 **Plans to give access to the full protocol, participant-level data, and statistical code:** The
243 protocol will be registered on clinicaltrials.gov. The participant-level data and statistical code
244 can be provided upon request.

245 **Oversight and monitoring:** The principal investigator will monitor the progress of the study.
246 The trial steering committee consists of research team members who will participate in
247 participant recruitment, data collection, and management. The trial steering committee
248 consists of orthopaedic surgeons and researchers (research assistants and biostatisticians).
249 The orthopaedic surgeons and research assistants will participate in data collection and
250 analysis. The biostatistician will monitor data collection and perform interim analysis. There
251 is no independent data monitoring committee, as the ethics committee does not require this.

252 **Adverse events reporting and harms:** The procedure will be supervised by orthopaedic
253 surgeons licensed under the Medical Council of Hong Kong. If a participant experiences a
254 severe adverse reaction to the intervention, it will be reported to the trial steering committee
255 immediately, and the participant will be removed from the trial.

256 **Frequency and plans for auditing trial conduct:** An independent auditor from the ethics
257 committee will conduct the trial conduct annually. The principal investigator will complete a
258 progress report form for the ethics committee to review conduct annually during the trial
259 period.

260 **Plans for communicating necessary protocol amendments to relevant parties:** The
261 investigators will seek protocol amendments from the ethics committee, which must approve
262 them before implementation. Trial participants will be notified of any changes to the protocol.
263 Furthermore, the protocol modifications will be publicly available in the Trial Register.

264
265 **Funding and Sponsors:**

266 There are no declared funding sources or sponsors at this stage.

267 **Institutional Affiliations:**

268 The study is conducted by the Department of Orthopaedics and Traumatology, Faculty of
269 Medicine, The Chinese University of Hong Kong (CUHK).

270 **Potential Conflicts of Interest:**

271 All investigators involved in this study have declared no competing interests.

272 **Incentives for Subjects:**

273 No financial or material incentives are provided for participation.

274 **Provisions for Harm:**

275 Participants who experience adverse effects directly attributable to the study will receive
276 appropriate medical care at the Prince of Wales Hospital, CUHK, at no additional cost.
277 Compensation for research-related harm will follow institutional and ethical guidelines.