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1. FORWARD  
This document details the proposed statistical analysis and presentation of the results for the main 

paper reporting the findings from the NIHR funded Clinical Prediction Rule for Postoperative Atrial 

Fibrillation in Patients Undergoing Cardiac Surgery after Cardiac Surgery -the PARADISE Score. This 

plan is intended to establish the rules that will be followed, as closely as possible, when modelling 

and reporting the prediction model.  

This analysis plan will be available on request after submitting the main papers for publication in a 

scientific journal. Any deviations from the statistical analysis plan will be described and justified in 

the final report of the study. An identified, appropriately qualified, and experienced statistician will 

conduct the analysis, as well as ensuring the integrity of the data during their processing. Examples 

of such procedures include quality control and evaluation procedures. 

1.1. KEY PERSONNEL  
Statistician(s): 
Jie Ma 
Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, 
Rheumatology and Musculoskeletal sciences 
jie.ma@csm.ox.ac.uk 
 
Professor Gary Collins 
Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, 
Rheumatology and Musculoskeletal sciences 
Phone: 01865 223463 
gary.collins@csm.ox.ac.uk 
 
Chief Investigator: 
Professor Peter Watkinson 
Kadoorie Centre, University of Oxford, Level 3, John Radcliffe Hospital, 
Headley Way, Oxford, OX3 9DU 
Phone: 01865 857613 
peter.watkinson@ndcn.ox.ac.uk 
 
Lead Investigator (Joint Lead Applicant): 
Professor Benjamin O'Brien 
Perioperative Medicine Barts Heart Centre 
Ben.OBrien@dhzc-charite.de 

Investigator(s): 
Kara Gayle Fields 
Harvard Medical School 
kgfields@bwh.harvard.edukg 

Dr Oliver C Redfern 
Kadoorie Centre, University of Oxford, Level 3, John Radcliffe Hospital, 
Headley Way, Oxford, OX3 9DU 
oliver.redfern@ndcn.ox.ac.uk 
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2. BACKGROUND  
Atrial Fibrillation after cardiac surgery (AFACS) is the most common complication following cardiac 

surgery, with an incidence between 30% and 50%. The risk is higher for patients having either 

isolated mitral valve or combined mitral valve and coronary artery bypass graft surgery [1, 2]. 

Approximately 35,000 patients undergoing cardiac surgery in the UK every year. In the United States, 

approximately 500,000 patients undergo cardiac surgery annually [3]. AFACS is strongly associated 

with adverse patient outcomes, longer hospital and ICU stays, increased risk of stroke, increased risk 

of developing long-term AF (with associated complications and need for anticoagulation) and 

increased all-cause 30-day and 6-month mortality [4-9]. 

Even though AFACS can be transient, and patients are often discharged from hospital in normal sinus 

rhythm, patients with new-onset AFACS have a 5-fold increased risk of developing long-term AF [1]. 

A number of risk factors have been identified, including (older age, obesity) [10, 11], comorbidities 

(e.g., prior AF, hypertension, chronic kidney disease, obstructive sleep apnoea) [12], surgical features 

(e.g., valve surgery, increased aortic cross-clamp time, acute kidney injury) [13, 14] and the failure or 

inability to (re-)introduce Beta-Blockers. However, each of these factors only accounts for part of the 

overall risk [15]. Importantly, even when controlling for these confounding variables are, long-

duration AFACS (> 2 days) is independently associated with decreased survival [16], as well as stroke 

and respiratory complications [17]. Current evidence therefore indicates that AFACS itself 

contributes to poor patient outcomes following cardiac surgery, and that tools to predict, prevent 

and guide treatment of AFACS are needed. 

Currently, there is no widely accepted prediction model that reliably allows clinicians to determine 

the risk of a patient developing AFACS, despite multiple efforts over the past 15 years to develop 

one [18-21]. Published AFACS prediction models are limited by small sample sizes, a failure to 

include modern variables and a lack of external prospective validation [22-25]. Moreover, our team 

and others have previously developed AFACS risk prediction models that suffer from limited 

generalizability, oversimplification, and the fact that they often use information from variables that 

occur after surgery, or even after onset of AFACS [15, 24, 26]. 

This study will develop and validate two different scores as they apply to different situations, in the 

preoperative assessment clinic (PARADISE 1) and on arrival in the post-operative care unit 

(PARADISE 2), have different input variables (the latter including intra-operative and immediately 

available postoperative variables) and different time horizons for prediction (from weeks before the 

operation and from immediately post-operative in the post-operative care unit). These two models 

will have two distinct use cases. For example, PARADISE-1 could be used to start prophylactic 

medication in the preoperative assessment clinic, whereas PARADISE 2 will be used to adjust risk on 

admission to the postoperative care unit. Of the patients who develop AFACS, 70% do so before 

post-operative day 4 and 94% by post-operative day 7 [6, 27]. Therefore, both models will be 

optimised to predict AFACS within the first week of the initial post-operative hospital stay. This 

ensures we address the unmet need for prediction of AF following cardiac surgery, rather than AF in 

the context of prolonged hospitalisation or critical illness. 
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2.1. A IM  
This study aims to develop and validate two clinical prediction models to estimate the risk of a 

patient developing AF in the seven days following cardiac surgery, using data available: 

• In the pre-operative assessment clinic or at admission for surgery (PARADISE-1) 

• On arrival to the post-operative care unit (PARADISE-2) 

2.2. OBJECTIVES  
To develop and internally validate two prognostic models to predict postoperative atrial fibrillation 

after cardiac surgery using data available in the pre-operative assessment clinic or at admission for 

surgery (PARADISE-1); and data available on arrival in the postoperative care unit (PARADISE-2) from 

a single US centre (Massachusetts General Hospital). 

To externally validate the developed models on three separate datasets: a US hospital (Brigham and 

Women’s Hospital), a UK clinical trial (Tight K study) and prospectively collected data from UK NHS 

cardiac surgery centres.
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3. METHODOLOGY 
This is an international, multi-centre longitudinal cohort study of patients who have undergone 

cardiac surgery. The study will use retrospective data to develop clinical prediction models to 

estimate the risk of developing atrial fibrillation in the seven days following surgery and use 

prospectively collected data to externally validate the developed models.  

3.1. STUDY POPULATION  

3.1.1. INCLUSION CRITERIA  

•   Patients 18 years or over 

•   Who underwent or are scheduled to undergo cardiac surgery  

3.1.2. EXCLUSION CRITERIA  

• Patients who have requested that their data not be used for research  

• Patients with paced rhythm  

• The procedure was solely:  

o A transcatheter insertion of a valve or stent  

o An Isolated vascular procedure (aorta, pulmonary artery)  

o A heart transplant 

o A lung transplant 

o For congenital heart disease  

3.2. OUTCOME MEASURE  
A new onset atrial fibrillation was defined as present if current atrial fibrillation or flutter was 

mentioned in patient cardiac report (e.g., ECG, ECHO) OR atrial fibrillation was identified by a trained 

chart abstractor for The Society of Thoracic Surgeons Adult Cardiac Surgery Database during 

postoperative period during the hospital admission (the outcome was assumed to happen within 7 

days when timing was not specified). 

Prior AF status was defined as any previous history of AF. Models for prior AF patients will be 

investigated in the sub analysis (section 3.6) 

3.3. MODEL DEVELOPMENT  
The following procedures will be applied for the development of the two prognostic models. 

Information from all subjects in the Massachusetts General Hospital database will be used to 

develop the two predictive models proposed in this analysis plan. Both models will predict the same 

outcome (Atrial Fibrillation) after cardiac surgery but will differ in the predictors they use to predict 

the outcome.  

3.3.1. STUDY SETTING AND DATA COLLECTION  
We will use the Massachusetts General Hospital (MGH) database to develop the PARADISE 

prediction models. The MGH dataset has two data sources:  
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1. the Research Patient Data Registry (RPDR): medical record data extracted from electronic 

hospital systems 

2. the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database: data gathered by 

trained extractors    

Both data sources for the Mass General Hospital dataset will be used to develop our models and we 

will use retrospective pre-, intra-, and post-operative data for over 10,000 cardiac surgeries 

performed and recorded at this single US centre between 2003 and 2020.  

It is important to note that some tables from this dataset were affected by a change in its electronic 

medical record system, which changed from Longitudinal Medical Record (LMR) to EPIC in April 

2016.  

3.3.2. SAMPLE SIZE CALCULATION  
As the two models to be developed are predicting the same outcome (new onset AF in the 7 days 

after surgery), the same sample size is applicable to both models.  

Data on approximately 12,000 surgeries are available from Massachusetts General Hospital between 

2003 – 2020 with approximately 20% of patients having new onset AF in the 7 days after surgery. 

We used formal sample size formulae for binary outcome measurement provided by Riley et al [28] 

and the associated ‘pmsampsize’[29] sample size calculator in R statistical software programme to 

calculate the maximum number of candidate predictor parameters we can include during model 

development. Based on the prevalence and assuming an anticipated R squared between 5% and 15% 

of the max Cox-Snell R2 (i.e. Cox-Snell R2 between 0.0316 and 0.0948) we can examine up to 42 - 

132 predictor parameters for inclusion in the model [28]. 

3.3.3.  PREDICTOR SELECTION BEFORE MODELLING  
Prior to model development, we used the following diverse range of approaches to identify a 

comprehensive list of candidate predictors for AFACS: 

• Literature – systematic literature review: We will perform a systematic review and critical 

appraisal of pre-operative variables predictive of AFACS. We will include existing prediction 

models and associated publications, both for AFACS and other AF substrates, such as 

primary AF (not after intervention), AF in critically ill patients and post-operative AF after 

non-cardiac surgery. 

• Data-driven identification – CALIBER database: We will use patient data within the CALIBER 

research platform to identify risk factors (comorbidities, medical conditions, and 

medications) prior to cardiac surgery associated with incident AF. 

• Expert panel – modified Delphi process: We will select a panel of international experts from 

relevant publications identified in our systematic review. The panel will undertake a 

modified Delphi process to identify a list of potential risk factors for AFACS. 

• Machine learning methods – exploring combinations of risk factors in the CALIBER and PRD 

Databases: We will combine all candidate variables identified from the systematic review, 

CALIBER analysis and Delphi into a combined “long-list”. Any variables missing from the PRD 

(to be used for model development) will be extracted from the electronic patient record. We 
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will then apply machine learning methods to the CALIBER and PRD data sets to derive 

combinations of risk factors (i.e., Interactions) that should be considered for inclusion in 

model development. 

• Expert panel – consolidating risk factors to be used in model development: At their final 

meeting, the expert panel will review the final longlist of candidate variables (and their 

combinations). Any variables judged to be redundant or unlikely to represent spurious 

correlations will be removed. 

The final candidate predictors are described in the study Case Report Form v2.1. 

3.3.4.  DURING MODELLING  
In the Massachusetts General Hospital dataset, we anticipate that around 18% of patients will 

experience AFACS which was used to inform the sample size calculation. We will model the binary 

outcome using logistic regression. Though the risk of overfitting is low, given the high number of 

candidate predictors, we will also use shrinkage methods and specifically the Least Angle Selection 

and Shrinkage Operator (LASSO) to penalise and identify which predictors will be included in the 

final models [30].  

Continuous variables will be kept as continuous in the model to avoid a loss of predictive 

information. Non-linear relationships with AFACS will be investigated using fractional polynomials or 

restricted cubic splines.  

Since the development cohort spans an extended period, there is a chance that the calibration of the 

model will vary according to time. Therefore, we may consider re-calibrating the final model using 

the most recent subset of data [31].  

3.3.5. ASSUMPTION CHECKS  
The normality of residuals will be checked using graphical methods. Influence of individual data 

points will be assessed by plotting leverage residuals against fitted data.  

3.3.6. MACHINE LEARNING APPROACHES  
In parallel to develop statistical prediction models, we will investigate machine learning (ML) 

approaches to developing a prediction model, including methods such as random forests, deep 

neural networks, and Bayesian Gaussian processes. Such models allow consideration of interactions 

between available variables providing “latent variables” (complex, non-linear transformations of the 

original input variables) that may improve prediction performance over the non-transformed input 

variables. We will prioritise principled, probabilistic methods that permit the incorporation of prior 

clinical knowledge, such that results are “interpretable”, avoiding the “black box” nature of much 

ML-oriented research in this area [32, 33].  

We will exploit the ability of the complementary modern ML fields of (i) Bayesian non-parametric 

modelling (which provides a principled means of coping with artefact and measurement noise in the 

clinical data) and (ii) deep learning, which permits the fusion of large quantities of (potentially time-

varying) clinical variables. These models include components (“attention mechanisms”) that allow 

the resulting risk estimations to be interpretable for clinicians.  
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Importantly, these models permit the model to quantify its uncertainty in its score prediction – 

where conventional medical statistical methods always output a score, ML models provide the 

opportunity to quantity probabilistically the certainty with which a score is produced; this offers 

advantages in applications in which classes are substantially overlapped, as often occurs in complex, 

real-world clinical problems, where there is imperfect class separation. Accuracy of such models can 

often be substantially improved by permitting a model not to make a classification if the score is 

highly uncertain; such approaches are used in many application areas of critical systems to improve 

acceptability with users. 

Additionally, we will investigate the joint construction of phenotypical clustering models (which 

identify reproducible phenotypes in the physiological data) with predictive models specific to each 

phenotypical group – this novel approach constructs an ensemble of predictive models that are 

phenotype-specific, thereby improving predictive accuracy with respect to a single “one-size-fits-all” 

generic algorithm applied to the entire population. 

3.4. GENERAL ISSUES FOR STATISTICAL ANALYSIS  

3.4.1. METHOD FOR HANDLING MISSING DATA  
To avoid excluding patients when developing and validating our models, we will use multiple 

imputation to impute missing values, under a missing at random assumption.  

Identifying the true underlying missing data mechanism from the available is rarely possible. 

Assumptions need to be made on the plausible mechanism, and approaches needed to be used. 

Under a missing completely at random mechanism. (MCAR), the missingness mechanism does not 

depend on unobserved (unseen) data. Conducting a complete case analysis will produce unbiased 

estimates (but with a loss precision if full data are observed). Under the missing at random (MAR) 

assumption, the missingness after conditioning on the observed data does not depend on the 

unobserved (unseen) data. Under this approach, we can apply approaches such as multiple 

imputation, by fitting a joint model to the observed data and impute the missing data, taking 

account of the uncertainty in the estimated parameters of this joint model.  

We feel this, MAR, approach makes a less strong and more realistic assumption than the MCAR 

approach. The MAR imputation model will include all variables considered for the multivariable 

model building, the outcome and any auxiliary variables that will help explain the missingness. The 

assumption of a missing not at random (MNAR) approach whilst not implausible is considerably 

more complex to investigate – there is a dearth of research investigating MNAR in the context of 

prediction model research. We will nevertheless explore whether the MAR assumption holds by 

comparing the imputed values (after accounting for the observed values) and the missing values to 

identify if there are any systematic differences to suggest a MNAR assumption. 

Therefore, to conform to current guidelines[34], multiple imputation for all subjects with at least 

one missing value (using the ‘mice’ function in R, for example) will be used.  

Data from LHCH and BHC provide a large “real-world” prospective validation but is likely to contain 

more missingness [35]. 
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Using sensitivity analyses we may investigate the impact of informative missingness in our model 

development, i.e. departures from the missing at random assumption. 

3.4.2. METHOD FOR HANDLING OUTLIERS  
Outliers will be identified by plotting box plots of each continuous variable. Clinical judgment will be 

used to assess if the outlier could be a true value. 

3.5. INTERNAL VALIDATION  
After developing a prognostic model, it is important to evaluate its performance. Internal validation 

can be performed using methods applied to the same data from which the model was developed. 

Internal validation of the final model will also be assessed by the bootstrap resampling technique 

using at least 200 iterations whereby each modelling step is repeated in each bootstrap sample, to 

adjust for over-optimism in the estimation of model performance. ML models will also be 

additionally validated via k-fold cross-validation. The internal validation will quantify and be used to 

adjust the performance measures (e.g., discrimination, calibration) for any optimism.  

3.5.1. MODEL PERFORMANCE  
The performance of a prediction model is typically assessed by its calibration and discrimination. 

Calibration, which reflects how close the predictions from the model are to the observed outcome 

frequencies will be assessed graphically, using a calibration plot, plotting observed outcomes against 

predictions using smoothing techniques. The calibration plot will be supplemented with a smoothed 

regression line. Calibration will also be quantified by calculating the calibration slope and intercept. 

The discrimination of the prediction models is the ability of the model to correctly rank individuals 

(i.e., those with the event should have higher predicted probabilities than those without), will be 

summarised with the concordance index (equivalent to the Area Under Receiver Operating 

Characteristic curve) with 95% confidence interval.  

3.6. SUB ANALYSIS 
An additional analysis will be investigated to include patients with prior AF. Models (both regression 

model and machine learning approaches) will be developed to population include prior AF patient 

(compared to population for patients exclude prior AF). Model coefficients and performance will be 

compared between patients with and without prior AF.  

 

3.7. CLINICAL UTILITY/NET BENEFIT  
Decision curve analysis will be used to assess and compare the utility of the models (both regression 

model and machine learning approaches) and to explore at 25% of threshold which calculates the 

net benefit of using the model (compared to not using the model). The net benefit of a model is the 

difference between the proportion of true positives and the proportion of false positives weighted 

by the odds of the selected threshold for high-risk designation [36].  

3.8. EXTERNAL VALIDATION  
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3.8.1. STUDY SETTING AND DATA COLLECTION (VALIDATION DATASETS) 
The developed models will be validated on three datasets. These are:  

Brigham and Women’s Hospital: The Brigham and Women’s CABG Genomics Database is a 

prospective single centre and detailed research database comprising over 2000 surgeries from 2001-

2016. This dataset contains over 1,700 prospectively collected and curated pre, intra, and post-

operative variables. 

NHS Trusts: The study will prospectively collect data from the UK NHS Trusts which will allow us to 

undertake external validation of PARADISE-1/PARADISE-2 with a total of approximately 6000 

patients (2000 AFACS events) per annum. The NHS Trusts where data will be extracted from are: 

• Liverpool Heart & Chest NHS Foundation Trust 

• Barts Heart Centre (Barts Health NHS Trust) 

• Oxford University Hospitals NHS Foundation Trust 

Tight K study (trial dataset): (BHF-funded CS/18/3/34063, ClinicalTrials.gov Identifier: 

NCT04053816). Tight K is a 22-centre clinical trial that will include 1684 patients, randomised within 

this non-inferiority trial to investigate whether maintaining serum potassium ≥3.6mEq/L is 

equivalent to maintaining levels at 4.5- 5.5mEq/L, with a primary endpoint of development of AFACS 

using precise clinical definitions and 5-day Holter monitoring. The trial is already designed to collect 

detailed data on AFACS risk factors, minimising any additional burden of PARADISE. It is restricted to 

patients undergoing isolated coronary artery bypass grafting. This has the strength that detailed data 

are being collected in a well-defined cohort, but means we need additional prospective data to 

assess the performance of the PARADISE scores in valve surgery. 

3.8.2. SAMPLE SIZE CALCULATION  
Current recommendations for external validation sample size calculation uses 3 criteria (outlined 

below) [37]. We based the observed events/expected events (O/E) on the outcome prevalence 

(20%), the calibration slope (assuming model is well calibrated, intercept=0, slope=1), and on the c-

statistic (15% of the max Nagelkerke’s R-squared).[37-39]. We have assumed the linear predictor is 

normally distributed with a common variance in event and non-event groups, prior to model 

development. Given this strong assumption, we will update these calculations after model 

development is completed. 

1. O/E calculation 

We assume O/E is 1 in the external validation population, with a 95% confidence interval 

width of 0.2 for O/E. he estimated sample size to satisfy criterion 1 is 1538 patients (~308 

events).  

2. Calibration slope 

We assume model is well calibrated with intercept=0 and slope=1. We also assume the 

linear predictor distribution is normally distributed. For a 95% confidence interval width of 

0.2, we would need a sample size of 4248 patients (~850 events). 

3. C-statistic 

Based on 15% of R2 (i.e., max 15% Cox-Snell R2 of ~0.09 based on assumed prevalence), 
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which equates to a C-statistic of ~0.72. Using this estimated C-statistic value with targeted a 

SE(C) of 0.025, correspond to a confidence interval of width 0.1 (i.e., 0.67-0.77), we would 

need a sample size of 619 patients (about 124 events). Varying the expected C-statistic from 

0.67 to 0.77 and based on the assumption above, a sample size of 531 patients (106 events) 

to 691 patients (138 events) would be needed, respectively. 

Therefore, a minimum sample size of 4248 patients with 850 (20% of 4248) events would be needed 

for external validation to satisfy all three criteria.  

Both regression models and machine learning approaches will then be externally validated on 

prospective data from one US hospital (Brigham and Women’s Hospital), prospectively collected 

data from UK NHS Trusts and one UK clinical trial (Tight K study). In brief, for each individual in these 

datasets, outcome predictions will be calculated using the model developed with the Massachusetts 

General Hospital dataset and compared with the observed outcomes. The performance of the 

prediction models will be characterised by evaluating calibration and discrimination. To account for 

potential differences in case-mix (distribution of patient characteristics and prevalence of the 

outcome) between the US data (Massachusetts General Hospital dataset) used to develop the model 

and the prospective external validation, we will investigate whether recalibration is needed to 

update the model to better fit the UK population [35]. 

Heterogeneity in model performance will be explored over different hospitals using internal-external 

cross-validation [40, 41].  

Finally, we will compare our prediction models to those existing prediction models identified from 

the systematic review where sufficient details are available from the original publication and 

predictors are available in the US data set. 

4. REPORTING  
The description of the development and internal validation of the prediction models will be reported 

according to the TRIPOD and statement [34] and TRIPOD+AI should be available at the time for ML 

approaches[42].   
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