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Introduction

The COVID-19 pandemic is evolving quickly globally. By January 22, 2021, there were
more than 112 million reported cases and more than 2.6 million deaths worldwide.! Latin
America is one of the worst-hit regions and accounts for 20.3% of the SARS-COV2 cases
and 30% of the global deaths, despite having only 8% of the global population. The
effectiveness of policies to reduce the spread of COVID-19 has been analyzed in several
empirical studies.>* Nevertheless, few of these studies have included countries in Latin
America or examined the effect heterogeneity and potential explanations for it. In this study
we aim, first, to estimate the effectiveness of nonpharmaceutical interventions on SARS-
COV2 transmission and COVID-19 mortality in Latin America; second, to examine the effect
heterogeneity of transmission and mortality at the local level. Third, assuming we find
evidence of moderate to substantial heterogeneity at the local level, we aim to explore
potential explanations for this heterogeneity.

This Statistical Analysis Plan (SAP) provides an in-depth description of the statistical
methods and definitions for the study analysis. More information on the rationale and data

sources can be found in the Study Protocol.
Study methods

Design

The study is a natural experiment exploiting the variation in temporal and spatial
implementation of nonpharmaceutical interventions (NPI) to reduce the spread of COVID-
19 in Latin American local governments. The unit of analysis are third-tier subnational units
(i.e. municipalities, districts, cantons). The setting is all Spanish and Portuguese speaking
countries in Latin America that fulfil the inclusion criteria. We developed the plan following
guidance from Gamble et al.’

Sample size
The study will use all available data that fulfils the inclusion criteria.

Timing of analyses and outcome assessments

We will use data from the date of the first case in each country until December 31, 2020. We
will use publicly available daily data for all outcomes. We will use the enforcement date on
data on interventions collected from PoliMap (www.polimap.org).

Protocol deviations
There have not been any deviations from protocol.

Study population

The study will focus on local governments, third-tier administrative units in each country.
These receive different denominations in each country, primarily called municipality, district
or canton. The eligibility criteria are (1) Spanish or Portuguese speaking countries in the


http://www.polimap.org/

Americas; and (2) availability of open data for any of the outcomes of interest at a subnational
level. A flow diagram (similar to those recommended by CONSORT guidelines) will be
reported describing the number of countries and subnational units eligible and how many of
them fulfilled the eligibility criteria.

We will report (as a Supplementary Table) a summary of the baseline characteristics of the
local governments included in the study.

Outcome definitions

The first outcome will be the 7-day moving average of daily confirmed cases of COVID-
19/SARS-CoV-2. The second outcome is the time-varying reproductive number between the
current and previous period.® The third outcome is the 7-day moving average of the daily
number of deaths by COVID-19 in Latin American subnational regions. For the statistical
modelling, these averages will be rounded to the nearest integer. We will consider a 7-day
lag as the primary lag. We will use the definition of COVID-19 case and death which is valid
at any given time in each country.

Analysis methods

The primary analysis will use interrupted time series (ITS) for each subnational unit to
examine the causal effect of COVID-19 policies on primary outcomes. Interrupted time series
is a widely used tool in causal inference that allows comparing trends before and after the
introduction of an intervention.” The counterfactual outcome is the projection of the trend in
the period before the introduction of the intervention into the time period was introduced.
The unit of analysis in this study is days, starting from the date of the first case.

The standard model for an ITS regression is as follows
(1) Yy = By + Bitime; + Bypost, + Bstimepost, + B',X + u;

where time; is a variable which equals one at the first time point ¢ and increases by one after
each subsequent time point; post;is a dummy variable that equals to zero prior to the
introduction of the intervention (p) and equals one for every time point thereafter; timepost,
is a variable that equals to zero until time p-/, and increases by one for each subsequent time
point; and X is a vector of covariates. Coefficient [3is the coefficient of interest and
represents the change in slope after time p.

The validity of the ITS rests on three assumptions. Assumption 1 states that the expectation
of the pre-intervention level and trends would be the same irrespective of whether the sample
received the treatment. Assumption 2 states that in the absence of treatment, the outcome of
interest would remain unchanged in the post-intervention period. Assumption 3 states that
the time trends in the pre and post periods can be expressed as a linear combination of
parameters.®



Using the potential outcomes framework, the estimated effect of a policy at time p could be
defined as

(2) 4, = ¥, (1) - Y (0)
These difference could also be expressed in terms of two equations

3) Y: (1) = ag + aytime; + azpost; + astimepost, + &
4) Y.(0) = 6, + O,time, + O,post, + Oztimepost, + v,

where Y; (1) is the sequence of outcomes if we treat the unit at time p and Y;(0)the sequence
of outcomes in the absence of treatment. Assumption 1 implies no anticipation of treatment,
i.e.Y;(1) =Y, (0) for all p=<t,.’ In other words, ay= 8, anda; = 6;. Assumption 2 implies

that 6,and ;are equal to zero.

Violations of assumption 1 include anticipation effects when the subjects of the policy can
anticipate its initiation and change their behaviour.? In the case of the COVID-19 pandemic,
the population might, for example, be more likely to adhere to social distancing
recommendations during the discussion of a lockdown or take preventive actions when the
incidence of cases increases, even before restrictions such as lockdowns are implemented.
Violations of assumption 2 include concurrent changes due to history (other concurrent
policy, program or societal changes), selection (changes in the composition of the sample at
time p), instrumentation (changes in the way the outcome is measured) and mis-specification
of the functional form of the time trend (in a classical ITS, time is assumed to be a simple
linear term. Violations of assumption 3 can occur due to misspecification of the functional
form, including failing to account for a delay of the policy to take effect or failing to account
for autocorrelation (which can lead to artificially low standard errors).!” In an epidemic
process, cases over time follow a non-linear trajectory (often an exponential, Gompertz or
other complex functional forms). Assuming a linear time trend can lead to incorrect
counterfactuals and biased effect estimates.

We will examine and handle potential violations to assumptions in the following way:

Assumption 1. We will assess the existence of anticipation effects by visual exploration and
examination of the slope prior to the intervention. If there is evidence of potential anticipation
effects, we will use a “quasi-myopic” sensitivity analysis, i.e. an analysis that excludes a

period of time where anticipation is expected to have happened from the analyses.'!

Assumption 2. We will explicitly incorporate co-occurring interventions in a seven-day
period as a combination of interventions. We will also adjust for changes in the case
definition of COVID-19 cases and deaths for each of the respective outcomes. We will report
in the Supplementary Appendix the exact dates considered in the analysis for each
country/subnational unit and the interventions included in each intervention period.



Assumption 3. We will introduce flexible spline functions to account for seasonality and
long-term trends. We will add a scale parameter, which will be the Pearson statistic divided
by the residual degrees of freedom, to account for potential overdispersion (a violation of the
Poisson regression assumption).'? We will test for autocorrelation using the Durbin-Watson
tests and visual plots of the autocorrelation function and partial autocorrelation function. If
there is evidence of autocorrelation, we will use the Newey-West method to obtain adjusted
standard errors.

Therefore, in the final analysis, we will use Poisson regression to model the count data.!>!4,
The final model is an extension of the regression described in equation 1 with the
specifications described above.*!> The model will include each of the interventions (either
as single interventions or combinations of), denoted j = /,...,J. This method allows estimating
simultaneously the effect of several interventions. We will consider interventions
implemented within a 7-day period as a combination of interventions, following previous
studies.* This means that the maximum number of combinations of interventions is 52, ¢ =
1,...,52. We will estimate the effect of the interventions separately when interventions are
separated by at least seven consecutive days and for a maximum period of 30 days.* The
primary analysis will include a 7-day lag to account for the delay in the intervention to be
effective, considering the incubation period of SARS-COV2.!¢

(5) In(Yy) = Bo + Byjtimey; + B, jpost,; + Psjtimepost,; + ug

This model will be run at the municipal level and, therefore, we expect to run 10,000
regressions multiplied by the number of combinations of interventions at each municipal
level. Coefficient fB3;is the coefficient of interest and represents the change in slope after the

intervention j at period ¢.

In coefficient of interest at a second stage, we will pool the effects for each intervention -or
combination of interventions- (i.e. the coefficient of interest f3;from the local level
regression) using a random-effects meta-analysis.!” This meta-analysis will provide
information to obtain a pooled effect estimate and a measure of heterogeneity. We will use

the I” as a measure of heterogeneity.

If the heterogeneity is moderate or high (I higher than 50%), we will carry out a meta-
regression to assess whether subnational level determinants can explain the observed
heterogeneity.!” We will analyse the following covariates: (i) Population size, (ii) Population
density, (ii1) Proportion of population over 60 years old, as a proxy for age structure of the
population, (iv) Household density, and (iv) Proportion of population with basic education,

as a proxy of socioeconomic status.



The meta-regression has the effect size 8, of a first-stage regression k as the outcome,
covariates x;i, a fixed effect p;S, for the second-tier level a (i.e. State or Region) and a
random-effect §, N}, for the national level b and a fixed effect p,Y for the time of the year
(quarterly periods)(equation 6). The equation includes two types of independent errors,

where & is the sampling error of the effect size and ¢ is the random-effect error term.!”

(6) Ok = V1X1k + .. F¥nXnk + P1Sq + 62N, + po¥V + & + ¢

These controls for higher levels of administration and time of the year will allow us to control
for constant characteristics at the subnational and national level, as well as changes in the

effectiveness throughout the pandemic.

We will carry out the following sensitivity analyses: (1) comparison of effect estimates using
a 5-day and 10-day lag; (2) quasi-myopic analyses to control for anticipatory effects (if there
is evidence of), and (3) placebo tests evaluating changes at times when no policy was
implemented. In the analyses for the number of cases and time-varying R, we will run
additional sensitivity analyses estimating the number of SARS-CoV-2 cases corrected by

under-ascertainment derived from mortality statistics.8

Statistical software

We will use R (current version 3.6.3) for all analyses. We will use the g/m function to run
the Poisson model, using the code developed by Gasparrini et al as a reference source'® and
the metareg package for the meta-regression. Under-ascertainment will be estimated using
code developed by Russell et al as a reference. '®



References

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19
in real time. The Lancet Infectious Diseases 2020.

2. Arshed N, Meo MS, Farooq F. Empirical assessment of government policies and
flattening of the COVID19 curve. Journal of Public Affairs 2020; 20(4): e2333.

3. Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical
interventions on COVID-19 in Europe. Nature 2020; 584(7820): 257-61.

4. Islam N, Sharp SJ, Chowell G, et al. Physical distancing interventions and incidence
of coronavirus disease 2019: natural experiment in 149 countries. BMJ 2020; 370: m2743.
5. Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical
Analysis Plans in Clinical Trials. JAMA 2017; 318(23): 2337-43.

6. Li Y, Campbell H, Kulkarni D, et al. The temporal association of introducing and

lifting non-pharmaceutical interventions with the time-varying reproduction number
(<em>R</em>) of SARS-CoV-2: a modelling study across 131 countries. The Lancet
Infectious Diseases 2021; 21(2): 193-202.

7. Kontopantelis E, Doran T, Springate DA, Buchan I, Reeves D. Regression based
quasi-experimental approach when randomisation is not an option: interrupted time series
analysis. BMJ : British Medical Journal 2015; 350: h2750.

8. Penfold RB, Zhang F. Use of Interrupted Time Series Analysis in Evaluating Health
Care Quality Improvements. Academic Pediatrics 2013; 13(6, Supplement): S38-S44.

9. Miratrix L, Anderson C, Henderson B, Redcross C, Valentine E. Simulating for
uncertainty with interrupted time series designs2019.
https://www.mdrc.org/sites/default/files/img/methods_for ITS.pdf (accessed Nov 19, 2020).
10. Svoronos T. Evaluating Health Interventions Over Time: Empirical Tests of the
Validity of the Single Interrupted Time Series Design. Doctoral dissertation. Boston, United
States: Harvard University, Graduate School of Arts & Sciences; 2016.

11.  Malani A, Reif J. Accounting for Anticipation Effects: An Application to Medical
Malpractice Tort Reform2010. (accessed.

12. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression
studies in environmental epidemiology. International Journal of Epidemiology 2013; 42(4):
1187-95.

13. Gebski V, Ellingson K, Edwards J, Jernigan J, Kleinbaum D. Modelling interrupted
time series to evaluate prevention and control of infection in healthcare. Epidemiology and
Infection 2012; 140(12): 2131-41.

14.  Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the
evaluation of public health interventions: a tutorial. International Journal of Epidemiology
2016; 46(1): 348-55.

15. Haber NA, Clarke-Deelder E, Feller A, et al. Problems with Evidence Assessment in
COVID-19 Health Policy Impact Evaluation (PEACHPIE): A systematic strength of methods
review. medRxiv 2021: 2021.01.21.21250243.

16. Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease
2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application.
Annals of internal medicine 2020; 172(9): 577-82.

17. Harrer M, Cuijpers P, Furukawa TA, Ebert D. Doing Meta-Analysis in R: A Hands-
on Guide2019. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
(accessed March 11, 2021).

18.  Russell TW, Golding N, Hellewell J, et al. Reconstructing the early global dynamics
of under-ascertained COVID-19 cases and infections. BMC Medicine 2020; 18(1): 332.

19.  Scortichini M, Schneider dos Santos R, De’ Donato F, et al. Excess mortality during
the COVID-19 outbreak in Italy: a two-stage interrupted time-series analysis. International
Journal of Epidemiology 2020.



https://www.mdrc.org/sites/default/files/img/methods_for_ITS.pdf
https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

