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Introduction 

 

The COVID-19 pandemic is evolving quickly globally. By January 22, 2021, there were 

more than 112 million reported cases and more than 2.6 million deaths worldwide.1 Latin 

America is one of the worst-hit regions and accounts for 20.3% of the SARS-COV2 cases 

and 30% of the global deaths, despite having only 8% of the global population. The 

effectiveness of policies to reduce the spread of COVID-19 has been analyzed in several 

empirical studies.2-4 Nevertheless, few of these studies have included countries in Latin 

America or examined the effect heterogeneity and potential explanations for it. In this study 

we aim, first, to estimate the effectiveness of nonpharmaceutical interventions on SARS-

COV2 transmission and COVID-19 mortality in Latin America; second, to examine the effect 

heterogeneity of transmission and mortality at the local level. Third, assuming we find 

evidence of moderate to substantial heterogeneity at the local level, we aim to explore 

potential explanations for this heterogeneity. 

 

This Statistical Analysis Plan (SAP) provides an in-depth description of the statistical 

methods and definitions for the study analysis. More information on the rationale and data 

sources can be found in the Study Protocol.   

 

Study methods 

 

Design 

The study is a natural experiment exploiting the variation in temporal and spatial 

implementation of nonpharmaceutical interventions (NPI) to reduce the spread of COVID-

19 in Latin American local governments. The unit of analysis are third-tier subnational units 

(i.e. municipalities, districts, cantons). The setting is all Spanish and Portuguese speaking 

countries in Latin America that fulfil the inclusion criteria. We developed the plan following 

guidance from Gamble et al.5  

 

Sample size 

The study will use all available data that fulfils the inclusion criteria.  

 

Timing of analyses and outcome assessments 

We will use data from the date of the first case in each country until December 31, 2020. We 

will use publicly available daily data for all outcomes. We will use the enforcement date on 

data on interventions collected from PoliMap (www.polimap.org).   

 

Protocol deviations 

There have not been any deviations from protocol. 

 

Study population 

The study will focus on local governments, third-tier administrative units in each country. 

These receive different denominations in each country, primarily called municipality, district 

or cantón. The eligibility criteria are (1) Spanish or Portuguese speaking countries in the 

http://www.polimap.org/


3 

Americas; and (2) availability of open data for any of the outcomes of interest at a subnational 

level. A flow diagram (similar to those recommended by CONSORT guidelines) will be 

reported describing the number of countries and subnational units eligible and how many of 

them fulfilled the eligibility criteria.  

 

We will report (as a Supplementary Table) a summary of the baseline characteristics of the 

local governments included in the study. 

 

Outcome definitions 

The first outcome will be the 7-day moving average of daily confirmed cases of COVID-

19/SARS-CoV-2. The second outcome is the time-varying reproductive number between the 

current and previous period.6 The third outcome is the 7-day moving average of the daily 

number of deaths by COVID-19 in Latin American subnational regions. For the statistical 

modelling, these averages will be rounded to the nearest integer. We will consider a 7-day 

lag as the primary lag. We will use the definition of COVID-19 case and death which is valid 

at any given time in each country.  

 

Analysis methods 

The primary analysis will use interrupted time series (ITS) for each subnational unit to 

examine the causal effect of COVID-19 policies on primary outcomes. Interrupted time series 

is a widely used tool in causal inference that allows comparing trends before and after the 

introduction of an intervention.7 The counterfactual outcome is the projection of the trend in 

the period before the introduction of the intervention into the time period was introduced. 

The unit of analysis in this study is days, starting from the date of the first case.  

 

The standard model for an ITS regression is as follows 

 

(1) 𝑌𝑡 =  𝛽0  + 𝛽1𝑡𝑖𝑚𝑒𝑡  + 𝛽2𝑝𝑜𝑠𝑡𝑡  + 𝛽3𝑡𝑖𝑚𝑒𝑝𝑜𝑠𝑡𝑡  + 𝛽′4𝑋 +  𝜇𝑡     

 

where 𝑡𝑖𝑚𝑒𝑡 is a variable which equals one at the first time point t and increases by one after 

each subsequent time point; 𝑝𝑜𝑠𝑡𝑡is a dummy variable that equals to zero prior to the 

introduction of the intervention (p) and equals one for every time point thereafter; 𝑡𝑖𝑚𝑒𝑝𝑜𝑠𝑡𝑡 

is a variable that equals to zero until time p-1, and increases by one for each subsequent time 

point; and X is a vector of covariates. Coefficient 𝛽3is the coefficient of interest and 

represents the change in slope after time p. 

 

The validity of the ITS rests on three assumptions. Assumption 1 states that the expectation 

of the pre-intervention level and trends would be the same irrespective of whether the sample 

received the treatment. Assumption 2 states that in the absence of treatment, the outcome of 

interest would remain unchanged in the post-intervention period. Assumption 3 states that 

the time trends in the pre and post periods can be expressed as a linear combination of 

parameters.8  
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Using the potential outcomes framework, the estimated effect of a policy at time p could be 

defined as 

 

(2) 𝛥𝑡 =  𝑌𝑡(1)  − 𝑌𝑡(0)  

 

These difference could also be expressed in terms of two equations 

 

(3) 𝑌𝑡(1)  =  𝛼0  +  𝛼1𝑡𝑖𝑚𝑒𝑡  + 𝛼2𝑝𝑜𝑠𝑡𝑡  +  𝛼3𝑡𝑖𝑚𝑒𝑝𝑜𝑠𝑡𝑡  + 𝜀𝑡   

(4) 𝑌𝑡(0)  =  𝜃0  +  𝜃1𝑡𝑖𝑚𝑒𝑡  + 𝜃2𝑝𝑜𝑠𝑡𝑡  +  𝜃3𝑡𝑖𝑚𝑒𝑝𝑜𝑠𝑡𝑡  + 𝜈𝑡  

 

where 𝑌𝑡(1) is the sequence of outcomes if we treat the unit at time p and 𝑌𝑡(0)the sequence 

of outcomes in the absence of treatment. Assumption 1 implies no anticipation of treatment, 

i.e.𝑌𝑡(1) = 𝑌𝑡(0) for all p≤𝑡0.9 In other words, 𝛼0=  𝜃0 and𝛼1 = 𝜃1. Assumption 2 implies 

that 𝜃2and 𝜃3are equal to zero.  

 

Violations of assumption 1 include anticipation effects when the subjects of the policy can 

anticipate its initiation and change their behaviour.9 In the case of the COVID-19 pandemic, 

the population might, for example, be more likely to adhere to social distancing 

recommendations during the discussion of a lockdown or take preventive actions when the 

incidence of cases increases, even before restrictions such as lockdowns are implemented. 

Violations of assumption 2 include concurrent changes due to history (other concurrent 

policy, program or societal changes), selection (changes in the composition of the sample at 

time p), instrumentation (changes in the way the outcome is measured) and mis-specification 

of the functional form of the time trend (in a classical ITS, time is assumed to be a simple 

linear term. Violations of assumption 3 can occur due to misspecification of the functional 

form, including failing to account for a delay of the policy to take effect or failing to account 

for autocorrelation (which can lead to artificially low standard errors).10 In an epidemic 

process, cases over time follow a non-linear trajectory (often an exponential, Gompertz or 

other complex functional forms). Assuming a linear time trend can lead to incorrect 

counterfactuals and biased effect estimates.  

 

We will examine and handle potential violations to assumptions in the following way: 

Assumption 1. We will assess the existence of anticipation effects by visual exploration and 

examination of the slope prior to the intervention. If there is evidence of potential anticipation 

effects, we will use a “quasi-myopic” sensitivity analysis, i.e. an analysis that excludes a 

period of time where anticipation is expected to have happened from the analyses.11  

 

Assumption 2. We will explicitly incorporate co-occurring interventions in a seven-day 

period as a combination of interventions. We will also adjust for changes in the case 

definition of COVID-19 cases and deaths for each of the respective outcomes. We will report 

in the Supplementary Appendix the exact dates considered in the analysis for each 

country/subnational unit and the interventions included in each intervention period. 
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Assumption 3. We will introduce flexible spline functions to account for seasonality and 

long-term trends. We will add a scale parameter, which will be the Pearson statistic divided 

by the residual degrees of freedom, to account for potential overdispersion (a violation of the 

Poisson regression assumption).12 We will test for autocorrelation using the Durbin-Watson 

tests and visual plots of the autocorrelation function and partial autocorrelation function. If 

there is evidence of autocorrelation, we will use the Newey-West method to obtain adjusted 

standard errors.   

 

Therefore, in the final analysis, we will use Poisson regression to model the count data.13,14. 

The final model is an extension of the regression described in equation 1 with the 

specifications described above.4,15 The model will include each of the interventions (either 

as single interventions or combinations of), denoted j = 1,...,J. This method allows estimating 

simultaneously the effect of several interventions. We will consider interventions 

implemented within a 7-day period as a combination of interventions, following previous 

studies.4 This means that the maximum number of combinations of interventions is 52,  t = 

1,...,52. We will estimate the effect of the interventions separately when interventions are 

separated by at least seven consecutive days and for a maximum period of 30 days.4 The 

primary analysis will include a 7-day lag to account for the delay in the intervention to be 

effective, considering the incubation period of SARS-COV2.16  

 

(5) 𝑙𝑛(𝑌𝑡) =  𝛽0 + 𝛽1𝑗𝑡𝑖𝑚𝑒𝑡𝑗 + 𝛽2𝑗𝑝𝑜𝑠𝑡𝑡𝑗 + 𝛽3𝑗𝑡𝑖𝑚𝑒𝑝𝑜𝑠𝑡𝑡𝑗  + 𝜇𝑡 

 

This model will be run at the municipal level and, therefore, we expect to run 10,000 

regressions multiplied by the number of combinations of interventions at each municipal 

level. Coefficient 𝛽3𝑗is the coefficient of interest and represents the change in slope after the 

intervention j at period t. 

 

In coefficient of interest at a second stage, we will pool the effects for each intervention -or 

combination of interventions- (i.e. the coefficient of interest 𝛽3𝑗from the local level 

regression) using a random-effects meta-analysis.17 This meta-analysis will provide 

information to obtain a pooled effect estimate and a measure of heterogeneity. We will use 

the I2 as a measure of heterogeneity.  

 

If the heterogeneity is moderate or high (I2 higher than 50%), we will carry out a meta-

regression to assess whether subnational level determinants can explain the observed 

heterogeneity.17 We will analyse the following covariates: (i) Population size, (ii) Population 

density, (iii) Proportion of population over 60 years old, as a proxy for age structure of the 

population, (iv) Household density, and (iv) Proportion of population with basic education, 

as a proxy of socioeconomic status.  

 



6 

The meta-regression has the effect size 𝜃𝑘̂ of a first-stage regression 𝑘 as the outcome, 

covariates 𝑥𝑖𝑘, a fixed effect 𝜌1𝑆𝑎 for the second-tier level 𝑎 (i.e. State or Region) and a 

random-effect 𝛿2𝑁𝑏 for the national level 𝑏 and a fixed effect 𝜌2𝑌 for the time of the year 

(quarterly periods)(equation 6). The equation includes two types of independent errors, 

where 𝜀𝑘is the sampling error of the effect size and 𝜍𝑘is the random-effect error term.17  

 

(6) 𝜃𝑘 = 𝛾1𝑥1𝑘 + . . . +𝛾𝑛𝑥𝑛𝑘  +  𝜌1𝑆𝑎  + 𝛿2𝑁𝑏  + 𝜌2𝑌  +  𝜀𝑘  +  𝜍𝑘   

 

These controls for higher levels of administration and time of the year will allow us to control 

for constant characteristics at the subnational and national level, as well as changes in the 

effectiveness throughout the pandemic.  

 

We will carry out the following sensitivity analyses: (1) comparison of effect estimates using 

a 5-day and 10-day lag; (2) quasi-myopic analyses to control for anticipatory effects (if there 

is evidence of), and (3) placebo tests evaluating changes at times when no policy was 

implemented. In the analyses for the number of cases and time-varying R, we will run 

additional sensitivity analyses estimating the number of SARS-CoV-2 cases corrected by 

under-ascertainment derived from mortality statistics.18 

 

Statistical software 

We will use R (current version 3.6.3) for all analyses. We will use the glm function to run 

the Poisson model, using the code developed by Gasparrini et al as a reference source19 and 

the metareg package for the meta-regression. Under-ascertainment will be estimated using 

code developed by Russell et al as a reference. 18 
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