TITLE: PROJECT 2 EXAMPLE: Feedback X Prevalence Using Dermatology Stimuli

NCT#: NCT05244122

Date: 9.26.22

This is a composite document. The IRB approval for this study fall under a general approval that
we use for many minimal risk behavioral studies. Under the revised Common Rule, it is unclear
that we actually need IRB review.

This PDF concatenates

1) The protocol for “Prevalence Effects in Visual Search: Theoretical and Practical
Implications”

2) A much more specific study protocol, edited text from Wolfe, J. M. (2022). How one
block of trials influences the next: Persistent effects of disease prevalence and feedback
on decisions about images of skin lesions in a large online study. Cognitive Research:
Principles and Implications (CRPI), 7, 10. doi: https://doi.org/10.1186/s41235-022-
00362-0



Prevalence effects in visual search: Theoretical and practical implications
Detailed Protocol 2022

Version: Prevalence_ AUGUST2022
Version Date: AUGUST 12, 2022

. BACKGROUND AND SIGNIFICANCE
Background

In visual search tasks, observers (Os) look for a target in a visual scene containing distracting
stimuli. Some medical screening tasks (e.g. for lung, breast, & cervical cancer) can be described
as difficult visual search tasks. A characteristic of these tasks is low target prevalence. That is,
unlike many other real world search tasks (e.g. finding bananas in the fruit aisle) and unlike
typical laboratory search tasks, these are searches for targets that appear only rarely. In routine
mammography, for example, pathology is present on less than 1% of breast images. We have
found that this low target prevalence, by itself, can be a potent source of miss errors in visual
search (Wolfe et al., 2005). In experiments with a range of different search stimuli, we have found
that Os miss 0.30 to 0.40 of targets when those targets are present on only 1-2% of search trials.
Os miss only 0.05 to 0.10 of the same targets when those targets are present on 50% of search
trials.

Visual search tasks can be studied as signal detection problems. Os are trying to distinguish
displays containing a target signal from those containing only noise. Miss errors can arise from
a lack of sensitivity to the target or from setting a decision criterion to a position that causes
detectable targets to be classified as non-targets. In other contexts (e.g. vigilance &
categorization literatures), the response to a change in target frequency is understood as a shift
in criterion, not in the detectability of the target. We have shown that this is also true in visual
search. Low prevalence produces a large shift in criterion that is surprisingly hard to counteract
(e.g. by manipulations of costs and benefits for different types of response) (Wolfe et al., 2007).

Because of differences between laboratory search tasks and clinical screening tasks and
because clinical tasks are performed by highly trained professionals, it would be unwise to
generalize from the existing data to the conclusions about errors in medical screening.
Therefore, we have worked to determine whether this is really true for medical screening tasks,
and, if so, test theory-based solutions. We have shown prevalence effects in breast cancer
(Evans, Birdwell, & Wolfe, 2013) and cervical cancer screening (Evans, Tambouret, Wilbur,
Evered, & Wolfe, 2011) as well as in a population of newly-trained airport baggage screeners
(Wolfe, Brunelli, Rubinstein, & Horowitz, 2013).

Target-Absent Trials

Understanding low prevalence search requires that we understand behavior on target-absent
trials. After all, if the target is rare, then most of the time, the observer will be responding that
the target is absent. Understanding these searches for targets that are not present in a display
has proven to be one of the enduring problems in the basic and applied search literature. How
and when do observers terminate unsuccessful searches? An obvious hypothesis is that
observers quit when they have searched through all of the items and determined that none of
those items is the target. However, this appealing idea makes predictions that are not supported
by the data. For example, we performed experiments in which the items in a search display
were randomly replotted every 100 msec during a trial (Horowitz & Wolfe, 1998). In this case,



stimuli were letters. Observers were searching for a “T” among “L”s. Our "dynamic search" task
makes it impossible to keep track of which distractors have been rejected. Nevertheless,
observers were not disabled in their search. Target-absent RTs were slowed relative to a static
control condition, but observers had no problem terminating target-absent searches
appropriately.

Rather than assuming a sure knowledge that all items have been rejected, a more plausible
class of models proposes that observers abandon unsuccessful searches when they conclude
that the chance of missing a target is acceptably low. Setting this criterion requires some
information about the accuracy of responses. Feedback about accuracy could be given
explicitly, but even if it is not, observers will generally know when they have found a target and,
it may be presumed, can use this information. Observers must also have some information
about the progress of the search. Even if they cannot keep track of the specific items that have
been rejected, observers might implicitly count the number items attended or rejected, or they
might keep track of the duration of the search. Assuming some sort of meaningful feedback,
they could shorten the next search if the prior search was successful or lengthen it if an error
was made. Evidence for adaptive criterion setting can be found in sequential RT data. RTs tend
to be slightly faster after each successful response and markedly slower after each error (Chun
& Wolfe, 1996), just the sort of "staircase" rule one would expect if observers were trying to
maintain relatively high accuracy (Levitt, 1971; Rose, Teller, & Rendleman, 1970).

While an adaptive criterion setting method might work quite well in many situations, medical
screening tasks pose special challenges. 1) Costs of failure are very high, 2) feedback is
delayed or absent (How do you know that you got the ‘right’ answer?), 3) The task is subject to
the "Satisfaction of search" problem. This occurs when it is possible to have multiple targets in a
single image. Under these conditions, finding one target can lead the observer to abandon the
search and, thus, miss other targets in the same display (Samuel, Kundel, Nodine, & Toto,
1995).

Prevalence effects — Previous Experiments and Rationale

As noted, the frequency of target presence is perhaps the most striking difference between
typical laboratory search tasks and some of the more important applied tasks. There is a limited
literature on the effects of target prevalence in the analysis of medical images. The literature is
small for methodological reasons. To quote Gur et al. (2003), "Although there are some
indications (and certainly a strong subjective belief among scientists) that there is a “prevalence
effect” in the clinic because of (radiologists') expectations that result in certain behaviors, there
are hardly any convincing data to demonstrate the effect." A major reason for this dearth is
captured by an example described by Kundel (2000). "When the disease prevalence is 0.5, a
test set of 100 cases will have a variance approximating .04. Achieving the same variance at a
screening prevalence of 0.001 requires a test set of about 25,000 cases!" Achieving enough
statistical power in studies with low prevalence requires data sets that do not exist and would be
laborious to collect.

The results reported in the small literature that does exist are very mixed, as one might expect
given the statistical power issue. In a retrospective examination of lung cancer studies with
prevalence ranging from 0.1% to about 50%, Kundel (2000) reports rather large effects on the
signal detection measure of detectability, d'. The range of d’ values was 1.4 to 3.4, with higher
prevalence yielding lower d' values — meaning lower performance. This study involves
comparing performance on data collected over many years in many settings. In contrast, Ethell
and Manning (2004) did a much smaller study in the lab using wrist fracture X-rays with target



prevalence’s of 22%, 50%, & 83% . They reported a modest decrease in A’ (area under the
ROC, a measure similar to d’) as prevalence decreased (.8 at 83%, .71 at 50%, .68 at 22%).
Egglin and Feinstein (1996) reported a similar effect with prevalence’s of 20% and 60%. In a
larger, well-designed study, Gur et al. (2003) found no significant effect on A" and concluded,
"with laboratory conditions, if a prevalence effect exists, it is quite small in magnitude; hence, it
will not likely alter conclusions derived from such studies." They were more cautious about
generalizing this conclusion to clinical settings (Gur, Rockette, Warfel, et al., 2003). Thus all
logical possibilities appear to be represented in the literature and there is no large body of visual
search data available to clarify this matter.

Our previous lab data suggests that this may be a dangerous gap in our knowledge. In our first
experiments (and, indeed, in most basic search studies in which stimuli remain visible until
response), False Alarms are very rare. With those stimuli, under low prevalence conditions,
Miss error rates can rise to 30-50%. This rise in miss error rates with decrease in prevalence
has been seen before. It is a repeated theme in the extensive work on vigilance in the 1960s.
Jane Mackworth (1970) states that, "One of the most important findings in vigilance research
has been the discovery that the probability that a signal will be detected is considerably reduced
when the background event rate is increased" (see for example Broadbent & Gregory, 1965;
Colquhoun, 1961). The "background rate" in this context is the number of non-target events
over a period of time in a vigilance task. The more non-target events there are, the lower the
target prevalence. The introductory example in Green and Swets' (1967) classic SDT book
illustrates that the effect of reducing target prevalence will be to make the decision criterion
more conservative. You will be less likely to call something a target if the a priori probability of a
target is lower.

Note that there is an important difference between traditional vigilance tasks and low prevalence
search tasks like mammography. In vigilance, observers are monitoring the world for fleeting
stimuli. In mammography and related tasks, each search display with its potential target(s) is
present until the observer dismisses it. Nevertheless, we can assume that a similar signal
detection analysis can be applied to vigilance tasks and low prevalence search tasks.

In subsequent work, we used stimuli that closely resembled x-rays of baggage such as one
might see at the airport. Baggage screening is a difficult task and does produce false alarm
errors. This allows us to use signal detection methods in analysis. We find that the prevalence
effect is a form of “criterion shift”. Miss errors go up at low prevalence. False alarm errors go
down. This is not the pattern of errors one wants to see at the airport or in medical screening.
However, as noted above, we have now found prevalence effects in screening for cervical and
breast cancer (Evans et al., 2011) (Evans et al., 2013).

The new grant period: Beyond prevalence

In addition to target prevalence, there are other aspects of real-world search tasks, like those in
radiology, that can be profitably studied by a combination of basic research in the lab and more
translational studies with expert populations. Consider looking at a bone scan or a CT to
determine if a patient is responding to cancer treatment. This is a complex visual search task,
extending over many minutes, for multiple instances of multiple target types. How do humans
perform such tasks and how can we help them to do them better? In the next grant period, we will
investigate the basic science of multi-target, extended visual search tasks. The theoretical
framework will combine our Guided Search model with aspects of Optimal Foraging Theory and
models of working and activated long-term memory. The core idea of Guided Search is that a
limited set of fundamental attributes (e.g. color, orientation, motion, etc) guides the deployment



of attention (Wolfe, 1994, 2007; Wolfe, Cave, & Franzel, 1989). If you are looking for red vertical
lines, attention can be guided to the intersection of the set of red and vertical items. However,
such a model, with only a simple target template, is inadequate to a situation where you are
searching for multiple instances of several types of target (Find all the big red and curved green
items or all the masses, calcifications, and architectural distortions in a mammogram.). We
hypothesize that flexible use of working memory in collaboration with activated long-term memory
(Oberauer & Hein, 2012) (Cowan, 1995) permits continued guided search and that Foraging
Theory (Stephens, Brown, & Ydenberg, 2007; Stephens & Krebs, 1986) will provide an account
of when to stop searching. Novel search paradigms will be used to test hypotheses raised by this
framework. Moreover, we will translate the basic principles of search to the study of search by
experts; specifically, radiologists. We hypothesize that potentially dangerous errors are generated
when expert observers are asked to perform artificial search tasks using cognitive processes that
evolved to solve very different search tasks. There are three aims, organized around different
extended search tasks and the paradigms we will use to study them. For each, we will identify
important issues in extended visual search. We will establish the basic science using non-expert
observers. Next, we will determine if the rules, established for simple search, apply to extended
search. For each aim, we will use expert observers, to test the hypothesis that the default rules
of search are a source of error and/or inefficiency in socially important, artificial search tasks like
radiology.

There are three new specific aims:
Il. SPECIFIC AIMS

Aim1: Foraging: Rather than search for a single target, many radiographic tasks involve search
for all instances of a type of target; for example, lung nodules in a chest CT. This type of task is
a foraging task, roughly akin to picking berries. There is a substantial literature on animal foraging
but much less in humans. We have found that, in a laboratory simulation of berry picking, human
behavior is described well by Charnov’s (1976) Marginal Value Theorem (MVT). We hypothesize
that MVT is deeply engrained in human foraging behavior and that its automatic deployment in
medical foraging tasks could be a source of error.

Aim 2: Hybrid search: In many radiographic tasks, Os search for multiple target types, held in a
mental checklist. Such searches involve the interaction of visual search with memory search. We
call these “Hybrid Searches” We have shown that that hybrid search times increase linearly with
increases in the visual set size but log-linearly with increases in the memory set size (Wolfe,
2012). This is true for real-world objects. We hypothesize that this is a general principle of hybrid
search. The alternative hypothesis is that real-world objects (and scenes) are special. Thus, other
types of memory set items (words, symbols, categories, etc) might not obey this log law. Further,
we hypothesize that the pattern of errors is shaped by the relationship between target types
leading to a version of a satisfaction of search problem (Berbaum et al., 1990; Berbaum et al.,
2013; Cain, Dunsmoor, LaBar, & Mitroff, 2011; Nodine, Krupinski, Kundel, Toto, & Herman, 1992)
in which dead ends in memory search yield false negatives in visual search.

Aim 3: Prevalence effects: In the prior grant period, we have shown that changes in the base
rate or target prevalence produce changes in criteria that, in turn, produce elevated false negative
errors at low prevalence (Wolfe, Horowitz, & Kenner, 2005; Wolfe et al., 2007; Wolfe & VanWert,
2010). We have shown that these prevalence effects occur when expert searchers perform in
their domain of expertise (Evans et al., 2011; Wolfe, Birdwell, & Evans, 2011). In the next grant
period, we will test proposed interventions to reduce these errors. In addition, we will examine the
interaction of prevalence with the foraging and hybrid search conditions of Aims 1 and 2.



(Bond, 1981; Burger, Huang, Hemerik, van Lenteren, & Vet, 2006; Cain, Clark, Mitroff, & Vul,
2011; e.g. Charnov, 1976; Kundel & Nodine, 1975; Nodine & Mello-Thoms, 2010; e.g. Pyke,
Pulliam, & Charnov, 1977; but see Smith, Hood, & Gilchrist, 2008; Wolfe & VanWert, 2010)

Additional Studies

Our work on prevalence effects has led into studying other aspects of mammography.
Specifically, we are measuring the eye movements of radiologists as they examine breast
tomosynthesis images (methods described below). We are also studying two different ways of
comparing this year’s images with a prior image in breast imaging. The two images can be
viewed side-by-side or they can be alternated (“toggled”) in the same location, aligned as best
possible. We are testing the hypothesis that the later ‘toggling’ technique will be faster and/or
more accurate than the side-by-side approach. In both of these studies, one set of experiments
is run on non-radiologists in the lab. Other studies, with radiologist observers are conducted
either in our facility in BWH or at national meetings of radiologists (e.g. RSNA, ECR).
Radiologists may be asked to evaluate medical images on various workstations (e.g.,
Automated Breast Ultrasound, or ABUS) while we track their eye movements, or monitor for
keypresses and mouse clicks.

lll. SUBJECT SELECTION

Ten to 15 subjects per study are typical in experiments of this sort, and reviewers of our papers
and grants will not be satisfied with fewer. In addition, data from about 33% of our subjects is
discarded regularly because subjects did not complete the task or simply did not do the correct
task. Each subject must report no history of eye or muscle disorders, as well as 20/25 vision or
better, and pass the Ishihara Tests for color-blindness. The subjects who participate in online
studies (through services such as Mechanical Turk) will not be tested for colorblindness, and will
not have their visual acuity checked. They will attest to having 20/25 vision or better and have
“normal” color vision in order to participate. For online experiments, we try to build in and pre-
register quality checks that allow us to exclude participants after they have been test, even if
they cannot be screened before participation. Note that there is no risk to the participant if they
don’t meet our criteria but are still tested. The risk is to data quality.

Subjects are recruited with posters placed in local colleges and in the lab neighborhood, as well
as with ads placed on public access websites such as Craigslist. Subjects are also recruited
from the Harvard Decision Sciences Lab participant pool. Subjects from this pool voluntarily
subscribe to an email list and are alerted to upcoming studies. It is anticipated that equal
numbers of women and men will be included in this study. Our recruitment procedures are
unbiased and consider all applicants regardless of race, color, creed, or national origin.

For online studies through services like Mechanical Turk, most participants will sign up for these
studies as they see them online through websites and will choose to participate in our
experiments of their own volition and interest. In some cases (e.g. when trying to recruit special
populations like pathologists, we may advertise via appropriate social media or email lists).

We also recruit experts including medical technicians (e.g. cytologists) and MDs (typically
radiologists). As a general rule, these are recruited by one-to-one conversations at Brigham and
Women’s hospital as well as other local hospitals (e.g. Tufts). Radiologists at the UT MD
Anderson Cancer Center were recruited via emails sent by the head of the radiology department
on our behalf. We also have some experiments that are run as exhibits or educational displays
at national scientific meetings (E.g. the Radiological Society of North America — RSNA — annual



meeting in Chicago, European Congress of Radiology — ECR — annual meeting in Vienna,
Austria). Here our observers are volunteers who happen to be attracted to our presentation.

IV. SUBJECT ENROLLMENT

Upon passing selection criteria (above), subjects read a consent form, and verbally agree to it.
Subijects are told about the general nature of the experiment prior to testing and a more detailed
explanation of the purposes of the study after enroliment. General subjects for in-person
studies are compensated with $15/hour for participation. In online experiments, subjects will
read a consent fact sheet for online study. They will also be provided with information about the
study before they check boxes stating that they are over 18 years old, meet the inclusion
requirements, read through the consent sheet and consent to participate. Subjects for on-line
studies are typically compensated with $8/hour for participation though some online studies are
framed as contests where participants are informed in advance of possible prizes but not
otherwise compensated. When the enroliment of specialists, such as cytotechnologists or
mammography screeners is required, the participants are recruited from Partners hospitals and
other, local biomedical facilities. The compensation for technical staff is $35/hour, because they
are trained experts rather than naive observers. The expert screeners who participate during
their normal workflow are not given financial reimbursement for their participation. Radiologists
are sometimes compensated with good chocolate or some similar gift. At the experiments run at
RSNA, ECR or other radiology meetings, radiologists may be entered into a contest where the
best score is rewarded with an iPad.

V. STUDY PROCEDURES

In these experiments, visual stimuli (e.g., objects, scenes, simulated x-rays, magnified cell
culture slide photographs, breast x-rays) are presented on a computer screen. On each trial,
subjects examine the stimuli and indicate as quickly and accurately whether a target (e.g., a
“tumor” or a “wrench”) is present or absent by pressing designated buttons. In some studies,
observers will localize or describe targets rather than simply declaring them to be present or
absent. In some experiments, there will be many different types of target (e.g. look for a
chicken, a screw, a door, or a cup). In some experiments, there will be multiple instances of
targets in the same display (e.g. find all the lung nodules in this chest x-ray). Search stimuli are
usually continuously visible until observers choose to respond. In some experiments, stimuli are
only briefly presented. Observers may be given feedback on their performance. This could
include a point system designed to emphasize the importance of finding the target (e.g.,
negative points for false alarms and misses, as well as subtraction of 1 point/second, and
positive points for hits). It could include a monetary payoff with money added for correct
response and subtracted for errors. In no case would participant payment fall below $8/hr.
Subjects are typically given 50-100 practice trials and then tested in blocks of 200 - 1000
experimental trials with breaks in between and within blocks. Subjects are instructed before the
task and debriefed after completion of the experiment. Some of our studies might also use a
harmless (see below) eyetracker device, which measures eye movements. If eye movements
are monitored when subjects are doing the task, an instrument will be recording the reflection of
a beam of near-infrared light from their eye. This beam gives information about where their
eyes are looking. Some of our studies may be conducted on-line. The experiment procedures
will be very similar to those conducted in-person; however, eye movements will not be
monitored in these studies. We will record observers’ responses and reaction times. The
experiments are hosted on-line, and subjects can access the experiment using a web link.
Sometimes, an experimenter may assist or monitor the subjects during the study via an on-line



video platform, e.g. Zoom. Online studies will provide assurances that we will not collect
personal information or use the information for anything other than our scientific purposes. The
initial information will disclose the use of ‘cookies’ to determine if the participant has performed
the task before. Potential participants will have unlimited time to decide and will not be able to
continue using the web site without their consent. To begin the experiment, participants will
need to check boxes stating that they read through the consent sheet and agree to participate.
Completion of this online form will be taken as consent to participate.

VI. BIOSTATISTICAL ANALYSIS

Error rates and response times (RTs) are the primary measures in these experiments. The
nature of the stimuli, the number of items presented (the “set size”) and the frequency of target
presence (the “target prevalence”) are varied across trials and blocks, respectively. Typically,
trials are discarded if the RT is less than 200 ms and greater than 10000 ms. Interactions of
interest include RT and prevalence, error rate and prevalence, target presence/absence and
error rate, set size and error rate, set size and RT, and target type and error rate. All data are
usually analyzed for statistical significance using analysis of variance (ANOVA) methods. We
also use d' and criterion, the signal detection measures of detectability and bias to analyze
performance. In experiments using the eyetracker, we are usually interested in number of
fixations, fixation duration, and scan path.

VII. RISKS AND DISCOMFORTS

The only stresses and aggravations of these experiments are psychological. Some subjects
find the tasks boring, while others find them challenging. Experts may have a particular,
competitive desire to get the “right” answer. Occasionally, the sustained attention required can
cause some subjects to have headaches or feel sleepy. Subjects are free to pause at any time,
and may withdraw from the experiments if they wish.

In some of the experiments we will measure eye movements. There are no known risks
associated with the eye movement system (pupil centre to corneal reflection system) to be used
in these experiments. lllumination of the eye in these systems is less than 1 milliwat per cm
squared of near infrared light. Federal safety standards indicate that levels of 10 milliwatts per
cm squared are not hazardous to adults or children.

VIIl. POTENTIAL BENEFITS

There are no specific health benefits for participation in these experiments though subjects may
learn about their visual system and experts may learn about behaviors that are important to their
work. This research serves to benefit society by increasing our understanding of socially
important search contexts such as airport security and medical screening.

IX. MONITORING AND QUALITY ASSURANCE

Subjects are free to pause the experiment or withdraw from participation at any time. Serious
and unexpected adverse events will be reported immediately (within 24 hours) to the Human
Research Committee by telephone, fax or e-mail and will be followed by a complete written
report within 10 working days.



The privacy of subjects will be protected and their results will remain confidential. To assure
this, subject identifiers are removed from the data files. Ultimate responsibility for data quality
rests with the Principal Investigator, Jeremy Wolfe. Research assistants monitor the data as it
is collected to assure its integrity.

Some of our experiments will employ modified medical screening materials, such as breast x-
rays or photographs of magnified cell slides. All of these materials will be anonymized prior to
being used in any of the experiments by experts in the BWH radiology department. No patient
data whatsoever will be associated with the images.
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SPECIFIC PROTOCOL

Derived from: Wolfe, J. M. (2022). How one block of trials influences the next: Persistent
effects of disease prevalence and feedback on decisions about images of skin lesions in a
large online study. Cognitive Research: Principles and Implications (CRPI), 7, 10. doi:
https://doi.org/10.1186/s41235-022-00362-0

In visual decisions about finding and/or identifying a target, the prevalence of the target makes a
difference (Horowitz, 2017). By “prevalence”, we mean the frequency with which a target
appears in a series of trials or cases. The effects of prevalence are of more than academic interest
because target prevalence can vary dramatically across tasks in the real world. For example, in a
task like identifying signs of breast cancer in mammographic images, the prevalence is very low
in a breast cancer screening program where cancer might be present on 0.5% of images and
where findings that are suspicious enough to require more testing might be present on 5-10% of
cases (e.g. Jackson, et al., 2012). The prevalence of a disease will be much higher in a set of
images referred to the radiologist because an initial screening was suspicious. The classic low
prevalence effect (LPE) involves an increase in false negative / miss errors and, usually, a
decrease in the rate of false positive / false alarm errors (Wolfe, Horowitz, & Kenner, 2005;
Wolfe, et al., 2007). In signal detection terms, the LPE can be described largely, but not entirely,
as a “criterion shift” in which participants become more ‘conservative’ about declaring a target
to be present (Hautus, Macmillan, and Creelman, 2021) . In visual search studies of the LPE,

participants also tend to abandon search more quickly when targets are not found (Wolfe & Van

Wert, 2010).

We also know that what you have seen influences what you will report seeing next, for example,

in classic adaptation effects (e.g. Helson, 1964) or in serial dependence effects like those studied



by Fischer & Whitney (2014) and many others (e.g. Gekas, McDermott, & Mamassian, 2019 or
Manassi, et al., 2021 for work with radiologists). What you are fold that you will see also has an
impact. Thus, you will look harder if you are given information that suggests that it is like that
there is something to find (Reed, Chow, Chew, & Brennan, 2014; Littlefair, et al., 2016). In this
paper, we examine these effects together. What is the effect of the prevalence in one block on

performance on a subsequent block?

Our understanding of prevalence effects was complicated in 2018, when Levari et al. (2018)
reported that it was possible to obtain effects in the opposite direction from the classic LPE.
Their participants made decisions about a single item on a continuum. For instance, participants
might be asked if a dot, drawn from a blue-purple color continuum, was ‘blue’. When fewer dots
were drawn from the blue end of the continuum, they reported that participants became more
liberal about calling ambiguous dots ‘blue’. They called this effect “Prevalence-induced concept
change” (PICC). Lyu et al. (2021) found that one driver of these opposing LPE and PICC results
was the presence or absence of feedback. When making decisions about the same stimulus
continuum, participants reliably produced LPE effects when given feedback after each trial. They
tended to produce PICC effects (somewhat less reliably) when there was no feedback. This has
real-world implications because, just as tasks differ in target prevalence, they differ in feedback.
For instance, in training, participants might receive immediate feedback after every trial. In the
field, that feedback might be delayed, partial, or unavailable. Consider airport security screening.
In training, participants are likely to see targets at relatively high prevalence, with feedback. At
the airport checkpoint, real ‘threats’ will be rare (we may hope!) and security screens may get

some feedback about some positive cases because the suspect bag is opened on the spot. False



negative errors probably generate no feedback, even though these would be the most serious

errors in a security setting.

The central question of the present study is how experience with one level of prevalence, with or
without feedback, influences performance on subsequent trials where either prevalence and/or
feedback conditions could have changed. In the great bulk of research on prevalence effects, high
prevalence trials were followed by low prevalence trials or participants experienced only a single
prevalence level. Typically, feedback is not independently manipulated (but see Growns &
Kukucka, 2021; Lyu, et al., 2021; Papesh, Heisick, & Warner, 2018; Weatherford, Erickson,
Thomas, Walker, & Schein, 2020). Moreover, in previous studies, the change due to a previous

discrete block of trials was not assessed.

In the present study, prevalence can be high or low and feedback can be present or absent. This
yields four conditions: Low prevalence with feedback, Low prevalence without feedback, High
prevalence with feedback, and High prevalence without feedback. There are 16 possible pairings
of two consecutive blocks. In this study, the stimuli are skin lesions: either nevi (skin 'moles';
singular, nevus) or melanoma (skin cancer). A large dataset of over 300,000 decisions was
collected on-line by participants using a medical image labeling app (“DiagnosUs”

http://diagnosus.com/). Participants had varying levels of expertise from complete novice to MD

as will be described later. Thus, in addition to allowing us to assess the influence of one
prevalence X feedback combination on another, these data provide new evidence about
prevalence effects in expert populations (K K Evans, Birdwell, & Wolfe, 2013; K. K. Evans,

Tambouret, Wilbur, Evered, & Wolfe, 2011; Evered, 2017; Mitroff, Ericson, & Sharpe, 2017;


http://diagnosus.com/

Reed, Ryan, McEntee, Evanoff, & Brennan, 2011; Trueblood, et al., 2021; Wolfe, Brunelli,

Rubinstein, & Horowitz 2013).

To anticipate the broad outlines of the results, LPE and weak PICC effects are produced with
these dermatology stimuli. As in other studies with expert populations, our experts show these
effects, as do novices. In terms of the influence of one block of trials on the next block, we find
that, in general, experience with a low prevalence block with feedback makes one more
conservative in any subsequent block while the experience of high prevalence with feedback
makes one more liberal. A block without feedback does not appear to have a significant impact

on the next block.

Methods
Data were collected on-line via a free and open 108 application, “DiagnosUs”, created by
Centaur Labs as a platform for game-like image labeling competitions

https://www.centaurlabs.com/). Between 6/22/21 and 6/27/21, Centaur Labs ran 24 ‘contests’ on

our behalf, collecting >300,000 trials from 803 participants in 6 days. Each of the 24 contests
consisted of 80 unique images of a skin lesion as shown in Figure 1. This is a relatively small
number of images, but it kept the sessions short and encouraged participation. Images came from
the International Skin Imaging Collaboration (ISIC) 2018 challenge (Codella, et al., 2019). The

set contains over 1,200 melanoma images and over 7,600 nevus images.


https://www.centaurlabs.com/

Clagsily this lesian

melancma MEVS

®

Figure 1: Sample stimulus displays. Left: Participants are asked if a lesion is a melanoma
(cancer) or a nevus (benign ‘mole’). Right: After response, if this were a feedback
condition, red or green feedback would inform the observer of the correctness of the
answer. In no feedback conditions, neutral feedback indicated that the response had been
registered.
On each of the six days, there were four contests available. These were:
1) Low Prevalence — No Feedback; consisting of 20% (16) melanoma images
2) Low Prevalence — Feedback; prevalence was the same as in #1, but with accurate, trial by
trial feedback
3) High Prevalence — No Feedback; consisting of 50% (40) melanoma images
4) High Prevalence — Feedback; prevalence was the same as in #3, but with accurate, trial
by trial feedback
The contests were randomly assigned to participants with the constraint that they did not run the
same type of contest more than once in a day. Participants could take part in as many or as few

contests as they wished over the course of the six days and they could end up repeating a



condition from one day on another day. The prevalence and feedback conditions were not
advertised to participants. Accuracy is the main dependent variable though we also collected

response times.

Because of the on-line, voluntary nature of the data collection, we did not have control over the
viewing conditions or the type of screen used. We compensated by collecting a very large dataset

(see below).

Observers
We collected data from 803 unique individuals. For each individual, we have a crude

categorization of expertise as shown in Table 1:

Medical Student 337
Pre-Med Student 174
No Medical Experience 145
Medical Doctor 54
Other Healthcare Professional 47
Nurse 25
Medical Technician 11
Physician Assistant 10

Table 1: Observers divided by expertise category

Participants were asked why they chose to participate and given three choices, as shown in Table

2.
Compete With Others 37
Earn Money 248
Improve My Skills 518

Table 2: Observers divided by reason to participate
Participants reported coming from 78(!) countries with three quarters of the participants coming

from nine countries, as shown in Table 3.



Philippines 198
USA 182
Ghana 94
Great Britain 31
Romania 30
Canada 27
Mexico 19
Indonesia 15
Australia 13
All other 194

Table 3: Reported country of origin.

Beyond this demographic information, we have only an observer number. We were given no
identifying information about the participants. Participation on the app constituted consent.
Procedures were approved by the Institutional Review Board at Brigham and Women’s Hospital

(IRB #2007P000646).

These 803 participants produced 311,842 trials of data. An excel spreadsheet with all data is

posted on the Open Science Framework at https://osf.io/hck5n/. From this set, we eliminated

participants who did not complete a full block of 80 trials. This left 630 participants who ran a
total of 277,371 trials in 2,988 blocks. Different participants chose to participate in different

numbers of blocks. As shown in Table 4.


https://osf.io/hck5n/

Blocks # of Blocks # of
Run Participants Run Participants
1 315 13 10
2 178 14 2
3 104 15 4
4 56 16 6
5 52 17 5
6 22 18 3
7 27 19 10
8 20 20 3
9 14 21 4
10 10 22 2
11 10 23 6
12 5 24 4

Table 4: Numbers of participants who ran N (1-24) blocks over 6 days of testing.

Those participants running only a single block were removed from most analyses because our
primary interest is the influence of one block upon the next. Obviously, with some participants
contributing 24 blocks and others contributing 2, the dataset is unbalanced. We repeated the main
analyses reported below, limiting the analysis to only the first pair of blocks for each observer.
This reduces power. However, the main patterns of results, reported below, are found when the
dataset is restricted to only blocks 1 and 2. Accordingly, we think that the unequal numbers of
trials and blocks from different participants is not a significant issue for the present study. In the

results reported, we analyze results from the 2,998 remaining blocks of data.



Statistical Analysis / Results
To analyze the effect of one block on the next block, we derived all the pairs of blocks in the
dataset. For each of the blocks, we calculated the true positive and false positive proportions and
used these to derive the standard signal detection measure of d” and criterion (Note that we are
refraining from using the term “sensitivity” because it is used to refer to d’ in the behavioral
science community and to the true positive rate in the medical community.) For the primary
analyses, pairs were removed from analysis if either member of the pair produced a d’ of less
than 0.5. The task was relatively difficult and we had little control over the motivation of
participants in online study of this sort. The probability of achieving a d' > 0.5 by guessing
through an 80 trial block is ~0.6%. A cutoff of 0.4 would permit over 2% of blocks to be pure
guessing. A d™> 0.5 cutoff left 2,080 pairs of blocks. The distribution of those pairs is shown in
Table 5:
* &
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Low, No 29 | 140 | 151 | 134 | 454

Low, Feed 92 | 110 | 150 | 218 | 570

High, No | 261 | 117 | 51 | 117 | 546

Block N+1

High, Feed 147 | 218 | 118 | 27 | 510

529 | 585 | 470 | 496 | 2080

Block N

Table 5: Counts of the 16 different pairs of Block N and Block N+1.



As can be seen, there is a good, if uneven distribution of pairs. There are fewer pairs on the
diagonal where the condition is the same in Blocks N and N+1. In order to run the same block,
twice in a row, participants needed to encounter that condition last on Day K and first on Day
K+1 since the same condition could not be run twice on the same day. The marginals show that

this distribution of the four different conditions is very roughly uniform.

First, we compare performance in the four conditions, regardless of their position the sequence of
sessions for each observer. Figure 2 shows the signal detection measures of d’ and criterion, “c”.
These values cannot be computed if p(True Positive) = 1.0 or p(False Positive) = 0.0.

Accordingly, in keeping with one standard practice, we add 2 of a False Positive error to each

False Positive count (Hautus, Macmillan, & Creelman, 2021).
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Figure 2: D’ and Criterion as a function of condition. Each dot represents one of 2080

blocks of data. Black lines show mean and +/- 95% CI of the mean.

A one-way ANOVA shows a main effect of condition on d” (F(3, 2076) = 6.461, p = 0.0002,

partial eta-sq = 0.01) and Sidak's multiple comparisons test shows that performance on skin

cancer detection task is modestly better in the high prevalence, feedback condition than in the

high prevalence, no-feedback condition (p = 0.008). Prevalence effects are better understood as

criterion shifts. An ANOVA shows a very large main effect of condition on criterion (F(3, 2076)

=30.16, p <0.0001, partial eta-sq = 0.04). Pairwise comparisons show a strong LPE effect when

feedback is given (p < 0.0001). Criterion becomes more conservative at low prevalence. Without



feedback, criterion becomes slightly more liberal on average (0.34 to 0.31). This is not
statistically significant (p = 0.47). As noted earlier, the PICC effect (Levari, et al., 2018), while
certainly real, is typically more fragile than the LPE effect in the opposite direction (Lyu, et al.,
2021). The differences between conditions with feedback and without feedback are highly
significant (p < 0.0001 for each comparison). A significant LPE effect is seen if analysis is
restricted to each participant's first block of data (p < 0.0001). There is no PICC effect. If all
blocks of data are used, eliminating the d' > 0.5 filter, there is, again a significant LPE (p <

0.0001) and an insignificant PICC effect (p = 0.1244).

Even though participants were not focused on the speed of their responses, response time data
reflect the effects of prevalence and feedback. Figure 3A shows the distribution of the ~300,000
trials, divided by block type. As is typical with RT distributions, these distributions have very
long positive tails. Some very long RTs probably reflect extended thought, while others might
reflect checking an incoming text message. We chose to eliminate the longest 1% of RTs as
outliers (>7 sec). Figure 3B shows the mean and 95% confidence intervals on a much finer scale
so that the differences between conditions are more clearly visible. There is a significant effect of
block type (F(3, 299422) = 52.88, p < 0.0001, partial eta-sq = 0. 0.0005). Sidak's multiple
comparisons test shows that the 46 msec difference between high and low prevalence with
feedback is significant (p < 0.0001). Low prevalence RTs are shorter than high prevalence.
Without feedback, the PICC effect on RT goes in the opposite direction. Low prevalence RTs are
18 msec longer than high prevalence (p = 0.0008). These effects are in line with the RT effects

seen in other prevalence studies (Wolfe & VanWert, 2010).
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Figure 3: Response time as a function of block type. RTs <7 sec were analyzed. (A) RT
distributions with the graph truncated at 3 sec. Black lines show the mean. (B) Mean RT on

a much finer scale. Error bars show +95% confidence intervals.

How does one block influence the next?

The block data essentially replicate previous results, collected under very different conditions.
However, the key question for this study is whether or not exposure to one combination of
prevalence and feedback influences the next block of trials. Blocks could be independent of each
other. The effect of one block might have a transient impact on the next block (e.g. lasting for a
few trials and then fading). Finally, the effect of one block on the next could be dependent on the

delay between blocks (especially since that delay could be from one day to the next.). To assess



each of these effects, we derive measures of d’ and criterion for each of the 16 pairs
(combinations of one of four ‘first blocks’ with one of four ‘second blocks’). We then subtract a
baseline derived from all blocks of the second block condition. We use the second blocks as the
baseline because we are looking for a change in the second block. In fact, it doesn’t make much
difference. Many second blocks in one pair are the first blocks in a subsequent pair and the
baselines would be very nearly the same if all blocks were included as in Figure 2 above. Thus,
for example, to assess the influence on criterion of Low Prevalence without Feedback (Condition
1 in the figures to follow) on High Prevalence without Feedback (Cond 3), we compute
Criterion(pair 13) — Criterion(Cond 3). This is done for each of the 2080 pairs of blocks using the
d' > 0.5 filter. The data for each of these 2080 "good" pairs of blocks are posted on the Open

Science Framework at https://osf.io/hck5n/.

Figure 4 shows the change in D’ as a function of pair with each dot representing one pair of
blocks. Statistical tests are simple T-tests against a null hypothesis of no change in d” from block
1 to block 2. Three pairs, forming no obvious pattern, reach statistical significance (all p = ~0.02,
all Cohen's d = ~0.2). As these are not corrected for multiple comparisons, these should not be
considered strong effects. The general picture is of little or no effect of the first block of trials on

d’ in the second block of trials.


https://osf.io/hck5n/
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Figure 4: Change in d’ on block 2 as a function of the nature of block 1. X-axis gives
numerical values for each member of a pair where 1 = low prevalence, no feedback, 2 = low
prevalence, with feedback, 3 = high prevalence, no feedback, and 4 = high prevalence, with
feedback. P-values show results for simple t-tests, testing against the null hypothesis that

there is no change in d’. Black lines show means +/- 95% confidence intervals.

A different pattern is seen in the criterion data, plotted in Figure 5. Here, there are two clear
clusters of significant effects. When block 1 has low prevalence and feedback, criterion on block
2 is more conservative (Pairs where Block 1 is low prevalence with feedback, all p < 0.006,
Cohen's d between 0.2 and 0.5). When block 1 has high prevalence and feedback, criterion on

block 2 is more liberal (Pairs where Block 1 is high prevalence with feedback, p < 0.0005, pair



44, p = 0.017; note that there are only 27 pairs of this variety in the dataset, All Cohen's d
between 0.2 and 0.5). When block 1 does not have feedback, there is no effect on criterion in pair
2, except, perhaps, for ‘high feedback’ on Block 2 (p < 0.028, again, not corrected for multiple
comparisons, Cohen's d = 0.18). This is the main finding of the paper. Criterion can be
manipulated by the prevalence of the preceding block of trials, but only if the participants

received feedback on that first block.
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Figure 5: Change in criterion on block 2 as a function of the nature of block 1. P-values
show results for simple t-tests, testing against the null hypothesis that there is no change in

criterion. Black lines show means +/- 95% confidence intervals.



Looking separately at changes in P(True Positive) and P(False Positive) responses, we see
essentially the same pattern of results. For changes in True Positive proportions, pairs where
Block 1 is low prevalence with feedback are significant (all p < 0.005) except when Block 2 is
High Feedback (p = 0.38). Pairs where Block 1 is high prevalence with feedback are significant
(all p <0.005 except when Block 2 is Low Feedback which p = 0.02). The Low Feedback — High
Feedback pair is not significant. For changes in False Positive proportions, pairs where Block 1
is low prevalence with feedback are significant (all p < 0.05). When Block 1 is high prevalence
with feedback, results are significant when Block 2 is Low No Feedback, High No Feedback,
and Low Feedback (p < 0.01). When Block 2 is High Feedback, there is no significant change (p
=0.29). The Low No Feedback — High Feedback pair is significant (p = 0.001). No other
changes in P(True Positive) and P(False Positive) responses are significant. As noted above,
removing the d' > 0.5 filter does not change the pattern of results. Limiting analysis to only the
first pair of blocks for each participant preserves the direction of effects but some effects become

statistically unreliable because of the loss of power.

Do the effects of one block on the next change with time between blocks?

Figure 5 shows that a block with feedback has an influence on the criterion in the next block. Is
that effect transitory or persistent? The time between blocks is quite variable because participants
could perform the second block immediately or from one to several days later. Accordingly, for
each of the 16 pairs of blocks, we examined change in criterion as a function of time between

blocks. The results are shown for four different time ranges in Figure 6.
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Figure 6: Change in criterion as a function of time between the start of block 1 and start of

block 2. 1440 minutes = 1 day. Colored lines are best-fit linear regressions for each of 16

pairs of block types. A) All data, B) Delay < 1 day, C) Delay < 2 hours, D) Delay < 15 min.

Repeat pairs (e.g. Low Feedback -> Low Feedback) do not occur for shorter delays (C &

D).

Because the distribution of delays is strongly skewed toward shorter delays, we repeated the

regression analysis separately for the whole dataset, for all delays < 1 day (84% of all data), <

2hrs (60% of all data), and 15 min or less (still include 52% of all data because participants

tended to do one block and then another, immediately). The four panels of Figure 6 zoom in to

smaller and smaller time scales but, in fact, it does not matter. The point of the admittedly noisy

Figure 6 is that there is no obvious pattern of slopes. This is borne out by linear regressions for



each of the 16 pairs of block types. For the entire data set (Figure 6A), fourteen of sixteen
correlations are not significant (all 14 r-sq < 0.02, all p > 0.16). The Low No Feedback -> Low
Feedback Pair has a r-sq of 0.06 (p = 0.015). The High Feedback -> Low Feedback Pair has a r-
sq of 0.02 (p = 0.045). The regression lines for those conditions are shown as thicker lines in Fig
6A. Examining this relationship, the change in criterion is near zero at short times and the change
grows more conservative with time. For delays less than 1 day, no correlations are significant (all
r-sq < 0.02, all p > 0.35). For delays less than 2 hrs, no correlations are significant (all r-sq <
0.02, all p > 0.20). For delays less than or equal to 15 min, no correlations are significant (all r-sq
<0.025, all p > 0.24). In sum, there is no evidence for the effects, shown in Figure 4, fading with
time. The two (out of 64) significant correlations seem likely to be random fluctuations of the
data and go in the 'wrong' direction if the hypothesis under test is that block 1 would influence

block 2 if block 2 occurred recently but not after a longer delay.

This result is somewhat surprising since, surely, the impact of one block on the next must fade at
some point. The results, shown in Figure 6 tell us that the fading is not fast. In this, the effect of
one block seems more like education than adaptation. The first block in the pair is teaching
participants something and, like learning the capital of Sweden, that knowledge does not simply
fade away within minutes or hours. One might object that the results shown in Figure 6 are,
essentially, negative. As a different way to show that the effects are persistent, Figure 7
replicates Figure 5 but with only 40% of the data included, the 40% with block 1 — block 2
delays longer than two hours. The effects get somewhat weaker since most of the data has been

discarded but it is clear that the pattern remains the same. Exposure to a block of low prevalence



with feedback makes participants more conservative on the next block. Exposure to a block of

high prevalence with feedback makes participants more conservative.
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Figure 7: Change in criterion on block 2 as a function of the nature of block 1. Data

restricted to Pairs separated by more than 2 hours.

Does the effect of one block last throughout the next block?

Wolfe and VanWert (2010) did visual search experiments in which target prevalence changed
smoothly over 1000 trials. Criterion tracked the change in prevalence with a lag that suggested
that criterion was based on the last 2-3 dozen trials. Thus, in an 80-trial block, one might expect
the effect of block 1 to be present in the first 40 trials and, perhaps, reduced or absent in the

second 40 trials. To assess that possibility, the analysis, shown in Figure 5 was repeated for the



first half and second half of the trials in block 2, separately. The results are essentially unchanged
from those shown in Figure 5. Exposure to Low Prevalence with Feedback in block 1, produces a
conservative shift in block 2 criterion in both the first half and the second half of block 2. All t-
tests for pairs where Block 1 is Low Feedback are significant except for the Low Feedback =
High Feedback pair in the first half, when the effect should be stronger than in the second half.
Exposure to High Prevalence with Feedback in block 1, produces a liberal shift in block 2
criterion in both the first half and the second half of block 2. T-tests when block 2 is Low
Feedback, Low No Feedback and High No Feedback are significant. T-test when block 2 is High
Feedback is not significant in either half (again, recall that the High Feedback -> High Feedback

pair has the fewest instances in the dataset).

The lack of any systematic decrease in the magnitude of the effects is shown in Figure 8. The
mean change in criterion is plotted for the first and second half of each pair of blocks. Note the
grouping of the pairs. The dark blue pairs show the conservative (positive) shift following low
prevalence with feedback. The red pairs show the liberal (negative) shift following high
prevalence with feedback. If the effects only lasted for the first 2-3 dozen trials, these effects

should collapse toward zero in the second half. Clearly, this is not the case.
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Figure 8: Mean change in criterion for the first and second halves of a block of trials.

Effects of Expertise

As noted in the Methods section, participants gave a rough categorization of their level of
expertise. Sadly, this convenience population does not include any substantial number of self-
identified expert dermatologists. Only one MD self-identifies as a dermatologist. We can create
an expertise continuum from participants reporting no medical training to premedical students to
medical students and, finally, to medical doctors. Table 6 shows the numbers of participants and

the number of pairs of data contributed by each group.



No. of No. of pairs
Expertise category Participants
Medical Doctor 54 131
Medical Student 337 952
Pre-Med Student 174 426
No Medical Experience 145 358

Table 6: Number of participants in each expertise group and the number of condition pairs
contributed by the groups.

Figure 9 shows d’ and criterion as a function of expertise group, regardless of the type of

feedback or prevalence (Recall, from Figure 2, that there is little effect of block type on d’.)
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Figure 9: Effects of expertise category on d’ and crit, regardless of prevalence and/or

feedback.



There is a highly significant effect of expertise category (F(3, 1863) = 38.58, p <0.0001, partial
eta-squared = 0.86) and, as can be seen by the pairwise comparisons, that effect is entirely due to
superior performance of the medical students (all comparisons to medical students, p <= 0.0001).
It might seem disappointing that MDs were no better at this task than non-medical participants.
However, these non-dermatologist MDs may not have spent time looking at skin lesions for
many years and the novices were only being asked to perform a difficult, but straight-forward,
two-alternative, forced-choice discrimination. It is the medical students, many of whom may
have recently been learning about skin lesions, who do somewhat better on this task. Of course,
there could be other reasons for the group differences (e.g. motivated, competitive students

versus more casually interested MDs. We cannot know in this case.)

There is a very modest effect of expertise category on criterion (F(3, 1863) =3.32, p=0.02,
partial eta-squared = 0.01). Pairwise comparisons reveal that premedical students are slightly
more conservative than medical students (p = 0.049). This does not appear to be a particularly

meaningful finding.

In terms of the impact of expertise on the effect of block 1 on block 2, the data are noisy, with
fewer pairs showing significant effects of block 1 on block 2. This seems to be a statistical power
issue. The pairs that are significant are the same as those seen in Figure 4, with low prevalence
on block 1 making participants more conservative on block 2 and high prevalence making them
more liberal. There is no evidence for any systematic effect of expertise. In particular, there is no

evidence that the most expert group (medical students) shows a different pattern of results. In



that group (fortunately, the largest), Pairs with Low Feedback as block 1 are more conservative

and with High Feedback as block 1 are more liberal (all p <=0.01).
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