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1. Abstract 
 
The identification of eligible patients for clinical trials is a key component - and a rate-limiting 
step - of the clinical research enterprise. Currently, the process of identifying eligible patients 
relies on manual chart review by clinical research staff, which can be time-consuming, labor 
intensive and prone to human error. As a result, many eligible patients may be overlooked and 
opportunities for trial participation may be missed: this is particularly true in the oncology space, 
where fewer than 5% of adult cancer patients enroll in trials. The integration of AI technology 
into the clinical trial patient screening process has potential to improve trial participation rates 
and the generalizability of research findings. This study aims to assess the performance 
(accuracy, efficiency) of AI-augmented patient identification and inform optimal integration of 
AI technology into clinical research screening processes.   

 

2. Overall objectives 

The objective of this study is to assess and compare the accuracy and efficiency of three different 
approaches to abstracting clinical data used to identify oncology patients who meet the inclusion 
criteria for participation in clinical trials. The three approaches under evaluation include: (1) an 
autonomous AI algorithm (Mendel AI; developed by artificial intelligence startup company 
Mendel) which analyzes patient medical records to extract relevant clinical facts (“AI-alone”); 
(2) a human researcher who manually reviews patient charts as per the current norm/practice 
(“Human-alone”); and (3) a human researcher utilizing AI augmentation (“Human+AI”), where 
Mendel AI serves as a supportive tool in the decision-making process by providing the 
researcher a list of elements abstracted by the AI algorithm and a rank-order list of patients most 
likely to meet inclusion criteria for a trial.  

The study primarily aims to compare (1) the chart-level accuracy of the Human+AI collaboration 
relative to Human-alone given the relevance of this comparison for real-world clinical 
workflows, defined by the percentage of pre-identified chart elements classified correctly 
compared against a predetermined “gold standard”; and (2) the efficiency of the Human+AI vs. 
Human-alone arms, defined by the time per chart review in minutes, measured for each chart.  

Our hypotheses are (1) the Human+AI arm will be non-inferior in accuracy when compared to 
the Human-alone arm, in relation to a predetermined “gold standard”, and (2) that a Human+AI  
arm will be superior in speed of abstraction when compared to Human-alone screening. 
 
The identification of eligible patients for clinical trials is a critical component of clinical 
research, as it directly impacts patient recruitment, study enrollment, and the generalizability of 
research findings. Currently, the process of identifying eligible patients often relies on manual 
chart review by clinical research staff, which can be time-consuming, labor-intensive, and prone 
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to human error. Consequently, eligible patients may be overlooked, and opportunities for trial 
participation may be missed. The integration of AI technology into the patient identification 
process has the potential to enhance the accuracy and efficiency of this critical task, leading to 
improved clinical trial recruitment and outcomes. 
 
This study holds important implications for the field of clinical research by evaluating the 
effectiveness of AI-augmented patient identification compared to traditional manual methods and 
autonomous AI algorithms. By examining the strengths and limitations of each approach, the 
study will provide valuable insights into the optimal integration of AI technology in clinical 
research processes. Furthermore, the results of this study have the potential to benefit patients by 
improving their access to clinical trials and increasing awareness of available treatment options. 
For clinical research institutions, enhancing the efficiency of patient identification can lead to 
more effective use of research resources and the potential for accelerated clinical trial timelines. 
Ultimately, the findings of this study may contribute to advancements in clinical research 
practices, promoting more equitable access to trials and facilitating the development of 
innovative treatments for patients with cancer. 

 

3. Aims 

         3.1 Primary  

Aim 1: Compare the accuracy of the Human+AI vs. Human-alone arms, in relation to a “Gold 
Standard” determined by multiple human abstractors with no time limitation. 

         3.2 Secondary  

Aim 2: Compare the efficiency of the Human+AI vs. Human-alone arms  

 

4. Background 

Insufficient patient enrollment in clinical trials is a significant challenge faced by the clinical 
trials community, and it is often considered the rate-limiting step in completing clinical trials. 
The traditional approach to determining patient eligibility for clinical trials is manual eligibility 
screening (ES), which requires a labor-intensive review of patient records, leading to a high 
workload for clinical staff and a potential delay in trial enrollment. The problem of insufficient 
patient enrollment is symbolized by the fact that less than 5% of patients with cancer participate 
in clinical trials. [1] The manual eligibility screening process is resource-intensive, and reducing 
the burden of screening is a priority for improving trial participation rates and the efficiency of 
clinical research. 
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Recent advancements in artificial intelligence (AI) and natural language processing (NLP) offer 
potential solutions to this challenge. These technologies have the capability to automatically 
detect patients' eligibility for clinical trials by mapping coded clinical trial eligibility criteria to 
corresponding clinical information extracted from electronic health records (EHRs). This process 
involves extracting relevant eligibility criteria from clinical notes using machine learning-based 
NLP applications and comparing these extracted criteria with reference criteria from trial 
descriptions. Studies have shown that machine learning-based NLP applications provide high 
accuracy in extracting eligibility criteria from clinical notes and determining trial eligibility, with 
recall rates of up to 90.9% and precision rates of up to 89.7%. [2]    

Automated ES algorithms have demonstrated success in significantly reducing the workload of 
clinical staff involved in trial-patient matching, thereby increasing the trial screening efficiency 
of oncologists. Additionally, the use of AI-based tools has the potential to enable participation of 
smaller practices, which are often left out from trial enrollment due to resource constraints. The 
integration of AI and NLP technologies in the clinical trial eligibility screening process can play 
a crucial role in increasing total patient enrollment, the speed of enrollment, as well as expanding 
access to trials, and enhancing the execution of clinical research. 

[1] Unger et al. Role of Clinical Trial Participation in Cancer Research: Barriers, Evidence, and 
Strategies. American Society of Clinical Oncology. 2017. DOI: 10.14694%2FEDBK_156686  

[2] Meystre et al. Automatic Trial Eligibility Surveillance Based on Unstructured Clinical Data. 
International Journal of Medical Informatics. 2019. DOI: 10.1016/j.ijmedinf.2019.05.018  

 

5. Study design 

         5.1 Design 

In this experimental study, we will employ a three-arm design including (1) AI-alone, (2) 
Human-alone, (3) Human+AI to assess the accuracy of abstracting clinical elements from the 
patient chart. The accuracy of the abstraction will be compared against a pre-made “gold 
standard”. As detailed elsewhere, the study is powered for a direct comparison of the human 
alone vs human + AI arms as a non-inferiority analysis. For Arm 1, an autonomous AI algorithm 
(Mendel AI) will analyze patient medical records to extract relevant clinical elements (“AI-
alone”). For Arm 2, a human researcher will manually review patient charts as per the current 
norm/practice (“Human-alone”). For Arm 3, a human researcher will utilize Mendel AI 
augmentation such that Mendel AI serves as a supportive tool in the decision-making process by 
providing the researcher a list of elements abstracted by the AI algorithm and a rank-order list of 
patients most likely to meet inclusion criteria for a trial (“Human+AI”). For this study, we will 

https://doi.org/10.14694%2FEDBK_156686
https://doi.org/10.1016/j.ijmedinf.2019.05.018
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only be using information from deidentified patient charts in Mendel’s database. No Penn 
data will be utilized in this study. 

We will employ 2 clinical research coordinators (CRCs) who will review and abstract specific 
clinical elements while reviewing the patient’s electronic health record (EHR) which will include 
both “structured” (machine-readable) and “unstructured” (traditionally non-machine-readable; 
Mendel AI is uniquely capable of processing) data. To ensure no inter-rater differences in 
accuracy the CRCs will be assessed on a practice set of three charts and must meet an 80% 
threshold of agreement on review elements as well as concordance in chart-level accuracy as 
measured by Cohen’s Kappa (threshold 0.6).   

The components of the EHR that may be reviewed to abstract the data elements of interest may 
include: 

- Physician Progress Notes 
- Radiology Reports 
- Pathology Reports 
- Laboratory Reports 
- Genetic/molecular sequencing and other genetic testing results 
- Discharge Summaries 
- Infusion Therapy reports 

To help assess accuracy, the “Gold Standard” (to which all study arms will be compared) will be 
a manually annotated version based on review of at least 2 human abstractors (plus a tie-breaker 
if there is a discrepancy). This process will be led by the Mendel team, with independent 
oversight by the Penn research team to ensure consistency.  

First, the Mendel AI algorithm will review all patient charts, producing a machine-annotated 
version of each chart with AI-abstracted elements (AI-alone). Next, each CRC will review all 
patient charts. Each CRC will review half of their charts manually (Human-alone) and half of 
their charts using the machine-annotation and rank-order list (Human+AI). The order of review 
will be randomized such that manual reviews and AI-assisted reviews will be mixed, and such 
that each CRC will review half of the charts manually and half of the charts with AI assistance.  

Secondary aim metrics (Efficiency) will be assessed by tracking the volume of completed 
prescreens per unit of time. 

         5.2 Study duration 

We anticipate the “review” phase of this study where human researchers are abstracting data 
from patient charts to take roughly 6 months, followed by 6 months for analysis.  

         5.3 Target population 
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This study will include de-identified patient charts from Mendel’s databases from patients in 
community oncology practices with a diagnosis of non-small cell lung cancer (NSCLC) or 
colorectal cancer (CRC) with a minimum of 5 patient documents and data within 5 years from 
the time of data extraction. No Penn data will be utilized in this study and we will use standard 
EHR datasets. 

         5.4 Accrual 

Mendel AI upholds a database of clinical data for deidentified patients from participating 
community-based oncology practices. This data will be utilized for this study. As noted above, 
no Penn data will be utilized in this study.  

         5.5 Key inclusion criteria 

A patient chart will be included for analysis based on the following three screening criteria:  

- A diagnosis of NSCLC or colorectal cancer 
- A minimum of 5 patient documents in the Mendel database 
- Most recent document was within 5 years from the time of data extraction 

 

6. Subject recruitment 

No subjects will be involved with this work.  

 

7. Subject compensation 

There will be no compensation for the use of subjects’ de-identified data collected as part of 
routine clinical care. 

 

8. Study procedures 

         8.1 Consent 

The data utilized for analysis will be obtained from existing electronic health records (EHR) that 
have already been collected as part of routine clinical care and collated in the Mendel AI 
datasets. As such, patients will not be directly involved in the research process, and the study 
will not require any new data collection or intervention from patients.  
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Most importantly, all patient data used in the study has been de-identified and anonymized to 
ensure the protection of patient privacy and confidentiality.  

In light of these considerations, patients will not need to provide consent for their data to be 
included in the study. This approach aligns with the ethical standards for retrospective studies 
using de-identified data, and the study design has been developed to ensure compliance with 
relevant regulations and guidelines on patient privacy and data protection.  

As noted before, no Penn data will be utilized in this study.  

         8.2 Procedures 

Our study will follow the design outlined above (section 5.1). 

There is no informed consent needed for the use of this data. There will be no participant 
recruitment or compensation. Potential risks and benefits of the study are reported elsewhere 
(section 11.6). 

Two CRCs will be hired to analyze de-identified patient data. CRCs will access the data via a 
password-protected portal, using a UPHS desktop and/or laptop. De-identified patient chart data 
will be included for analysis based on having a tumor type of interest. They will then review 
patient charts and record clinical elements of interest in the Mendel abstraction tool, which will 
be secured in a HIPAA-compliant external enclave. Summary-level data will be exported into 
datasheets for analysis. These datasheets will only be used and analyzed on UPHS equipment, or 
shared via HIPAA-compliant means.  

Data will be analyzed using statistical software including Excel, R code, and STATA. For details 
of the analysis plan, see section 9. 

Data elements that will be abstracted across all arms of the study include the following (the 
below list may change slightly pending further discussion among the research team): 

Cancer Type and Staging 

- Cancer Type 
- Stage - Tumor 
- Stage - Node 
- Stage - Mets 

Performance  

- ECOG Performance Status 

Prior Systemic Treatment 
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- Any Prior Platinum Therapy (e.g., Cisplatin, Carboplatin, Oxaliplatin) 
 

- Any Other Prior Chemotherapy (e.g., 5-fluorouracil, Leucovorin, Capecitabine, 
Irinotecan, Pemetrexed, Paclitaxel, Docetaxel, Gemcitabine) 
 

- Any Prior Immunotherapy (e.g., Atezolizumab, Nivolumab, Pembrolizumab) 

Biomarkers for CRC 
- KRAS 
- MSI-H 
- MSS 

BRAF 
- HER2 
- NTRK 
- DPYD 

Biomarkers for NSCLC 
- EGFR 
- ALK 
- ROS1 
- KRAS 
- BRAF 
- NTRK 
- cMET 
- RET 
- PDL1 

Others 
- Outcomes (remission, residual disease, recurrence, loco-regional recurrence, distant 

recurrence)  
- Responses (complete response, stable disease, partial response, mixed response, disease 

progression)  

 

9. Analysis plan 

The primary study will be powered on a retrospective paired, non-inferiority design to evaluate 
abstraction accuracy of elements commonly used to help screen patients for clinical trials. The 
two arms are (1) human reviewers versus (2) human reviewers utilizing predictions from Mendel 
AI. The primary outcome, the percentage of gold standard items correctly abstracted, will be 
measured for each chart. Noninferiority can be established by comparing the difference in the 
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mean proportion correct between the human-augmented and Human-alone arms with a 
predefined non-inferiority margin, Δ.  
 
The one-sided hypotheses to test noninferiority of average chart-level accuracy of a Human+AI 
abstraction approach, compared with a Human-alone approach are outlined below:  
 

H0:  µh-ai - µh ≤ − Δ (Null hypothesis) 
Ha:  µh-ai - µh > − Δ (Alternative hypothesis) 
 
Test statistic: 

𝑇𝑇𝑛𝑛  =  
(𝜇𝜇ℎ−𝑎𝑎𝑎𝑎 − 𝜇𝜇ℎ) + Δ

�𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)
𝑛𝑛

 

 
Sample size equation for a noninferiority, paired study design:  

𝑛𝑛 =  
�𝑍𝑍1−𝛽𝛽 + 𝑍𝑍1−𝛼𝛼 �

2𝜎𝜎2

�(𝜇𝜇ℎ−𝑎𝑎𝑎𝑎−𝜇𝜇ℎ)+ 𝛥𝛥�2
=  

�𝑍𝑍1−𝛽𝛽 + 𝑍𝑍1−𝛼𝛼�
2𝜎𝜎2

(𝐷𝐷 + Δ)2  

 
As a secondary analysis, we will test the superiority of the Human+AI arm for achieving greater 
average chart-level accuracy, compared with the Human-alone arm. Our hypotheses are: 

H0:  µh-ai ≤ µh (Null hypothesis) 
Ha:  µh-ai > µh (Alternative hypothesis) 

 
Sample size equation for a superiority, paired study design:  

 𝑛𝑛 =
�𝑍𝑍1−𝛽𝛽 + 𝑍𝑍1−𝛼𝛼�

2𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)
(𝜇𝜇ℎ−𝑎𝑎𝑎𝑎 − 𝜇𝜇ℎ)2  

 

Parameter Description 

µh-ai 
Mean proportion of criteria correctly abstracted by AI-augmented human 
reviewers  

µh Mean proportion of criteria correctly abstracted by Human-alone reviewers  

D = µh-ai - µh Mean difference in chart-level accuracy between arms 

Δ Non-inferiority margin, set as 0.05 for conservative sample size estimates.  

𝑍𝑍1−𝛽𝛽 Critical value at 1-𝛽𝛽, where 1-𝛽𝛽 represents the desired power and 𝛽𝛽 represents 
Type II error 
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𝑍𝑍1−𝛼𝛼 Critical value at 1-𝛼𝛼, where 𝛼𝛼 = Type I error 

𝜎𝜎2 
n* Var(D), where n is the sample size and Var(D) is the variance of the mean 
difference in chart-level accuracy 

*Note:  µh-ai, µh, Δ > 0.  

From our initial calculations, 400 individual patients will achieve an estimated statistical power 
greater than 90% for this non-inferiority study with a Type I error of 5%. This was determined 
from simulations for different realistic parameter scenarios for TNR, event rate, and concordance 
assumptions showing that the needed sample size rarely exceeded 400.  

The goals of the secondary analyses are to compare the efficiency of screening among the three 
study arms. We will analyze efficiency, defined by comparing the average number of minutes 
per chart review, measured for each chart. A nonparametric, paired Wilcoxon Rank Sum test 
with continuity correction will compare overall median efficiency of chart abstraction between 
arms. 

The following are post-hoc analyses to be conducted after the pre-specified main analyses. 
Superiority of chart-level accuracy for the Human+AI arm relative to Human-alone will be tested 
using a one-sided paired t-test with an unspecified inferiority margin. A sensitivity analysis will 
repeat the primary chart-level accuracy outcome analysis with a less strict definition of an 
accurate match to the gold standard set. To assess whether there is a difference in accuracy 
among the 12 trial eligibility criteria, criterion-level accuracy will be compared assessed between 
arms. To assess criterion-level accuracy, a two-sided, paired t-test will be conducted with 
Bonferroni correction for multiple hypotheses (i.e., alpha = 0.05 / n, where n=12 was the number 
of criteria studied). For any criterion with a statistically significant difference in mean criterion-
level accuracy, superiority of the Human+AI arm for criterion-level abstraction will be then 
assessed with an additional one-sided hypothesis with an unspecified superiority margin. Lastly, 
we repeat both the chart-level accuracy analysis and efficiency analyses while stratifying by 
chart characteristics that include chart complexity, length, order, and cancer type. 

Descriptive statistics, including means, medians, proportions, and ranges, will be used to 
summarize each analyses. All statistical analyses will be conducted using appropriate statistical 
software, and will rely on a predetermined significance level (e.g., alpha = 0.05). Effect sizes and 
confidence intervals will be reported where applicable to provide further context to the findings. 

 

10. Investigators 
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Ezekiel J. Emanuel, MD, PhD (Principal Investigator) is Diane v.S. Levy and Robert M. Levy 
University Professor in Health Policy and Medical Ethics and Co-Director of the Healthcare 
Transformation Institute.  

Ravi B. Parikh, MD, MPP (Sub-Investigator) is Assistant Professor of Health Policy and 
Medicine and Innovation Faculty at the Penn Center for Cancer Care Innovation (PC3I).  

Other members of the Penn research team include Professor Jinbo Chen, PhD (Collaborator), 
William Ferrell, MPH (Project Manager, Perelman MEHP Department), Matthew Guido (Project 
Manager, Perelman MEHP Department), Liz Beothy (Project Manager, Clinical Trials Unit) 
Ryan O’Keefe, MD, MBA (Resident Physician, HUP) and Likhitha Kolla (MD-PhD Student).  

Key personnel from Mendel.ai - including Karim Galil, MD (CEO) and Sailu Challapalli (Chief 
Product Officer) - will be involved as external collaborators. 

 

11. Human research protection 

         11.1 Data confidentiality 

Computer-based files will only be made available to personnel involved in the study through the 
use of access privileges and passwords. All identifiers will be removed from study-related 
information. Precautions will be put in place to ensure the data are secure by using passwords 
and HIPAA-compliant encryption. All patient data provided by Mendel.ai will be viewed by 
HIPAA-certified Research Coordinators trained in EHR screening within a secure enclave.  

NOTE: No Penn data will be utilized in this study.  

         11.4 Data disclosure 
 
The results of the study will be presented in aggregate form, with no disclosure of individual-
level data. No information that identifies specific patients will be recorded as part of 
documenting and/or publishing the results of this research. 

         11.5 Data safety and monitoring 

The investigators will provide oversight for the study evaluation of this project.   

         11.6 Risk/benefit 

                     11.6.1 Potential study risks 
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The potential risks associated with this study are minimal given the research is focused on de-
identified data from patient charts. Breach of data is a potential risk that will be mitigated by 
using HIPAA compliant and secure data platforms for analysis.  

NOTE: No Penn data will be utilized in this study.  

                     11.6.2 Potential study benefits 

This is highly practical research because it assesses the effectiveness of AI-led and human-AI-
assisted chart review for clinical trial eligibility screening. This has major implications for 
clinical research, as it could lead to significant time savings in screening patients for eligibility 
and ultimately lead to more cancer patients participating in clinical trials.   

                     11.6.3 Risk/benefit assessment 

The risk/benefit ratio is favorable given the potential benefit for significant practical knowledge 
that could be gained from understanding the potential for AI to review “unstructured” patient 
data and accelerate the process of identifying patient eligibility for clinical trials. Efforts have 
been put into place to minimize the risk of breach of data. If favorable outcomes are found, then 
there is a potential to leverage the insights to guide further research and future clinical practice.  
 

  
 


