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1. SYNOPSIS

The current study is single-center, randomized, controlled, single-blinded trial to determine
whether perioperative intravenous administration of pantoprazole, a proton pump inhibitor (PPI),
will reduce urinary kidney injury (AKI) biomarkers KIM-1 and other injury biomarkers, the
incidence of AKI, and major adverse kidney events (MAKE) at POD 30 compared to famotidine
after cardiac surgery with CPB. The specific aims of the study will be achieved by randomizing a
cohort of 100 patients to receive pantoprazole (study) or famotidine (control) for 2 days
perioperatively.

This Bayesian clinical trial will estimate the efficacy of PPI for the prevention of AKI with the
primary outcome KIM-1, an indicator of AKI. Developing effective interventions for preventing
AKIl in the population experiencing renal ischemia requires incremental improvement of
theoretically sound treatments based on systematically accruing data. Often such incremental
development is hampered by statistical tools not appropriate to the task. Classical, Frequentist
statistics have advanced the field, but are less informative for the initial evaluation of a new
treatment. The reliance of the Frequentist framework on dichotomous, null hypothesis-testing
provides some control of the error rate in the context of multiple repeated trials; however, this is
not what early-phase treatment testing requires. Developing nascent treatments requires
investigators to bet on an alternative hypothesis. Investigators evaluating a theoretically sound
intervention want to know the probability that the approach confers some level of benefit given
the observed data: that is, they want to know the probability that the alternative hypothesis is
true. While Frequentist inference does not directly address this issue, Bayesian statistical
inference provides a principled approach to answer this question. Indeed, addressing the so-
called “Pipeline Problem” in developing clinical applications, the FDA has indicated that
Bayesian statistics offers one avenue for improved methodological efficiency.'

Decision-making, based on an initial treatment trial, is assisted by estimates of the probability of
an effect of some specified magnitude. These statements, not part of the conventional,
Frequentist statistical lexicon, are accessible via Bayesian approaches, particularly with small
sample sizes. % Detailed descriptions of Bayesian statistical reasoning exist elsewhere.?®°
Succinctly, Frequentist models estimate the probability of observing the data (or data more
extreme) given that the null hypothesis is true; Bayesian analyses estimate the probability of the
alternative hypothesis given the observed data.'® Bayesian probability estimates incorporate
prior information about plausible parameter values (i.e., the prior distribution) and the observed
data (i.e., the likelihood). Combining these two distributions forms the posterior distribution
which permits evaluation of the probability that the true value of the parameter falls in some
range.

2, GENERAL DATA ANALYTIC PLAN
21. Analysis Sample

The primary analysis sample for efficacy will implement intention-to-treat (ITT) principles. The
safety evaluation will include all subjects while they were taking study treatment.

2.2, Patient Accountability and Compliance

A flowchart (CONSORT Diagram) will summarize participant status, listing the number and
disposition of patients randomized to each treatment. Specifically, within each group, the



CONSORT Diagram will list the numbers of patients who completed the study, withdrew
consent, death, and those lost to follow up.

2.3. Randomization
Randomization (1:1 ratio) with random blocks of 2 or 4.
24. Treatment Group Comparability

Initial analyses examining group differences for baseline variables will use cross-tabulation,
ANOVAs, and examination of correlations between baseline variables and specified outcomes.
For the purposes of evaluating the comparability of groups, a posterior probability of > 95% wiill
constitute evidence for statistically reliable differences. Baseline or demographic variables on
which group differences are detected, and which are correlated with outcomes, meet the
definition of confounders''2 and will result in two sets of analyses: one in which the relevant
variable is included as a covariate and one in which it is not. This will permit determination of the
degree to which any group differences might confound conclusions regarding treatment.

2.5, Preliminary Analysis

For all continuous variables, outliers will be explored and extreme outliers will be queried to
confirm that they are not erroneous before the data is locked for analysis, but outliers will not be
removed from the analysis.

2.6. Multiplicity

In keeping with sound Bayesian analytic principles, salient error rates/operating characteristics
for confirmatory analyses in each component of the trial, provided in the sample size justification
section, result from Monte Carlo simulation. Any secondary analyses for which issues of
multiplicity might be a consideration will use weakly, informative priors to regularize all
estimates. Means for these regularizing priors will be centered on the null hypothesis, with
variances determined by the scale of the data and credible effects previously reported in the
literature in the most closely analogous studies. Of note is the principle that the more
informative the priors are, based on credible estimates of these effects, the greater the degree
of regularization, the more conservative the estimates, and the more likely the results are to
replicate outside of the current sample. Indeed for any observed results, the Bayesian
approach makes it possible to determine the sensitivity of the results to prior assumptions; the
degree of prior skepticism an observer would require before dismissing the estimated treatment
effect.”® In the interest of transparency and reproducibility, the resulting reports will provide the
prior specifications used for these secondary analyses.

2.7. Missing Data

Under the ITT principle, all patients who are randomized are included in the analysis. Therefore,
missing data, especially in the primary outcome measure, can be problematic. Missing data will
result in joint modeling of observed outcomes and the missing data which is robust to ignorable
missingness.' Sensitivity analyses will evaluate robustness of analytic conclusions to missing
data. Non-ignorable missing data patterns will be addressed through pattern-mixture modeling
methods.™



2.8. Analysis Approach

Broadly, the data analytic strategy will use generalized linear and multilevel models (R and
Stan) for both discrete, and continuous outcomes.'®-2° Multilevel generalized linear modeling to
account for clustering of patients within site and repeated observations within patients will
evaluate continuous, dichotomous, and count data.

Evaluation of posterior distributions will permit statements regarding the probability that effects
of varying magnitudes exist, given the data. Specification of diffuse, neutral priors will reflect the
initial uncertainty regarding effect sizes. For all generalized linear models, priors for (non-
intercept) regression coefficients will be specified as ~Normal (u=0, 6=1 x 1000), level one and
two error variances will be specified as ~Exponential (u=0, ?=1 x 103). The choice of prior
distribution for level two variances will follow Gelman’s recommendations.® Priors for the
comparison of proportions will be specified as ~Beta (a=1.0, $=1.0).

2.9. Specific Data Analytic Models
Generalized linear modeling will evaluate continuous outcomes as follows.
Residualized change model at hour 8, 24, or 48:
y = Sy + B1Baseline; + B,Treatment,
Generalized linear multilevel model:
y = By + PiTreatment, + f,Time; + Bz(Treatment; X Time,;)

Where y (i.e., KIM-1 levels) may follow a variety of response distributions including: 1) Normal,
2) T-distribution, 3) Gamma, 4) Log-Normal, 5) Hurdle-Gamma, 6) Hurdle-Log-Normal, 7)
Cumulative Logit, and 8) Adjacent-Category models.

Hypothesis 1.1: We hypothesize that perioperative administration of the PPl pantoprazole
would reduce KIM-1, a urinary biomarker of AKI, in cardiac surgery patients compared to
famotidine. Measurement of KIM-1 will occur at baseline and post-operatively at hours 8, 24 and
48. The primary outcome point will be area under the curve (AUC) of KIM-1 above baseline
within 24 hours postoperatively. Additionally, models will estimate KIM-1 at 48 hours.
Generalized linear modelling will evaluate KIM-1 at 48 hours as a function of treatment
condition, adjusting for baseline KIM-1. Secondarily, similar models will evaluate KIM-1 at 8 and
24 hours after adjusting for baseline KIM-1. Additional secondary analyses will use generalized
linear multilevel models to evaluate KIM-1 as a function of time, treatment condition and the
interaction of time and treatment.

Hypothesis 2.1: We hypothesize that administration of the PPI pantoprazole will reduce other
urinary kidney injury biomarkers (NGAL, TIMP-2, and IGFBP-7). The primary outcome point will
be area under the curve (AUC) of each of these biomarkers above baseline within 24 hours
postoperatively. Additionally, models will estimate each biomarker at 48 hours. Generalized
linear modelling will evaluate biomarkers at 48 hours as a function of treatment condition,
adjusting for baseline levels. Secondarily, similar models will evaluate biomarkers at 8 and 24
hours after adjusting for baseline levels. Additional secondary analyses will use generalized
linear multilevel models to evaluate each biomarker as a function of time, treatment condition
and the interaction of time and treatment.



Hypothesis 2.2: We hypothesize that administration of the PPI pantoprazole will reduce the
incidence, severity and duration of acute kidney injury (AKI) in cardiac surgery patients
compared to famotidine as measured at hospitalization day 30. Generalized linear modelling will
evaluate the incidence, severity and duration of AKI at day 30.

Hypothesis 2.3: We hypothesize that administration of the PPI pantoprazole will reduce the
incidence of MAKE in cardiac surgery patients compared to famotidine as measured at
hospitalization day 30. Generalized linear modelling will evaluate the incidence of MAKE at day
30.

2.10. Safety Analyses

All adverse events and serious adverse events will be modelled as a function of treatment
group, using the beta-binomial distribution.

2.11. Exploratory Outcomes

Additional clinical outcomes (maximal change in creatinine by POD 7; postoperative ventilation
time, re-intubation, postoperative myocardial infarction, postoperative delirium, infection and
ICU and hospital length of stay) will be modeled as a function of treatment group.

2.12. Safety Monitoring

Safety monitoring will occur via the DSMB in accordance with FDA AE and SAE reporting
requirements with interim safety evaluations every three months.

2.13. Sensitivity Analysis

Per protocol analyses will evaluate only those participants treated according to the protocol
using the same methods described above and applied to the ITT analysis. Inconsistencies with
the primary ITT analysis will result in cautious interpretation of the trial findings.

2.14. Subgroup Analyses by Gender, Race, Ethnicity

Secondary analyses will evaluate heterogeneity of treatment effect as a function of gender, age,
ethnicity and NIAID-OS strata. The approach to subgroup analyses will utilize skeptical,
informative priors to increase the likelihood of future replication.?"?2

3. DETERMINATION OF SAMPLE SIZE

This is a pilot feasibility study. We will use the preliminary data achieved with this study proposal
for further larger-scale trials and external funding applications. Therefore, no sample size
calculation will be needed.
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