

Title page

2 Duodenostomy on Foley and gastroenteroanastomosis: treatment of second duodenal part
3 perforation.

4

5 **Short Title** Duodenostomy to treat duodenal perforation

6

7 **Keywords:** Duodenostomy; duodenal perforation; emergency surgery.

8

9 **Date:** April, 1, 2022

10 **Abstract**

11 **Background:** Duodenal perforation is actually a rare but still life-threatening condition. Ideal
12 approaches for the management of duodenal perforations, are nowadays not so clear and
13 numerous variables, must be considered. Currently, two types of duodenal perforations can be
14 considered according to the presence or absence of a free leakage: Contained and Non Contained
15 Perforations.

16 **Main**

17 In this study we focused on duodenal perforations, requiring a tube duodenostomy and we have
18 analyzed the main features, that have influenced the surgical choices. Five patients were enrolled.
19 Most of duodenal perforations can successfully be managed by simple repair, while complicated
20 procedures are needed for complex injuries. Tube duodenostomy is a damage control procedure,
21 for large duodenal perforations when further repair techniques are not recommended due to the
22 duodenal damage, hemodynamic instability of the patient or the absence of surgical expertise for
23 complex reconstruction.

24 **Conclusions**

25 The tube duodenostomy is an old and dated procedure but simple to implement, which may require
26 an increase in post-operative hospitalization but which, despite everything, remains an effective
27 and safe way to treat patients in critical conditions.

28

29 **Background**

30 Thanks to introduction of an effective medical therapy (Proton Pump Inhibitors and antibiotics to
31 *Helicobacter pylori* eradication) duodenal perforation is actually a rare but still life-threatening
32 condition. ⁱ The reported mortality rate range, is between 8% and 25%.^{ii iii}

33 Anatomically, the duodenum consists of four segments: 1. the duodenal bulb, 2. the second part, or
34 descending segment which surrounds the pancreas head, 3. the third segment, is the horizontal part
35 4. the last segment that follows the jejunum.

36 When a duodenal perforation occurs, it is most commonly located in the first part of the duodenum,
37 with perforations in the second and in the other parts being much less frequently involved.ⁱ

38 Peptic ulcer disease (PUD) is the most common cause of duodenal perforation.^{iv} However,
39 autoimmune conditions (scleroderma^v, Crohn disease^{vi}), duodenal ischemia, chemotherapy, foreign
40 body ingestion and tumors represent other possible causes^{vii viii}. Iatrogenic origins, are becoming
41 more common, because of the widespread use of endoscopic procedures, especially in therapeutic
42 processes as ERCP (Stapfer classification)^{ix x xi}.

43 The ideal approaches for the management of duodenal perforations, are nowadays not so clear. A
44 lot of variables, must be considered, such as the type of perforation, cause, diameter, clinical
45 conditions of patients, availability of Operative Endoscopic Unit, and the involved duodenal
46 segment.

47 Currently, two types of duodenal perforations can be considered according to the presence or
48 absence of a free leakage: Contained and Non Contained Perforations^{viii}.

49 In *Contained Perforations*, (in which free leakage is avoided by contiguous structures, and
50 gastroduodenal juice doesn't produce a diffuse peritoneal irritation) a conservative management is

51 feasible, in order to avoid surgical procedures^{xii}. Conservative management consists of nil per os
52 (NPO), intravenous fluid therapy, intravenous proton pump inhibitors (PPIs), broad-spectrum
53 antibiotics, and eventually *H. pylori* eradication^{viii xiii}.

54 In *Non Contained Perforations*, bowel contents leak into the abdominal cavity, and an operative
55 management is required. In duodenal perforations in which the leakage has been shown to be
56 minimal (*Minor Non Contained Perforations*), the endoscopic approach can be contemplated
57 (through-the-scope clips (TTSC), over-the-scope clips (OTSC), detachable snare loops with clips, and
58 self-expandable metal stents (SEMS))^{viii}. Alternatively simple surgical repair is another choice with
59 or without omental coverage^{xiv}.

60 In *major non contained perforation*, a reconstructive surgery is mandatory.

61 Despite all, medical therapy, early diagnosis, endoscopy, new surgical evidences there are still some
62 cases in emergency that require a duodenostomy. The aim of our study is to elucidate which are
63 these factors requiring the duodenostomy and which postoperative course is for these patients.

64

65

66 **Methods**

67 From September 2018 to December 2019, about 30 patients with symptomatic duodenal ulcer were
68 studied, at our Division of General Surgery, treated by medical therapy, endoscopic techniques, o
69 surgical approaches (a combined, laparoendoscopic approach was, in specifics scenarios,
70 performed). In 2 cases a tube duodenostomy was executed, due to excessive size of perforation and
71 extreme presence of intra-abdominal infections.

72 In addition, other cases of duodenal injury due to other causes were treated, 3 of these requiring a
73 tube duodenostomy approach.

74 In this study we focused on duodenal perforations, requiring a tube duodenostomy and we have
75 analyzed the main features, that have influenced the surgical choices. In all patients, bowel
76 perforation was diagnosed using a ordinary set of blood and radiologic investigations confirming the
77 evidence of pneumoperitoneum. We have enrolled 5 patients.

78 *Surgical and clinical details.*

79 *All described cases were performed with an open laparotomy approach. Inside the abdominal cavity*
80 *there was abundant yellowish purulent material, and after lavage of entire peritoneal cavity, the*
81 *first phase was the Kocherisation of the duodenum in order to allow a better manipulation and*
82 *decrease any tension to repair site. The next step is to clean the edges of the perforation. Excision*
83 *with scissors of 2-3 mm of the margin would, growths the diameter of the injury.*

84 *The repair of the duodenal perforation using 2/0 polyglactin (Vicryl; Ethicon, Somerville, NJ, USA)*
85 *sutures is now performed.*

86 *The next step is the Pyloric exclusion followed by Duodenotomy upstream of the lesion with the*
87 *introduction of a large diameter Foley catheter bringing this out as a duodenostomy.*

88 Finally follows, the formation of a transmesocolic gastrojejunal anastomosis on omega loop and
89 downstream entero-entero anastomosis, abdominal drainages near the duodenum and
90 gastrointestinal anastomosis.

91 All tubes are initially kept unclamped to drain abdominal liquids, end duodenal materials by the
92 duodenostomy. On 5th 7th PODs, the patients resumed eating and the day after the drain close to
93 gastrointestinal anastomosis is removed. After 6th – 9th PODs the duodenostomy is clamped, and an
94 evaluation of the drain near to duodenum is made. If the volume of the drainage is small the drain
95 can be removed, the duodenostomy is slightly mobilized and superficialized and the patient
96 discharged. The duodenostomy tube can be removed at 4 weeks after surgery during a check up
97 visit.

98

99

100 **Results**

101 Five patients underwent tube duodenostomy due to duodenal perforation were analyzed and their
102 data collected (Table 1).

103

104 *Table 1 Clinical preoperative details. (GDU Giant Duodenal Ulcer, PUD Peptic ulcer disease, Type 1*
105 *refers to Stapfer Classification)*

106 In cases of GDU (Giant Duodenal Ulcer) for PUD (Peptic ulcer disease) , the excessive size of the
107 perforation associated with a septic involvement of the operative field, due to a peritonitis that in
108 one of the cases lasted for more than 48 hours, meant that the operative choice leaned towards a
109 duodenostomy. Furthermore, although not common, but in both cases the ulcer site was located
110 on the second part of the duodenum. The case of intraoperative duodenal damage occurred during
111 a drainage operation of the retroperitoneal loggia and right nephrectomy, because of rupture of a
112 voluminous complex cyst, performed by the team of Urologists. The lesion involved the lateral wall
113 of the second duodenal portion, and the presence of abundant purulent material contraindicated
114 primary repair, so a duodenostomy was performed.

115 Perforations that occurred during endoscopic procedures involve biliary stenting in the case of
116 unresectable biliary tract cancer, and perforation of duodenal diverticulum in a very elderly patient
117 with obstructive jaundice due to choledocholithiasis. In the first case, the adhesions due to the
118 neoplastic mass did not allow an optimal and safe approach of the edges of the perforation. In the
119 second case the advanced age of the patient, and the onset of hemodynamic instability also due to
120 the patient's comorbidities, made reparative techniques impossible. In both of these latter cases
121 the perforation was sutured around a Foley catheter introduced into the perforation to develop
122 directed fistulation of the perforation.

123 All patients suffered postsurgical complications ranging from wound infection to pneumonitis, but
124 the incidence of severe complications was greater in the older patients (table 2).

125 *Table 2 Postoperative outcomes and complications. (POD Post-operative days)*

126

127 Thanks to the gastrojejunral anastomosis, patients can resume feeding quite early. Recovery occurs
128 initially only with liquid food. Clamping of the duodenostomy is done a day or two after resumption
129 of feeding, and the day after periduodenal drain is removed. The complications observed had a
130 proportional impact on the duration of hospitalization, as patients had to complete courses of
131 antibiotics, for exclusive hospital use, to battle the condition of sepsis. One day before discharge,
132 the duodenostomy tube is mobilized and superficialized. The duodenostomy is removed 4 weeks
133 after surgery. We have not recorded any deaths 4 months after the operation.

134

135 **Discussion**

136 Duodenal perforation remains a surgical emergency. Features as old age, comorbid situations,
137 shock, sepsis, large size of perforation, and delay in treatment have been identified as adverse
138 factors in the managing of this disorder^{xv}

139 Most of duodenal perforations can successfully be managed by simple repair, while complicated
140 procedures are needed for complex injuries or large perforations of the duodenum due to peptic
141 ulcer disease^{xvi}.

142 Tube duodenostomy is a damage control procedure, for large duodenal perforations when further
143 repair techniques are not recommended due to the duodenal damage, hemodynamic instability of
144 the patient or the absence of surgical expertise for complex reconstruction ^{xvii}. In fact, tube
145 duodenostomy is easy to learn, teach, and perform.

146 The role of tube decompression of the duodenum was already proven in 1950s, but this technique
147 is still used, as shown in several recent studies.

148 In 2006 van Ginhoven et al, analyzed Three cases in which the injury of the duodenum could not be
149 repaired tension-free. Therefore, a Foley balloon catheter was used to close the rupture and After
150 a few weeks, patients were fed through the Foley catheter duodenostomy until a fistular track was
151 formed. On removal of the catheter the fistular track closed spontaneously including the perforation
152 of the duodenum.^{xviii}

153 Even in the case of blunt abdominal trauma, which involves Combined gastric and duodenal
154 perforation, Singh et al, suggest a Primary repair of duodenal transaction over Malecot catheter
155 (tube duodenostomy).^{xix}

156 Nobori C et al, performed a Gastric disconnection, comprising antrectomy including resection of the
157 ulcerated portion, tube duodenostomy, and tube gastrostomy due to a giant duodenal ulcers after
158 neurosurgery for brainstem tumors that required reoperation for gastric disconnection.^{xx}

159 Dubecz et al, made a review about management of ERCP-related small bowel perforations, and
160 duodenostomy is proposed in case of duodenal perforation in duodenum difficult to manage,^{xxi}
161 while Bharathi suggest a tube duodenostomy as a safe procedure to manage an intra-peritoneal
162 duodenal perforation caused by delayed migration of endobiliary stent.^{xxii}

163 Hatzigeorgiadis et al., suggest a tube pancreatico-duodenostomy for management of a severe
164 penetrating pancreaticoduodenal injury as an option in pancreaticoduodenal trauma when the
165 inner medial duodenal wall cannot be repaired^{xxiii}.

166

167 Duodenostomy is still a good procedure, especially in extreme circumstances, in the presence of
168 giant ulcers with severe tissue inflammation, or in very extensive injuries in life threatening
169 situations.

170 We believe that the success of this method depends on some key steps in the procedure, as the
171 Kocherization of the duodenum, which assures a tension-free repair, good vascularization of the
172 injury site and big size duodenostomy to be placed downstream of the second part of the
173 duodenum. The critical point is keeping the duodenum empty and without tension by
174 decompressing all fluids enter or are secreted into the region. The pyloric exclusion and the
175 realization of a gastro-jejunum anastomosis, is not always performed by the surgeons, but allow an
176 early resumption of feeding, as the duodenum is excluded from food transit.

177

178 **Conclusions**

179 Tube duodenostomy is a damage control procedure, for large duodenal perforations when further
180 repair techniques are not recommended. The tube duodenostomy is an old and dated procedure
181 but simple to implement, which may require an increase in post-operative hospitalization but which,
182 despite everything, remains an effective and safe way to treat patients in critical conditions.

183

184 *Table 3 Clinical preoperative details. (GDU Giant Duodenal Ulcer, PUD Peptic ulcer disease, Type 1*
 185 *refers to Stapfer Classification)*

186

DUODENAL INJURY	UNDERLYING PATHOLOGY	SEX	AGE	DURATION OF	SEPTICEMIA	HEMODYNAMIC	INSTABILITY (SHOCK)
							CLASS)
GDU	PUD	F	46	<48	Yes	No	
GDU	PUD	M	71	>48	Yes	Yes (Class I)	
OPERATIVE INJURY	Surgical retroperitoneal drainage	M	45	<48	No	No	
ENDOSCOPIC	Malignant jaundice in Bile	F	73	<48	No	No	
PERFORATIONS (TYPE 1)	Duct Cancer						
ENDOSCOPIC	Duodenal diverticulum in	M	89	>48	No	Yes (Class II)	
PERFORATIONS (TYPE 1)	Choledocholithiasis						

187

188 *Table 4 Postoperative outcomes and complications. (POD Post-operative days)*

DUODENAL INJURY	RESUMPTION OF FEEDING (days)	CLAMPING		WOUND INFECTION	PNEUMONITIS	HOSPITAL STAY (days)	DEATH
		DUODENOSTOMY	(days)				
GDU	5 POD	6 POD		Yes	No	10	No
GDU	7 POD	9 POD		Yes	Yes	16	No
OPERATIVE INJURY	5 POD	7 POD		No	No	22	No
ENDOSCOPIC							
PERFORATIONS (TYPE 1)	6 POD	8 POD		Yes	Yes	18	No
ENDOSCOPIC							
PERFORATIONS (TYPE 1)	6 POD	8 POD		No	Yes	18	No

189

190 **Conflict of Interest**

191 The authors have no conflicts of interest to declare.

192 **Funding Sources**

193 No funding sources were used for this paper.

194 **Data Availability**

195 All data generated or analyzed during this study are included in this article. Further enquiries can be
196 directed to the corresponding author.

197

ⁱ Yuan Y, Padol IT, Hunt RH. Peptic ulcer disease today. *Nat Clin Pract Gastroenterol Hepatol*. 2006;3(2):80–89. doi:10.1038/ncpgasthep0393

ⁱⁱ Machado NO. Management of duodenal perforation post-endoscopic retrograde cholangiopancreatography. When and whom to operate and what factors determine the outcome? A review article. *JOP*. 2012;13(1):18–25. Published 2012 Jan 10.

ⁱⁱⁱ Møller MH, Adamsen S, Thomsen RW, Møller AM., Peptic Ulcer Perforation (PULP) trial group. Multicentre trial of a perioperative protocol to reduce mortality in patients with peptic ulcer perforation. *Br J Surg*. 2011 Jun;98(6):802-10.

^{iv} Behrman SW. Management of complicated peptic ulcer disease. *Arch Surg*. 2005 Feb;140(2):201-8.

^v Ebert EC, Ruggiero FM, Seibold JR. Intestinal perforation. A common complication of scleroderma. *Dig Dis Sci*. 1997 Mar;42(3):549-53.

^{vi} Katz S, Talansky A, Kahn E. Recurrent free perforation in gastroduodenal Crohn's disease. *Am J Gastroenterol*. 1983 Nov;78(11):722-5.

^{vii} Negoi I, Paun S, Hostiuc S, et al. Most small bowel cancers are revealed by a complication. *Einstein (Sao Paulo)*. 2015;13(4):500–505. doi:10.1590/S1679-45082015AO3380

^{viii} Cianci P, Tartaglia N, Altamura A, et al. Cervical Esophagotomy for Foreign Body Extraction: A Case Report and Extensive Literature Review of the Last 20 Years. *Am J Case Rep*. 2018;19:400-405. Published 2018 Apr 5. doi:10.12659/ajcr.908373

^{ix} Ansari D, Torén W, Lindberg S, Pyrhönen HS, Andersson R. Diagnosis and management of duodenal perforations: a narrative review. *Scand J Gastroenterol*. 2019;54(8):939–944. doi:10.1080/00365521.2019.1647456

^x Turner RC, Steffen CM, Boyd P. Endoscopic duodenal perforation: surgical strategies in a regional centre. *World J Emerg Surg.* 2014;9(1):11. Published 2014 Jan 24. doi:10.1186/1749-7922-9-11

^{xi} Pacilli M, Tartaglia N, Gerundo A, Pavone G, Fersini A, Ambrosi A. Energy Based Vessel Sealing Devices in Thyroid Surgery: A Systematic Review to Clarify the Relationship with Recurrent Laryngeal Nerve Injuries. *Medicina (Kaunas).* 2020;56(12):651. Published 2020 Nov 27. doi:10.3390/medicina56120651

^{xii} Berne TV, Donovan AJ. Nonoperative treatment of perforated duodenal ulcer. *Arch Surg.* 1989;124(7):830–832. doi:10.1001/archsurg.1989.01410070084017

^{xiii} Tartaglia N, Iadarola R, Di Lascia A, Cianci P, Fersini A, Ambrosi A. What is the treatment of tracheal lesions associated with traditional thyroidectomy? Case report and systematic review. *World J Emerg Surg.* 2018 Mar 23;13:15. doi: 10.1186/s13017-018-0175-4. PMID: 29588652; PMCID: PMC5865337.

^{xiv} Pai D, Sharma A, Kanungo R, Jagdish S, Gupta A. Role of abdominal drains in perforated duodenal ulcer patients: a prospective controlled study. *Aust N Z J Surg.* 1999 Mar;69(3):210-3.

^{xv} Tarasconi, A., Cocolini, F., Biffl, W.L. et al. Perforated and bleeding peptic ulcer: WSES guidelines. *World J Emerg Surg* 15, 3 (2020). <https://doi.org/10.1186/s13017-019-0283-9>

^{xvi} Gupta S., Kaushik R., Sharma R., Attri A. The management of large perforations of duodenal ulcers. *BMC Surgery.* 2005;5:15.

^{xvii} Kutlu OC, Garcia S, Dissanaike S. The successful use of simple tube duodenostomy in large duodenal perforations from varied etiologies. *Int J Surg Case Rep.* 2013;4(3):279-282. doi:10.1016/j.ijscr.2012.11.025

^{xviii} van Ginhoven T, Schepers T, Obertop H, van Eijck CH. Delayed closure of complex duodenal injuries by a Foley balloon catheter duodenostomy. *Dig Surg.* 2006;23(3):150-153. doi:10.1159/000094347

^{xix} Singh B, Kaur A, Singla AL, Kumar A, Yadav M. Combined gastric and duodenal perforation through blunt abdominal trauma. *J Clin Diagn Res*. 2015;9(1):PD30-PD32.

doi:10.7860/JCDR/2015/11206.5499

^{xx} Nobori C, Kimura K, Ohira G, et al. Giant duodenal ulcers after neurosurgery for brainstem tumors that required reoperation for gastric disconnection: a report of two cases. *BMC Surg*. 2016;16(1):75.

Published 2016 Nov 17. doi:10.1186/s12893-016-0189-3

^{xxi} Dubecz A, Ottmann J, Schweigert M, et al. Management of ERCP-related small bowel perforations: the pivotal role of physical investigation. *Can J Surg*. 2012;55(2):99-104. doi:10.1503/cjs.027110

^{xxii} Bharathi RS, Rao PP, Ghosh K. Intra-peritoneal duodenal perforation caused by delayed migration of endobiliary stent: a case report. *Int J Surg*. 2008;6(6):478-480. doi:10.1016/j.ijsu.2006.06.012

^{xxiii} Hatzigeorgiadis A, Boulas KA, Baretas N, Papageorgiou I, Blouhos K. Tube pancreatico-duodenostomy for management of a severe penetrating pancreaticoduodenal injury. *JOP*. 2014;15(3):250-253. Published 2014 May 27. doi:10.6092/1590-8577/2499