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1. SYNOPSIS 

The current study is single-center, randomized, controlled, single-blinded trial to determine 
whether perioperative intravenous administration of pantoprazole, a proton pump inhibitor (PPI), 
will reduce urinary kidney injury (AKI) biomarkers KIM-1 and other injury biomarkers, the 
incidence of AKI, and major adverse kidney events (MAKE) at POD 30 compared to famotidine 
after cardiac surgery with CPB. The specific aims of the study will be achieved by randomizing a 
cohort of 100 patients to receive pantoprazole (study) or famotidine (control) for 2 days 
perioperatively. 

This Bayesian clinical trial will estimate the efficacy of PPI for the prevention of AKI with the 
primary outcome KIM-1, an indicator of AKI. Developing effective interventions for preventing 
AKI in the population experiencing renal ischemia requires incremental improvement of 
theoretically sound treatments based on systematically accruing data. Often such incremental 
development is hampered by statistical tools not appropriate to the task.  Classical, Frequentist 
statistics have advanced the field, but are less informative for the initial evaluation of a new 
treatment.  The reliance of the Frequentist framework on dichotomous, null hypothesis-testing 
provides some control of the error rate in the context of multiple repeated trials; however, this is 
not what early-phase treatment testing requires.  Developing nascent treatments requires 
investigators to bet on an alternative hypothesis. Investigators evaluating a theoretically sound 
intervention want to know the probability that the approach confers some level of benefit given 
the observed data: that is, they want to know the probability that the alternative hypothesis is 
true.  While Frequentist inference does not directly address this issue, Bayesian statistical 
inference provides a principled approach to answer this question.  Indeed, addressing the so-
called “Pipeline Problem” in developing clinical applications, the FDA has indicated that 
Bayesian statistics offers one avenue for improved methodological efficiency.1–5 

Decision-making, based on an initial treatment trial, is assisted by estimates of the probability of 
an effect of some specified magnitude.  These statements, not part of the conventional, 
Frequentist statistical lexicon, are accessible via Bayesian approaches, particularly with small 
sample sizes. 6,7 Detailed descriptions of Bayesian statistical reasoning exist elsewhere.8,9  
Succinctly, Frequentist models estimate the probability of observing the data (or data more 
extreme) given that the null hypothesis is true; Bayesian analyses estimate the probability of the 
alternative hypothesis given the observed data.10 Bayesian probability estimates incorporate 
prior information about plausible parameter values (i.e., the prior distribution) and the observed 
data (i.e., the likelihood).  Combining these two distributions forms the posterior distribution 
which permits evaluation of the probability that the true value of the parameter falls in some 
range. 

2. GENERAL DATA ANALYTIC PLAN 

2.1. Analysis Sample 

The primary analysis sample for efficacy will implement intention-to-treat (ITT) principles.  The 
safety evaluation will include all subjects while they were taking study treatment. 

2.2. Patient Accountability and Compliance 

A flowchart (CONSORT Diagram) will summarize participant status, listing the number and 
disposition of patients randomized to each treatment. Specifically, within each group, the 



CONSORT Diagram will list the numbers of patients who completed the study, withdrew 
consent, death, and those lost to follow up.  

2.3. Randomization 

Randomization (1:1 ratio) with random blocks of 2 or 4. 

2.4. Treatment Group Comparability 

Initial analyses examining group differences for baseline variables will use cross-tabulation, 
ANOVAs, and examination of correlations between baseline variables and specified outcomes. 
For the purposes of evaluating the comparability of groups, a posterior probability of > 95% will 
constitute evidence for statistically reliable differences. Baseline or demographic variables on 
which group differences are detected, and which are correlated with outcomes, meet the 
definition of confounders11,12 and will result in two sets of analyses: one in which the relevant 
variable is included as a covariate and one in which it is not. This will permit determination of the 
degree to which any group differences might confound conclusions regarding treatment.  

2.5. Preliminary Analysis 

For all continuous variables, outliers will be explored and extreme outliers will be queried to 
confirm that they are not erroneous before the data is locked for analysis, but outliers will not be 
removed from the analysis. 

2.6. Multiplicity 

In keeping with sound Bayesian analytic principles, salient error rates/operating characteristics 
for confirmatory analyses in each component of the trial, provided in the sample size justification 
section, result from Monte Carlo simulation.  Any secondary analyses for which issues of 
multiplicity might be a consideration will use weakly, informative priors to regularize all 
estimates.  Means for these regularizing priors will be centered on the null hypothesis, with 
variances determined by the scale of the data and credible effects previously reported in the 
literature in the most closely analogous studies. Of note is the principle that the more 
informative the priors are, based on credible estimates of these effects, the greater the degree 
of regularization, the more conservative the estimates, and the more likely the results are to 
replicate outside of the current sample.  Indeed for any observed results, the Bayesian 
approach makes it possible to determine the sensitivity of the results to prior assumptions; the 
degree of prior skepticism an observer would require before dismissing the estimated treatment 
effect.13 In the interest of transparency and reproducibility, the resulting reports will provide the 
prior specifications used for these secondary analyses. 

2.7. Missing Data 

Under the ITT principle, all patients who are randomized are included in the analysis. Therefore, 
missing data, especially in the primary outcome measure, can be problematic. Missing data will 
result in joint modeling of observed outcomes and the missing data which is robust to ignorable 
missingness.14 Sensitivity analyses will evaluate robustness of analytic conclusions to missing 
data. Non-ignorable missing data patterns will be addressed through pattern-mixture modeling 
methods.15 

 



2.8. Analysis Approach 

Broadly, the data analytic strategy will use generalized linear and multilevel models (R and 
Stan) for both discrete, and continuous outcomes.16–20 Multilevel generalized linear modeling to 
account for clustering of patients within site and repeated observations within patients will 
evaluate continuous, dichotomous, and count data.  

Evaluation of posterior distributions will permit statements regarding the probability that effects 
of varying magnitudes exist, given the data. Specification of diffuse, neutral priors will reflect the 
initial uncertainty regarding effect sizes. For all generalized linear models, priors for (non-
intercept) regression coefficients will be specified as ~Normal (μ=0, σ=1 x 1000), level one and 
two error variances will be specified as ~Exponential (μ=0, σ2=1 x 103). The choice of prior 
distribution for level two variances will follow Gelman’s recommendations.9 Priors for the 
comparison of proportions will be specified as ~Beta (α=1.0, β=1.0). 

2.9. Specific Data Analytic Models 

Generalized linear modeling will evaluate continuous outcomes as follows. 

Residualized change model at hour 8, 24, or 48: 

𝑦 = 𝛽0 +  𝛽1𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒1 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 

Generalized linear multilevel model: 

𝑦 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 + 𝛽2𝑇𝑖𝑚𝑒1 +  𝛽3(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 ×  𝑇𝑖𝑚𝑒1) 

Where y (i.e., KIM-1 levels) may follow a variety of response distributions including: 1) Normal, 
2) T-distribution, 3) Gamma, 4) Log-Normal, 5) Hurdle-Gamma, 6) Hurdle-Log-Normal, 7) 
Cumulative Logit, and 8) Adjacent-Category models.   

Hypothesis 1.1: We hypothesize that perioperative administration of the PPI pantoprazole 
would reduce KIM-1, a urinary biomarker of AKI, in cardiac surgery patients compared to 
famotidine. Measurement of KIM-1 will occur at baseline and post-operatively at hours 8, 24 and 
48. The primary outcome point will be area under the curve (AUC) of KIM-1 above baseline 
within 24 hours postoperatively. Additionally, models will estimate KIM-1 at 48 hours. 
Generalized linear modelling will evaluate KIM-1 at 48 hours as a function of treatment 
condition, adjusting for baseline KIM-1. Secondarily, similar models will evaluate KIM-1 at 8 and 
24 hours after adjusting for baseline KIM-1. Additional secondary analyses will use generalized 
linear multilevel models to evaluate KIM-1 as a function of time, treatment condition and the 
interaction of time and treatment. 

Hypothesis 2.1: We hypothesize that administration of the PPI pantoprazole will reduce other 
urinary kidney injury biomarkers (NGAL, TIMP-2, and IGFBP-7). The primary outcome point will 
be area under the curve (AUC) of each of these biomarkers above baseline within 24 hours 
postoperatively. Additionally, models will estimate each biomarker at 48 hours. Generalized 
linear modelling will evaluate biomarkers at 48 hours as a function of treatment condition, 
adjusting for baseline levels. Secondarily, similar models will evaluate biomarkers at 8 and 24 
hours after adjusting for baseline levels. Additional secondary analyses will use generalized 
linear multilevel models to evaluate each biomarker as a function of time, treatment condition 
and the interaction of time and treatment. 



 

Hypothesis 2.2: We hypothesize that administration of the PPI pantoprazole will reduce the 
incidence, severity and duration of acute kidney injury (AKI) in cardiac surgery patients 
compared to famotidine as measured at hospitalization day 30. Generalized linear modelling will 
evaluate the incidence, severity and duration of AKI at day 30.  

Hypothesis 2.3: We hypothesize that administration of the PPI pantoprazole will reduce the 
incidence of MAKE in cardiac surgery patients compared to famotidine as measured at 
hospitalization day 30. Generalized linear modelling will evaluate the incidence of MAKE at day 
30. 

2.10. Safety Analyses 

All adverse events and serious adverse events will be modelled as a function of treatment 
group, using the beta-binomial distribution. 

2.11. Exploratory Outcomes 

Additional clinical outcomes (maximal change in creatinine by POD 7; postoperative ventilation 
time, re-intubation, postoperative myocardial infarction, postoperative delirium, infection and 
ICU and hospital length of stay) will be modeled as a function of treatment group.  

2.12. Safety Monitoring 

Safety monitoring will occur via the DSMB in accordance with FDA AE and SAE reporting 
requirements with interim safety evaluations every three months. 

2.13. Sensitivity Analysis 

Per protocol analyses will evaluate only those participants treated according to the protocol 
using the same methods described above and applied to the ITT analysis. Inconsistencies with 
the primary ITT analysis will result in cautious interpretation of the trial findings. 

2.14. Subgroup Analyses by Gender, Race, Ethnicity 

Secondary analyses will evaluate heterogeneity of treatment effect as a function of gender, age, 
ethnicity and NIAID-OS strata.  The approach to subgroup analyses will utilize skeptical, 
informative priors to increase the likelihood of future replication.21,22  

3. DETERMINATION OF SAMPLE SIZE 

This is a pilot feasibility study. We will use the preliminary data achieved with this study proposal 
for further larger-scale trials and external funding applications. Therefore, no sample size 
calculation will be needed.  
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