

COVER PAGE FOR PROTOCOL AND STATISTICAL ANALYSIS PLAN

Official Study Title: A Phase II Study of Induction Docetaxel, Cisplatin, Cetuximab and Bevacizumab (TPE-A) Followed by Concurrent Radiation, Cisplatin, Cetuximab and Bevacizumab (XPE-A) in Patients with Locally Advanced Head and Neck Cancer (CTRC# 11-36)

NCT number: NCT 01588431

IRB Approval Date: 11-02-2016

Unique Protocol ID: CTRC 11-36

Protocol Changes for the Revised Protocol dated October 25, 2016 for the study: A Phase II Study of Induction Docetaxel, Cisplatin, Cetuximab and Bevacizumab (TPE-A) Followed by Concurrent Radiation, Cisplatin, Cetuximab and Bevacizumab (XPE-A) in Patients with Locally Advanced Head and Neck Cancer (**CTRC# 11-36**)

PREVIOUSLY READ: Cover Page, date of protocol

VERSION DATE:

- 01 June 2011
- August 22, 2011
- January 4, 2012
- April 25, 2012
- November 2, 2012
- December 19, 2012
- March 25, 2013
- May 28, 2013
- December 5, 2013
- January 14, 2015

NOW READS:

VERSION DATE:

- 01 June 2011
- August 22, 2011
- January 4, 2012
- April 25, 2012
- November 2, 2012
- December 19, 2012
- March 25, 2013
- May 28, 2013
- January 14, 2015
- October 25, 2016**

RATIONALE: Updated the version date of protocol.

PREVIOUSLY READ: Header, entire protocol
January 14, 2016

NOW READS: **October 25, 2016**

RATIONALE: Updated the date of protocol

PREVIOUSLY READ: Cover Page, Principal Investigator

Woondong Jeong, MD
Professor of Medicine
UT Health Science Center at San Antonio
Cancer Therapy & Research Center
7979 Wurzbach Road MC8232
Zeller Building- 4th Floor, Room Z41 8

San Antonio, TX 78229

E-mail: jeongw@uthscsa.edu
Phone number: 210-450-5956
Fax number: 210-692-7502

NOW READS:

Anand Kamad, MD
Professor of Medicine
UT Health Science Center at San Antonio
Cancer Therapy & Research Center
7979 Wurzbach Road MC8232
Zeller Building- 4th Floor, Room Z418
San Antonio, TX 78229

E-mail: kamad@uthscsa.edu
Phone number: 210-450-1267
Fax number: 210-450-0417

RATIONALE: Update principal investigator information

PREVIOUSLY READ: Page 37

This is an investigator-initiated study. The principal investigator, **Woondong Jeong** MD, who may also sometimes be referred to as the sponsor-investigator, is conducting the study and acting as the sponsor.

NOW READS:

This is an investigator-initiated study. The principal investigator, **Anand Karnad**, MD, who may also sometimes be referred to as the sponsor-investigator, is conducting the study and acting as the sponsor.

RATIONALE: Update principal investigator information

PREVIOUSLY READ: Page 41

For questions regarding the eligibility of subjects, **Woondong Jeong**, MD, should be contacted at (210) 450-5956.

NOW READS:

For questions regarding the eligibility of subjects, **Anand Karnad**, MD, should be contacted at (210) 450-1267.

RATIONALE: Update principal investigator information

RECEIVED

By Regulatory Affairs at 2:42 pm, Oct 25, 2016

PROT OCOL NUMBER: CTRC #11-36

PROTOCOL TITL E: A Phase II Study of Induction Docetaxel, Cisplatin, Cetuximab and Bevacizumab (TPE-A) Followed by Conctm ent Radiation, Cisplatin, Cetuximab and Bevaciz umab (XPE-A) in Patients with Locally Advanced Head and Neck Cancer

VERSION DATE: 01 June 2011
 August 22, 2011
 Janmuy 4, 2012
 April 25, 2012
 November 2, 2012
 December 19, 2012
 March 25, 2013
 May 28, 2013
 December 5, 2013
 Januaiy 14,2015
 October25, 2016

PRINCIPAL INVESTIGATOR:

Anand Kam ad, MD
 Professor of Medicine
 UT Health Science Center at San Antonio
 Cancer Therapy & Research Center
 7979 Wurzbach Road MC8232
 Zeller Building-4th Floor, RoomZ418
 San Antonio, TX 78229

E-mail: kainad@uthscsa.edu
 Phone number: 210-450-1267
 Fax number: 210-450-0417

BIOSTATISTICIAN:

Bradley Pollock, PhD
 UT Health Science Center at San Antonio
 Depaitment of Epidemiology and Biostatistics MC 7933
 7703 Floyd Curl Drive
 Admin Building, 3rd Floor, Room 314
 San Antonio, TX 78229

E-mail: BPOLLOCK@uthscsa.edu
 Phone number: 210-567-0836
 Fax number: 210-567-0921

CO-INVESTIGATORS: See FDA 1572

TABLE OF CONTENTS

RESEARCH STUDY ABSTRACT	4
STUDY SCHEMA.....	5
1 BACKGROUND AND RATIONALE.....	6
1.1 Head and Neck Cancer.....	6
1.2 Chemotherapy for Locoregionally Advanced Disease.....	6
1.3 Combined Modality Therapy for Organ Preservation	6
1.4 Concomitant Chemoradiotherapy	7
1.5 Radiation plus Cisplatin for Locally Advanced Head and Neck Cancer	7
1.6 Induction Chemotherapy	9
1.7 Cisplatin and Docetaxel	9
1.8 Epidermal Growth Factor Receptor (EGFR) and Cetuximab	10
1.9 Induction Chemotherapy Followed by Chemoradiotherapy.....	18
1.10 Bevacizumab Clinical Experience.....	19
1.11 Bevacizumab Studies in Head and Neck Carcinoma at the University of Pittsburgh.....	25
1.12 Study Rationale.....	25
2 OBJECTIVES	26
2.1 Primary	26
2.2 Secondary	26
3 STUDY DESIGN.....	26
3.1 Induction Therapy (TPE-A).....	26
3.2 Concurrent Radiotherapy, Cisplatin, Cetuximab and Bevacizumab (XPE-A)	28
3.3 Radiation Therapy	29
3.4 Supportive Care	34
3.5 Gastrostomy Tubes.....	34
4 SAFETY REPORTING OF ADVERSE EVENTS	35
4.1 Definitions	35
4.2 Reporting to IRB	38
5 STUDY SUBJECTS	39
5.1 Eligibility Criteria	39
5.2 Exclusion Criteria.....	40
6 PATENT REGISTRATION	41
7 DOSE MODIFICATIONS Induction Docetaxel/ Cisplatin/ Cetuximab / Bevacizumab (TPE-A)	41
7.1 Hematologic Toxicity (Docetaxel).....	41
7.2 Neurologic Toxicity (Docetaxel, Cisplatin)	43
7.3 Ototoxicity (Cisplatin).....	43
7.4 Gastrointestinal Toxicity (Docetaxel, Cisplatin)	43
7.5 Renal Toxicity (Cisplatin).....	43
7.6 Hepatic Toxicity (Docetaxel)	44
7.7 Hypersensitivity Reactions (Docetaxel)	45
7.8 Fluid Retention (Docetaxel)	45
7.9 Other Non-Hematologic Toxicities	45
8 DOSE MODIFICATIONS- Radiation plus Cisplatin / Cetuximab / Bevacizumab (XPE-A)	45
8.2 Management of Cetuximab Adverse Reactions and Dose Modifications	49
8.3 Bevacizumab Dose Modification and Toxicity Management	52
8.4 Docetaxel-Associated Hypersensitivity Reactions	54
8.5 Fluid Retention Syndrome	55
8.6 Hyperlactemia	56

9	DURATION OF THERAPY/ WITHDRAWAL FROM STUDY	56
10	DRUG FORMULATION AND PROCUREMENT	56
10.1	Docetaxel	56
10.2	Cisplatin (Cis-diaminedichloroplatinum(IV)DDP)	62
10.3	Carboplatin	63
10.4	Cetuximab (C225 ERBITUX)	65
10.5	Bevacizumab	66
11	CLINICAL AND LABORATORY EVALUATIONS	69
11.1	Evaluations at Screening/ Baseline	69
11.2	Evaluation During Treatment	70
11.3	Evaluations at Follow Up	71
12	SUBJECT DISCONTINUATION	74
13	STATISTICAL METHODS	74
13.1	Sample Size	74
13.2	Analyses	75
13.3	Definition of response	75
14	CORRELATIVE STUDIES	76
14.1	Background and Methods	76
14.2	Material Submission	76
14.3	Banking	77
14.4	Blood Correlatives for Lavender Top and Serum Red Top Tubes	77
14.5	Methods	77
14.6	Shipping	78
15	DATA SAFETY MONITORING	79
16	RETENTION OF RECORDS	83
17	REFERENCES	84
APPENDIX A: ECOG Performance Status		91
APPENDIX B: Procedure for Obtaining a Urine Protein / Creatinine Ratio		92
APPENDIX C: NCI Common Toxicity Criteria (CTCAE v 4.0)		93
APPENDIX D: FDA MedWatch 3500a Form		94
APPENDIX E: New York Heart Association (NYHA) Guidelines		95
APPENDIX F: FACT - H&N		96
APPENDIX G: AJCC Staging System, 7th Edition		100
APPENDIX H: Genentech Safety Reporting Fax Cover Sheet		114

RESEARCH STUDY ABSTRACT

Background

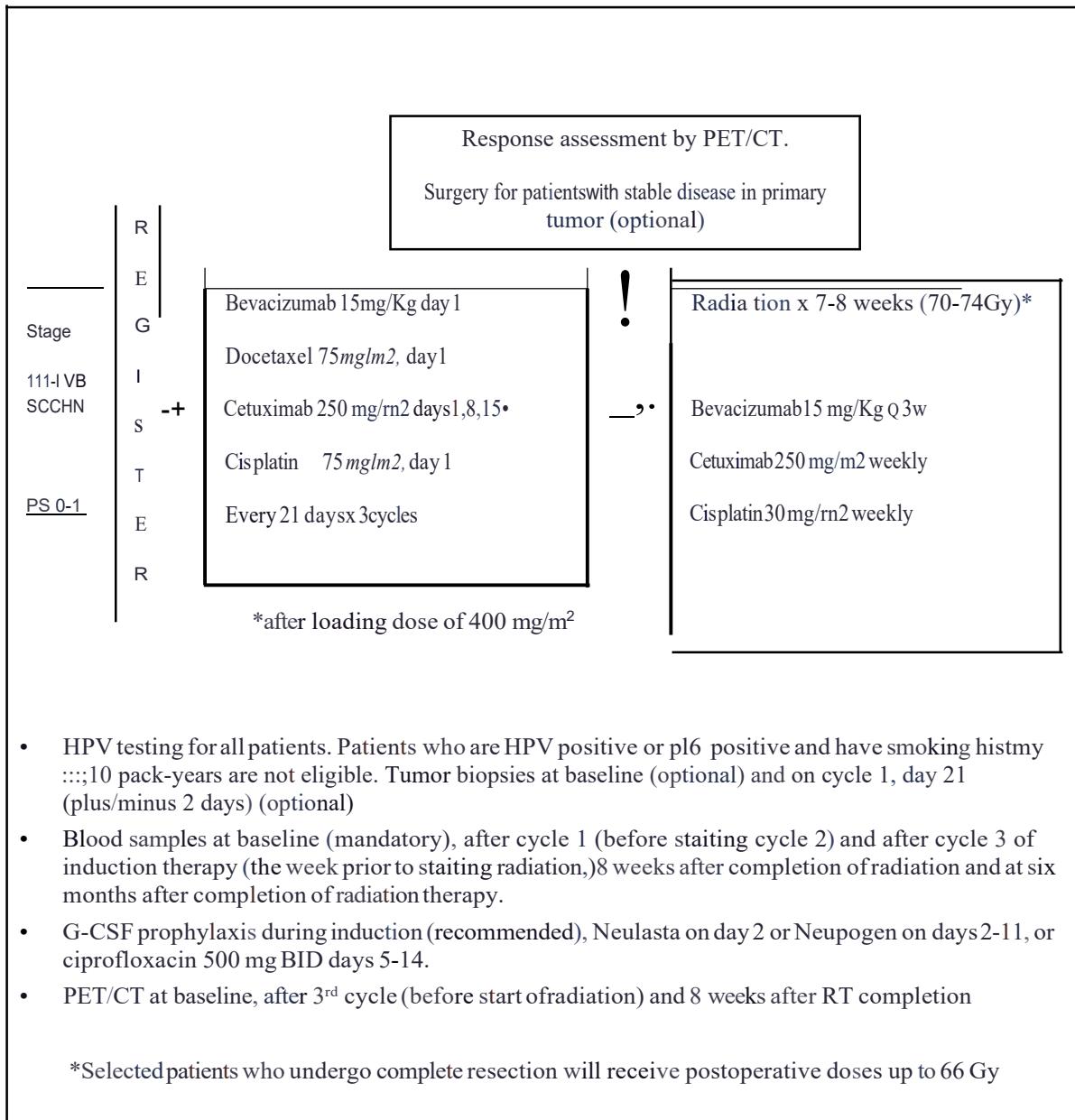
Locally advanced squamous cell carcinoma of the head and neck (SCCHN) is treated with various combinations of radiation and chemotherapy. Docetaxel and cisplatin have been combined in Phase II trials in recurrent or metastatic head and neck cancer with very encouraging results. Induction therapy with docetaxel/cisplatin followed by chemoradiotherapy was investigated in a randomized Phase II study in nasopharyngeal cancer and showed superior PFS and OS in comparison with chemoradiation alone. Cetuximab is a chimerized EGFR monoclonal antibody that has produced positive results in Phase III trials in combination with either radiation for locally advanced disease or chemotherapy for metastatic disease. Upregulation of vascular endothelial growth factor (VEGF) has been associated with cetuximab resistance. Bevacizumab, an anti-VEGF antibody is currently being investigated in SCCHN with promising results. Two trials of bevacizumab-based regimens are being conducted at UPMC (UPCI 05-002 and UPCI 05-087) with very promising results. We have previously shown that cisplatin, docetaxel and cetuximab (TPE) followed by radiotherapy, cisplatin and cetuximab (XPE) is feasible and highly efficacious in locally advanced SCCHN (UPCI 05-003, presented at ASCO 2008). In this Phase II study we evaluate the addition of bevacizumab to induction therapy with TPE (TPE-A) and to subsequent XPE (XPE-A).

Specific aims

To evaluate the rate of complete responses with induction therapy (primary endpoint) and progression-free survival, overall survival and objective response rates. Also, we plan to investigate a panel of EGFR and angiogenesis biomarkers in pre- and post-treatment tumor biopsies. Finally, we will evaluate the associated treatment toxicities and the quality of life.

Subject population

We will enroll patients with previously untreated locally advanced SCCHN (see detailed eligibility criteria).


Treatment plan

Induction therapy consists of 3 cycles of bevacizumab 15mg/kg on day 1, cetuximab weekly days 1, 8, 15 (loading dose of cetuximab 400mg/m² on cycle 1, day 1, then 250 mg/m² on all subsequent administrations), cisplatin 75mg/m² on day 1, docetaxel 75mg/m² on day 1, repeated every 21 days. After 3 cycles of induction therapy, patients will receive standard radiation 70-74 Gy/ 200 cGy/ daily, 5 days/ week with concurrent weekly cisplatin 30mg/m², cetuximab 250mg/m² and bevacizumab 15mg/kg every 3 weeks x 3. There is optional surgery for non-responders in the primary (stable disease) after TPE-A.

Statistical design and sample size

Phase II, two-stage study with complete response rate after induction therapy as the primary endpoint. The sample size is 33 patients.

STUDY SCHEMA

1 BACKGROUND AND RATIONALE

1.1 Head and Neck Cancer

More than 45,000 new cases of head and neck cancer are diagnosed annually in the United States¹. Of these patients, two-thirds present with locoregionally advanced disease (AJCC stage III or IV) and one-third with early stage disease (AJCC stage I or II). At presentation 10% of patients may be found to have involvement of distant organs, most commonly the lung. In addition, 20% of patients will develop clinically detected distant metastases over the course of their disease. In autopsy series up to 50% of patients with head and neck cancer are found to have metastases^{2,3}. Approximately 90% of all head and neck malignancies are squamous cell carcinomas. The vast majority of head and neck malignancies can be attributed to the use of tobacco and alcohol. Human Papillomavirus has been implicated in a significant portion of oropharyngeal squamous cell carcinomas⁷⁵⁻⁷⁷. Due to their frequent history of exposure to tobacco and alcohol patients with head and neck cancer are at high risk for other comorbidities associated with tobacco and alcohol, such as coronary artery disease, chronic obstructive pulmonary disease, and liver disease⁴. In addition, they are at high risk for the development of second primary tumors, synchronous or metachronous, that may involve the head and neck region as well as other organs, predominantly the lungs⁵.

1.2 Chemotherapy for Locoregionally Advanced Disease

The addition of chemotherapy with RT to the overall treatment plan in patients with locoregionally advanced head and neck cancer has been studied in an effort to improve organ preservation, locoregional, and distant control, and survival rates over RT alone. Research studies have evaluated the use of induction (neoadjuvant) or adjuvant chemotherapy, as well as concurrent chemotherapy and radiation. The primary goal of such research is to improve local control and survival.

1.3 Combined Modality Therapy for Organ Preservation

An important goal of adding chemotherapy to radiation therapy is to improve local control and avoid mutilating surgery, therefore, achieve organ preservation in patients with resectable disease. Two-phase III randomized trials, one by the VA Laryngeal Study Group and the other by EORTC, showed that organ preservation is feasible in laryngeal and hypopharyngeal cancers. In both studies, induction chemotherapy with cisplatin and 5-FU followed by radiation therapy in responders allowed for organ preservation without a compromise in survival compared to standard management with surgical resection followed by postoperative radiation^{6,7}. However, one-third or more of patients required laryngectomy for treatment failure. In the VA laryngeal cancer study, the larynx was preserved in 64% of all patients assigned to the induction chemotherapy arm, whereas in the EORTC trial, in which a complete response was mandatory to proceed with organ preservation, the 5-year survival with a functioning larynx (censoring data for local failures only) was 35%, if all patients (n=100) who received induction chemotherapy were considered, and 58%, if only the group of 52 patients who achieved a complete response to induction chemotherapy and received radiation therapy were considered in analysis⁶.

A multicenter phase III randomized study evaluated the role of concomitant chemoradiation in laryngeal cancer (RTOG 91-11)⁸. This three-aim study compared the organ preservation strategy used in the VA laryngeal study to radiotherapy alone (without induction chemotherapy), and to concomitant chemoradiotherapy with single-agent cisplatin. Although no differences in survival were observed between aims, laryngeal preservation was optimal in the concomitant chemoradiation treatment arm. Therefore, concurrent chemoradiation is now considered the standard regimen for organ preservation in the management of laryngeal cancer.

1.4 Concomitant Chemoradiotherapy

The theoretical rationale and clinical experience of using concomitant chemoradiotherapy in patients with solid tumors has been reviewed⁹⁻¹⁰. For head and neck cancer this concept is particularly attractive. It is hoped that chemotherapy will be successful at treating micrometastatic systemic disease while also enhancing the locoregional efficacy of radiotherapy. Most of the older trials have used infusional 5-FU as the radiosensitizer based on work initially published by Byfield et al¹¹. The addition of cisplatin^{12,13}, or cisplatin with 5-FU / leucovorin and hyperfractionated radiotherapy¹⁴, or hydroxyurea^{15,16} in phase I or II studies have led to very encouraging response and survival data. In a randomized study, Merlano et al¹⁷ demonstrated significantly increased survival in patients with unresectable disease treated with radiotherapy alternating with cisplatin and bolus 5-FU compared to patients treated with radiotherapy alone.

A meta-analysis that included 63 randomized studies conducted between 1965 and 1993, demonstrated an absolute survival benefit of 8% at 5 years with concurrent chemotherapy and radiotherapy versus radiation therapy alone¹⁸. More recently, multiple randomized phase III trials have conclusively demonstrated that concurrent chemoradiotherapy is superior to radiation therapy alone in locally advanced head and neck cancer^{8,19-23}. The above trials predominantly enrolled patients with unresectable head and neck cancer, whereas three of these trials were site-specific^{8,20-22}.

Three randomized trials used combined chemotherapy with platinum and 5-FU along with conventional or hyperfractionated radiotherapy¹⁹⁻²¹ and three others used cisplatin with conventional radiation^{8,22-23}. Most of these studies favored concomitant chemoradiotherapy with an approximately 20% gain in survival at three to five years (approximately 30% versus 50%), whereas the study by Forastiere et al²⁴ showed that concomitant chemoradiotherapy with cisplatin in resectable laryngeal cancer is superior in terms of laryngeal preservation⁸.

1.5 Radiation plus Cisplatin for Locally Advanced Head and Neck Cancer

A number of randomized trials in U.S. have established conventional radiotherapy plus cisplatin 100 mg/m² every 3 weeks as the standard non-surgical treatment of locally advanced head and neck cancer. In unresectable disease and nasopharyngeal cancer a survival advantage was demonstrated over radiotherapy alone²²⁻²³, whereas in laryngeal cancer, concurrent chemoradiotherapy with cisplatin resulted in a higher rate of organ preservation⁸.

For unresectable head and neck squamous cell carcinoma, concurrent chemoradiotherapy has emerged as standard therapy after the results of a randomized phase III trial conducted by the Southwest Oncology Group (SWOG) and Eastern Cooperative Oncology Group (ECOG)²³. This trial enrolled 295 patients

with inoperable squamous cell head and neck cancer, before closing to slow accrual. So far, it is the only study that has allowed a comparison, even indirectly, between single and combination chemotherapy. Three treatment arms were compared: (A) conventional radiotherapy alone (70 Gy at 2 Gy per day); (B) conventional radiotherapy plus single-agent cisplatin 100 mg/m² every 3 weeks; and (C) split course radiotherapy with concurrent cisplatin 75 mg/m² on day 1 and 5-FU 1000 mg/m²/d as a continuous infusion, on days 1-4, repeated every 4 weeks. Preliminary results showed an improvement of 3-year overall survival with single-agent cisplatin compared to radiotherapy alone, from 20% to 37% (p=0.016). Survival rates between the two chemotherapy arms and between CRT and radiotherapy alone were not significantly different. Split course radiotherapy has been implicated for the suboptimal performance of the cisplatin and 5-FU arm in this study.

In laryngeal cancer, RTOG 91-11 showed that the optimal laryngeal preservation strategy is concurrent chemoradiotherapy.⁸ This three-arm study, the goal of which was to determine whether the addition of chemotherapy to radiotherapy is necessary to achieve laryngeal preservation, compared the laryngeal preservation strategy used in the VA laryngeal study consisting of induction chemotherapy with cycles of cisplatin and 5-FU, followed by radiotherapy for responders (arm A) to concurrent chemoradiotherapy with cisplatin 100 mg/m² administered every three weeks (arm B), and radiotherapy alone (arm C). A total of 510 patients were analyzable, and the median follow-up at the time of preliminary analysis was 30 months. Sixty-five percent of patients received all three cycles of single-agent cisplatin during concurrent chemoradiotherapy. Grade 3 or 4 mucositis was seen in 33% of patients in arm A, 53% in arm B, and 36% in arm C. An advantage in overall survival could not be demonstrated with the use of chemotherapy, in spite of a decrease in the rate of distant metastasis; however, laryngectomy-free survival and laryngeal preservation rates were higher in the concurrent chemoradiotherapy arm. At 2 years, laryngectomy-free survival rates were 58%, 68% (p=0.07 versus A), and 53%, and laryngeal preservation rates 74%, 88% (p=0.0047 versus A), and 69% for arms A, B, and C, respectively.

Concurrent chemoradiotherapy with cisplatin has become standard therapy of locally advanced nasopharyngeal carcinoma.²⁵ Updated results of the Intergroup trial in nasopharyngeal carcinoma demonstrated a 5-year survival of 67% versus 37% (p<0.001) and a 5-year PFS of 59% versus 29% (p<0.001) for patients treated with chemoradiotherapy versus radiotherapy alone.²⁶ Toxicities with concurrent therapy were increased but tolerable. Treatment delivery of adjuvant chemotherapy was suboptimal; 33% of patients received no adjuvant chemotherapy. Also, only two-thirds of patients could receive all three doses of concurrent cisplatin, a finding consistent among randomized studies with this regimen (e.g. laryngeal R91-11 and R95-01).

While radiation plus high-dose cisplatin (i.e. 100 mg/m² every 3 weeks x 3 during radiation) has become a standard regimen for the treatment of locally advanced SCCHN^{8,24,25}, this regimen results in considerable toxicities, including grade 3-4 mucositis in about 50% of patients as well as in several out-of-field toxicities, including nausea/vomiting, nephrotoxicity and others. As noted, about one-third of patients cannot receive the third cisplatin dose due to the onset of toxicities. This observation had led many groups to either reduce the dose of cisplatin to 75 mg/m² every 3 weeks (for example, ongoing ECOG study E3303), or to use lower dosages on a weekly schedule of administration when cisplatin is combined with other agents and RT. In chemoradiotherapy regimens, weekly cisplatin doses of 20-40

mg/m² have been previously investigated and well tolerated. Low dose weekly cisplatin (20 mg/m²) alone combined with radiation did not result in a survival benefit in a phase III trial that compared radiation plus cisplatin with radiation alone²⁸. A weekly cisplatin dose of 20 mg/m² used in combination with paclitaxel and RT was shown to be feasible and active in an RTOG study²⁹. Weekly cisplatin 40 mg/m² with RT, showed improved survival over radiation alone in patients with locally advanced nasopharyngeal cancer³⁰. A weekly cisplatin dose of 30 mg/m² was employed in combination with cetuximab and RT in a recently completed phase II randomized trial by RTOG (0234)³¹.

The optimal chemotherapy regimen for incorporation into combined modality therapy has yet to be determined. It is unclear whether combination chemotherapy regimens are superior to single-agent chemotherapy in this setting.

1.6 Induction Chemotherapy

Induction chemotherapy has the goal of "downstaging" the tumor but more importantly to eradicate early micrometastatic disease and therefore improve distant-site control. The rationale for using this investigational approach has been reviewed^{4,27,28}. Most regimens are used for 2 to 3 cycles, including the widely used combination of cisplatin and continuous infusion 5-FU^{29,34}. The response rates for untreated patients with locally advanced head and neck cancer range between 60-90%, with complete response rates of 20-50%³⁵. Pathologic complete responses are documented in two-thirds of patients with a clinical complete response, and this is associated with a favorable prognosis³⁵. The toxicity from induction chemotherapy is considerable though and severe and, occasionally, fatal toxicity may occur with the cisplatin and 5-FU regimen, or other regimens.

In the past decade, multiple randomized studies have compared induction chemotherapy followed by definitive locoregional treatment versus immediate locoregional treatment³⁵. Only one study, conducted by French investigators, which included patients with oropharyngeal cancer, demonstrated a survival benefit with neoadjuvant chemotherapy versus locoregional therapy alone³⁶. In addition, subset analysis of two other randomized studies showed a survival advantage with induction chemotherapy^{37,38}. Paccagnella et al showed an advantage in the subset of patients with unresectable disease who received radiation as their locoregional therapy³⁷, whereas Richard et al, who employed intraarterial chemotherapy, found a survival difference in the subgroup of patients with floor of mouth cancers³⁸. However, several trials suggested that chemotherapy in the neoadjuvant or adjuvant setting results in a reduced incidence of distant metastases as site of first failure^{6,7,37,39,40}. In order to improve the efficacy of induction therapy, newer combination regimens (e.g. taxane-based) are currently being evaluated in this setting.

1.7 Cisplatin and Docetaxel

Cisplatin and docetaxel have been combined in phase II trials in recurrent or metastatic head and neck cancer. The regimen is active with response rate between 33-54%⁴³⁻⁴⁵. This is at least comparable to the activity of cisplatin/5-FU and cisplatin/paclitaxel in the recurrent/metastatic disease setting. Cisplatin and docetaxel is well tolerated even in the palliative care setting. The FDA has approved cisplatin and docetaxel for first-line therapy of metastatic NSCLC. The commonly used doses are 75 mg/m² for each drug on day 1. A phase II trial of cisplatin and docetaxel conducted by the EORTC reported an objective response rate of 89% in 22 previously untreated patients with locally advanced or recurrent head and neck

cancer⁴⁴. Another study reported a response rate of 55% in patients with stage IV, locally advanced, head and neck cancer⁴⁶. Several randomized studies have shown that triple combination with cisplatin/5-FU/docetaxel (TPF) improves overall survival (OS) and progression-free survival (PFS) in comparison with the combination of cisplatin/5-FU (PF)^{73,74}.

A recently published randomized phase II study investigated the addition of induction cisplatin and docetaxel to chemoradiotherapy for locally advanced nasopharyngeal cancer. Among 65 eligible patients with advanced nasopharyngeal carcinoma, 34 patients received neoadjuvant docetaxel 75 mg/m² and cisplatin 75 mg/m² every 3 weeks for 2 cycles followed by cisplatin 40 mg/m² weekly concurrent with radiation, whereas 31 patients were randomized to receive the same chemoradiotherapy without induction therapy. Patients who received induction therapy had superior PFS and OS⁷⁸.

1.8 Epidermal Growth Factor Receptor (EGFR) and Cetuximab

1.8.1 EGFR

The epidermal growth factor receptor (EGFR) is a member of the erb B receptor tyrosine kinase family that also includes erbB-2, erbB-3, and erbB-4²⁸. It consists of an extracellular ligand-binding domain, a transmembrane region that anchors the receptor to the plasma membrane, and a cytoplasmic region containing a tyrosine kinase domain. Among the known natural ligands of EGFR include epidermal growth factor (EGF) and transforming growth factor α (TGF-α) which both activate the receptor by binding to the extracellular domain and inducing the formation of receptor homodimers or heterodimers, followed by internalization of the receptor/ligand complex and auto-phosphorylation. It is now accepted that the EGFR signal transduction network plays an important role in multiple tumorigenic processes, including cell cycle progression, angiogenesis, and metastasis, as well as protection from apoptosis^{28,29}. In this signal network, erbB-2 is the major partner of EGFR because activated heterodimer complexes containing erbB-2 are more stable at the cell surface than complexes containing other EGFR family members^{30,31}. In addition, erbB-2 can decrease the rate of ligand dissociation from the cognate receptor EGFR³².

1.8.2 EGFR Inhibition and the Cell Cycle

The effects of EGFR blockade on cell cycle progression have been investigated in several human cell types, including DFi colon adenocarcinoma cells, non-transfected breast epithelial MCF10A cells, A431 squamous epithelial carcinoma cells, and DU145 prostatic cancer cells. These studies suggest that blocking EGFR with monoclonal antibodies such as cetuximab leads to cell cycle arrest in G1 which is accompanied by a decrease in cyclin dependent kinase (CDK) 2 activity, and an increase in the expression of CDK inhibitor p27KIP1^{33,34}. In addition to inducing G1-phase arrest, EGFR blockade was also shown to lead to cell death via apoptosis in DFi colon adenocarcinoma cells³⁵.

1.8.3 Cetuximab

Cetuximab binds specifically to the epidermal growth factor receptor (EGFR, HER1, c-ErbB-1) on both normal and tumor cells, and competitively inhibits the binding of epidermal growth factor (EGF) and other ligands, such as transforming growth factor-α³⁶. Binding of cetuximab to the EGFR blocks phosphorylation and activation of receptor-associated kinases, resulting in inhibition of cell growth,

induction of apoptosis, and decreased matrix metalloproteinase and vascular endothelial growth factor production. The EGFR is constitutively expressed in many normal epithelial tissues, including the skin and hair follicle. Overexpression of EGFR is also detected in many human cancers including those of the colon and rectum³⁷.

In vitro assays and in vivo animal studies have shown that cetuximab inhibits the growth and survival of tumor cells that over-express the EGFR. No anti-tumor effects of cetuximab were observed in human tumor xenografts lacking EGFR expression. The addition of cetuximab to irinotecan or irinotecan plus 5-fluorouracil in animal studies resulted in an increase in anti-tumor effects compared to chemotherapy alone.

1.8.4 Human Pharmacokinetics

Cetuximab administered as monotherapy or in combination with concomitant chemotherapy or radiotherapy exhibits nonlinear pharmacokinetics³⁶. The area under the concentration time curve (AUC) increased in a greater than dose proportional manner as the dose increased from 20 to 400 mg/m². Cetuximab clearance (Cl) decreased from 0.08 to 0.02 L/h/m² as the dose increased from 20 to 200 mg/m², and at doses >200 mg/m², it appeared to plateau. The volume of distribution (Vd) for cetuximab appeared to be independent of dose and approximated the vascular space of 2-3 L/m².

Following a 2-hour infusion of 400 mg/m² of cetuximab, the maximum mean serum concentration (C_{max}) was 184 µg/mL (range: 92-327 µg/mL) and the mean elimination half-life was 97 hours (range 41-213 hours). A 1-hour infusion of 250 mg/m² produced a mean C_{max} of 140 µg/mL (range 120-170 µg/mL). Following the recommended dose regimen (400 mg/m² initial dose/250 mg/m² weekly dose), cetuximab concentrations reached steady-state levels by the third weekly infusion with mean peak and trough concentrations across studies ranging from 168 to 235 and 41 to 85 µg/mL, respectively. The mean half-life was 114 hours (range 75-188 hours).

Cetuximab administered as monotherapy or in combination with concomitant chemotherapy or radiotherapy exhibits nonlinear pharmacokinetics. The pharmacokinetics of cetuximab were similar in patients with squamous cell carcinoma of the head and neck (SCCHN) and those with colorectal cancer³⁶.

1.8.5 Randomized Clinical Trials of Cetuximab in Head and Neck Cancer

1.8.5.1 Cetuximab in Locally Advanced Squamous Cell Carcinoma of Head and Neck

The efficacy and safety of cetuximab were studied in combination with radiation therapy in a randomized, controlled trial of 424 patients with locally or regionally advanced squamous cell carcinoma of the head and neck versus radiation alone³⁸. In a multicenter controlled clinical trial, 424 patients with stage III/IV SCC of the oropharynx, hypopharynx or larynx with no prior therapy were randomized 1:1 to receive cetuximab plus radiation therapy (211 patients) or radiation therapy alone (213 patients). Stratification factors were Karnofsky Performance Status (60-80 versus 90-100), nodal stage (N0 versus N+), tumor stage (T1-3 versus T4 using American Joint Committee on Cancer 1998 staging criteria), and radiation therapy fractionation (concomitant boost versus once-daily versus twice daily). Radiation therapy was administered over 6-7 weeks as once daily, twice daily or concomitant boost. The planned radiation

therapy regimen was chosen by the investigator prior to enrollment. For patients with **N1** neck disease, a post-radiation therapy next dissection was recommended. Starting 1 week before radiation, cetuximab was administered as a 400-mg/m² initial dose, followed by 250 mg/m² weekly for the duration of radiation therapy (6-7 weeks). All cetuximab-treated patients received a 20-mg test dose on Day 1. Cetuximab was administered **1** hour prior to radiation therapy, beginning week 2. Of the 424 randomized patients, 80% were male and 83% were Caucasian. The median age was 57 years (range 34-83). There were 258 patients enrolled in US sites (61%) and 166 patients (39%) in non-US sites. Ninety percent of patients had baseline Karnofsky Performance Status 80%; 60% had oropharyngeal, 25% laryngeal, and 15% hypopharyngeal primary tumors; 28% had AJCC T4 tumor stage. The patient characteristics were similar across the study arms. Fifty-six percent of the patients received radiation therapy with concomitant boost, 26% received once-daily regimen, and 18% twice-daily regimen.

The main outcome measure of this trial was duration of locoregional control. Overall survival was also assessed. Results are presented below:

Table 1 Clinical Efficacy in Locoregionally Advanced SCCHN

	Cetuximab + Radiation (n = 211)	Radiation Alone (n = 213)	Hazard Ratio (95% CI*)	Stratified Log-rank p-value
Locoregional control Median Duration	24.4 mo	14.0 mo	0.68 (0.52-0.89)	0.005
Overall Survival Median Duration	49.0 mo	29.3 mo	0.74 (0.57-0.97)	0.03

*CI = confidence interval.

1.8.5.2 Cetuximab in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck

More recently the results of EXTREME trial⁴⁷ have been reported. In this multicenter study 442 patients, with untreated recurrent or metastatic squamous cell carcinoma of the head and neck, enrolled. 220 patients were randomly assigned to receive cisplatin (at a dose of 100mg/m², on day 1) plus 5FU (at a dose of 1000mg/m², for 4 days) every three weeks for a maximum of 6 cycles and 222 patients to receive the same regimen plus cetuximab (at an initial loading dose of 400mg/m², then weekly doses of 250mg/m²) for 6 cycles. Patients who didn't progress continued monotherapy of cetuximab until disease progression. The patients in each cohort were well-balanced regarding gender, age, performance status (PS) primary tumor site, extent of disease and histologic type. About ninety percent of the patients had PS > 80%. Results are presented below:

Table 2 Clinical Efficacy in Locoregionally Advanced SCCHN

	Cetuximab + chemo	Chemo Alone	Hazard Ratio or Odds Ratio (95% CI*)	p-value
Overall survival	10.1 mo	7.4mo	0.80 (0.64-0.99)	0.04
Progression Free Survival	5.6mo	3.3 mo	0.54 (0.43-0.67)	<0.001
Time to treatment failure	4.8mo	3.0mo	0.59(0.48- 0.73)	<0.001
Disease control	81% (75-86%)	60% (53-67%)	Odds Ratio 2.88 (1.87-4.44)	<0.001

*CI = confidence interval.

A phase III trial of radiation cisplatin with or without cetuximab is ongoing in the RTOG (0522).

1.8.6 Other Cetuximab Trials in Head and Neck Cancer

Cetuximab alone was studied in a single-blind, multicenter clinical trial in 103 patients with recurrent or metastatic SCCHN with documented progression within 30 days after 2-6 cycles of a platinum-based chemotherapy⁴⁸. Patients received a 20-mg test dose of cetuximab on Day 1, followed by a 400-mg/m² initial dose, and 250 mg/m² weekly until disease progression or unacceptable toxicity. Upon progression, patients were given the option of receiving cetuximab plus the platinum regimen that they failed prior to enrollment. Tumor response and progression were assessed by an Independent Radiographic Review Committee (IRC). The median age was 57 years (range 23-77), 82% were male, 100% Caucasian, and 62% had a Karnofsky performance status of 80. The objective response rate on the monotherapy phase was 13% (95% confidence interval 7%-21%). Median duration of response was 5.8 months (range 1.2-5.8 months).

A phase II study conducted at Memorial-Sloan Kettering Cancer Center explored the combination of radiation, cisplatin, and cetuximab⁴⁹. This study employed altered fractionation radiotherapy with accelerated boost. There were 2 deaths during treatment (one patient died of pneumonia and the other from unknown cause) in a total of 22 patients and 3 other out-of-field serious adverse events (arrhythmia, myocardial infarction, and bacteremia). However, the progression-free survival was promising (80% at 2 years)⁴⁹. It was thought that a lower dose of cisplatin than 100 mg/m² would be safer with this combination regimen. A phase II study with cisplatin, radiation, and cetuximab was completed in ECOG (E3303). This study employed a lower cisplatin dose of 75 mg/m² every 3 weeks x 3.

Experience with TPE followed by XPE at the University of Pittsburgh

The proposed study is building on our previous experience at the University of Pittsburgh with induction with cisplatin, docetaxel, and cetuximab (TPE). This phase II trial (UPCI 05-003) completed accrual of 39 patients in 2007. Results have been presented at ASCO 2008 (abstract 6002) and the manuscript was published in JCO in 2010 (Argiris et al JCO 2010). The treatment regimen consisted of 3 cycles of induction (TPE) therapy with docetaxel (T) 75mg/m² d1, cisplatin (P) 75mg/m² d1 and cetuximab (E)

dl, 8, 15 (q21d) followed by (XPE) RT (X) 70Gy, cisplatin (P) 30mg/m²/ weekly and then cetuximab (E) maintenance for 6 months. Treatment was associated with expected and manageable toxicities.. Of 39 enrolled patients, 36 had stage IV disease and 23 an oropharyngeal primary. Acute toxicities during TPE included neutropenic fever (10%) and during XPE, grade 3 or 4 oral mucositis (54%) and hypomagnesemia (39%). After TPE, we observed two complete responses (CRs) and 30 partial responses (PRs), overall response rate (ORR) of 86% (95% CI, 75% to 98%) in 37 evaluable patients. The complete response using PET portion of PET/CT was 21%. After XPE, we observed an ORR of 100% (95% CI, 91% to 100%), 24% CRs and 76% PRs, in 33 evaluable patients. In another paper by Passero et al (Annals of Oncology 2010;21:2278-83), we demonstrated that response by PET but not using RECIST 1.0 correlated with progression-free survival. With a median follow-up of 36 months, 3-year progression-free survival and overall survival were 70% and 74%, respectively. Eight patients progressed in locoregional sites, three in distant, and one in both. HPV positivity was not associated with treatment efficacy. No progression-free patient remained G-tube dependent. The H&N subscale QOL scores showed a significant decrement at 3 months after XPE, which normalized at 1 year. We concluded that this cetuximab-containing regimen resulted in excellent long-term survival and safety, and warrants further evaluation in both HPV-positive and -negative head and neck cancer.

Safety of Cetuximab in Clinical Trials

1.8.6.1 *Anticipated Adverse Events*

Squamous Cell Cancer of the Head and Neck

Except where indicated, the data described below reflect exposure to cetuximab in 208 patients with locally or regionally advanced HNSCC who received cetuximab in combination with radiation and as monotherapy in 103 patients with recurrent or metastatic HNSCC. Of the 103 patients receiving cetuximab monotherapy, 53 continued to a second phase with the combination of cetuximab plus chemotherapy. Patients receiving cetuximab plus radiation therapy received a median of 8 doses (range 1-11 infusions). The population had a median age of 56; 81% were male and 84% Caucasian. Patients receiving cetuximab monotherapy received a median of 11 doses (range 1-45 infusions). The population had a median age of 57; 82% were male and 100% Caucasian.

The most **serious adverse reactions** associated with cetuximab in combination with radiation therapy in patients with head and neck cancer were:

- Infusion reaction (3%)
- Cardiopulmonary arrest (2%)
- Dermatologic toxicity (2.5%)
- Mucositis (6%)
- Radiation dermatitis (3%)
- Confusion (2%)
- Dianhea (2%)
- Fomteen (7%) patients receiving cetuximab plus radiation therapy and 5 (5%) patients receiving cetuximab monotherapy, discontinued treatment primarily because of adverse events
- The most common adverse events seen in 208 patients receiving cetuximab in combination with radiation therapy were acneform rash (87%), mucositis (86%), radiation dermatitis (86%), weight

loss (84%), xerostomia (72%), dysphagia (65%), asthenia (56%), nausea (49%), constipation (35%), and vomiting (29%)

- The most common adverse events seen in 103 patients receiving cetuximab monotherapy were acneform rash (76%), asthenia (45%), pain (28%), fever (27%), and weight loss (27%).

The data in the table that follows are based on the experience of 208 patients with locoregionally advanced HNSCC treated with cetuximab plus radiation therapy compared to 212 patients treated with radiation therapy alone.

Table 3 Incidence of Selected Adverse Events (10%) in Patients with Locoregionally Advanced HNSCC

Body System Preferred Term	Cetuximab plus Radiation (n=208)		Radiation Therapy Alone (n=212)	
	Grades 1 - 4	Grades 3 and 4	Grades 1 - 4	Grades 3 and 4
	% of Patients			
Body as a Whole				
Asthenia/Malaise	56	4	48	5
Fever ¹	29	1	13	<1
Headache	19	<1	8	<1
Infusion Reaction ²	15	3	2	0
Infection	13	1	9	1
Chills ¹	16	0	5	0
Digestive				
Mucositis/Stomatitis	93	56	94	52
Xerostomia	72	5	71	3
Dysphagia	65	26	63	30
Nausea	49	2	37	2
Constipation	35	5	30	5
Vomiting	29	2	23	4
Anorexia	27	2	23	2
Diarrhea	19	2	13	1
Dyspepsia	14	0	9	1
Metabolic/Nutritional				
Weight Loss	84	11	72	7
Dehydration	25	6	19	8
Respiratory				
Pharyngitis	26	3	19	4
Cough Increased	20	<1	19	0
Skin/Appendages				
Acneform Rash ³	87	17	10	1
Radiation Dermatitis	86	23	90	18
Application Site Reaction	18	0	12	1
Pruritus	16	0	4	0

Table 3 Incidence of Selected Adverse Events (10%) in Patients with Locoregional II v Advanced HNSCC

Body System Preferred Term	Cetuximab plus Radiation (n=208)		Radiation Therapy Alone (n=212)	
	Grades 1 - 4	Grades 3 and 4	Grades 1 - 4	Grades 3 and 4
	% of Patients			
¹ Includes cases also reported as infusion reactions.				
² Infusion reaction is defined as any event described at any time during the clinical study as "allergic reaction" or "anaphylactoid reaction" or any event on the first day of dosing described as "allergic reaction", "anaphylactoid reaction", "fever", "chills", "chills and fever" or "dyspnea".				
³ Acneiform rash as defined as any event described as "acne", "rash", "maculopapular rash", "pustular rash", "dry skin" or "exfoliative dermatitis".				

The data in the table below are based on the experience of 222 patients with recurrent or metastatic HNSCC treated with cetuximab plus chemotherapy compared to 220 patients treated with chemotherapy alone.

Table 4 Incidence of Selected Adverse Events (5%) in Patients with Metastatic or recurrent HNSCC

Event	Cetuximab plus chemo (n=222)		chemo Alone (n=220)	
	Grades 3 - 4	Grade 4	Grades 3 - 4	Grade 4
	% of Patients			
Any event	82	31	76	31
Neutropenia	22	4	23	8
Anemia	13	1	19	1
Thrombocytopenia	11	0	11	1
Skin reaction*	9	2	<1	0
Hypokalemia	7	1	5	<1
Cardiac events	7	5	4	3
Vomiting	5	0	3	0
Asthenia	5	<1	6	<1
Anorexia	5	1	1	<1
Hypomagnesemia	5	4	1	<1

*Skin reactions include: acne, rash, maculopapular rash, cellulitis, face edema, dry skin, erysipelas, folliculitis, nail disorder, paronychia, skin hyperpigmentation and skin necrosis.

Six patients (3%) developed infusion-related reaction grade 3 or 4. Grade 2 skin reaction was observed in about 35% of the patients in cetuximab group.

Late Radiation Toxicity

The overall incidence of late radiation toxicities (any grade) was higher in cetuximab in combination with radiation therapy compared with radiation therapy alone. The following sites were affected: salivary

glands (65% versus 56%), larynx (52% versus 36%), subcutaneous tissue (49% versus 45%), mucous membrane (48% versus 39%), esophagus (44% versus 35%), skin (42% versus 33%), brain (11% versus 9%), lung (11% versus 8%), spinal cord (4% versus 3%), and bone (4% versus 5%). The incidence of Grade 3 or 4 late radiation toxicities were generally similar between the radiation therapy alone and the cetuximab plus radiation treatment groups.

1.8.6.2 Infusion Reactions

In clinical trials, severe, potentially fatal infusion reactions were reported. These events include the rapid onset of airway obstruction (bronchospasm, stridor and hoarseness), micturition, and/or hypotension. In studies in advanced colorectal cancer, severe infusion reactions were observed in 3% of patients receiving cetuximab plus irinotecan and 2% of patients receiving cetuximab monotherapy. Grade 1 and 2 infusion reactions, including chills, fever, and dyspnea usually occurring on the first day of initial dosing, were observed in 16% of patients receiving cetuximab plus irinotecan and 19% of patients receiving cetuximab monotherapy.

A 20-mg test dose was administered intravenously over 10 minutes prior to the initial dose to all patients in earlier studies. The test dose did not reliably identify patients at risk for severe allergic reactions.

Severe infusion reactions occurred with the administration of cetuximab in approximately 3% of patients, rarely with fatal outcome (<1 in 1000). Approximately 90% of severe infusion reactions were associated with the first infusion of cetuximab despite the use of prophylactic antihistamines. These reactions were characterized by the rapid onset of airway obstruction (bronchospasm, stridor and hoarseness), urticaria, and/or hypotension.

1.8.6.3 Pulmonary Toxicity

Interstitial lung disease (ILD) was reported in 3 of 774 (<0.5%) patients with advanced colorectal cancer receiving cetuximab. Interstitial pneumonitis with non-cardiogenic pulmonary edema resulting in death was reported in one case. Two patients had pre-existing fibrotic lung disease and experienced an acute exacerbation of their disease while receiving cetuximab in combination with irinotecan. In the clinical investigational program, an additional case of interstitial pneumonitis was reported in a patient with head and neck cancer treated with cetuximab and cisplatin. The onset of symptoms occurred between the fourth and eleventh doses of treatment in all reported cases.

1.8.6.4 Dermatologic Toxicity

In cynomolgus monkeys, cetuximab, when administered at doses of approximately 0.4 to 4 times the weekly human exposure (based on total body surface area) resulted in dermatologic findings, including inflammation at the injection site and desquamation of the external integument⁵⁰. At the highest dose level, the epithelial mucosa of the nasal passage, esophagus, and tongue were similarly affected, and degenerative changes in the renal tubular epithelium occurred. Deaths due to sepsis were observed in 50% (5/10) of the animals at the highest dose level beginning after approximately 13 weeks of treatment.

In clinical studies of cetuximab, dermatologic toxicities, including acneiform rash, skin dryness and fissuring, and inflammatory and infectious sequelae (eg, blepharitis, cheilitis, cellulitis, cyst) were reported⁵⁰. In patients with advanced colorectal cancer, acneiform rash was reported in 88% (686/774) of

all treated patients, and was severe (Grade 3 or 4) in 12% (79/633) of these patients. Subsequent to the development of severe dermatologic toxicities, complications including *S. aureus* sepsis and abscesses requiring incision and drainage were reported.

Non-suppurative acneform rash described as "acne", "rash", "maculopapular rash", "pustular rash", "dry skin", or "exfoliative dermatitis" was observed in patients receiving cetuximab plus irinotecan or cetuximab monotherapy⁵⁰. One or more of the dermatological adverse events were reported in 88% (14% Grade 3) of patients receiving cetuximab plus irinotecan and in 90% (8% Grade 3) of patients receiving cetuximab monotherapy. Acneform rash most commonly occurred on the face, upper chest, and back, but could extend to the extremities and was characterized by multiple follicular- or pustular-appearing lesions. Skin dryness and fissuring were common in some instances, and were associated with inflammation and infectious sequelae (eg, blepharitis, cellulitis, cyst). Two cases of *S. aureus* sepsis were reported. The onset of acneform rash was generally within the first two weeks of therapy. Although in a majority of the patients the event resolved following cessation of treatment, in nearly half of the cases, the event continued beyond 28 days.

A related nail disorder, occurring in 14% of patients (0.4% Grade 3), was characterized as a paronychial inflammation with associated swelling of the lateral nail folds of the toes and fingers, with the great toes and thumbs as the most commonly affected digits.

1.9 Induction Chemotherapy Followed by Chemoradiotherapy

Squamous cell carcinomas of the head and neck are chemosensitive neoplasms. However, multiple randomized trials have failed to demonstrate that the addition of induction chemotherapy to surgery and/or radiotherapy confers a survival advantage in patients with locally advanced head and neck cancer. The rationale of induction therapy was questioned and its use was thought to be experimental^{33,51-53}. Consequently chemotherapy was felt to be the most promising approach and was studied extensively in the 1990s. Nevertheless, a number of studies of induction chemotherapy have shown a decreased rate of distant metastasis with the use of induction chemotherapy and a few have reported encouraging survival data. A study by Pacagnella et al that compared induction chemotherapy with cisplatin/5-FU followed by surgery and/or radiation showed a survival benefit but only in patients with unresectable tumors³⁷. Domenge et al³⁶ reported the only positive trial that enrolled 318 patients with locally advanced oropharyngeal cancer. Disease-free survival was improved in the induction chemotherapy arm but the difference did not reach statistical significance ($p=0.11$); overall survival was superior in the induction chemotherapy arm ($p<0.05$). These two trials were included in a metaanalysis by Pignon et al published in 2000¹⁸. In this metaanalysis, when all induction chemotherapy studies were examined together, there was no survival benefit with induction chemotherapy. However, when the subset of trials with platinum/5-FU was examined, a statistical significant improvement in survival with the addition of induction chemotherapy was observed with a hazard ratio of 0.88 (95% CI 0.79-0.97). A study by Taylor et al suggested that concurrent therapy on an alternate week schedule produced better disease control and comparable survival to induction chemotherapy⁵⁴. However, no study has evaluated the role of the addition of induction chemotherapy when concurrent chemoradiotherapy is used in both arms in head and neck cancer.

Multiple chemotherapy regimens have been tested in the induction setting in head and neck cancer. The most widely used has been cisplatin and 5-FU. Carboplatin may be inferior to cisplatin as demonstrated in a randomized comparison between cisplatin/5-FU and carboplatin/5-FU in the induction setting⁵⁵. Also, the activity of carboplatin/5-FU in recurrent/metastatic disease is inferior to that of cisplatin/5-FU⁵⁶. The combination of platinum and the taxanes has been particularly active in head and neck cancer. Moreover, the incidence of stomatitis seen with this regimen is less than what is observed when 5-FU is a part of the regimen. Cisplatin and paclitaxel have been used in many studies with objective response rates 80% or higher⁵⁷.

The combination of cisplatin and docetaxel is active in recurrent/metastatic head and neck cancer with objective response rates between 33-54%^{43,45} as well as in locally advanced head and neck cancer with objective response rates between 55-89%^{44,46}, which is comparable to the activity of cisplatin/5-FU and cisplatin/paclitaxel. The feasibility of platinum-based induction chemotherapy for 2-3 cycles followed by cisplatin or paclitaxel concurrently with radiotherapy has been demonstrated in multiple trials⁵⁷⁻⁵⁹. However, no study has yet shown the feasibility of cisplatin/docetaxel followed by cisplatin concurrently with standard radiation. One of the concerns is whether cumulative toxicities from the induction regimen will compromise dose delivery during subsequent chemotherapy. A consistent finding among studies with cisplatin 100 mg/m² every 3 weeks plus radiation has been that all three doses of "high-dose" cisplatin can only be delivered in approximately 60% of patients. In this study, we will allow the use of cisplatin; if out-of-field cisplatin-related toxicities occur.

Studies with cisplatin and 5-FU have shown that the response rate is higher with 3 versus 2 cycles⁶⁰, whereas a plateau may be reached after 3 cycles⁶¹. Shin et al have observed that with additional cycles of induction chemotherapy, the rate of complete response to carboplatin/ifosfamide/paclitaxel increased from 23% after 2 cycles to 60% after 4 cycles⁶². **For this study we elected to use 3 cycles of chemotherapy that will allow adequate systemic exposure to chemotherapy.** An ongoing study at our institution is evaluating cisplatin and docetaxel followed by radiation and cisplatin 100 mg/m² every 3 weeks x 3 in unresectable patients with head and neck cancer.

1.10 Bevacizumab Clinical Experience

Bevacizumab has been studied in a multitude of Phase I, II, and III clinical trials in more than 5000 patients and in multiple tumor types. In addition, data are available from 3,863 patients enrolled in two postmarketing studies in metastatic colorectal cancer (CRC). Approximately 130,000 patients have been exposed to bevacizumab as a marketed product or in clinical trials. The following discussion summarizes bevacizumab's safety profile and presents some of the efficacy results pertinent to this particular trial. Please refer to the bevacizumab Investigator Brochure for descriptions of all completed Phase I, II, and III trials reported to date.

In a large phase III study (AVF2107g)⁶³ in patients with metastatic colorectal cancer, the addition of bevacizumab, a monoclonal antibody directed against vascular endothelial growth factor (VEGF), to irinotecan/5-fluorouracil/leucovorin (IFL) chemotherapy resulted in a clinically and statistically significant increase in duration of survival, with a hazard ratio of death of 0.67 (median survival 15.6 vs. 20.3 months; $p < 0.001$). Similar increases were seen in progression-free survival (6.2 vs. 10.6 months; $p < 0.001$), overall response rate (35% vs. 45%; $p < 0.01$) and duration of response (7.1 vs. 10.4 months;

$p < 0.01$) for the combination arm versus the chemotherapy only arm (bevacizumab Investigator Brochure, October 2005).

Based on the survival advantage demonstrated in Study AVF2107g, bevacizumab was designated for priority review and was approved on 26 February 2004 in the United States for first-line treatment in combination with IV 5-FU-based chemotherapy for subjects with metastatic colorectal cancer.

Additional data from Phase III trials in metastatic CRC (£3200)⁶⁴, non-small cell lung cancer (NSCLC; £4599)⁶⁵, and metastatic breast cancer (£ 2100)⁶⁶ have also demonstrated clinical benefit from bevacizumab when added to chemotherapy. In Study E3200, the addition of bevacizumab to FOLFOX chemotherapy resulted in improved overall survival compared with FOLFOX alone (13.0 vs. 10.8 months, respectively, HR = 0.75; $p < 0.01$) in a population of previously treated CRC patients.

There was also improved overall survival in first-line NSCLC patients (E4599) treated with carboplatin/paclitaxel + bevacizumab compared with chemotherapy alone (12.3 vs. 10.3 months, respectively; HR = 0.80; $p = 0.003$). The results from this trial were the basis for FDA approval of bevacizumab for use in combination with carboplatin + paclitaxel as first-line treatment of patients with unresectable, locally advanced, recurrent or metastatic, non-squamous NSCLC in October 2006. Finally, patients with untreated metastatic breast cancer (E2100) who received bevacizumab in combination with weekly paclitaxel had a marked improvement in PFS compared with chemotherapy alone (13.3 vs. 6.7 months, respectively; HR = 0.48; $p < 0.0001$) (see the Bevacizumab Investigator Brochure for additional details).

Safety Profile

In the initial Phase I and II clinical trials, four potential bevacizumab-associated safety signals were identified: hypertension, proteinuria, thromboembolic events, and hemoptysis. Additional completed Phase II and Phase III studies of bevacizumab as well as spontaneous reports have further defined the safety profile of this agent. Bevacizumab-associated adverse events identified in phase III trials include congestive heart failure (CHF) primarily in metastatic breast cancer, gastrointestinal perforations, wound healing complications, and arterial thromboembolic events (ATE). These and other safety signals are described in further detail as follows and in the bevacizumab Investigator Brochure.

Hypertension: An increased incidence of hypertension has been observed in patients treated with bevacizumab. Grade 4 and 5 hypertensive events are rare. Clinical sequelae of hypertension are rare but have included hypertensive crisis, hypertensive encephalopathy, and reversible posterior leukoencephalopathy syndrome (RPLS)^{67,68}.

There is no information on the effect of bevacizumab in patients with uncontrolled hypertension at the time of initiating bevacizumab therapy. Therefore, caution should be exercised before initiating bevacizumab therapy in these patients. Monitoring of blood pressure is recommended during bevacizumab therapy. Optimal control of blood pressure according to standard public health guidelines is recommended for patients on treatment with or without bevacizumab.

Temporary interruption of bevacizumab therapy is recommended in patients with hypertension requiring medical therapy until adequate control is achieved. If hypertension cannot be controlled with medical

therapy, bevacizumab therapy should be permanently discontinued. Bevacizumab should be permanently discontinued in patients who develop hypertensive crisis or hypertensive encephalopathy.

Proteinuria : An increased incidence of proteinuria has been observed in patients treated with bevacizumab compared with control arm patients. In the bevacizumab-containing treatment arms of clinical trials (across all indications), the incidence of proteinuria (reported as an adverse event) was up to 38% (metastatic CRC Study AVF2192g). The severity of proteinuria has ranged from asymptomatic and transient events detected on routine dipstick urinalysis to nephrotic syndrome; the majority of proteinuria events have been grade 1. NCI-CTC Grade 3 proteinuria was reported in up to 3% of bevacizumab-treated patients, and Grade 4 in up to 1.4% of bevacizumab-treated patients. The proteinuria seen in bevacizumab clinical trials was not associated with renal impairment and rarely required discontinuation of bevacizumab therapy. Bevacizumab should be discontinued in patients who develop Grade 4 proteinuria (nephrotic syndrome)

Patients with a history of hypertension may be at increased risk for the development of proteinuria when treated with bevacizumab. There is evidence from the dose-finding, Phase II trials (AVF0780g, AVF0809s, and AVF0757g) suggesting that Grade 1 proteinuria may be related to bevacizumab dose.

Proteinuria will be monitored by urine protein: creatinine (UPC) ratio at least every 6 weeks. If the UPC ratio is not available, a dipstick urinalysis may be used to allow treatment to proceed.

Thromboembolic Events: Both venous and arterial thromboembolic (TE) events, ranging in severity from catheter-associated phlebitis to fatal, have been reported in patients treated with bevacizumab in the colorectal cancer trials and, to a lesser extent, in patients treated with bevacizumab in NSCLC and breast cancer trials.

Venous Thromboembolism (including deep venous thrombosis, pulmonary embolism, and thrombophlebitis): In the phase III pivotal trial in metastatic CRC, there was a slightly higher rate of venous TE events in patients treated with bevacizumab plus chemotherapy compared with chemotherapy alone (19% vs. 16%).

In Study AVF2107g, a Phase III, pivotal trial in metastatic CRC, VTE events, including deep venous thrombosis, pulmonary embolism, and thrombophlebitis, occurred in 15.2% of patients receiving chemotherapy alone and 16.6% of patients receiving chemotherapy + bevacizumab.

The incidence of NCI-CTC Grade 3 venous VTE events in one NSCLC trial (E4599) was higher in the bevacizumab-containing arm compared to the chemotherapy control arm (5.6% vs. 3.2%). One event (0.2%) was fatal in the bevacizumab-containing arm; no fatal events were reported in the carboplatin/paclitaxel arm (see Bevacizumab *Investigator* Brochure). In metastatic CRC clinical trials, the incidence of VTE events was similar in patients receiving chemotherapy + bevacizumab and those receiving the control chemotherapy alone.

In clinical trials across all indications the overall incidence of VTE events was 2.8%- 17.3% in the bevacizumab-containing arms compared with 3.2%- 15.6% in the chemotherapy control arms. These of bevacizumab with chemotherapy does not substantially increase the risk of VTE event compared with

chemotherapy alone. However, patients with metastatic CRC who receive bevacizumab and experienced a VTE event may be at higher risk for recurrence of VTE event.

ATE/tel'ial Thromboembolic Events: An increased incidence of ATE events was observed in patients treated with bevacizumab compared with those receiving control treatments. ATE events include cerebrovascular accidents, myocardial infarction, transient ischemic attacks (TIAs), and other ATE events. In a pooled analysis of data from five randomized Phase II and III trials (mCRC [AVF2107g, AVF2192g, AVF0780g]; locally advanced or metastatic NSCLC [AVF0757g]; metastatic breast cancer [AVF2119g]), the incidence rate of ATE events was 3.8% (37 of 963) in patients who received chemotherapy + bevacizumab compared with 1.7% (13 of 782) in patients treated with chemotherapy alone. ATE events led to a fatal outcome in 0.8% (8 of 963) of patients treated with chemotherapy + bevacizumab and 0.5% (4 of 782) of patients treated with chemotherapy alone. Cerebrovascular accidents (including TIAs) occurred in 2.3% of patients treated with chemotherapy + bevacizumab and 0.5% of patients treated with chemotherapy alone. Myocardial infarction occurred in 1.4% of patients treated with chemotherapy + bevacizumab compared with 0.7% of patients treated with chemotherapy alone (see the Bevacizumab Investigator Brochure for additional details).

Aspirin is a standard therapy for primary and secondary prophylaxis of arterial thromboembolic events in patients at high risk of such events, and the use of aspirin :: 325 mg daily was allowed in the five randomized studies discussed above. Use of aspirin was assessed routinely as a baseline or concomitant medication in these trials though safety analyses specifically regarding aspirin use were not performed. Due to the relatively small numbers of aspirin users and arterial thromboembolic events, retrospective analyses of the ability of aspirin to affect the risk of such events were inconclusive. However, similarly retrospective analyses suggested that the use of up to 325 mg of aspirin daily does not increase the risk of grade 1-2 or grade 3-4 bleeding events, and similar data with respect to metastatic colorectal cancer patients were presented at ASCO 2005 (Hambleton et al., 2005). Further analyses of the effects of concomitant use of bevacizumab and aspirin in colorectal and other tumor types are ongoing.

Gastrointestinal Perforation Patients with metastatic carcinoma may be at increased risk for the development of gastrointestinal perforation and fistula when treated with bevacizumab and chemotherapy. Bevacizumab should be permanently discontinued in patients who develop gastrointestinal perforation. A causal association of intra-abdominal inflammatory processes and gastrointestinal perforation to bevacizumab treatment has not been established. Nevertheless caution should be exercised when treating patients with intra-abdominal inflammatory processes with bevacizumab. Gastrointestinal perforation has been reported in other trials in non-colorectal cancer populations (e.g., ovarian, renal cell, pancreas, breast, and NSCLC) and may be higher in incidence in some tumor types.

Fistula: Bevacizumab use has been associated with serious cases of fistulae including events resulting in death. Fistulae in the GI tract are common (1%- 10% incidence) in patients with metastatic CRC, but uncommon (0.1%- 1%) or rare (0.01%-0.1%) in other indications. In addition, fistulae that involve areas of the body other than the GI tract (e.g., tracheoesophageal, bronchopulmonary, urogenital, biliary) have been reported uncommonly (0.1%- 1%) in patients receiving bevacizumab in clinical studies and postmarketing.

reports. Events were reported at various timepoints during treatment, ranging from 1 week to 1 year following initiation of bevacizumab, with most events occurring within the first 6 months of therapy.

Permanently discontinue bevacizumab in patients with tracheoesophageal fistulae or any Grade 4 fistula. Limited information is available on the continued use of bevacizumab in patients with other fistulae. In cases of internal fistula not arising in the GI tract, discontinuation of bevacizumab should be considered.

Wound healing complications: Wound healing complications such as wound dehiscence have been reported in patients receiving bevacizumab. In an analysis of pooled data from two trials in metastatic colorectal cancer, patients undergoing surgery 28-60 days before study treatment with 5-FU/LV plus bevacizumab did not appear to have an increased risk of wound healing complications compared to those treated with chemotherapy alone⁶⁹. Surgery in patients currently receiving bevacizumab is not recommended. No definitive data are available to define a safe interval after bevacizumab exposure with respect to wound healing risk in patients receiving elective surgery; however, the estimated half-life of bevacizumab is 21 days. Bevacizumab should be discontinued in patients with severe wound healing complications.

If patients receiving treatment with bevacizumab require elective major surgery, it is recommended that bevacizumab be held for 4-8 weeks prior to the surgical procedure. Patients undergoing a major surgical procedure should not begin or restart bevacizumab until 4 weeks after that procedure (in the case of high-risk procedures such as liver resection, thoracotomy, or neurosurgery, it is recommended that chemotherapy be restarted no earlier than 6 weeks and bevacizumab no earlier than 8 weeks after surgery).

Hemorrhage: Overall, grade 3 and 4 bleeding events were observed in 4.0% of 1132 patients treated with bevacizumab in a pooled database from eight phase I, II, and III clinical trials in multiple tumor types (bevacizumab Investigator Brochure, October 2005). The hemorrhagic events that have been observed in bevacizumab clinical studies were predominantly tumor-associated hemorrhage (see below) and minor mucocutaneous hemorrhage.

Tumor-Associated Hemorrhage: Major or massive pulmonary hemorrhage or hemoptysis has been observed primarily in patients with NSCLC. Life-threatening and fatal hemoptysis was identified as a bevacizumab-related adverse event in NSCLC trials. These events occurred suddenly and presented as major or massive hemoptysis. Among the possible risk factors evaluated (including squamous cell histology, treatment with anti-rheumatic/anti-inflammatory drugs, treatment with anticoagulants, prior radiotherapy, bevacizumab therapy, previous medical history of atherosclerosis, central tumor location, and cavitation of tumors during therapy), the only variables that showed statistically significant correlations with bleeding were bevacizumab therapy and squamous cell histology.

GI hemorrhages, including rectal bleeding and melena have been reported in patients with CRC, and have been assessed as tumor-associated hemorrhages.

Tumor-associated hemorrhages were also seen rarely in other tumor types and locations, including a case of CNS bleeding in a patient with hepatoma with occult CNS metastases and a patient who developed continuous oozing of blood from a thigh sarcoma with necrosis.

Mucocutaneus Hemonage: Across all bevacizumab clinical trials, mucocutaneous hemorrhage has been seen in 20%-40% of patients treated with bevacizumab. These were most commonly NCI-CTC Grade 1 epistaxis that lasted less than 5 minutes, resolved without medical intervention and did not require any changes in bevacizumab treatment regimen.

There have also been less common events of minor mucocutaneous hemonage in other locations, such as gingival bleeding and vaginal bleeding.

Reversible Posterior Leukoencephalopathy Syndrome: There have been rare reports of bevacizumab-treated patients developing signs and symptoms that are consistent with RPLS, a rare neurologic disorder that can present with the following signs and symptoms (among others): seizures, headache, altered mental status, visual disturbance, or cortical blindness, with or without associated hypertension. Brain imaging is mandatory to confirm the diagnosis of RPLS. In patients who develop RPLS, treatment of specific symptoms, including control of hypertension, is recommended along with discontinuation of bevacizumab. The safety of reintroducing bevacizumab therapy in patients previously experiencing RPLS is not known^{67,68}.

Congestive heart failure: In clinical trials CHF was observed in all cancer indications studied to date, but predominantly in patients with metastatic breast cancer. In the Phase III clinical trial of metastatic breast cancer (AVF2119g), 7 (3%) bevacizumab-treated patients experienced CHF, compared with two (1%) control arm patients. These events varied in severity from asymptomatic declines in left ventricular ejection fraction (LVEF) to symptomatic CHF requiring hospitalization and treatment. All the patients treated with bevacizumab were previously treated with anthracyclines (doxorubicin cumulative dose of 240(360 mg/m²). Many of these patients also had prior radiotherapy to the left chest wall. Most of these patients showed improved symptoms and/or left ventricular function following appropriate medical therapy (Miller et al. 2005).

In a randomized, Phase III trial of patients with previously untreated metastatic breast cancer (E2100), the incidence of LVEF decrease (defined as NCI-CTC Grade 3 or 4) in the paclitaxel + bevacizumab arm was 0.3% versus 0% for the paclitaxel alone arm.

No information is available on patients with preexisting CHF of New York Heart Association (NYHA) Class II- IV at the time of initiating bevacizumab therapy, as these patients were excluded from clinical trials.

Prior anthracycline exposure and/or prior radiotherapy to the chest wall may be possible risk factors for the development of CHF. Caution should be exercised before initiating bevacizumab therapy in patients with these risk factors.

A Phase II trial in patients with refractory acute myelogenous leukemia reported 5 cases of cardiac dysfunction (CHF or LVEF decrease to < 40%) among 48 patients treated with sequential cytarabine, mitoxantrone, and bevacizumab. All but 1 of these patients had significant prior exposure to anthracyclines as well⁷⁰.

Two additional studies investigated concurrent administration of anthracyclines and bevacizumab. In 21 patients with inflammatory breast cancer treated with neoadjuvant docetaxel, doxorubicin, and

bevacizumab, no patients developed clinically apparent CHF; however, patients had asymptomatic decreases in LVEF to < 40%⁷¹. In a small Phase II study in patients with soft tissue sarcoma, 2 of the 17 patients treated with bevacizumab and high-dose doxorubicin (75 mg/m²) developed CHF (one Grade 3 event after a cumulative doxorubicin dose of 591 mg/m²; one Grade 4 event after a cumulative doxorubicin dose of 420 mg/m²); an additional 4 patients had asymptomatic decreases in LVEF⁷².

Other studies in patients with various tumor types and either a history of anthracycline exposure or concomitant use with bevacizumab are ongoing.

Patients receiving concomitant anthracyclines or with prior exposure to anthracyclines should have a baseline MUGA scans or echocardiograms (ECHOs) with a normal LVEF.

Neutropenia: Increased rates of severe neutropenia, febrile neutropenia, or infection with severe neutropenia (including some fatalities) have been observed in patients treated with some myelotoxic chemotherapy regimens plus bevacizumab in comparison to chemotherapy alone⁶⁵.

Additional Adverse Events: See the bevacizumab Investigator Brochure for additional details regarding the safety experience with bevacizumab.

1.11 Bevacizumab Studies in Head and Neck Carcinoma at the University of Pittsburgh

A phase II study investigating the combination of pemetrexed and bevacizumab in recurrent or metastatic HNSCC is ongoing with encouraging results (UPCI 05-002). 38 patients have been enrolled. In 29 evaluable patients, 9 (31%) have had an objective response (3CR + 6PR), 16 (55%) SD, whereas 4 (19%) patients developed PD. The median TTP was 4.9 months and the median OS was approximately 12 months. We had 6/38 (16%) grade 3-5 bleeding events (2 fatal), none after modifications in eligibility were made to exclude patients with prior history of tumor-related bleeding and do not allow retreatment after a first serious tumor-related bleeding.

Another trial with cetuximab and bevacizumab (UPCI 05-087) has enrolled 32 patients. Preliminary results (ASCO 2009) suggest that the regimen is active and safe. Only one grade 3 bleeding in 32 patients has been observed. The objective response rate is 20%, the median PFS 2.8 months and the median OS 8.1 months.

In addition, another phase II randomized trial of radiation, cetuximab and pemetrexed with or without bevacizumab is ongoing, as well (UPCI 07-021). The regimen is feasible. No bleeding events have occurred in 8 patients treated.

1.12 Study Rationale

Induction chemotherapy is gaining momentum in the management of locally advanced squamous cell carcinoma of the head and neck (SCCHN). The combination of docetaxel, cisplatin, and 5-FU (TPF) was superior compared with PF in a Phase III clinical trials^{73,74}. We have completed a Phase II clinical trial that showed that docetaxel, cisplatin, and cetuximab (TPC) is highly active and well tolerated as induction chemotherapy in SCCHN (Argiris et al. ASCO 2008; A6002). Preliminary survival results are very encouraging. 39 patients were enrolled and with median follow up 26 months the 2-year PFS was 70% and the 2-year OS 84%. The combination of chemotherapy plus cetuximab is already a standard treatment

in rection or metastatic SCCHN4⁷. Therefore, TPE can be used as the platform for the addition of novel agents.

EGFR and VEGF are among the most important and validated molecular targets in cancer therapy. The incorporation of novel targeted therapies to chemotherapy and radiotherapy is of particular interest in head and neck cancer, and may improve efficacy without significantly increasing toxicity. A Phase III trial of carboplatin/paclitaxel/bevacizumab with or without cetuximab in advanced NSCLC has been proposed by SWOG. Bevacizumab is currently being investigated in SCCHN with promising results. A Phase II study investigating the combination of pemetrexed and bevacizumab (UPCI05-002) as well as a Phase II trial of cetuximab and bevacizumab (UPCI05-087) in recurrent or metastatic SCCHN are ongoing at the University of Pittsburgh with encouraging results (ASCO 2008 and ASCO 2009). In this study, 32 have been already enrolled. There was only 1 patient with grade 3 hematoma. The objective response rate is 20%, the median PFS 2.8 months and the median OS 8.1 months.

In order to further improve the efficacy of TPE and the rate of complete responses we propose to add bevacizumab to the TPE followed by XPE regimen we developed at the University of Pittsburgh. Due to non-overlapping toxicities and based on our prior experience we anticipate that the regimen will be well tolerated. Moreover, we plan to obtain tumor biopsies and blood samples in the first cycle and evaluate the modulation of biomarkers post combination therapy. Data from induction with TPE (presented at ASCO 2009) indicate the potential significance of cytokine levels in patient outcome. Also, we will evaluate the feasibility of subsequent concurrent radiation, cisplatin, cetuximab and bevacizumab. Patients with stable disease in the primary could be considered candidates to surgical resection at the discretion of their physician, if the tumor is resectable.

2 OBJECTIVES

2.1 Primary

To evaluate the rate of complete responses with induction with cisplatin, docetaxel, cetuximab and bevacizumab (TPE-A) in patients with locally advanced head and neck cancer.

2.2 Secondary

- To evaluate serum cytokines and to correlate with complete response post induction therapy.
- To collect tumor tissue from pretreatment and post-treatment (optional) biopsies for biomarker studies on tumor tissue. We plan to investigate a panel of EGFR and angiogenesis biomarkers on Tissue Microarrays (TMAs).
- To evaluate the toxicities associated with induction TPE-A and subsequent concurrent radiation, cisplatin, cetuximab and bevacizumab (XPE-A).
- To evaluate the objective response rate post XPE-A, and the progression-free survival and overall survival and quality of life.

3 STUDY DESIGN

3.1 Induction Therapy (TPE-A)

3.1.1 Treatment and Premedications

Note: If a cycle is missed or a subject's treatment and/or testing days need to be rescheduled due to the subject's inability to comply with the study calendar (i.e., hospitalizations, business and vacation travel plans, illness, transportation issues, holidays, family emergencies, etc.), a window of \pm one (1) week is available for rescheduling of treatment and procedures per the discretion of the treating physician investigator, and as discussed with the principal investigator.

Cycles will be repeated every 21 days for 3 cycles

Chemotherapy will be given on day 1 of a 21-day schedule and repeated every 21 days for a total of 3 cycles. The doses of docetaxel, cetuximab, and cisplatin will be calculated using the patient's actual body weight on day 1 of each cycle. Fluids given during the administration of docetaxel, bevacizumab and cetuximab is counted as part of cisplatin pre-hydration.

- Bevacizumab 15mg/kg IV, day 1 of each cycle.

The bevacizumab dose should be delivered over 30 minutes as a continuous IV infusion prior to all chemotherapy infusions. Dexamethasone pre- and post-medication for docetaxel and as an antiemetic (see below). Dexamethasone decreases incidence and severity and delays the onset of late-onset fluid retention and may decrease the incidence and severity of acute hypersensitivity reactions. Dexamethasone 8 mg po bid x 3 days, starting 12-24 hours before the planned docetaxel infusion has been an effective schedule.
- Docetaxel 75 mg/m² IV over 1 hour, day 1.
- In an effort to prevent a hypersensitivity reaction from cetuximab, all patients should be premedicated with diphenhydraminehydrochloride (Benadryl) 50 mg (or an equivalent antihistamine) by IV given 30 minutes prior to the first dose of cetuximab. Premedication may be administered prior to subsequent doses, but at the Investigator's discretion, the dose of diphenhydramine (or a similar agent) may be reduced.
- Cetuximab 400 mg/m² IV over 120 minutes on day 1 of cycle 1 ONLY.
- Cetuximab dose will be 250 mg/m² IV over 60 minutes weekly on ALL subsequent administrations (days 8 and 15 of cycle 1 and days 1,8,15 of cycles 2 and 3).
- Cisplatin 75 mg/m² IV over 1-2 hours, day 1. It is strongly recommended that patients receive G-CSF starting on day 2 of each TPE-A cycle. If this is not possible, patients will receive prophylactic ciprofloxacin 500 mg twice daily for 10 days, on days 5-14.
- Furosemide will be given as needed.
- Antiemetic therapy, acute and delayed, including dexamethasone and serotonin receptor antagonists, for 4 days is recommended. Aprepitant should be used with caution due to the possibility of a drug-drug interaction with docetaxel via CYP3A4 pathway.

The following hydration regimen is recommended:

- Cisplatin will require aggressive hydration. Any preexisting dehydration should be corrected. Pre-cisplatin hydration will consist of 1 L NS administered over 2 hours (taking into account the fluid volumes received from prior drug administration). Mannitol 12.5 g IV bolus can be given just before or concurrently with cisplatin. Pre-cisplatin hydration can occur while patient is receiving

infusions of bevacizumab, cetuximab, docetaxel. Hydration must not occur in the same IV line as chemotherapy (i.e. use patient's other arm).

- Cisplatin will be administered in 500 -1000 cc of IV fluids over 1-2 hours and following adequate hydration and the establishment of adequate urinary output.
- Post cisplatin hydration will consist of 1 L ½ NS + 30 meq KCL/L over 2 hours (mannitol 25 g IV may be added).

3.1.2 Cetuximab Administration

In an effort to prevent an infusion reaction, all patients should be premedicated with diphenhydramine hydrochloride 50 mg (or an equivalent antihistamine) by IV given 30-60 minutes prior to the first dose of cetuximab. Premedication may be administered prior to subsequent doses, but at the Investigator's discretion, the dose of diphenhydramine (or a similar agent) may be reduced.

The initial dose of cetuximab is 400 mg/m² intravenously administered over 120 minutes, followed by weekly infusions at 250 mg/m² IV over 60 minutes. The infusion rate of cetuximab must never exceed 5 mL/min. Patients must be continuously observed during the infusion for signs of anaphylaxis.

Patients will be closely monitored for treatment-related adverse events, especially infusion reactions (see management of cetuximab adverse events).

For the duration that patients are on study therapy, adverse event monitoring will be done continuously. Patients will be evaluated for adverse events at each visit and are to be instructed to call their physician to report any clinically significant adverse events between visits.

3.1.3 Bevacizumab Administration

Bevacizumab will be diluted in a total volume of 100mL of 0.9% Sodium Chloride Injection, USP. Administration will be as a continuous IV infusion. Anaphylaxis precautions should be observed during study drug administration. It is not necessary to correct dosing based on ideal weight.

Initial and all subsequent doses will be delivered over 30 minutes. If a subject experiences an infusion-associated adverse event, he or she may be premedicated (acetaminophen, diphenhydramine, steroids or other medications given for symptom control) at the investigator's discretion, prior to the next study drug infusion; however, the infusion time may not be decreased for the subsequent infusion. Surgery for

3.1.4 Selected Patients after Induction Therapy and as Salvage

Patients will be evaluated after completion of induction therapy with PET/CT. Patients with SD in the primary could be considered candidates for surgical resection at the discretion of their treating physicians, if the tumor is resectable. Salvage surgery should be performed if there is progressive disease or residual disease in the primary at the end of therapy. At least 4 weeks should elapse between last bevacizumab dose and any surgery. Neck dissection should be considered, if there is high probability for residual disease in the neck after completion of chemoradiotherapy (>8 weeks later).

3.2 Concurrent Radiotherapy, Cisplatin, Cetuximab and Bevacizumab (XPE-A)

Bevacizumab, 15 mg/kg IV over 30 minutes (if this infusion rate was well tolerated), every 3 weeks until completion of radiation;

Followed by:

Cetuximab, 250 mg/m.² IV over 60 minutes, weekly x 7-8 weeks during days of radiation (Benadryl premedication 30-60 minutes prior to cetuximab infusion as required, see 3.1.1);

Cisplatin, 30 mg/m.² over 1 hour, weekly x 7-8 weeks during days of radiation (the same day that cetuximab is given).

Patients who receive radiation over 8 weeks may receive an 8th dose of cisplatin and cetuximab.

Radiation therapy 70 Gy/200 cGy/daily, 5 days/week (see 3.3):

- One hour of observation should elapse before starting cisplatin (during that period of time patients will be receiving pre-cisplatin hydration).
- Bevacizumab will be given first followed by cetuximab (when it should be given) and finally cisplatin on the same day (only on days that radiation is administered).
- Radiation will be administered following cisplatin administration.

Radiotherapy will start approximately 3-4 weeks after Cycle 3, Day 1.

Administration of Cisplatin

Cisplatin will require aggressive hydration. Any preexisting dehydration should be corrected. The following hydration regimen is recommended:

- Pre-cisplatin hydration will consist of 1 L NS administered over 2-3 hours (taking into account the fluid volumes received from prior drug administration). Mannitol 12.5 g IV bolus can be given just before or concurrently with cisplatin.
- Cisplatin will be administered in 500 -1000 cc of IV fluids over 1-2 hours and following adequate hydration and the establishment of adequate urinary output.
- Post cisplatin hydration will consist of 1 L ½ NS + 30 m.eq KCL/L over 2-4 hours (mannitol 25 g IV may be added).

Furosemide **will** be given as needed.

Antiemetic therapy, acute and delayed, including dexamethasone and serotonin receptor antagonists is recommended.

3.3 Radiation Therapy

3.3.1 Physical Factors

- Equipment: Linear accelerator with appropriate photon and electron energies for supplemental boosting to the nodes.
- Photon energies of 1.25 to 6 MV and/or appropriate electron energies for boosting the nodes are allowed. Photon energies > 6 MV may be utilized when appropriate to boost target localized centrally.
- Minimum treatment distance must be ≥ 80 cm SSD (or SAD for isocentric techniques).

3.3.2 Localization Requirements

3.3.2.1 *Simulation*

Simulation of all fields is mandatory. Patients must be reproducibly immobilized. Radio-opaque markers should be used to delineate the extent of nodal disease and whenever possible, the primary tumor, if conventional treatment planning is used. The use of customized Cernan blocks is recommended to shape the field and limit dose to non-nodal structures. Use of multileaf collimator to shape the field is suggested. For CT simulation, I. V. contrast is recommended and the data should be acquired using 3 mm slice width and spacing using the spiral mode of scanner.

3.3.2.2 *Verification*

Check films should be weekly. Beam portal films must be obtained to each field. Electron fields utilized for supplemental nodal boosting must be verified by portal verification, simulation, or diagram.

3.3.3 *Radiation Dose*

Treatment to the primary tumor and upper neck will be given at 2 Gy/fraction once each day, five days a week. A total dose of 70 Gy/35 fractions/7 weeks will be delivered. Fields must be reduced to exclude the spinal cord at 36 Gy with dose calculated in the central plane. The entire neck must be irradiated to a total dose of at least 46-50 Gy (even in NO stage) at anatomic levels of lymph nodes usually 2-4 cm beneath the skin surface. Clinically positive neck nodes should also receive a dose of 70 Gy/35 fractions given continuously for 7 weeks. An electron beam should be used to supplement the dose to the posterior cervical chain nodes after the spinal cord has been shielded. Hence, the total dose to the primary tumor and clinically positive nodes will be 70 Gy/35 continuous fractions/7 weeks. The anterior lower neck will be treated at 2 Gy/fraction once a day (3 cm depth) from the anterior to a total dose of 46-50 Gy/25 continuous fractions (if clinically negative) in 5 weeks. The maximum dose permitted to the spinal cord will not exceed 45 Gy as determined by a separate off-axis point dose calculation.

Patients who undergo surgery post TPE-A can start XPE-A within an interval of 4-10 weeks after surgery (6 weeks recommended). In that case the total postoperative radiation dose will be up to 66 Gy.

3.3.4 *Target Volume Irradiation and Radiation Doses*

A combination of lateral opposing fields is recommended for the treatment of the primary tumor site and upper neck. A single anterior AP field will be used to treat the lower neck below the fields of the primary tumor/upper neck. When there are clinically involved lymph nodes in the lower neck, an additional posterior (PA) field may be necessary to deliver a supplemental dose to the positive nodes. All fields must be treated at each treatment session. The upper and lower fields should be matched using a "three dimensional" technique (i.e., appropriate rotation of the treatment table and appropriate angulation of the collimator or beam split technique). However, if such a three-dimensional match is not possible, the upper neck and supraclavicular fields may be abutted at the skin. The latter case, a small block should be placed either in the lower lateral position in the upper neck fields, or in the midline of the anterior supraclavicular field (which is appropriate and does not block tumor) to the shield areas of potential overlap of diverging beams over the spinal cord.

3.3.5 *Upper Neck Primary Volume*

- The primary treatment fields should encompass the primary tumor and/or suspected lymph node

disease in the upper neck using the shrinking field technique as follows:

- The initial target volume should include the primary tumor, positive nodes with an approximately 3.0 cm margin and the next echelon of uninvolved lymphatic nodal drainage sites to a dose of 50 Gy. Included in the target volume is the first field reduction occurring off the spinal cord at 36 Gy.
- The second field reduction will occur at 50 Gy and continue to 60 Gy with the new target volume encompassing the primary tumor and known areas of nodal disease with an approximately 2.0 cm margin.
- The third and final field reduction will occur at 60 Gy and continue to 70 Gy with the new target volume encompassing the primary tumor and known areas of nodal disease with an approximately 1.0 cm margin.

As a general rule, both ipsilateral and contralateral posterior cervical nodal chain and the adjacent echelon of uninvolved lymphatic nodal drainage sites will be treated to a dose of 46-50 Gy/5 weeks.

3.3.6 Lower Neck Volume

- A single lower neck field will be used to treat the lower neck and the supraclavicular fossae. When there is (are) positive node(s) in the lower neck, an additional posterior field may be necessary to deliver a supplemental dose to the positive node(s). The boost dose should not exceed 70 Gy.
- The lower border of the lower neck field will be just below the clavicular head with appropriate margins when there are positive nodes in the Supraclavicular fossa. The lateral borders of the lower neck field will extend to the intersection of the sternocleidomastoid muscle and the clavicle.
- For all patients with clinically positive nodes greater than 6 cm, or with clinically positive supraclavicular nodes, a mediastinal "T" field may be used. The lateral limbs of the T field will extend below the clavicular heads with margin, and the central portion of the field extends 5 cm more inferiorly to include the upper mediastinum.

3.3.7 Boost Doses

Additional boost doses may be given through reduced field to persistent tumor and/or clinically positive nodes, or to compensate for significant interruptions in radiation therapy treatments (i.e., > 57 elapsed days). The additional boost dose should not exceed 4 Gy (i.e., 74 Gy maximum). The spinal cord must be excluded from any boost field.

3.3.8 Dose Calculations

Photon Beam Portal Arrangements

- Dose specification for two parallel-opposed coaxial equally weighted beams is to be on the central ray at mid-separation of the beams.
- Dose specification for two or more intersecting beams is at the intersection of the central ray of the beams.
- For other complex treatment arrangements, dose is specified at the center of the clinical target volume.

Note: There may be several target volumes.

- For a single anterior AP lower neck field, the prescribed dose will be delivered at a depth of 3.0 cm as determined by an off-axis "supraclavicular point". When AP-PA fields are used to treat the lower neck, the dose shall be prescribed at the mid-separation of the two beams along the central ray.

3.3.9 Isodose Distributions

Isodose distribution at central axis is required. All treatment volumes and critical structures should be indicated. Complete isodose curves are required. Attempts should be made to keep the dose variation within the planning target volume to be within +/- 5% of the target dose.

3.3.10 Electron Beam Dose Specifications

The target dose shall be prescribed at the depth of maximum dose. The energy and field size shall be chosen so that the target volume is encompassed within 90% of the prescribed dose.

3.3.11 Time and Dose Modifications

- Treatment interruptions are strongly discouraged. Treatment breaks must be clearly indicated in the treatment record when they occur. If the total treatment interruptions exceed ten treatment days, the treatment will be considered a protocol deviation. The interruption of radiation therapy for grade 4 mucositis/dennatitis/dysphagia is at the discretion of the treating oncologist.
- The maximum permitted spinal cord dose is 45 Gy.
- Mandibular osteoradionecrosis will rarely occur if pretreatment dental evaluation is conducted prior to radiation therapy treatment. Pretherapy extractions of badly diseased teeth should be carried out with conservation of restorable teeth when possible. If an extraction site in the mandible has to be included in the irradiated field, 10 to 14 days should be allowed for healing before the initiation of irradiation.

3.3.12 Radiotherapy Guidelines/IMRT

Intensity Modulated Radiation (IMRT) is recommended in this study.

3.3.12.1 Proposed Radiotherapy Guidelines

- All patients will have immobilization devices with treatment planning based on Computerized Tomography (CT) information in treatment position. The CT slice thickness through target will be 3 mm.
- CT and Magnetic Resonance Imaging (MRI) data will be used to define the various targets and contour normal structures. MRI information will be used when indicated. Image fusion will be used to relate CT/MRI data when necessary.
- The field sizes and arrangements will be at the discretion of the attending Radiation Oncologist. ICRU 50 guidelines will be used for various Tumor and Target Nomenclature:
 - The Gross Tumor Volume (GTV): All gross disease delineated from clinical examination and radiographic studies (CT/MRI).
 - The Clinical Target Volume (CTV): The area that potentially contains microscopic disease. Lymph node groups at risk of microscopic disease will be outlined as part of

corresponding CTV. The margin between each GTV and co1Tespong CTV can vary from 0.2 cm to 2.5 cm depending upon the proximity to the critical and uninvolved structures.

- o The Planning Tru·get Vol ume (PTV): Provides a margin around CTV to compensate for internal motion and set up errors. Typically a 5 mm margin may be used around CTV.

3.3.12.2 *Radiation Target and Dose Specifications*

The following is the definition of tru·gets and their dose specifications.

- Primaly Tru·get (PTV3): Includes PTV's of primaly tumor and the lymph nodes containing disease. The dose will be ?.70 Gy at 2 GY/ fractions.
- Secondruiy Target (PTV2): Includes PTV's of area at moderate to high1isk of microscopic disease i.e. first echelon nodes. The dose will be ?. 60 Gy. This is at the treating physician discretion.
- Teliruy Tru·get (PTV,): Includes PTV's of areas that are at low 1isk of microscopic disease i.e. second echelon lymph nodes. The dose will be approximately ?.46-50 Gy.

Low Neck: The midjugulru·, lo w ju gular, and supraclavicularu·nodes can be treated with IMRT or alternatively with an AP field that is beam split to the IMRT fields. Dose Volume Histograms(DVH) will be generated for each plan. Radiation doses will be as outlined above.

Treatment Planning: Either fo1ward or inverse planning can be used in order to achieve the following:

- The radiation dose will be prescribed to the isodose line that encompasses 95% of PTV.
- No more than 15% of the PTV will receive >110% of the prescribed dose.
- The maximum dose within PTV does not exceed >25% of the prescribed dose.
- No more than 1% of the tissue outside PTV will receive >110% of the prescribed dose.
- No more than 1% of any PTV will receive < 93% of the prescribed dose.
- Tissue heterogeneity co1Tection is manda to1y.
- The planning priorities include critical normal stmcture constraints followed by prescription goals.

No1mal Tissues: The appropriate n01mal organs will be contoured. Dose Volume Histograms (DVH) will be generated. An attempt will be made to keep the maximum radiation doses to the following organs as follows:

Brain Stems:	54Gy
Optic Nerve/Chiasm:	55 Gy
Spinal Cord:	45 Gy
Mandible/TM Joint:	70 Gy or 1 cc of the PTV not to exceed 75 Gy
Larynx	70Gy

Proutid Glands: Attempt **will** be to achieve mean dose :'.S 26 Gy in at least one gland or at least 20cc of the combined volume of both parotid glands will receive < 20 Gy or at least 50% of the gland will receive < 30 Gy (should be achieved in at least one gland).

Other Normal Structures: Submandibular /sublingual glands, inner and middle ears, eye, lens will be considered low priority. The aim should be to decrease the doses as much as possible without compromising target.

Toxicities, and all interventions for toxicity, must be recorded on the data forms.

For patients who have undergone surgery without macroscopic residual disease a total radiation dose of up to 66 Gy will be administered (as postoperative treatment).

3.4 Supportive Care

- All supportive measures consistent with optimal patient care will be given throughout the study. Aggressive oral and skin care and analgesics are recommended.
- Antiemetics: Patients will receive antiemetic therapy as recommended in the treatment plan.
- Concomitant Dmgs

The prophylactic use of G-CSF is recommended during induction chemotherapy (i.e. Neulasta on day 2 of each induction TPE-A cycle or Neupogen on days 2-11). If G-CSF cannot be administered for any reason, prophylactic antibiotics (e.g. ciprofloxacin 500 mg BID will be administered on days 5-14 of each cycle of TPE-A). The use of G-CSF is not allowed during radiotherapy.

The use of erythropoietin is not allowed.

No other antimigratory agents will be given during protocol therapy.

- The use of amifostine is not permitted. Pilocarpine (Salagen) is not encouraged during treatment but is allowed. If used, it should be recorded in the treatment forms.

3.5 Gastrostomy Tubes

Prophylactic placement of a gastrostomy tube before any treatment begins is recommended but is at the discretion of the treating physician. It is strongly recommended in patients with significant dysphagia and weight loss of >10-15% at baseline or poor overall nutritional status.

4 SAFETY REPORTING OF ADVERSE EVENTS

4.1 Definitions

Adverse event (AE) means any untoward medical occurrence in a patient or subject administered a medicinal investigational dmg; the untoward medical occurrence does not necessarily have to have a causal relationship with this treatment. An AE can therefore be any unfavorable and unintended sign (including an abnormal laboratory finding, for example), symptom, or disease temporally associated with the use of an investigational medicinal product whether or not it is considered to be related to the medicinal investigational drug. This includes any newly occurring event, or a previous condition that has increased in severity or frequency since the administration of study drng.

An abnormal laboratory value will not be assessed as an AE unless that value leads to discontinuation or delay in treatment, dose modification, therapeutic intervention, or is considered by the investigator to be a clinically significant change from baseline.

Serious Adverse Event Definition

Serious AE (SAE) means any untoward medical occurrence that at any dose:

- Results in **death**.
- Is **life-threatening**. (The term "life-threatening" in the definition of "serious" refers to an event in which the patient was at risk of death at the time of the event; it does not refer to an event, which hypothetically might have caused death if it were more severe).
- Requires inpatient **hospitalization or prolongation of present hospitalization** (see clarification in the paragraph below on planned hospitalizations).
- Results in **persistent or significant disability/incapacity**. Disability is defined as a substantial disruption of a person's ability to conduct normal life functions.
- Is a **congenital anomaly/birth defect**.
- Is a **medically important event** that may not be immediately life threatening or result in death or hospitalization but may jeopardize the patient or may require intervention to prevent one of the other outcomes listed in the definition above, or involves suspected transmission via a medicinal product of an infectious agent. Examples of such medical events include allergic bronchospasm requiring intensive treatment in an emergency room or at home, blood dyscrasias or convulsions that do not result in inpatient hospitalization, or the development of drug dependency or drug abuse; any organism, virus, or infectious particle (e.g., prion protein in transmissible spongiform encephalopathy), pathogenic or non-pathogenic, is considered an infectious agent.

Clarification should be made between the terms serious and severe because they ARE NOT synonymous. The term severe is often used to describe the intensity (severity) of a specific event (as in mild, moderate, or severe myocardial infarction); the event itself, however, may be relatively minor medical significance (such as a severe headache). This is NOT the same as serious, which is based on patient/event outcome or action criteria described above and is usually associated with events that pose a threat to a patient's life or functioning. A severe AE does not necessarily need to be considered serious. For example, persistent nausea of several hours duration may be considered severe nausea but not an

SAE. On the other hand, a stroke resulting in only a minor degree of disability may be considered mild but would be defined as an SAE based on the above noted criteria. Seriousness (not severity) serves as a guide for defining regulatory reporting obligations.

Unanticipated Problem Involving Risk to Subjects or Others (UPIRSO)

Unanticipated problem involving risk to subjects or others includes any incident, experience or outcome that meets **all** of the following criteria:

- (1) **unexpected** (in terms of nature, severity, or frequency) given (a) the research procedures that are described in the protocol-related documents, such as the IRE-approved research protocol and informed consent document; and (b) the characteristics of the subject population being studied;
- (2) **related or possibly related** to participation in the research; and
- (3) suggests that the research places subjects or others at a **greater risk of harm** (including physical, psychological, economic, or social harm) than was previously known or recognized.

Procedures for Recording and Reporting Adverse Events, Serious Adverse Events and UPIRSOs

All AEs spontaneously reported by the patient and/or in response to an open question from study personnel or revealed by observation, physical examination, or other diagnostic procedures will be recorded on the appropriate page of the CRF. Any clinically relevant deterioration in laboratory assessments or other clinical finding is considered an AE and must be recorded on the appropriate pages of the CRF. When possible, signs and symptoms indicating a common underlying pathology should be noted as one comprehensive event.

All SAEs, serious pretreatment events and UPIRSOs (as defined in Section 4.3) must be reported by the investigator to the data safety monitoring board (DSMB#2) (See Section 15) in addition to Genetech (See Appendix I) or designee (contact information provided below) by faxing the institutional SAE/UPIRSO Form within 1 working day after becoming aware of the event. In addition notification via facsimile to Genetech (See Appendix I) is required within 1 working day after becoming aware of the event. All SAEs, serious pretreatment events and UPIRSOs must be reported whether or not considered causally related to the study drug or study procedures; however, serious pretreatment events that are directly related to disease progression, and unrelated to study procedures, are not required to be reported. SAE report information and the data provided on the CRF must match. All SAEs should be monitored until they are resolved or are clearly determined to be due to a patient's stable or chronic condition or interim illness(es). The SAE report must include event term(s), serious criteria, and the investigator or sub-investigator's determination of both the intensity of the event(s) and the relationship of the event(s) to study drug administration.

Planned hospital admissions or surgical procedures for an illness or disease that existed before the patient was enrolled in the trial are not to be considered AEs unless the condition deteriorated in an unexpected manner during the trial (e.g., surgery was performed earlier or later than planned).

For both serious and nonserious AEs, the investigator must determine both the intensity of the event and the relationship of the event to study drng administration. For serious pretreatment events, the investigator must determine both the intensity of the event and the relationship of the event to study procedures.

Intensity for each AE, including any lab abnotmality, will be determined using the NCI CTCAE, Version 4.0, 28 May 2009.

Monitoring of Adverse Events and Pe1iod of Observation

AEs, both nonse1ious and serious (which include all deaths), will be recorded on the CRFs. AEs will be repmted from dosing on Cycle 1, Day 1 through 30 days after the last dose of study dtug. Serious pretreatment events will be repo1ted from the time of the signing of the consent up to first dosing on study; however, serious pretreatment events that are directly related to disease progression, and unrelated to sn1dy procedure,s are not required to be reported. SAEs will be repotted from the first dose of study dtug up to and including the 30 days after administration of dtug in the study. All SAEs (which include all deaths) must also be reported to Genentech (See Appendix I) in addition to the Data Safety Monit01ing Committee (DSMC). All SAEs should be monitored until they are resolved or are clearly detennined to be due to a patient's stable or chronic condition or intercument illness(es).

Any SAE that occurs at any time after completion of the study and the designated follow-up pe1iod that the investigator considers to be related to study dtug must be repmted to Genentech and the DSMB.

This is an investigator-initiated study. The ptincipal investigator, Anand Kamad, MD, who may also sometimes be referred to as the sponsor-investigator, is conducting the study and acting as the sponsor. Therefore, the legal/ethical obligations of the ptincipal investigator include both those of a sponsor and those of an investigator. In the event that this is a multisite study, the sponsor-investigator is responsible to ensure that the SAE repmts are sent to Genentech and FDA from all sites paticipating in the study. Subinvestigators must repott all SAEs to the sponsor-investigator so that the sponsor-investigator can meethis/her foregoing repmtng obligations to the IRB, Genentech and FDA, unless othe1 wise agreed between the sponsor-investigator and subinvestigator(s). The IRB, Genentech and FDNJllay request follow-up infotmation to a repo1ted SAE, which the sponsor-investigator will be responsible for providing.

Sponsor-investigator must also provide Genentech with a copy of all communications with applicable regulato1y auth01ities related to the sn1dy or study dtug(s), including, but not limited to, telephone conversation logs, as soon as possible but no later than 5 calendar days of such communication.

Genentech **will** send to the sponsor-investigator a monthly listing of the SAE repmts received for SAE verification. Sponsor-investigator will be responsible for fotwarding such repmts to any subinvestigator(s).

4.2 Reporting to IRB

These events requiring reporting to the FDA also must be reported by the Investigator to the appropriate Institutional Review Board (IRB). The IRB currently requires the reporting of serious (including life-threatening and fatal) adverse events that are unanticipated (i.e., unexpected) and felt to be associated with (i.e., possibly related or related to) the research intervention(s). Fatal and life-threatening adverse events meeting these criteria are to be reported to the University IRB within 24 hours of the investigator-sponsor becoming aware of this information. Serious adverse events meeting these criteria are to be reported to the University IRB within 5 days of the investigator-sponsor becoming aware of this information.

MedWatch 3500a Reporting Guidelines:

In addition to completing appropriate patient demographic and suspect medication information, the report should include the following information within the Event Description (section 5) of the MedWatch 3500a form:

- Treatment regimen (dosing frequency, combination therapy)
- Protocol description (and number, if assigned)
- Description of Event, Severity, Treatment and Outcome (if known)
- Supportive laboratory results and diagnostics
- Investigator's assessment of the relationship of the adverse event to each investigational product and suspect medication

Follow-up information:

Additional information may be added to a previously submitted report by any of the following methods:

- Adding to the original MedWatch 3500a report and submitting it as follow-up
- Adding supplemental summary information and submitting it as follow-up with the original MedWatch 3500a form
- Summarizing new information and faxing it with a cover letter including subject identifiers (i.e. D.O.B. initial, subject number), protocol description and number, if assigned, suspect drug, belief adverse event description, and notation that additional or follow-up information is being submitted (The subject identifiers are important so that the new information is added to the correct initial report)

Occasionally Genentech may contact the reporter for additional information, clarification, or comment status of the subject for whom an adverse event was reported.

Assessing Causality:

Investigators are required to assess whether there is a reasonable possibility that bevacizumab caused or contributed to an adverse event. The following general guidance may be used.

: if the temporal relationship of the clinical event to bevacizumab administration makes a causal relationship possible, and other drugs, therapeutic interventions or underlying conditions do not provide a sufficient explanation for the observed event.

No: if the temporal relationship of the clinical event to bevacizumab administration makes a causal relationship unlikely, or other changes, therapeutic interventions or underlying conditions provide a sufficient explanation for the observed event.

5 STUDY SUBJECTS

5.1 Eligibility Criteria

- Patients with AJCC 7th edition stage III-IVB head and neck cancer, all sites, including unknown primary tumors.
- Prior to entry in the study the resectability and alternative treatment options for each patient will be determined by a team composed of an Ear, Nose, and Throat Surgeon, a Radiation Oncologist and a Medical Oncologist. Stage determination, optimal local treatment, and its timing according to this protocol will be determined at this evaluation. The unequivocal demonstration of distant metastasis (M1) confers ineligibility.
- Histologically or cytologically confirmed diagnosis of squamous cell or poorly differentiated carcinomas, or WHO types I-III of the nasopharynx.
- Unidimensionally measurable disease is required (RECIST 1.1).
- No prior chemotherapy, biologic/molecular targeted therapy (including any prior therapy which specifically and directly targets the EGFR pathway), or radiotherapy for head and neck cancer.
- Prior surgical therapy will consist only of incisional or excisional biopsy, and organ sparing procedures such as debulking of airway compromising tumors or neck dissection in a patient with an existing primary tumor. Any non-biopsy procedure must have taken place > 4 weeks but < 3 months of initiating protocol treatment.
- ECOG performance status 0-1.
- Age of ≥ 18 years.
- Informed consent must be obtained from all patients prior to beginning therapy. Patients should have the ability to understand and the willingness to sign a written informed consent document.
- All patients should have their tumor tissue tested for HPV (in situ hybridization and/or p16 staining by immunohistochemistry), and results must be known prior to study entry, and will consent to have available archival tumor samples, unstained slides or blocks from previous diagnostic or therapeutic procedures submitted for correlative studies, including assessment of target molecules EGFR, VEGF and related biomarkers. Also, patients must agree to submit blood samples for correlative studies at least at baseline.
- Absolute neutrophil count ≥ 1,500 / μl, platelet count ≥ 100,000 / μl
- Creatinine clearance 60 ml/min or higher calculated using the Cockcroft-Gault formula:

Calculated Creatinine Clearance = $(140 - \text{age}) \times \text{actual body wt (kg)}$

$$72 \times \text{serum creatinine}$$

Multiply this number by 0.85 if the patient is female

- Total bilirubin within normal limits and AST/ALT less than 3 times the upper limit of normal.
- Urine dipstick must be < 0-1+ within 2 weeks (14 days) of randomization. If urine dipstick result is > 1+, a calculation of Urine Protein Creatinine (UPC) ratio is required. Patients must have a

UPC ratio < 1.0 to participate in the study.

NOTE: UPC ratio of spot urine is an estimation of the 24-hour protein excretion - a UPC ratio of 1 is roughly equivalent to a 24-hour urine protein of 1 gm. UPC ratio is calculated using one of the following formulas:

- o $[\text{urine protein}] / [\text{urine creatinine}]$ - if both protein and creatinine are reported in mg/DL
- o $[(\text{urine protein}) \times 0.088] / [\text{urine creatinine}]$ - if urine creatinine is reported in mmol/L
- Patients with a prior history of squamous cell or basal carcinoma of the skin or *in situ* cervical cancer must have been curatively treated. Patients with a history of other prior malignancy must have been treated with curative intent and must have remained disease-free for 3 years post diagnosis.
- Patients may not be receiving any other investigational agents.

5.2 Exclusion Criteria

- History of severe allergic reactions attributed to docetaxel or compounds of similar chemical or biologic composition to docetaxel, or other drugs formulated with polysorbate 80.
- Prior severe infusion reaction to a monoclonal antibody or known hypersensitivity to any component of bevacizumab
- Uncontrolled intercurrent illness including, but not limited to, ongoing or active infection or psychiatric illness/social situations that would limit compliance with study requirements.
- All patients will have a baseline EKG. If abnormalities consistent with active coronary artery disease are detected, the patient will be referred to a cardiologist for appropriate evaluation and management prior to treatment on study
- No patients with significant baseline sensory or motor neurologic deficits (> grade I neuropathy) will be treated on this study.
- Because patients with immune deficiency are at increased risk of lethal infections when treated with immunosuppressive therapy, HIV-positive patients are excluded from the study. Appropriate studies will be undertaken in patients with HIV and those receiving combination anti-retroviral therapies when indicated.
- Patients with HPV positive tumors (P16+ by immunohistochemistry and/or HPV+ by in situ hybridization) AND smoking history <10 pack-years
- Inadequately controlled hypertension (defined as systolic blood pressure >150 mmHg and/or diastolic blood pressure > 100 mmHg)
- Prior history of hypertension crisis or hypertensive encephalopathy
- New York Heart Association (NYHA) Grade II or greater congestive heart failure (see Appendix F)
- History of myocardial infarction or unstable angina within 12 months prior to Day 1
- No history of stroke or transient ischemic attack within 6 months prior to Day 1
- Significant vascular disease (e.g. aortic aneurysm, requiring surgical repair or recent peripheral arterial thrombosis) within 6 months prior to Day 1
- History of hemoptysis (1/2 teaspoon of bright red blood per episode) within 1 month prior to Day 1

- Evidence of bleeding diathesis or significant coagulopathy (in the absence of therapeutic anticoagulation)
- Patients should not be on therapeutic anticoagulation therapy (prophylactic use of warfarin 1mg per day is allowed) and INR should be <1.5 at registration
- The use of anti-platelet agents (e.g. dipyridamole (Persantine), ticlopidine (Ticlid), clopidogrel (Plavix)) is allowed only if patient is not receiving aspirin or NSAID's known to inhibit platelet function.
- Major surgical procedure (including neck dissection), open biopsy, or significant traumatic injury within 28 days prior to Day 1 or anticipation of need for major surgical procedure during the course of the study
- Core biopsy or other minor surgical procedure, excluding placement of a vascular access device, within 7 days prior to Day 1
- History of abdominal fistula or gastrointestinal perforation within 6 months prior to Day 1
- Serious, non-healing wound, active ulcer, or untreated bone fracture
- Pregnant or breast-feeding women will be excluded.

6 PATIENT REGISTRATION

Patients must not start protocol treatment prior to consent being signed and being registered. Treatment should start within five working days after registration. Subjects can be enrolled after eligibility criteria are met by calling the site research nurse or designee.

For questions regarding the eligibility of subjects, Anand Kamad, MD, should be contacted at (210) 450-1267.

Registration will require the following information: **1)** your name, telephone and page number; **2)** protocol name and number; **3)** date treatment begins; **4)** subject name; **5)** date of birth; **6)** subject/hospital medical record number; **7)** primary study physician; **8)** primary treatment institution; **9)** confirmation of eligibility; **10)** copies of the informed consent signature page; **11)** verification that the informed consent was signed.

7 DOSE MODIFICATIONS - INDUCTION DOCETAXEL / CISPLATIN / CETUXIMAB / BEVACIZUMAB (TPE-A)

All toxicities will be graded according to NCI Common Toxicity Criteria AE version 4.0 (<http://evs.nci.nih.gov/ftp1/CTCAE/About.html>).

Patients who cannot tolerate induction chemotherapy or have delays for more than 3 weeks due to toxicity will proceed directly to chemoradiotherapy even without the completion of 3 cycles of induction.

Cetuximab and Bevacizumab will NOT be held for known docetaxel and cisplatin toxicities. If docetaxel and cisplatin are held to allow for the resolution of known toxicities to these drugs, cetuximab will be allowed to be administered weekly.

7.1 Hematologic Toxicity (Docetaxel)

ANC must be 1,500/mm³ and platelet count must be 100,000/L on day 1 of each cycle.

(Reduce doses only for febrile neutropenia or if ANC is < 1,000 for > 5 days.)

Dose modifications on Day 1 based on <u>nadir</u> during previous cycle		Cisplatin	Docetaxel
ANC (per mm ³)	Platelets (per mm ³)	Dose	Dose
ANC >= 1000 Or <1000 for <5 days	And	>75,000	100% 100%
500-1000 for >= 5 days	or	50,000- 75,000	100% 80%
<500 for >= 5 days	or	<50,000	100% 70%
Febrile neutropenia **		100%	70%

**Neutropenic fever is defined as one reading of oral temperature >38.5°C or three readings of oral temperature >38.0°C in a 24-hour period.

Dose reductions for reduced ANC are NOT based on a single nadir count. The ANC must remain <1,000 for :::: 5 days before a dose reduction is made.

If docetaxel is withheld due to hematologic toxicity, cisplatin should also be withheld, and administered when the docetaxel is resumed. No dose reductions of cisplatin will be made for hematologic toxicity.

In the event that dose adjustments are needed for both ANC and platelets, patients are to receive the lower dose.

Note: prophylactic G-CSF use is recommended. Neutropenic fever is defined as one reading of oral temperature > 38.5°C or three readings of oral temperature > 38.0°C in a 24-hour period.

Treatment should be delayed for up to 2 weeks until the day I ANC is ::::1500 and the platelet count is ::::100,000. However , if the counts have not recovered in 3 weeks, the **patient should start radiotherapy**.

Patients and investigators need to be attentive to the possibility of fever and infection so that these complications can be promptly and appropriately managed.

- When a dose reduction is made for a decreased ANC, platelet count or febrile neutropenia and the reduced dosage results in no toxicity, an attempt should be made to gradually re-escalate the dose in subsequent courses. For example, the next course should be given at intermediate dose rather than full dose, e.g., if a 70% dose results in no toxicity, the next course should start at 80% dose rather than 100% (i.e., 70% dose increased to 80% of dose, and 80% dose would be increased to 100%).
- If chemotherapy must be withheld due to hematologic toxicity, CBC and platelet counts should be obtained at least weekly until the counts reach the lower limits for treatment as outlined. The treatment schedule will then proceed in the usual sequence.
- No dose reductions will be made for anemia. Patients should be supported per the treating physician's discretion.

7.2 Neurologic Toxicity(Docetaxel, Cisplatin)

Docetaxel and cisplatin doses should be modified as follows for neurologic toxicity.

Grade of toxicity	Cisplatin/docetaxel doses to give
0	100%
1	100%
2	Hold treatment until patient recovers to grade 0 or 1 toxicity , then resume treatment at 75% dose.
3 or worse	Discontinue treatment

If patients do not recover to grade 0 or 1 neurotoxicity within 2 weeks, they will be taken off-study. Dose modifications made for neurotoxicity are permanent reductions.

7.3 Ototoxicity (Cisplatin)

Cisplatin is well known to cause high-frequency hearing loss. Continued use of the drug does not always result in hearing loss, although it may do so. If grade 2 or worse hearing loss is noted, the patient should be presented with a discussion of the relative risks of hearing loss versus the potential benefit of continuing cisplatin therapy, and a decision made on the continuation of cisplatin. Severe hearing loss (grades 3 or 4) is an indication to discontinue the drug.

7.4 Gastrointestinal Toxicity (Docetaxel, Cisplatin)

7.4.1 Nausea and/or Vomiting

Adequate antiemetics for acute and delayed emesis should be given. If grade 3 nausea/vomiting occurs in spite of antiemetics, the cisplatin dose should be reduced by 25% for the next course. Doses of docetaxel may be reduced by 25% in subsequent cycles if needed. If tolerated, increase back to 100% dose as soon as possible.

7.4.2 Stomatitis

If stomatitis is present on day 1 of any cycle, treatment should be withheld until stomatitis has resolved to grade 0.

If Grade 3/4 stomatitis occurs at any time, the dose of docetaxel should be given at 75% dose when the mucositis is completely cleared.

7.5 Renal Toxicity (Cisplatin)

Measurement of serum creatinine is required before each cycle of drug. Modify the Cisplatin dose using the following patient factors for calculated creatinine clearance **determined in the well-hydrated patient using the Cockcroft-Gault formula**. The actual weight will be used for the calculation of creatinine clearance.

$$\text{CrCl}_{\text{male}} = (140 - \text{age}) \times \text{weight} / (\text{creatinine} \times 72)$$

$$\text{CrCl}_{\text{female}} = \text{CrCl}_{\text{male}} \times 0.85$$

Creatinine Clearance	Cisplatin to give	Docetaxel to give
60 mL/min	100%	100%
50-60 mL/min	50%	100%
< 50 mL/min	0%	0%

If serum creatinine is increased by 100% over baseline or is increased above upper institutional limits, a 24-hour urine collection with measurement of creatinine clearance is recommended.

If creatinine clearance is decreased such that treatment is not administered as scheduled, repeat the abnormal tests every week at least. If the serum creatinine/creatinine clearance returns to baseline (> 60 mL/min), cisplatin may be reinstated at 50% of the full dose during the next cycle (permanent dose reduction).

If the creatinine clearance is between 50-60 mL/min, docetaxel should be continued at the dose dictated by myelosuppression and should be given on schedule. If the creatinine clearance is < 50 mL/min, withhold any therapy until creatinine clearance improves. Delays in therapy should not be more than 2 weeks. If a delay of >2 weeks is necessary patients should be taken off study.

If serum creatinine increased at any time to 2-4 mg/dL, a permanent dose reduction of cisplatin by 20% will be applied; if serum creatinine increased at any time to >4 mg/dL, a permanent dose reduction of cisplatin by 40% will be applied.

7.6 Hepatic Toxicity(Docetaxel)

The day 1 value should be used in determining dose.

Both AST and ALT should be drawn. The more abnormal of the two values (AST or ALT) should be used in determining the dose.

Patients who develop abnormal liver function tests for any reason while on the study will have the following dose reductions:

Docetaxel Dose Modifications for Abnormal Liver Function

AST or ALT:				
ALK PHOS:	ULN	>1x but 1.5x	>1.5x but x	>xULN
ULN	Full Dose	Full Dose	Full Dose	Hold*
>1x but 2.5x	Full Dose	Full Dose	Reduce Dose by 20%	Hold*
>2.5x but x	Full Dose	Reduce Dose by 20%	Hold*	Hold*
>x ULN	Hold*	Hold*	Hold*	Hold*

*Hold until recovered, maximum 14 days, then re-treat at a reduced dose by 20%. "Recovered" is defined as meeting the study baseline eligibility criteria.

Bilirubin: Docetaxel should not be administered to patients with serum total bilirubin >ULN. If serum total bilirubin is >ULN on treatment day, hold docetaxel until serum total bilirubin is ≤ ULN (maximum 14 days), then re-treat at a reduced dose by 20%.

7.7 Hypersensitivity Reactions (Docetaxel)

See section 8.4 for management guidelines. Discontinue protocol treatment for Grade 3 or 4 infusion related reactions or allergic reactions. There are no dose reductions for infusion related reactions or allergic reactions.

7.8 Fluid Retention (Docetaxel)

Fluid retention should be managed as outlined in section 8.5.

7.9 Other Non-Hematologic Toxicities

For any grade 3 or 4 toxicity not mentioned above, the treatment should be withheld until the patient recovers completely or to grade 1 toxicity then reinstated (if medically appropriate). The treatment (both cisplatin and docetaxel) should then be resumed at 75% dose (permanent dose reduction).

For grade 1 and 2 toxicities, no dose reduction should be made.

8 DOSE MODIFICATIONS- RADIATION PLUS CISPLATIN / CETUXIMAB / BEVACIZUMAB (XPE-A)

Prior to initiating chemoradiation, all prior toxicities occurred during induction chemotherapy, except alopecia and anemia should have resolved to grade 0-1.

The following criteria should be met to start chemoradiation as per protocol:

- Stomatitis should have completely resolved (grade 0)
- ANC ≥ 1500 cells/mm³
- Platelet count of > 100,000 cells/mm³
- Creatinine clearance ≥ 60 mL/min

If these parameters are not met, patients may start radiation therapy alone and receive cisplatin / cetuximab / bevacizumab when these criteria are met.

If patients develop significant non-hematologic cisplatin-associated toxicities, such as ototoxicity, nausea/vomiting, and neuropathy (see 8.1.3 below), will receive carboplatin AUC 1.5 weekly instead of cisplatin during chemoradiotherapy. Cisplatin, cetuximab and bevacizumab will only be given concurrently with radiation.

Cetuximab or/and bevacizumab will NOT be held for known cisplatin toxicities. If cisplatin is held to allow for the resolution of known cisplatin toxicities, cetuximab or/and bevacizumab will be allowed to be administered.

Dose Modifications for Cisplatin During Chemoradiotherapy

(For cetuximab and bevacizumab dose modification see above)

8.1.1 Neutropenia

If on the day of scheduled treatment with cisplatin the absolute neutrophil count (ANC) is < 1000 , hold cisplatin until $ANC \geq 1000$, then treat at 100% dose. Neutropenic fever will require permanent 25% dose reduction.

8.1.2 Thrombocytopenia

If on the day of scheduled treatment with cisplatin the platelet count is $< 75,000$, hold treatment until platelets are $\geq 75,000$, then treat at 100% dose. Thrombocytopenia that results in bleeding will require permanent 25% dose reduction.

8.1.3 Neurotoxicity

If persistent grade 2 neuropathy (>1 week), see 8.1.9 (carboplatin substitution).

If any signs of grade 3 or greater neurotoxicity occur, discontinue cisplatin. Patients developing grade 3 or 4 neuropathy will have cisplatin discontinued.

8.1.4 Renal Toxicity

Measurement of serum creatinine is required before each cycle of drug. Modify the cisplatin dose using the following parameters for calculated creatinine clearance determined in the well-hydrated patient using the Cockcroft-Gault formula.

$$CrCl(\text{males}) = (140 - \text{age}) \times \text{weight}(\text{kg}) / (\text{serum creatinine} \times 72)$$

$$CrCl(\text{females}) = CrCl(\text{males}) \times 0.85$$

The actual weight will be used for the calculation of Creatinine Clearance.

Cisplatin should be administered on the scheduled day of treatment using the following guidelines:

Creatinine Clearance	Cisplatin Dose
$\geq 60 \text{ mL/min}$	100%
$< 60 \text{ mL/min}$	0 (Substitute Carboplatin AUC 1.5 weekly)

*If at the time of treatment serum creatinine is increased by 100% or more over baseline or to above institutional upper limits of normal, a 24-hour urine collection with calculation of creatinine clearance is recommended.

If serum creatinine increased at any time to $2-4 \text{ mg/dL}$, a permanent dose reduction of 20% will be applied; if serum creatinine increased at any time to $>4 \text{ mg/dL}$, carboplatin will be used instead of cisplatin on all subsequent cycles.

8.1.5 Ototoxicity

Cisplatin is well known to cause high-frequency hearing loss. Continued use of the drug does not always result in hearing loss, although it may do so. If persistent grade 2 hearing loss is noted, the patient should

be presented with a discussion of the relative risks of hearing loss versus the potential benefit of continuing cisplatin therapy, and a decision made on the continuation of cisplatin or switching to carboplatin (see 8.1.9). Severe hearing loss (grades 3 or 4) is an indication to discontinue the drug.

8.1.6 Nausea and/or Vomiting

Adequate antiemetics for acute and delayed emesis should be given. If grade 3 nausea/vomiting occurs in spite of antiemetics, the cisplatin dose should be reduced by 25% for the next course. If tolerated, increase back to 100% dose as soon as possible.

8.1.7 In-field Toxicities During Radiation: Radiation Mucositis / Dysphagia / Dermatitis

No cisplatin dose adjustments for grade 3 or less radiation mucositis/dysphagia/dermatitis.

Grade 4 radiation mucositis / mucositis / or dermatitis that develops at any time will require permanent 25% dose reduction of cisplatin on all subsequent cycles. If radiation is given in the setting of grade 4 mucositis / dysphagia / dermatitis, cisplatin will be administered with a 25% dose reduction.

If RT is held because of mucositis, hold cisplatin, cetuximab and bevacizumab until RT is resumed.

8.1.8 Other Toxicities

For any grade 3 or 4 toxicity not mentioned above (except fatigue, anorexia, weight loss, alopecia, electrolyte abnormalities that are being corrected, and any cetuximab-related toxicity), cisplatin should be withheld until the patient recovers completely or to grade 1 toxicity after discussing the case with the principal investigator. Cisplatin should then be resumed at 75% dose (permanent dose reduction).

For grade 1 and 2 toxicities, no dose reduction should be made.

8.1.9 Carboplatin Substitution During Chemoradiotherapy

Patients developing the following cisplatin-induced toxicities will discontinue Cisplatin and substitute Carboplatin, AUC 1.5, administered as a 30-minute infusion weekly using the following formula to calculate the total dose:

$$(\text{CrCl} + 25) \times 1.5 = \text{total mg dose}^*$$

- Persistent grade 2 sensory or motor neuropathy (objective weakness or sensory loss interfering with function but not interfering with activities of daily living)
- Nephrotoxicity with creatinine clearance $< 60 \text{ ml/min}$ on the day of scheduled chemotherapy administration, a rise in serum creatinine to $>4 \text{ mg/dL}$ at any time, or persistent/refractory hypomagnesemia or other electrolyte imbalances and severe kidney abnormalities that can be attributed to cisplatin.
- Ototoxicity - Carboplatin may also cause ototoxicity. If hearing loss of grade 1-2 from carboplatin is noted, the patient should be presented with a discussion of the relative risks of hearing loss versus the potential benefit of receiving carboplatin therapy. Severe hearing loss (grades 3 or 4) is an indication to discontinue the carboplatin.
- Grade 4 nausea and vomiting despite appropriate antiemetics

Calculation of Carboplatin Dose: The dose of Carboplatin during chemoradiotherapy will be calculated using the following formula (Cockcroft-Gault formula):

$$\text{Carboplatin Dose(mg)} = 1.5 \times (\text{CrCl} \cdot 2 + 25)$$

$$\text{CrCl} = (140 - \text{age}) \times \text{weight(kg)} / (\text{serum creatinine} \times 72)$$

$$\text{CrCl}_{\text{males}} = \text{CrCl}_{\text{males}} \times 0.85$$

The actual weight will be used for the calculation of Creatinine Clearance.

By the end of 2010, all clinical laboratories in the US will use the new standardized Isotope Dilution Mass Spectrometry (IDMS) method to measure serum creatinine. The IDMS method appears to underestimate serum creatinine values compared to older methods when the serum creatinine values are relatively low (e.g., ~0.7 mg/dL). Measurement of serum creatinine by the IDMS-method could result in an overestimation of the Glomerular Filtration Rate (GFR) in some patients with normal renal function. If the total carboplatin dose is calculated based on IDMS-measured serum creatinine using the Calvert formula, carboplatin dosing could be higher than desired and could result in increased drug-related toxicity.

The current label for carboplatin provides safe dosing instructions that are based on actual GFR measurements. Provided that actual GFR measurements are made to assess renal function, carboplatin can be safely dosed according to the instructions described in the label.

(<http://dailymed.nlm.nih.gov/dailymed/druginfo.cfm?id=13328>)

If a patient's GFR is estimated based on serum creatinine measurements by the IDMS method, as recommended by the FDA, physicians should consider capping the dose of carboplatin for desired exposure (AUC) to avoid potential toxicity due to overdosing. Based on the Calvert formula described in the carboplatin label, the maximum doses can be calculated as:

$$\text{Total Carboplatin Dose (mg)} = (\text{target AUC}) \times (\text{GFR} + 25) \text{ [Calvert formula]}$$

$$\text{Maximum Carboplatin Dose (mg)} = \text{target AUC (mg} \cdot \text{min/mL}) \times (150 \text{ mL/min})$$

The maximum dose is based on a GFR estimate that is capped at 125 mL/min for patients with normal renal function. No higher estimated GFR values should be used.

For a target AUC = 6, the maximum dose is $6 \times 150 = 900 \text{ mg}$

For a target AUC = 5, the maximum dose is $5 \times 150 = 750 \text{ mg}$

For a target AUC = 4, the maximum dose is $4 \times 150 = 600 \text{ mg}$

8.1.10 Carboplatin Dose Modifications

Carboplatin will only be given concurrently with radiation.

- Carboplatin will be administered if platelets are $75,000 \text{ cells/mm}^3$ or above and ANC is 1000 cells/mm^3 or above. Treatment will be delayed until the above criteria are met.
- No carboplatin dose adjustments for grade 3 or less mucositis/dysphagia/denatitis. Grade 4 mucositis/ dysphagia/dematitis that develops at any time will require a permanent dose reduction

of carboplatin to an AUC of 1 on all subsequent cycles. If radiation is given in the setting of grade 4 mucositis/dysphagia/delmatitis, carboplatin will be given at a reduced dose of AUC of 1.

- If in the previous cycle of carboplatin, patients developed grade 4 thrombocytopenia or grade 4 neutropenia or neutropenic fever, or grade 3 or 4 non-hematologic toxicities with the exception of mucositis/dysphagia/delmatitis, carboplatin dose will be reduced to AUC of 1 in all subsequent administrations.
- If neuropathy worsens to a grade 3 (impairment of function) after treatment with carboplatin, then patients may discontinue chemotherapy for reasons of toxicity at the discretion of the treating physician, based on severity of function loss.
- Patients developing grade 3 or 4 neuropathy will have carboplatin discontinued.

8.2 Management of Cetuximab Adverse Reactions and Dose Modifications

Cetuximab will NOT be held for known docetaxel, cisplatin and bevacizumab toxicities. If docetaxel, cisplatin and bevacizumab are held to allow for the resolution of known toxicities to these drugs, cetuximab will be allowed to be administered weekly

Cetuximab will be held or its dose reduced to dose level -1 or -2 (see below) for the following toxicities (see 8.2.2 to 8.2.4).

Cetuximab will **NOT** be held or reduced for hematologic toxicities.

Dose levels for cetuximab are as follows:

Cetuximab Dose Levels

Weekly Cetuximab dose	
Starting dose	250 mg/m ²
Dose Level -1	200 mg/m ²
Dose Level -2	150 mg/m ²

There will be no dose level reductions below a weekly dose of 150 mg/m².

8.2.1 Management of Infusion Reactions

Severe infusion reactions require immediate interruption of cetuximab therapy and permanent discontinuation from further treatment. Appropriate medical therapy including epinephrine, corticosteroids, intravenous antihistamines, bronchodilators, and oxygen should be available for use in the treatment of such reactions. Patients should be carefully observed until the complete resolution of all signs and symptoms.

In clinical trials, mild to moderate infusion reactions were managed by slowing the infusion rate of cetuximab and by continued use of antihistamine pre-medications (eg, diphenhydramine) in subsequent doses. If the patient experiences a mild or moderate (Grade 1 or 2) infusion reaction, the infusion rate should be permanently reduced by 50%. For grade 1 or 2 reactions manifesting only as delayed drug fever, see below in Section 8.2.2.

Cetuximab should be immediately and permanently discontinued in patients who experience severe (Grade 3 or 4) infusion reactions.

8.2.2 Treatment of Isolated Drug Fever

In event of isolated drug fever, the investigator must use clinical judgment to determine if the fever is related to the study drug or to an infectious etiology.

If a patient experiences isolated drug fever, for the next dose, pre treat with acetaminophen or non-steroidal anti-inflammatory agent (investigator discretion), repeat antipyretic dose 6 and 12 hours after cetuximab infusion. The infusion rate will remain unchanged for future doses.

If a patient experiences recurrent isolated drug fever following premedication and post-dosing with an appropriate antipyretic, the infusion rate for subsequent dosing should be 50% of previous rate. If fever recurs following infusion rate change, the investigator should assess the patient's level of discomfort with the event and use clinical judgment to determine if the patient should receive further cetuximab.

8.2.3 Management of Pulmonary Toxicity

In the event of acute onset (grade 2-3) or worsening pulmonary symptoms which are not thought to be related to underlying cancer, cetuximab therapy should be interrupted and a prompt investigation of these symptoms should occur. If ILD is confirmed, cetuximab should be discontinued and the patient should be treated appropriately.

8.2.4 Management of Dermatologic Toxicity

Patients developing dermatologic toxicities while receiving cetuximab should be monitored for the development of inflammatory or infectious sequelae, and appropriate treatment of these symptoms initiated. Dose modifications of any future cetuximab infusions should be instituted in case of severe (grade 3) acneiform rash. Treatment with topical and/or oral antibiotics should be considered; topical corticosteroids are not recommended.

If a patient experiences severe acneiform rash, cetuximab treatment adjustments should be made according to the following table. In patients with mild and moderate skin toxicity, treatment should continue without dose modification.

Cetuximab Dose Modification Guidelines

Grade 3 Acneform Rash	Cetuximab	Outcome	Cetuximab Dose Modification
1st occurrence	Delay infusion 1 to 2 weeks	Improvement	Continue at 250 mg/m ²
		No Improvement	Discontinue cetuximab
2nd occurrence	Delay infusion 1 to 2 weeks	Improvement	Reduce dose to 200 mg/m ²
		No Improvement	Discontinue cetuximab
3rd occurrence	Delay infusion 1 to 2 weeks	Improvement	Reduce dose to 150 mg/m ²
		No Improvement	Discontinue cetuximab
4th occurrence	Discontinue cetuximab		
Intolerable Persistent Grade 2 (only during maintenance)	Delay infusion 1 to 2 weeks	Improvement No improvement	Dose reduction by one dose level Discontinue

8.2.5 In-field Toxicities During Radiation: Radiation Mucositis / Dysphagia/ Dermatitis

No cetuximab dose adjustments for grade 3 or less radiation mucositis, dysphagia, dermatitis.

Grade 4 radiation mucositis/dysphagia or dermatitis that develops at any time will require permanent dose reduction of cetuximab by one dose level on all subsequent cycles. If radiation is given in the setting of grade 4 radiation mucositis/dysphagia/dermatitis, cetuximab will be administered with a dose reduction by one dose level.

If RT is held because of in-field toxicities, hold cisplatin and cetuximab until RT is resumed.

8.2.6 Retreatment Criteria/or Cetuximab

Cetuximab may only be administered if all the following criteria are met regardless of cycle, providing no criteria for discontinuation are met:

- Acne-like rash is grade 2 or less
- All grade 3 or 4 non-hematologic out-of-field toxicities (except fatigue, anorexia, alopecia, and diarrhea, and any cisplatin/carboplatin or docetaxel-associated toxicities of any grade) have resolved to grade 1 or 0.
- Patients with hypomagnesemia and other electrolyte abnormalities can be treated on schedule and without a dose reduction if the abnormality can be corrected (e.g. intravenous magnesium is given for correction of hypomagnesemia).
- Cetuximab can be administered in the setting of any grade hematologic toxicities.
- For in-field toxicities see 8.1.7.

8.3 Bevacizumab Dose Modification and Toxicity Management

There are no reductions in the bevacizumab dose. If adverse events occur that require holding bevacizumab, the dose will remain the same once treatment resumes.

Any toxicity associated or possibly associated with bevacizumab treatment should be managed according to standard medical practice. Discontinuation of bevacizumab will have no immediate therapeutic effect. Bevacizumab has a terminal half-life of 21 days; therefore, its discontinuation results in slow elimination over several months. There is no available antidote for bevacizumab.

Subjects should be assessed clinically for toxicity prior to, during, and after each infusion. If unmanageable toxicity occurs because of bevacizumab at any time during the study, treatment with bevacizumab should be discontinued.

Anaphylaxis Precautions: Anaphylaxis precautions should be observed during bevacizumab administration. The patient's blood pressure and heart rate should be monitored during the infusion. Emergency agents including oxygen, oral and endotracheal airways, intubation equipment, epinephrine, antihistamines and corticosteroids should be available. In the event of a suspected anaphylactic reaction during bevacizumab infusion, stop the bevacizumab infusion and apply a tourniquet proximal to the injection site, if possible, to slow systemic absorption of bevacizumab. Administer antihistamines, epinephrine, or other medications at the investigator's discretion.

fusion Reaction: fusion of bevacizumab should be interrupted for subjects who develop dyspnea or clinically significant hypotension. Subjects who experience a NCI CTCAE v. 4.0 Grade 3 or 4 allergic reaction / hypersensitivity, adult respiratory distress syndrome, or bronchospasm (regardless of grade) will be discontinued from bevacizumab treatment.

The infusion should be slowed to 50% or less or interrupted for subjects who experience any infusion-associated symptoms not specified above. When the subject's symptoms have completely resolved, the infusion may be continued at no more than 50% of the rate prior to the reaction and increased in 50% increments every 30 minutes if well tolerated. infusions may be restarted at the full rate during the next cycle.

Adverse events requiring delays or permanent discontinuation of bevacizumab are listed in the table below.

If bevacizumab is held for any reason, the other study drugs will be given on time assuming parameters for their continuation are met and the patient will remain on study.

Bevacizumab Dose Management Due to Adverse Events

Event	Action to be Taken
Hypertension No dose modifications for grade 1/2 events	
Grade 3	If not controlled to 150/100 mmHg with medication, discontinue bevacizumab.
Grade 4 (including hypertensive encephalopathy)	Discontinue bevacizumab

Hemorrhage No dose modifications for grade 1/2 non-pulmonary and non-CNS events	
Grade 3 Non-pulmonary and non-CNS hemorrhage	Subjects who are also receiving full-dose anticoagulation will be discontinued from receiving bevacizumab. All other subjects will have bevacizumab held until all of the following criteria are met: The bleeding has resolved and hemoglobin is stable. There is no bleeding diathesis that would increase the risk of therapy. There is no anatomic or pathologic condition that significantly increases the risk of hemorrhage recurrence. Subjects who experience a repeat Grade 3 hemorrhagic event will be discontinued from receiving bevacizumab.
Grade 4 non-pulmonary or non-CNS hemorrhage	Discontinue bevacizumab
Grade 1 pulmonary or CNS hemorrhage	Subjects who are also receiving full-dose anticoagulation will be discontinued from receiving bevacizumab. All other subjects will have bevacizumab held until all of the following criteria are met: The bleeding has resolved and hemoglobin is stable. There is no bleeding diathesis that would increase the risk of therapy. There is no anatomic or pathologic condition that significantly increases the risk of hemorrhage recurrence.
Grade 2, 3, or 4 pulmonary or CNS hemorrhage	Discontinue bevacizumab
Venous Thrombosis No dose modifications for grade 1/2 events	
Grade 3 or 4	Hold study drug treatment. If the planned duration of full-dose anticoagulation is < 2 weeks, bevacizumab should be held until the full-dose anticoagulation period is over. If the planned duration of full-dose anticoagulation is > 2 weeks, bevacizumab may be resumed during the period of full-dose anticoagulation if all of the following criteria are met: The subject must have an in-range INR (usually between 2 and 3) if on warfarin; LMWH, warfarin, or other anticoagulant dosing must be stable prior to restarting bevacizumab treatment. The subject must not have had a Grade 3 or 4 hemorrhagic event while on anticoagulation.
Arterial Thromboembolic event (New onset, worsening, or unstable angina, myocardial infarction, transient ischemic attack, cerebrovascular accident, and any other arterial thromboembolic event)	
Any grade	Discontinue bevacizumab
Bevacizumab Dose Management due to Adverse Events	
Congestive Heart Failure (Left ventricular systolic dysfunction) No dose modifications for grade 1/2 events	
Grade 3	Hold bevacizumab until resolution to Grade 1
Grade 4	Discontinue bevacizumab
Proteinuria No dose modifications for grade 1/2 events	
	[Proteinuria should be monitored by urine analysis for urine protein creatinine (UPC) ratio prior to every other dose of bevacizumab]

UPC Ratio <3.5 or 24-h urine protein <3.5 gm	Continue bevacizumab.
UPC ratio;:3.5 or 24-h urine protein 2:_.3 . 5 gm	Hold bevacizumab until UPC recovers to < 3.5, or 24-h urine protein < 3.5 gm Discontinue bevacizumab if urine protein does not recover to < 3.5 after 8 weeks or bevacizumab interim.1ption.
Nephrotic syndrome	Discontinue bevacizumab
Fistula	
Any grade (TE fistula)	Discontinue bevacizumab
Grade 4 fistula	Discontinue bevacizumab
Bowel Obstruction Grade 1	Continue patient on study for partial obstruction NOT requiring medical intervention.
Grade 2	Hold bevacizumab for partial obstruction requiring medical intervention. Patient may restart upon complete resolution.
Grade 3/4	Hold bevacizumab for complete obstruction. If surgery is necessary, patient may restart bevacizumab after full recovery from surgery, and at investigator's discretion.
Wound dehiscence Any grade (requiring medical or surgical therapy)	Discontinue bevacizumab
Perforation (GI, or any other organ)	Discontinue bevacizumab
Reversible Posterior Leukoencephalopathy	
Any grade (confirmed by MRI)	Discontinue bevacizumab
Other Unspecified Bevacizumab-Related Adverse Events	
Grade 3	Hold bevacizumab until recovery to :5Grade 1
Grade 4	Discontinue bevacizumab

8.4 Docetaxel-Associated Hypersensitivity Reactions

Treatment should be discontinued for Grade 3 or 4 hypersensitivity reactions.

There are no dose reductions for hypersensitivity reactions.

Management of Acute Hypersensitivity

Severity of Symptoms	Treatment Guidelines
<u>Mild</u> symptoms: localized cutaneous reactions such as mild pruritis, flushing, rash	Consider decreasing the rate of infusion until recovery from symptoms, stay at bedside and monitor patient then, complete Docetaxel infusion at the initial planned rate
Moderate symptoms: any symptom that is not listed above (mild symptoms) or below (severe symptoms) such as generalized pruritis, flushing, rash, dyspnea, hypotension with systolic	<ul style="list-style-type: none"> • interrupt Docetaxel infusion • give diphenhydramine 50 mg IV with or without dexamethasone 10 mg IV; monitor patient until resolution of symptoms • resume Docetaxel infusion after recovery of symptoms; depending on the physician's assessment of the patient,

BP > 80 mm Hg	<p>Docetaxel infusion should be resumed at a slower rate, then increased incrementally to the initial planned rate, (eg. infuse at a 8-hour rate for 5 minutes, then at a 4-h rate for 5 minutes, then at a 2-h rate for 5 minutes, then finally, resume at the 1h infusion rate).</p> <ul style="list-style-type: none"> depending on the intensity of the reaction observed, additional oral or N premedication with an antihistamine should also be given for the next cycle of treatment, and the rate of infusion should be decreased initially and then increased back to the recommended 1-hour infusion, (eg. infuse at a 8-hour rate for 5 minutes, then at a 4-h rate for 5 minutes, then at a 2-h rate for 5 minutes, and finally, administer at the 1h infusion rate).
<u>Severe</u> symptoms: any reaction such as bronchospasm, generalized urticaria, systolic BP > 80mm Hg, angioedema	<ul style="list-style-type: none"> immediately discontinue Docetaxel infusion give diphenhydramine 50 mg N with or without dexamethasone 10 mg N and/or epinephrine as needed; monitor patient until resolution of symptoms the same treatment guidelines outlined under moderate symptoms (i.e. the third and fourth bullets) should be followed.
Grade 3 or 4 infusion related reactions or allergic reactions	<p>DISCONTINUE PROTOCOL TREATMENT*</p> <p>In the case of a severe life-threatening anaphylactic reaction, docetaxel will not be re-administered and hence docetaxel will be discontinued.</p> <p>Following an infusion related reaction or allergic reaction, and depending on its severity, additional oral or N premedication with an antihistamine should be given prior to the next administration and the rate of the infusion should be increased gradually to the recommended 1-hour infusion rate (e.g. at an 8 hour rate for 5 minutes, then a 4 hour rate for 5 minutes, then at a 2-hour infusion rate for 5 minutes, then finally, resume at the 1-hour infusion rate).</p> <p>*In case of prolonged or recurrent infusion reactions or allergic reactions, following initial improvement, or if hospitalization is indicated for clinical sequelae, or if life-threatening consequences; urgent intervention is indicated.</p>

8.5 Fluid Retention Syndrome

There are no dose reductions for fluid retention.

Patients developing new onset edema, progression of existing edema, or another sign of fluid retention (eg. 2 pound weight gain) are to be treated with oral diuretics. Regimens found to be effective in the management of fluid retention due to Docetaxel are listed below.

- Tliamterene/hydrochlorothiazide one capsule po qd up to tid.
- Furosemide 40 mg po daily if edema progresses despite Triamterene/hydrochlorothiazide therapy. Potassium supplementation should be given as needed.
- If after a two-week trial, furosemide 40 mg po qd is ineffective, the patient may be treated with furosemide 20 mg po daily plus metolazone 2.5 mg po daily with potassium supplementation as needed.

Further therapy should be customized depending upon the clinical situation. The clinical tolerance of the patient, the overall tumor response and the medical judgment of the investigator will determine if it is in the patient's best interest to continue or discontinue treatment.

8.6 Hyperlacrimation

The excessive lacrimation (epiphora) seen in some patients receiving Docetaxel appears to be related to cumulative dose (median 300 mg/m²) and resolves rapidly after treatment cessation.

Excessive lacrimation seems to be the result of a chemical conjunctivitis and/or chemical inflammation (with edema) of the lacrimal duct epithelium (producing a reversible lacrimal duct stenosis).

Consequently, investigators in clinical trials have treated such patients with (a) artificial tears and/or (b) saline eyewash and/or (c) steroid based eye drops.

It is suggested that the following approach be taken for patients experiencing clinically significant hyperlacrimation:

- Withhold Docetaxel treatment for 2 weeks,
- Recommend frequent instillation of artificial tears,
- Prescribe a steroid ophthalmic solution (eg. prednisolone acetate) 2 gtt each eye bid for 3 days starting the day before Docetaxel administration in patients **without** a history of herpetic eye disease .

9 DURATION OF THERAPY / WITHDRAWAL FROM STUDY

Patients will receive a maximum of 3 cycles of induction chemotherapy followed by chemoradiotherapy as specified in the study design.

Patients will remain and be followed per protocol even if bevacizumab is discontinued.

Patients who progressed locoregionally post induction may proceed onto chemoradiotherapy as per protocol or have salvage surgery at the discretion of the multidisciplinary team.

10 DRUG FORMULATION AND PROCUREMENT

10.1 Docetaxel

10.1.1 Other Names

Taxotere®, RP56976

10.1.2 Classification

Docetaxel is an antimicrotubule agent that belongs to the taxane family.

10.1.3 Mode of Action

Docetaxel acts principally by binding to free tubulin and promoting the assembly of tubulin into stable microtubules while simultaneously inhibiting their disassembly. As a result, bundles of microtubules accumulate and interfere with cell division causing cell cycle arrest in M-phase, which ultimately leads to cell death. In addition, the taxanes have other biological effects, including induction of apoptosis, and inhibition of angiogenesis.

10.1.4 Storage and Stability

Docetaxel vials should be stored between 2 and 25°C (36 and 77°F). Retain in the original package to protect from bright light. Freezing does not adversely affect the product.

Docetaxel infusion solution, if stored between 2 and 25°C (36 and 77°F) is stable for 4 hours. Fully prepared docetaxel infusion solution (in either 0.9% Sodium Chloride solution or 5% Dextrose solution) should be used within 4 hours (including the 1 hour i.v. administration).

10.1.5 Dose Specifics

Docetaxel will be administered at a dose as per 3.1. The BSA will be calculated with the patient's actual weight.

10.1.6 Preparation and Administration

Docetaxel is a cytotoxic anticancer drug and, as with other potentially toxic compounds, caution should be exercised when handling and preparing docetaxel solutions. The use of gloves is recommended. Please refer to Handling and Disposal section.

If docetaxel concentrate, initial diluted solution, or final dilution for infusion should come into contact with the skin, immediately and thoroughly wash with soap and water. If docetaxel concentrate, initial diluted solution, or final dilution for infusion should come into contact with mucosa, immediately and thoroughly wash with water.

Docetaxel for Injection Concentrate requires two dilutions prior to administration. Please follow the preparation instructions provided below. Note: Both the docetaxel for Injection Concentrate and the diluent vials contain an overfill.

10.1.6.1 Preparation of the Initial Diluted Solution

- Gather the appropriate number of vials of docetaxel for Injection Concentrate and diluent (13% Ethanol in Water for Injection). If the vials were refrigerated, allow them to stand at room temperature for approximately 5 minutes.
- Aseptically withdraw the contents of the appropriate diluent vial into a syringe and transfer it to the appropriate vial of docetaxel for Injection Concentrate. If the procedure is followed as described, an initial diluted solution of 10mg docetaxel/mL will result.
- Mix the initial diluted solution by repeated inversions for at least 45 seconds to assure full mixture of the concentrate and diluent. Do not shake.

- The initial diluted docetaxel solution (10 mg docetaxel/mL) should be clear; however, there may be some foam on top of the solution due to the polysorbate 80. Allow the solution to stand for a few minutes to allow any foam to dissipate. It is not required that all foam dissipates prior to continuing the preparation process. The initial diluted solution may be used immediately or stored either in the refrigerator or at room temperature for a maximum of 8 hours.

10.1.6.2 Preparation of the Final Dilution for Infusion

- Aseptically withdraw the required amount of initial diluted docetaxel solution (10 mg docetaxel/mL) with a calibrated syringe and inject into a 250 mL infusion bag or bottle of either 0.9% Sodium Chloride solution or 5% Dextrose solution to produce a final concentration of 0.3 to 0.74 mg/mL. If a dose greater than 200 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/mL docetaxel is not exceeded.
- Thoroughly mix the infusion by manual rotation.
- As with all parenteral products, docetaxel should be inspected visually for particulate matter or discoloration prior to administration whenever the solution and container permit. If the docetaxel for Injection initial diluted solution or final dilution for infusion is not clear or appears to have precipitation, these should be discarded. The final docetaxel dilution for infusion should be administered intravenously as a 1-hour infusion under ambient room temperature and lighting conditions. Contact of the docetaxel concentrate with plasticized PVC equipment or devices used to prepare solutions for infusion is not recommended. In order to minimize patient exposure to the plasticizer DEHP (di-2-ethylhexyl phthalate), which may be leached from PVC infusion bags or sets, the final docetaxel dilution for infusion should be stored in bottles (glass, polypropylene) or plastic bags (polypropylene, polyolefin) and administered through polyethylene-lined administration sets.

10.1.7 Route of Administration

Docetaxel will be administered as a 60-minute infusion in saline or D5W through an administration set that does not contain phthalate plasticizers along the fluid pathway that is connected to the patient's vascular access catheter.

10.1.8 Incompatibilities/Interactions

Contact of the undiluted concentrate with plasticized PVC equipment or devices used to prepare solutions for infusion should be avoided. Diluted docetaxel solution should be stored in bottles (glass, polypropylene) or plastic bags (polypropylene, polyolefin) and administered through polyethylene-lined administration sets.

The metabolism of docetaxel may be modified by the concomitant administration of compounds that induce, inhibit, or are metabolized by cytochrome P450 3A4, such as cyclosporine, terfenadine, ketoconazole, erythromycin, and troleandomycin. Caution should be exercised with these drugs when treating patients receiving docetaxel, as there is a potential for a significant interaction.

10.1.9 Availability

Docetaxel (Taxotere®) is commercially available by Aventis.

Docetaxel for Injection Concentrate is supplied in a single-dose vial as a sterile, pyrogen-free, non-aqueous, viscous solution with an accompanying sterile, non-pyrogenic, diluent (13% ethanol in Water for Injection) vial. The following strengths are available:

DOCETAXEL 80 MG (NOC 0075-8001-80)

Docetaxel (docetaxel) 80 mg Concentrate for Infusion: 80 mg docetaxel in 2 mL polysorbate 80 and diluent for docetaxel 80 mg. 13% (w/w) ethanol in Water for Injection. Both items are in a blister pack in one caiton.

DOCETAXEL 20 MG (NOC 0075-8001-20)

Docetaxel (docetaxel) 20 mg Concentrate for Infusion: 20 mg docetaxel in 0.5 mL polysorbate 80 and diluent for docetaxel 20 mg. 13% (w/w) ethanol in Water for Injection. Both items are in a blister pack in one caiton.

Handling and Disposal: Procedures for proper handling and disposal of anticancer drugs should be considered. Several guidelines on this subject have been published. There is no general agreement that all of the procedures recommended in the guidelines are necessary or appropriate.

10.1.10 Side Effects

Cardiac: arrhythmias, pericardial effusions (due to fluid retention). Hypotension may occur in 3% of patients. Clinically meaningful events such as heart failure, sinus tachycardia, atrial flutter, dysrhythmia, unstable angina, pulmonary edema, and hypertension occur rarely. 8.1% of metastatic breast cancer patients receiving docetaxel 100 mg/m² in a randomized trial and who had serial left ventricular ejection fractions assessed developed deterioration of LVEF by 2-10% associated with a drop below the institutional lower limit of normal.

Hematologic: dose-related neutropenia, thrombocytopenia, and anemia. Neutropenia (< 2000 neutrophils/μl)³ occurs in virtually all patients given 60-100 mg/m² of docetaxel and grade 4 neutropenia (< 500 cells/μl)³ occurs in 85% of patients given 100 mg/m² and 75% of patients given 60 mg/m². Febrile neutropenia occurs in 12% of patients given 100 mg/m² but is uncommon in patients given 60 mg/m². The median time to nadir is 7 days, while the median duration of grade IV neutropenia is 7 days. Patients with abnormalities in liver function tests have an increased risk for severe neutropenia, and neutropenic fever, as well as severe thrombocytopenia. Neutropenia and thrombocytopenia are significantly reduced with weekly schedules of administration.

Gastrointestinal: nausea and vomiting, diarrhea, and mucositis, which are generally mild to moderate. Severe gastrointestinal reactions occur in 5% of patients.

Neurologic: severe neurosensory symptoms (dysesthesias, paresthesias, or pain) occur in up to 6% of patients, whereas severe motor neuropathy develops in 4% of patients.

Hypersensitivity: Severe hypersensitivity reactions characterized by hypotension and/or bronchospasm, or generalized rash/erythema occurs in 2% of patients premedicated with 3-day corticosteroids. Patients with a history of life-threatening hypersensitivity reactions should not be rechallenged with docetaxel.

Fluid retention: Severe fluid retention occurs in 7% of patients despite use of a 3-day dexamethasone premedication regimen. It is characterized by one or more of the following events: poorly tolerated peripheral edema, generalized edema, pleural effusion requiring mgent drainage, dyspnea at rest, cardiac tamponade, or pronounced abdominal distention due to ascites. Fluid retention may be cumulative and is less likely to develop with weekly regimens.

Dermatologic: alopecia, reversible rash, nail changes, and infusion site reactions. Infusion site reactions were generally mild and consisted of hyperpigmentation, inflammation, redness or dryness of the skin, phlebitis, extravasation, or swelling of the vein. Severe nail changes with hypo- or hyperpigmentation and occasionallyonycholysis and pain may also occur.

Hepatic: In patients with normal liver function tests at baseline, an elevation in bilimbin occms in 9% of cases. Increases in AST or ALT > 1.5 times the ULN, or alkaline phosphatase > 2.5 times ULN, are observed in 19% and 7% of patients, respectively.

Other: asthen ia , dysgeusia , anorex,ia conjunctivitis, epiphora, aithralgia, myalgias.

Toxicities with 100 mg/m² of docetaxel (patients with normal LFTs)	
Adverse Events	%
Neutropenia <2000 cells/mm ³	95.5
<500 cells/mm ³	75.4
Thrombocytopenia <100,000 cells/mm ³	8.0
Anemia <8 g/dL	8.8
Febrile Neutropenia	11.0
Septic Death	1.6
Infections (Severe)	6.1
Hyper-sensitivity reaction (Any)	21.0
(Severe)	4.2
With 3-day Premedication (Severe)	2.2
Fluid retention (Any)	47.0
(Severe)	6.9
With 3-day Premedication (Any)	64.1
(Severe)	6.5
Neurosensory (Any)	49.3
(Severe)	4.3
Cutaneous (Any)	47.6
(Severe)	4.8
Nail changes (Any)	30.6
(Severe)	2.5
Any Gastrointestinal (Severe)	4.7
Nausea	38.8
Vomiting	22.3
Diarrhea	38.7

Stomatitis	(Any)	41.7
	(Severe)	5.5
Alopecia		75.8
Asthenia	(Any)	61.8
	(Severe)	12.8
Myalgia	(Any)	18.9
	(Severe)	1.5
Arthralgia		9.2
Infusion Site Reactions		4.4
(Table modified from Docetaxel Prescribing Information (Aventis). PDR 2000.)		

10.1.11 Nursing Implications

- Monitor CBC with differential and platelet count prior to drug administration.
- Symptom management of expected nausea, vomiting, and mucositis.
- Advise patients of possible hair loss.
- Patients should be observed closely for hypersensitivity reactions, especially during the first and second infusions.
- Resuscitation equipment and medications to treat hypersensitivity reactions should be available during docetaxel administration.
- Monitor liver function tests.
- Evaluate site regularly for signs of infiltration.
- Monitor for symptoms and signs of fluid retention, and peripheral neuropathy.

10.1.12 References

- Docetaxel prescribing information (Aventis). PDR 2003.
- BMTs HA, hvin R, Kuhn J, et al. Phase I clinical trial of Taxotere administered as either a 2-hour or 6-hour intravenous infusion. JCO 1993;11:950-58.
- Fossella FV, DeVore R, Ken- RN, et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000; 18:2354-62.
- Piccart M.J., Klijn J, Paridaens R, et al. C01ticosteroids significantly delay the onset of docetaxel-induced fluid retention: final analysis of a randomized study of the European Organization for Research and Treatment of Cancer Investigational Dmg Branch for Breast Cancer. JCO 1997;15:3149.
- Tomiak, E., Piccart M.J., Kerger, S., et al. Phase I study of docetaxel administered as a 1-hour intravenous infusion on a weekly basis. JCO 1994;12:1458.
- Hainsworth JD, Bunn HA, Erland JB, Thomas M, Greco FA. Phase I trial of docetaxel administered by weekly infusion in patients with advanced refractory cancer. J Clin Oncol 1998; 16:2164-8.
- Hainsworth JD, Bunn HA, Litchy, S. et al. Weekly docetaxel in the treatment of elderly patients

with advanced non-small-cell lung cancer: A Minnie Pearl Cancer Research Network phase II trial, *Cancer* 2000;89:328-33.

10.1.13 Taxotere Reimbursement Program (PACT+)

Website: <http://www.taxotere.com/hcp/index.asp>

PACT+ offers toll-free support at 1-800-996-ONCO(6626) Monday through Friday, from 8:30 AM to 6:00 PM Eastern Time, to answer questions about reimbursement, uninsured patients, and ~~and~~ ~~u~~ ~~g~~ information. Messages can be left 24 hours a day. You can also send electronic messages to the PACT+ Program at ePACT@access2health.com.

In addition to calling The Aventis Oncology PACT+ Program, healthcare professionals and patients can fax information requests to the PACT+ Program fax number: 1-800-996-6627

10.2 Cisplatin (Cis-diaminedichloroplatinum, CDDP)

10.2.1 Formulation

Each vial contains 10 mg or 50 mg of CDDP. Vials are reconstituted with sterile water. The pH range will be 3.5 to 4.5. Cisplatin is also commercially available in solution.

10.2.2 Storage and Preparation

Vials of cisplatin are stored at room temperature. When reconstituted as directed, the solution is stable at room temperature for 20 hours. When further diluted to 0.5 mg/ml with normal saline, it is stable for 72 hours at room temperature. Cisplatin 10 mg/vial and 50 mg/ml should be reconstituted with 10 and 50 ml of sterile water, respectively, resulting in a 1 mg/ml solution. The desired dose of cisplatin is further diluted with 250 ml or more of 0.45%-0.9% NaCl and 5% dextrose, or normal saline.

10.2.3 Administration

Intravenous over 1-2 hours (see treatment plan)

10.2.4 Mechanism of Action

The mechanism of action of cisplatin has not been clearly elucidated. However, preliminary studies have indicated that the most likely mechanism of antitumor action of this drug resides in its ability to inhibit DNA synthesis and to a lesser degree, RNA and protein synthesis. It has also been shown that DDP binds to DNA and produces inter-strand cross-links. Also DDP is not phase-sensitive and its cytotoxicity is similar in all phases of the cell cycle.

10.2.5 Toxicology

The major effects in humans have been renal toxicity manifested by BUN and serum creatinine elevation, tinnitus and audiologic impairment in the high frequency range (4000 to 8000 Hz), nausea and vomiting, hypomagnesemia, mild to moderate anemia, peripheral neuropathy, and electrolyte abnormalities.

10.2.6 Incompatibilities

Cisplatin may react with aluminum which is found in some syringe needles or IV sets forming a black precipitate. Cisplatin is less stable in solutions that do not contain chloride ions (e.g. 5% dextrose).

10.2.7 Supplier

Commercially available.

10.3 Carboplatin

10.3.1 Other names

Paraplatin

10.3.2 Supply and Preparation

Carboplatin is available in vials containing 50 mg, 150 mg or 450 mg. The content of each vial must be reconstituted with either Sterile Water for Injection, D5W, or 0.9% Sodium Chloride. Five mL of the diluent should be added to the 50 mg vial, 15 mL to the 150 mg vial and 45 mL to the 450 mg vial for a resulting concentration of 10 mg/mL. Carboplatin can be further diluted to concentrations as low as 0.5 mg/mL with D5W or 0.9% Sodium Chloride.

10.3.3 Storage and Stability

Unopened vials of carboplatin are stable for the life indicated on the package when stored at controlled room temperature 15°-30°C (59°-86°F), and protected from light. When prepared as directed, carboplatin solutions are stable for 8 hours at room temperature (25°C) or for 24 hours refrigerated (2-8°C).

10.3.4 Mode of Action

Alkylating agent

10.3.5 Dose and Administration

Carboplatin will be administered intravenously (see Treatment plan).

10.3.6 Availability

Commercially available.

10.3.7 Side Effects

Hematologic: Bone marrow suppression is the dose-limiting toxicity of carboplatin. (1)

Thrombocytopenia, with platelet counts below 50,000/mm³, occurs in 25% of the patients (35% of pretreated ovarian cancer patients), (2) neutropenia, with granulocyte counts below 1,000/mm³, occurs in 16% of the patients (21% of pretreated ovarian cancer patients) and, (3) leukopenia, with WBC counts below 2,000/mm³, occurs in 15% of the patients (26% of pretreated ovarian cancer patients). The nadir usually occurs about day 21 in patients receiving single agent therapy. By day 28, 90% of patients have platelet counts above 100,000/mm³; 74% have neutrophil counts above 2,000/mm³; 67% have leukocyte counts above 4,000/mm³. Mairnw suppression is usually more severe in patients with impaired kidney function. The hematologic effects, although usually reversible, have resulted in infectious or hemorrhagic complications in 5% of the patients treated with carboplatin. Fever has also been reported in patients with neutropenia. Anemia with hemoglobin less than 11 g/dL has been observed in 71% of the patients who started therapy with a baseline above that value. The incidence of anemia increases with increasing exposure to carboplatin. Transfusions have been administered to 26% of the patients treated with carboplatin (44% of previously treated ovarian cancer patients).

Gastrointestinal: Vomiting occurs in 65% of the patients (81% of previously treated ovarian cancer patients) and in about one-third of these patients it is severe. Nausea alone occurs in an additional 10 to 15% of patients.

Neurologic: Peripheral neuropathies have been observed in 4% of the patients receiving carboplatin (6% of pretreated ovarian cancer patients) with mild paresthesias occurring most frequently. Carboplatin therapy produces significantly fewer and less severe neurologic side effects than does therapy with cisplatin. However, patients older than 65 years and/or previously treated with cisplatin appear to have an increased risk (10%) for peripheral neuropathies. Clinical ototoxicity and other sensory abnormalities such as visual disturbances and change in taste have been reported in only 1% of the patient. Although the overall incidence of peripheral neurologic side effects induced by carboplatin is low, prolonged treatment particularly in cisplatin-pretreated patients, may result in cumulative neurotoxicity.

Renal: Development of abnormal renal function test results is uncommon despite the fact that carboplatin, unlike cisplatin, has usually been administered without high-volume fluid hydration and/or forced diuresis. The incidences of abnormal renal function tests reported are 6% for serum creatinine and 14% for blood urea nitrogen (10% and 22%, respectively, in pretreated ovarian cancer patients). Most of these reported abnormalities have been mild and about one half of them were reversible.

Hepatic: The incidences of abnormal liver function tests in patients with normal baseline values were reported as follows: total bilirubin, 5%; SGOT, 15%; and alkaline phosphatase, 24%; (5%, 19%, and 37%, respectively, in pretreated ovarian cancer patients). These abnormalities have generally been mild and reversible in about one-half of the cases, although the role of metastatic tumor in the liver may complicate the assessment in many patients.

Electrolytes: The incidences of abnormally decreased serum electrolyte values reported were as follows: sodium, 29%; potassium, 20%; calcium, 22%; and magnesium, 29%; (47%, 28%, 31%, and 43%, respectively, in pretreated ovarian cancer patients).

Allergic reactions: Hypersensitivity to carboplatin has been reported in 2% of the patients. These allergic reactions have been similar in nature and severity to those reported with other platinum-containing compounds, i.e., rash, urticaria, erythema, pruritus, and rarely bronchospasm and hypotension. These reactions have been successfully managed with standard epinephrine, corticosteroid, and antihistamine therapy.

Other events: Pain and asthenia were the most frequently reported miscellaneous adverse effects; their relationship to the tumor and to anemia was likely. Alopecia was reported (3%). Cardiovascular, respiratory, genitourinary, and mucosal side effects have occurred in 6% or less of the patients.

10.3.8 Incompatibilities

Forms a precipitate when in contact with aluminium

10.3.9 Nursing Implications

Monitor CBC with differential and platelet count prior to drug administration.

Symptom management of expected nausea and vomiting.

10.4 Cetuximab(C225, ERBITUX)

Cetuximab is an anti-EGFR human-to-murine chimeric antibody. Cetuximab is expressed in SP2/0 myeloma cell line, grown in large scale cell culture bioreactors and purified to a high level purity using several purification steps including protein A chromatography, ion exchange chromatography, low pH treatment and nanofiltration. Cetuximab is not known to be a vesicant.

10.4.1 Supplier/How Supplied

The product is a sterile, clear, colorless liquid of pH 7.0 to 7.4, which may contain a small amount of easily visible, white, amorphous cetuximab particulates. Each single-use 50-mL vial contains 100 mg of cetuximab at a concentration of 2 mg/mL and is formulated in a preservative-free solution containing 8.48 mg/mL sodium chloride, 1.88 mg/mL sodium phosphate dibasic heptahydrate, 0.42 mg/mL sodium phosphate monobasic monohydrate, and Water for injection, USP.

10.4.2 Packaging and Labeling

Cetuximab for injection will be in single-use, ready-to-use 50-mL vials containing 2 mg/mL of product.

10.4.3 Handling and Dispensing of Cetuximab

Cetuximab must be dispensed only from official study sites by authorized personnel according to local regulations. Cetuximab should be stored in a secure area according to local regulations. It is the responsibility of the Investigator to ensure that study drug is only dispensed to study patients.

10.4.4 Storage Requirements/Stability

Store vials under refrigeration at 2° C to 8° C (36° F to 46° F). DO NOT FREEZE. Increased particulate formation may occur at temperatures at or below 0°C. This product contains no preservatives.

Preparations of cetuximab in infusion containers are chemically and physically stable for up to 12 hours at 2° C to 8° C (36° F to 46° F) or up to 8 hours at controlled room temperature (20° C to 25° C; 68° F to 77° F). Discard any remaining solution in the infusion container after 8 hours at controlled room temperature or after 12 hours at 2° to 8° C. Discard any unused portion of the vial.

10.4.5 Preparation and Administration

Cetuximab must not be administered as an IV push or bolus.

Cetuximab must be administered with the use of a low protein binding 0.22-micrometer-in-line filter.

Cetuximab is supplied as a 50-mL, single-use vial containing 100 mg of cetuximab at a concentration of 2 mg/mL in phosphate buffered saline. The solution should be clear and colorless and may contain a small amount of easily visible white amorphous cetuximab particulates. DO NOT SHAKE OR DILUTE.

Cetuximab can be administered via infusion pump or syringe pump.

Infusion Pump:

- Draw up the volume of a vial using a sterile syringe attached to an appropriate needle (a vented spike or other appropriate transfer device may be used).
- Fill cetuximab into a sterile evacuated container or bag such as glass containers, polyolefin bags (eg, Baxter Intravia), ethylene vinyl acetate bags (eg, Baxter Clintec), DEHP plasticized PVC

bags (eg, Abbott Lifeca.re), or PVC bags.

- Repeat procedure until the calculated volume has been put in to the container. Use a new needle for each vial.
- Administer through a low protein binding 0.22-micrometer in-line filter (placed as proximal to the patient as practical).
- Affix the infusion line and prime it with cetuximab before starting the infusion.
- Maximum infusion rateshould not exceed 5 mL/min.
- Use 0.9% saline solution to flush line at the end of infusion.

SVIinge Pu mp:

- Draw up the volume of a vial using a stelite syringe attached to an appropriate needle (a vented spike may be used).
- Place the syringe into the syringe driver of a syringe pump and set the rate.
- Administer through a low protein binding 0.22-micrometer in-line filter rated for syringe pump use (placed as proximal to the patient as practical).
- Connect up the infusion line and start the infusion after priming the line with cetuximab.
- Repeat procedure until the calculated volume has been infused.
- Use a new needle and filter for each vial.
- Maximum infusion rate should not exceed 5 mL/min.
- Use 0.9% saline solution to flush line at the end of infusion.
- Cetuximab should be piggybacked to the patient's infusion line.

Following the cetuximab infusion, a 1-hour observation period is recommended.

10.4.6 Availability

Commercially available.

10.4.7 Safety Precautions

Appropriate mask, protective clothing, eye protection, gloves, and Class II vertical-lamina.r-airflow safety cabinets are recommended during preparation and handling. Opened vials must be disposed of at the investigational center as chemotherapy or biohazardous waste provided documented procedures for destruction are in place.

Cetuximab therapy should be used with caution in patients with known hypersensitivity to Cetuximab, mmine proteins, or any component of this product.

It is recommended that patients wear sunscreen and hats and limit sun exposure while receiving cetuximab as sunlight can exacerbate any skin reactions that may occur.

10.5 Bevacizumab

10.5.1 Other Names

RhuMAb VEGF, Avastin

10.5.2 Classification

Recombinant humanized monoclonal antibody

10.5.3 Molecular Weight

Approximate molecular weight is 149,000 daltons

10.5.4 Mode of Action

Bevacizumab blocks the binding of vascular endothelial growth factor (VEGF) to its receptors resulting in inhibition of angiogenesis.

10.5.5 Description

Bevacizumab is a recombinant humanized anti-VEGF monoclonal antibody, consisting of 93% human and 7% murine amino acid sequences. The agent is composed of human IgG framework and murine antigen-binding complementarity-determining regions.

10.5.6 How Supplied

Bevacizumab is a clear to slightly opalescent, colorless to pale brown, sterile liquid concentrate for solution for intravenous (IV) infusion. Bevacizumab may be supplied in 5-cc (100-mg) and 20-cc (400-mg), glass vials containing 4 mL, and 16 mL, respectively (all at 25 mg/mL). Vials contain bevacizumab with phosphate, trehalose, polysorbate 20, and Sterile Water for Injection (SWFI), USP. Vials contain no preservative and are suitable for single use only. The monoclonal antibody (bevacizumab) being administered is intended for use only in clinical trials.

10.5.7 Preparation

Vials contain no preservatives and are intended for single use only. The calculated dose should be placed in a sterile, empty IV bag and diluted with a sufficient amount of 0.9% sodium chloride for injection to obtain a final volume of 100 mL.

10.5.8 Storage

Upon receipt of the study drug, vials are to be refrigerated at 2°C-8°C (36°F-46°F) and should remain refrigerated until just prior to use. DO NOT FREEZE. DO NOT SHAKE. Vials should be protected from light.

Opened vials must be used within 8 hours. VIALS ARE FOR SINGLE USE ONLY. Vials used for 1 subject may not be used for any other subject. Once study drug has been added to a bag of sterile saline, the solution must be administered within 8 hours.

10.5.9 Stability

Shelf-life studies of rhuMAb VEGF are ongoing. The sterile single use vials contain no antibacterial preservatives. Therefore, vials should be discarded 8 hours after initial entry.

Once diluted in 0.9% sodium chloride, solutions of bevacizumab must be administered within 8 hours.

10.5.10 Route of Administration

Intravenous

All conventional chemotherapy drugs, including Bevacizumab, are administered according to institutional practices. It is the practice of the Cancer Therapy and Research Center (CTRC) and University Hospital (UH) to give Bevacizumab in 30 minutes beginning with the first dose. Safety data published in the

Journal of Clinical Oncology and elsewhere have shown that bevacizmab is safe with few hypersensitivity reactions and thus has been adopted as cmrnt policy at CTRC and UH^{80 81}. The investigators recognize this policy is different from the FDA label for bevacizmab. All patients are monitored for potential reactions. Vital signs at CTRC are recorded on study specific flowsheets pre- and post-bevacizumab infusion. Vital signs at UH are recorded pre-bevacizumab infusion and then evey 4 hours while patient is in the clinic for treatment. See Section 3.1.1 Treatment and Premedications. To insure complete delivery of bevacizmab, the IV infusion line must be flushed with 0.9% sodium chloride. The following are two recommended methods for flushing the bevacizmab IV infusion line:

- When the bevacizmab infusion is complete, add an additional 50mL of 0.9% sodium chl01ide for injection to the bevacizumab infusion bag. Continue the infusion until a volume equal to that of the volume contained in the tubing has been administered.
- Replace the empty bevacizmab infusion bag with a 50mL bag of 0.9% sodium chloride for injection and infuse a volume equal to the volume contained in the tubing.

NOTE: The flush is not included in the total recommended infusion times.

10.5.11 Availability

The bevacizmab will be supplied by Genentech.

10.5.12 Patient Care Implications

Measurement of blood pressure and dipstick mi nalysis should be pe1fo1med p1ior to each dose of bevacizumab. Hypertension will be monitored through routine evaluation of blood pressure prior to each bevacizumab treatment. Optimal control of blood pressure according to standard public health guidelines is recommended for patients on treatment with or without bevacizumab. Discontinuation of therapy should be considered if the patient experiences uncontrolled hype1tension.

Proteinmia will be monitored by mine protein: creatinine (UPC) ratio or dipstick at least evey 6 weeks .

Monitor patient closely dming infusion, for infusion related events and for bleeding.

Instrnct patient to monitor and repo1tsigns of bleeding, increased cough, swelling.

Treat pain, aithralgias, etc. with acetaminophen, or other pain relief strategies that do not interfere with the clotting cascade.

10.5.13 Side Effects

Allergy/Immunology: Allergic reaction/hypersensitivity. Infusion-related reactions.

Blood/Bone Marrow: Leukopenia, neutropenia, thrombocytopenia.

Cardiac: Hypertension/hypertensiveclisis, cai·diac ischelnia/infarction, supraventriculai·anhythlnia, left ventriculai·dysfunction (congestive heait failure), hypotension, syncope.

Constitutional symptoms: Asthe nia, fever, li gors/chills, weight loss.

Dermatologyslan: Exfoliative delmatitis, complications with wound healing, rash, skin ulceration, urticai·ia

Gastrointestinal: GI perforation and wound dehiscence, sometimes complicated by intra-abdominal abscesses. Large bowel leakage, GI fistula, intestinal obstruction, intestinal necrosis, mesenteric venous occlusion, colitis, mucositis/stomatitis, nausea, vomiting, anorexia, constipation, diarrhea, heartburn /dyspepsia , dry mouth , taste disturbance.

Hemorrhage/Bleeding: Life -threatening or fatal pulmonary hemorrhage (primarily in lung cancer patients), CNS bleeding, GI hemorrhage, subarachnoid hemorrhage , hemorrhagic stroke, epistaxis (nose bleeds), vaginal bleeding, gum bleeding.

Infection : Infection with normal ANC.

Metabolic/Laboratory: Increased: alkaline phosphatase, ALT (SGPT), AST (SGOT), Bilirubin, serum creatinine. Hyponatremia and hypokalemia.

Neurology: Cerebrovascular ischemia, dizziness, abnormal gait, confusion.

Ocular: Excessive lacrimation.

Pain: Abdominal pain, chest/thoracic pain, headache, neuralgia, myalgias, generalized.

Pulmonary/Upper Respiratory: Dyspnea , cough, bronchospasm/wheezing, voice changes (hoarseness).

Renal/Genitourinary Proteinuria nephrotic syndrome.

Reversible Posterior Lueken-cephalopathy Syndrome: Possible blindness , stroke symptoms, stroke .

Vascular: Life-threatening and potentially fatal arterial thromboembolic events: cerebral infarction, transient ischemic attacks, myocardial infarction and angina. Venous thromboembolic events: deep vein thrombosis, intra-abdominal thrombosis.

11 CLINICAL AND LABORATORY EVALUATIONS

11.1 Evaluations at Screening / Baseline

(Performed within 4 weeks of registration unless otherwise indicated)

- History and physical examination, including vital signs, weight and performance status determination (within 1 week of registration).
- Complete blood counts, including platelets and INR (within 1 week of registration).
- Blood chemistry studies, including creatinine, electrolytes (K+, Na+, Cl-, CO₂), calcium , Mg (within 1 week of registration) and liver function tests including bilirubin, AST (SGOT) ALT (SGPT), and alkaline phosphatase (within 1 week of registration).
- If urine dipstick result is > 1+, a calculation of Urine Protein Creatinine (UPC) ratio is required. Patients must have a UPC ratio < 1.0 to participate in the study.
- Pregnancy test (when applicable, within 3 days prior to treatment initiation)
- PET/CT scans and CT of the chest and other imaging studies as indicated for staging and baseline tumor measurements. Any scans or x-rays used to document measurable disease should be done as close to study entry as possible and within 4 weeks prior to registration.
- Dental evaluation (within 6 weeks of registration)
- ENT evaluation/endoscopy (within 6 weeks of registration)

- Swallowing assessment (within 6 weeks of registration)
- Audiometry (within 6 weeks of registration)
- Quality of life questionnaire (complete FACTHN questionnaire in Appendix F)
- Blood samples for research purposes
- Obtain archival tumor sample of unstained slides
- Tumor biopsies at baseline (optional) for correlative studies
- EKG (All patients will have a baseline EKG. If abnormalities consistent with active coronary artery disease are detected, the patient will be referred to a cardiologist for appropriate evaluation and management prior to treatment on study.)

11.2 Evaluation During Treatment

11.2.1 Induction - Prior to Each Treatment Cycle, Day 1

- History and physical examination, including vital signs, weight and performance status determination
- Hypertension **will** be monitored through routine evaluation of blood pressure prior to each bevacizumab treatment. Optimal control of blood pressure according to standard public health guidelines is recommended for patients on treatment with or without bevacizumab.
- Toxicity assessment
- Complete blood counts, including platelets
- Blood chemistry studies, including creatinine, electrolytes (K+, Na+, Cl-, CO₂), calcium, Mg++, and liver function tests, including bilirubin, AST (SGOT), ALT (SGPT), and alkaline phosphatase
- Urine for protein: creatinine ratio (and 24 hour collection if indicated). Proteinuria should be monitored by urine dipstick prior to every other dose of bevacizumab. If urine dipstick is > I+, then UPC ratio should be determined.
- Blood samples for correlative studies (prior to cycle 2)
- Tumor biopsies on cycle I, day 21 (plus/minus 2 days) (optional) for correlative studies

11.2.2 Induction- after cycle 3

- Evaluations as after cycle I and 2 (see above)
- ENT evaluation/endoscopy
- PET/CT scan
- CT scan of chest
- Response assessment by clinical and by radiographic evaluation (reported separately) in primary and lymph nodes
- QOL questionnaire
- Swallowing assessment
- Blood samples for correlative studies (prior to starting radiation therapy)
- Urine for protein: creatinine ratio (and 24 hour collection if indicated). Proteinuria should be monitored by urine dipstick prior to every other dose of bevacizumab. If urine dipstick is > I+, then UPC ratio should be determined.

11.2.3 Clemoradiotherapy - weekly and 2 weeks after completion

- History and physical examination. A focused evaluation of toxicities on a weekly basis will be

performed at a minimum. A complete history and physical examination is needed at least every 3 weeks.

- Hypertension will be monitored through routine evaluation of blood pressure prior to each bevacizumab treatment. Optimal control of blood pressure according to standard public health guidelines is recommended for patients on treatment with or without bevacizumab.
- CBC, platelets and creatinine/electrolytes will be performed at the time of cisplatin administration at a minimum.
- Vitals signs will be checked every time cetuximab is administered.
- Urine for protein: creatinine ratio (and 24 hour collection if indicated). Proteinuria should be monitored by urine dipstick prior to every other dose of bevacizumab. If urine dipstick is $> 1+$ then UPC ratio should be determined.

11.2.4 Evaluation After Completion of Radiation (8 weeks after)

- History and physical examination
- Complete blood counts, including platelets
- Blood chemistry studies, including creatinine, electrolytes (K+, Na+, Cl-, CO₂), calcium, Mg⁺⁺, and liver function tests, including bilirubin, AST (SGOT), ALT (SGPT), and alkaline phosphatase
- ENT evaluation/endoscopy
- PET/CT scan
- CT scan of chest
- Response assessment by clinical and by radiographic evaluation (reported separately) in primary and lymph nodes
- Blood samples for colon tissue studies
- Urine for protein: creatinine ratio (and 24 hour collection if indicated). If urine dipstick is $> 1+$ then UPC ratio should be determined.

11.3 Evaluations at Follow Up

Starting 8 weeks after completion of radiation, patients will be followed every 3 months for 2 years and then every 6 months for 3 years, and subsequently annually for a total of 10 years. (Follow up evaluation will include assessment of late toxicities, such as dysphagia, G-tube feedings requirements, xerostomia, and others.)

Quality of life assessments will be repeated at 3 months and 12 months after radiation completion.

Tumor assessments will be performed 8 weeks after completion of radiotherapy. Subsequently, repeat imaging with CT scan of neck/chest will be performed every 3 months x 2 times, and then every 6 months for the first 3 years. Subsequent scans every 6 months until the 5th year and then annually are recommended but not required.

Swallowing assessments will be performed as standard practice at baseline and 3 months post chemoradiotherapy and then as indicated.

Blood samples will be collected for colon tissue 6 months after completion of radiation.

STUDY PARAMETERS TABLE

	Baseline	Prior to Each Treatment Cycle, Day 1	After 3 Cycles of induction	During CRT Weekly and 2 weeks post RT	8 weeks after CRT	Off therapy Follow-Up
History and physical exam	X	X	X	X*	X	X
Height	X					
Weight	X	X	X	X*	X	
Vital signs	X	X	X	X*		
Toxicity assessment		X	X	X	X	X
Performance Status	X	X	X	X*	X	
CBC, Differential, Platelets ¹	X	X	X	X*	X8	
Creatinine, Electrolytes (K ⁺ , Na ⁺ , Cl ⁻ , CO ₂ , Mg ⁺ , Ca ⁺⁺)	X	X	X	X*	X8	
Liver enzymes ¹	X	X	X		X	
Chest X-ray (optional)	X					
Urine for protein (every 2 bevacizumab infusions) ¹¹	X		X	X	X	
Pregnancy test ¹	X					
PET/CT scan	X		X		X	
CT scan of the neck/ chest (can be part of PET/CT)	X		X		X	X*
Bonescan, if clinically indicated	X					
Tumor measurements ¹	X		X		X	X*
Swallowing assessment ¹	X		X			X
Dental evaluation	X					
QOL assessment (FACT-HN) ¹	X		X			X
Audiometry	X					
Pathology materials ⁶	X					
Blood samples ⁷	X	X	X		X	X
ENT evaluation/endoscopy	X		X		X	

	Baseline	Prior to Each Treatment Cycle, Day 1	After 3 Cycles of induction	During CRT Weekly and 2 weeks post RT	8 weeks after CRT	Off therapy Follow-Up
<i>EK<f</i>	X					
Tumor biopsies (optional)''	X	X				

All patients should be seen by a Medical Oncologist, an ENT surgeon, and a Radiation Oncologist prior to initiating therapy. Unresectability should be determined by a multidisciplinary team.

NOTE: For H+P required on every cycle day 1, patients can be seen the previous day (due to long duration of drug infusions on cycle day 1).

- 1 Complete blood counts with differential and platelet count should be performed < 24 hours prior to chemotherapy administration (with the exception of baseline CBC). In the event of grade 3 or 4 hematologic toxicity, follow-up CBC, with differential and platelet count will be obtained every 1-3 days until there is evidence of hematologic recovery. During CRT, CBC will be performed on the day of cisplatin administration at a minimum.
- 2 Liver function tests should include: Bilirubin, AST (SGOT), ALT (SGPT), and alkaline phosphatase should be performed < 24 hours prior to chemotherapy administration.
- 3 All females of childbearing potential must have a negative pregnancy test done within 3 days of initiation of treatment to rule out pregnancy.
- 4 Tumor measurements will be made using physical examination, including endoscopic examination (clinically) and PET/CT scans (radiographically). Clinical and radiographic assessments will be reported separately. Response in the primary and the neck will be reported separately as well. Tumor assessments will be performed after 3 cycles of induction and 8 weeks after completion of chemoradiotherapy using PET/CT. Subsequently no specific tumor measurements are required. Patients will be categorized as having progression of disease or not. A repeat imaging with CT scan of neck/ chest will be performed every 3 months for 2 years, and then every 6 months for 3 years. Subsequent scans every 6 months until the 5th year and then annually are recommended but not required.
- 5 QOL assessments (FACT-H&N version 4) will be performed at baseline, after completion of induction therapy, at 3 months, and 12 months post chemoradiotherapy. Swallowing assessments will be performed at baseline, 3 months follow up, and if problems persist at 12, 24, 36, 48, and 60 months follow up.
- 6 The following materials will be submitted (optional studies): paraffin-embedded tumor specimens for immunohistochemistry and molecular studies.
- 7 Blood samples for DNA/RNA and EGFR studies will be obtained a) at baseline, b) prior to cycle 2, c) after 3 cycles of induction, d) 8 weeks after completion of chemoradiotherapy (see section 13.0 for details). Samples will be forwarded as specified in the correlative study section (13).
- 8 During chemoradiotherapy and in the immediate 2 week period following RT completion, patients need a focused evaluation of toxicities on a weekly basis. However, a complete history and physical examination is only needed every 3 weeks. CBC and electrolytes/creatinine will be performed at the time of cisplatin administration at a minimum and will also be repeated 2 weeks post completion of radiation. Vitals signs will be checked every time cetuximab is administered.
- 9 EKG (All patients will have a baseline EKG. If abnormalities consistent with active coronary artery disease are detected, the patient will be referred to a cardiologist for appropriate evaluation and management prior to treatment on study.)
- 10 Tumor biopsies at baseline (optional) and on cycle 1, day 21 (plus/minus 2 days) (optional)
- 11 UPC ratio is required for patients with dipstick > 1+.

CRT=chemoradiotherapy

12 SUBJECT DISCONTINUATION

Subjects who cannot receive one of the drugs will still remain on study and be followed per protocol unless they withdraw consent. Criteria for removal from study are:

- Disease progression
- Study closure
- Unacceptable adverse event(s) as defined in dose modification or other unacceptable AEs
- Patient decision to withdraw from the study, or
- In the judgment of the investigator, if her treatment would not be in the best interest of the patient.

The following will require discontinuation of bevacizumab:

- If the patient develops anaphylaxis to bevacizumab
- Grade 4 hypertension or Grade 3 hypertension not controlled with medication
- Nephrotic syndrome
- Grade 2 pulmonary or CNS hemorrhage ; any Grade 4 hemorrhage
- Symptomatic Grade 4 venous thromboembolic event requiring full dose warfarin or equivalent (i.e., unfractionated or low molecular weight heparin)
- Any grade arterial thromboembolic event
- Grade 4 congestive heart failure
- Gastrointestinal perforation
- Tracheoesophageal fistula (any grade) or Grade 4 fistula
- Grade 1 bowel obstruction that has not fully recovered despite medical or surgical intervention
- Wound dehiscence requiring medical or surgical intervention
- Unwillingness or inability of subject to comply with study requirements
- Determination by the investigator that it is no longer safe for the subject to continue therapy
- All Grade 4 events thought to be related to bevacizumab by the investigator

Patients who have an ongoing bevacizumab-related Grade 4 or serious adverse event at the time of discontinuation from study treatment will continue to be followed until resolution of the event or until the event is considered irreversible.

NOTE: Patients will remain and be followed per protocol even if bevacizumab is discontinued.

13 STATISTICAL METHODS

13.1 Sample Size

The Simon's optimal two-stage design will be used to test whether the administration of induction with cisplatin, docetaxel, cetuximab and bevacizumab followed by cisplatin, cetuximab, bevacizumab and radiation yields a complete response rate that is of clinical interest. The historical control is our previous study (UPCI 05-003) in which the complete response (CR) rate after TPE was 21% (by PET). We assume that the CR rate with TPE plus Avastin will be significantly higher. This design will test the null hypothesis that the true CR rate is less than or equal to 21% versus the alternative hypothesis that it exceeds 40%. The sample size of 30 response-evaluable patients (Subjects that complete the induction phase of the study and at least have started the concurrent chemo-radiation part before discontinuing therapy) will provide 81% power to reject the null hypothesis when the true response rate is 40%, with the type I error rate at 7.6%. The

regimen will be considered of clinical interest if there are 10 or more complete responders out of the total of 30 response-evaluable patients.

The following Simon's optimal two-stage design uses 30 patients to test the null hypothesis that the tme CR rate is at most 21% versus the alternative hypothesis that it exceeds 40%.

Stage 1: Enrollment will be placed on hold after the first 3 patients strut the study treatment. They will be evaluated for any unexpected toxicities until completion of study treatment. A repott will be subtnitted to the DSMC and IRB prior to continuing study accrual. Toxicities will also be assessed in the first 13 patients. If 1 grade 5 or unexpected toxicities occur compared to UPCI 05-003, the study will be reviewed by the DSMC. The trial regimen will also be assessed after the first 13 evaluable patients. If 2 or fewer patients have a complete response (CR), the ttrial will be tenninated for insufficient efficacy and the accrual of patients will be stopped. If 3 or more patients have a CR, then accrual will continue in the second stage oft his ttrial.

Stage 2: Enter an additional 17 evaluable patients to the tti al. Thus, a total of 30 patients will be studied. If the total number responding is less than or equal to 9 in the total 30 evaluable patients, the ttial tt·eatment will be not concluded effective. If 10 or more CRs are observed in the total 30 evaluable patients, then this treatment will be considered protnising in this patient population and will be evaluated futther in future studies.

A minimum of 2 cycles of induction is required for response assessment. Response-Evaluable patients ru·e s tu dy - eligible patien ts (i.e., those meeting all of the protocol inclusion/exclusionclitelia)who complete a tminimum of2 cycles of induction. Determination of evaliability will be done by the laborato ly and the study principal investigator. It can be assumed that some patients will not be evaluable for response. Thus, more than 30 patients may need to be enrolled to obtain 30 response-evaluable patients. Assutning a 10% inevaliability rate, a total of about 33 patients will be enrolled.

13.2 Analyses

The CR rate will be estimated by the numberof CR dividedby the total number of evaluable patients. Confidence intervals for the tture CR rate will also be calculated.

Smvival data will be analyzed using Kaplan-Meier analysis. The median, 2-ye,ar 3-year, 5-yeu·overa ll smvival and the c01Tespond ing 95% confidence interval will also be repmted.

The maximum grade for each type of toxicity will be recorded for each patient, and frequency tables will be reviewed to determine toxicity patterns. Point estimation and Confidence Interval estimation will be done for toxicities.

Statistical analyses will also be done for the following: 1) local/regional and distant failme rates, point estimation and Confidence Interval estimation; 2) acute and late QOL changes associated with tt·eatntent with induction docetaxel/cetuximab/cisplatin followed by cisplatin plus cetuximab given concmTen tly with standard radiotherapy. Longitudinal QOL analysis will be pe1foined to comprue FACT -HN scores before and after therapy. The first site of recurrence will be recorded and used as the reference point for the calculation of the time to locoregional or distant progression.

13.3 Definition of response

Response cliteria will as previously used by Passero et al (Annals of Oncology 2010;21:2278-83).⁷⁹ CR by PET is defined as complete disappearance of FDG activity attiutable to malignancy, without regard to the degree of CT response, assessed on combined PET-CT. Patients without CR on PET (non-CR) will be categorized as having either abnnonal

findings but unlikely to be malignant or abnormal findings likely to represent residual malignancy with recommendations to undergo tissue sampling as clinically appropriate.

Patients will have PET-CT at baseline, after induction and after completion of RT. Beyond this third PET-CT scan no specific Tumor Measurements are required. We will categorize to either progression or no progression.

14 CORRELATIVE STUDIES

14.1 Background and Methods

We plan to collect tissue and blood samples for potential future studies. A panel of candidate biomarkers including markers of proliferation, apoptosis and activation of EGFR and VEGF signaling pathways as well as HPV will be evaluated. Analysis of biomarkers will be exploratory.

14.2 Material Submission

14.2.1 Tissue Biomarker Studies

14.2.1.1 Sample Submission Schedule

Paraffin-embedded specimens will be used.

These studies will be performed at baseline, prior to treatment initiation and after first cycle, day 21 (\pm 2 days as an optional tumor biopsy for patient who provide informed consent for it). Specimens that have been already collected for diagnosis will be generally used.

14.2.1.2 Sample Preparation Guidelines

A representative paraffin block of the original diagnosis and all repeat biopsies, if available, will be submitted. If blocks cannot be submitted, 10 unstained slides of 4 micron section mounted on positively-charged glass slides are acceptable.

If you have any questions regarding sample collection, processing, and shipping contact:

Jennifer S. Carew, PhD or Steffan T. Nawrocki, Ph.D.
Co-Director, Preclinical Research
CTRC Institute for Drug Development
Assistant Professor
Department of Medicine/Division of Hematology and Medical Oncology
University of Texas Health Science Center at San Antonio
7979 Wurzbach Road, MC 8232
Room G437
San Antonio, TX 78229
Phone: 210-450-3894

Email: Nawrocki@uthscsa.edu
Email: Carew@uthscsa.edu

14.2.1.3 Shipping Procedures

Specimens will be shipped overnight. DO NOT SHIP ON FRIDAY OR BEFORE A HOLIDAY. Ship to Dr. Carew or Dr. Nawrocki at the above address.

14.2.1.4 Methods

Methods will include but not limited to immunohistochemistry, FISH, and detection of HPV16 using in-situ hybridization. Immunohistochemistry for the determination of biomarkers will be performed using commercial antibodies. Primary antibody incubation, secondary antibody detection complex using Dako Envision plus, followed by DAB. Heat induced antigen retrieval will be applied. Tissue microarrays will be constructed, if feasible.

14.2.2 Blood Biomarker Studies

Blood samples (about 5mL each) will be collected for corollaries at the following time points (prior to treatment that day unless otherwise indicated): a) baseline prior to cycle 1, day 1, b) prior to cycle 2, c) cycle 3, prior radiation, d) 8 weeks after completion of radiation, e) 6 months after completion of radiation.

14.3 Banking

The residuals and/or derivatives of samples collected and submitted for studies associated with this protocol will be retained by the Principal Investigator for possible use in future studies. If future use is denied or withdrawn by the patient, the samples will be removed from consideration for use in any future study.

14.4 Blood Correlatives for Lavender Top and Serum Red Top Tubes

Blood samples (34 cc) will be collected at each time point as listed above.

Sample Collection Methods

- Before venipuncture, the phlebotomist prepares two 7ml lavender top tubes and two red top plastic 5 ml blood collection tube (**red top #1 and #2**) and affixes a label to each blood collection tube. Information to be encoded on the label includes the clinical trial study number, subject's unique identification (ID) number and date. The tubes are placed in a test tube rack, in order of collection (lavender tops, then red tops).
- The phlebotomist uses standard venipuncture techniques. Approximate blood volume to be collected in each tube is as follows: 7 mL in each lavender tube and 5 mL in each red top tube.
- The phlebotomist affixes the Subject ID on to the blood collection form.
- The phlebotomist uses the blood collection form to record duration of fast before phlebotomy date and time of phlebotomy, approximate amount of blood collected into each tube, complications from phlebotomy, and staff initials.

14.5 Methods

Instructions for blood processing protocols for lavender top tubes #1, #2 and red top tube #1 and #2 are outlined below. CTRC Pharmacokinetic laboratory personnel will carry out these procedures.

Lavender Top Tubes (PBMC)

- Samples should be processed as soon as possible after receipt.
- Allow blood to equilibrate to room temperature.
- Centrifuge lavender top tubes #1 and #2.
- Transfer separated plasma and aliquot to 1 mL vials in 1.8 mL cryovials labeled with specimen number, contents of tube (plasma), volume and date.
- Freeze plasma at -80°C.
- Replace plasma with an equal volume of PBS and mix blood by inversion.

- Aliquot blood mixture into 15 ml tubes containing 1.5 ml per each tube.
- Add 7.5 ml EL buffer (Qagen#79217) vortex, and place on ice for 10 minutes
- After 10 minutes, the blood should be transparent. If not, replace on ice for an addition 10 minutes
- Centrifuge tubes containing blood at 1,300 x g for 10 minutes at room temperature.
- Aspirate and discard the supernatant.
- Resuspend the pellet in 3 mls of EL buffer, place in 3 ml cryovial and centrifuge for 10 minutes at 1,300 x g at room temperature.
- Carefully aspirate supernatant.
- Add 0.6 ml RNA Later (Qiagen #76106) to the pellet and label the tube with the specimen number, "1.5 ml blood PBMC" and date.
- Store samples at -80°C
- RNA, DNA and protein will be subsequently isolated using Al PrepDNA/RNA/Protein mini kit (Qiagen #80004).
- Deliver to Steffan Nawrocki (Nawrocki@uthscsa.edu) or Claudia Espitia Olaya (Espitia@uthscsa.edu).

Red Top Tubes (Serum)

- To allow clot formation, red top tubes sit at room temperature (22° to 25° C) for at least 30 to 45 minutes.
- If further processing cannot be accomplished immediately after clot retraction, red top tubes should be placed at 40 C.
- Centrifuge red top tubes. If further processing can not be accomplished within 5 minutes after completing centrifugation, red top tubes should be placed at 4° C.
- Inspect and record if serum shows signs of hemolysis, icterus, and/or turbidity. Transfer serum into labeled freezer tubes. Aliquot 1ml of sera per 1.8ml cryovial.
- Information to be encoded on each tube includes the specimen number corresponding to the sample collection, the contents of the freezer tube (sernm), volume and date.
- Freeze and store at -80° C until shipment to Dr. Nawrocki or Dr. Carew.

Anticipated aliquot distribution

Collection tube	Contents of freezer tube	Number of aliquots per tube
Lavender #1 & #2	PBMC	
Red top #1 & #2	Serum	4-5
Total		11

14.6 Shipping

The cell pellet from the CPT collection tubes and the sernm cryovials are to be delivered to:

Jennifer S. Carew, PhD,
Steffan T. Nawrocki, Ph.D. (or Claudia Espitia Olaya)
Co-Director, Preclinical Research

CTRC Institute for Dmg Development
Assistant Professor
Department of Medicine/Division of Hematology and Medical Oncology
University of Texas Health Science Center at San Antonio
7979 Wurzbach Road, MC 8232
Room G437
San Antonio, TX 78229
Phone: 210-450-3894

Email: Nawrocki@uthscsa.edu

Email: Carew@uthscsa.edu

Email: espitia@uthscsa.edu

Please send e-mail notification to the above laboratory contacts to ensure someone is there to receive samples. Include patient's initials, date and cycle drawn and time sample drawn.

15 DATA SAFETY MONITORING

Data and Safety Monitoring Oversight

A Data and Safety Monitoring Plan is required for all individual protocols conducted at CTRC. All protocols conducted at CTRC are covered under the auspices of the CTRC Institutional Data Safety Monitoring Plan (DSMP).

The CTRC Institutional DSMP global policies provide individual trials with:

- Institutional policies and procedures for institutional data safety and monitoring,
- An institutional guide to follow,
- Monitoring of protocol accrual by the CTRC Protocol Review Committee,
- Review of study forms and orders by the Forms Committee,
- Independent monitoring and source data verification by the CTRC QA Monitor/Auditor
- Tools for monitoring safety events,
- Monitoring of UPIRSO's by the Director of Quality Assurance and DSMC,
- Determining level of risk (Priority of Audit Level Score - PALS),
- Oversight by the Data Safety Monitoring Committee (DSMC), and
- Verification of protocol adherence via annual audit for all Investigator Initiated Studies by the CTRC Quality Assurance Division.

Monitoring Safety

Due to the risks associated with participation in this protocol, the CTRC Data Safety Monitoring Board (DSMB) #2 in conjunction with the Principal Investigator will perform assessment of adverse events, adverse event trends and treatment effects on this study. The CTRC DSMB #2 acts as an independent DSMB for Investigator Initiated Studies (ITS) conducted at CTRC. The CTRC DSMB #2 will monitor data throughout the duration of a study to determine if continuation of the study is appropriate scientifically and ethically. The CTRC DSMC who will review the DSMB's quarterly reports provides an additional layer of review.

Baseline events and adverse events will be captured using the CTRC Master Adverse Events Document for each patient using CTCAE V4.0 for the grading and attribution of adverse events. Usage of the CTRC Master Adverse Events Document centrally documents:

- The event and grades the seriousness of the event,

- If the event was a change from baseline,
- The determination of the relationship between the event and study intervention,
- If the event was part of the normal disease process, and
- What actions were taken as a result of the event?

Reporting Requirements

For this study the Master Adverse Events Documents collected on patients for this protocol will be reviewed by the Principal Investigator on a monthly basis to determine if a serious safety problem has emerged that result in a change or early termination of a protocol such as:

- Dose modification,
- Suspending enrollment due to safety or efficacy, or
- Termination of the study due to a significant change in risks or benefits.

The PI will provide the DSMB #2 with the monthly findings for discussion and review during their meetings.

As per the CTRC DSMP, any protocol modifications, problematic safety reports, unanticipated problems, and suspension or early termination of a trial must be reported to the DSMB #2 and all members of the research team. Suspension and early termination of a trial must also be reported immediately to the Director of Quality Assurance who will promptly notify the sponsor and the UTHSCSA IRB.

The PI will review the Master Adverse Events documents to determine the significance of the reported events and will provide findings to the DSMB #2 after the third patient completes treatment for which toxicity analyses will also be performed, after an additional 10 patients are accrued and completed treatment, every 6 months, at the end of study, and as necessary should significant adverse events arise. The DSMB #2 will review the information provided by the PI and report to the CTRC DSMC on a bi-annual basis unless an emergent issue has been identified. The Investigator Initiated Study DSMC Report Form includes information on adverse events, current dose levels, number of patients enrolled, significant toxicities per the protocol, patient status (morbidity and mortality), dose adjustments with observed response, and any interim findings. Any trend consisting of three or more of the same event will be reported to the CTRC DSMC for independent review outside of the bi-annual reporting cycle, which begins three months following protocol start up. DSMB #2 will also provide its findings to the CTRC's Regulatory Affairs Division so that it may be provided to the UTHSCSA IRB with the protocol's annual progress report. Conflict of interest is avoided by the independent reviews of the CTRC DSMB #2, CTRC DSMC and by ongoing independent review of UPRISO's by the Director of Quality Assurance.

All SAE and UPRISO's will be reported following CTRC and UTHSCSA institutional guidelines.

UTHSCSA SAE/UPRISO REPORTING REQUIREMENTS		
Type Event	Report to	Timeframe
All AE, SAE and UPRISO	Regulatory Affairs and DQA	Same as other notification timeframes except for SAE/AE which should be reported on Monday for the prior week
SAE	Clinical Trial Sponsor	Within 24 hours

AE/SAE	UTHSCSA IRB	Annually
UPIRSO - all	Clinical Trial Sponsor	Within 24 hours of the PI determining a UPIRSO exists
UPIRSO - life threatening	UTHSCSAIRB	Within 48 hours of the PI determining a UPIRSO exists
UPIRSO - non-life threatening	UTHSCSAIRB	Within 7 days of the PI determining a UPIRSO exists

Expedited Reporting for Phase II and III Studies (including hospitalization):

UNEXPECTED EVENT		EXPECTED EVENT	
GRADES 2 - 3 Attribution of Possible, Probable or Definite	GRADES 4 - 5 Regardless of Attribution	GRADES 1 - 3	GRADES 4 - 5 Regardless of Attribution
Expedited report within 10 working days	Rep011 by phone to IDB within 24 hrs. Expedited rep011 to follow within 10 working days.	Adverse Event Expedited	Expedited rep011 including Grade 5 Aplasia in leukemia patients, within 10 working days.
Grade 1 - Adverse Event Expedited Reporting NOT required.)	This includes all deaths within 30 days of the last dose of treatment with an investigational agent regardless of attribution. Any late death attributed to the agent (possible, probable, or definite) should be rep011ed within 10 working days.	Reporting NOT required.	This includes all deaths within 30 days of the last dose of treatment with an investigational agent regardless of attribution. Any late death attributed to the agent (possible, probable, or definite) should be rep011ed within 10 working days. Grade 4 Myelosuppression or other Grade 4 events that do not require expedited rep011ing will be specified in the protocol.

* For Hospitalization Only - Any medical event equivalent to CTC Grade 3, 4, 5 which precipitated hospitalization (or prolongation of existing hospitalization) must be reported regardless of requirements for Phase of study, expected or unexpected and attribution.

Expedited reporting may not be appropriate for specific expected adverse events for certain later Phase II and Phase III protocols. In those situations the adverse events that will not have expedited reporting must be specified in the text of the approved protocol. An expected Grade 3 event that is definitely related to the investigational agent is only to be reported if the patient is hospitalized using the generic reporting criteria. For instance, in a trial of an investigational agent where Grade 3 diarrhea requiring hospitalization is expected, only diarrhea requiring ICU care (Grade 4) might be designated for expedited reporting.

Severe adverse events on NCI sponsored trials utilizing a commercially available agent (with no IND's involved) will additionally be reported via the FDA's Medwatch program.

Assuring Compliance with Protocol and Data Accuracy

As with all studies conducted at CTRC, the PI has ultimate responsibility for ensuring protocol compliance and data accuracy/integrity. Protocol compliance, data accuracy and reporting of events is further ensured by an annual audit conducted by the Data Safety Officer, whose audit report is shared with the PI, the research team and will be reviewed by the CTRC DSMC.

CTRC DSMB Membership

The CTRC has two DSMB's with a primary set of members specific to the histology of the study consisting of UTHSCSA faculty and staff. This Protocol will utilize DSMB#2.

DSMB #2 (for Solid Tumors)
C. Richard Meier, MD
Melissa Nashawati, MPA
Yuan Yuan Liang

As per NCI guidelines and to eliminate conflict of interest (financial, intellectual, professional, or regulatory in nature), the CTRC DSMB specific to this study will not treat patients on this protocol. Usage of the DSMB specific to the histology has been created to ensure that experts in that histology are represented on the DSMB assembled for this protocol, but may be expanded, at the PI's discretion, to include other members which may include:

- Experts in the fields of medicine and science that are applicable to the study (if not currently represented on the DSMB),
- Statistical experts,
- Lay representatives,
- Multidisciplinary representation, from relevant specialties including experts such as bioethicists, biostatisticians and basic scientists, and
- Others who can offer an unbiased assessment of the study progress.

Additional or alternate membership of in the DSMB is selected by the DSMC chair, in conjunction with the PI of this protocol.

CTRC DSMB Charter and Responsibilities

The CTRC DSMB will provide information on the membership composition, including qualifications and experience to both the UTHSCSA IRB and CTRC PRC for review. The CTRC DSMB for this study will act as an independent advisory board to the PI and will report its findings and recommendations to the PI, the UTHSCSA IRB and the CTRC DSMC. CTRC DSMB reports will utilize the Investigator Initiated Study DSMC Report Form and meetings will occur on a monthly basis to review any updates from the prior meeting.

Once the protocol is activated, if not already established elsewhere in the protocol the CTRC DSMB will establish and provide:

- Procedures for maintaining confidentiality;
- Statistical procedures including monitoring guidelines, which will be used to monitor the identified primary, secondary, and safety outcome variables;
- Consider factors external to the study when relevant information becomes available, such as scientific or therapeutic developments that may have an impact on the safety of the participants or the ethics of the study;
- Plans for changing frequency of interim analysis as well as procedures for recommending protocol changes;
- Recommendation of dose escalation, MTD recommendation of early termination based on efficacy results;
- Recommendation of termination due to unfavorable benefit-to-risk or inability to answer study questions;
- Recommendation of continuation of ongoing studies;
- Recommendation of modification of sample sizes based on ongoing assessment of event rates; and
- Review of final results and publications.

16 RETENTION OF RECORDS

- In addition to the regular hospital chart, a separate patient folder will be kept which includes:
 - The patient's signed, dated and witnessed consent
 - Pathologic documentation of squamous cell carcinoma of the head and neck
 - The Completed Patient Registration Form and all other study forms
 - Completed Patient Registration Form. Eligibility criteria will be clearly stated.
 - Baseline information will include: age, gender, race, feeding tube placement, smoking and alcohol history, performance status, TNM staging, sites of disease involvement, and quality of life assessments.
 - Flow Sheet (see Appendix) reflecting pretreatment test results and the first therapy.
 - Measurement Form showing baseline measurement (measurable disease patients).
 - Pathology Report (pathologic confirmation of disease.)
 - Signed, dated and witnessed Patient Information and Consent Form.
 - Evaluation forms after induction therapy (3 cycles) and after completion of chemoradiotherapy. Clinical and radiographic response will be reported. Also, response in the primary and lymph nodes will be reported separately. Measurement Forms: after each lesion measurement or evaluation, whichever is less frequent. Measurement forms must give serial measurements or evaluations as required by protocol to assess disease response to therapy. Follow-up forms will report the presence of feeding tube and late toxicities.
 - A final Treatment Summary Form is to be submitted when the patient progresses, dies, or goes off study for any other reason. Any subsequent head and neck surgery will be reported.
 - Follow-Up Form is submitted at the time the patient goes off study at any time prior to treatment completion as scheduled and thereafter, every 3 months for the first 2 years, then every 6 months for the next 3 years, and subsequently annually for a total of 10 years.
 - Death must be reported, using the Follow-Up Form

17 REFERENCES

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Munay T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58:71-96.
2. Zbaeren P, Lehmann W. Frequency and sites of distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1987; 113:762-764.
3. Kotwall C, Sako K, Razack M, et al. Metastatic patterns in squamous cell cancer of the head and neck. Am J Surg 1987; 154:439.
4. Vokes EE, Weichselbaum RR, Lippman S, Hong WK. Head and neck cancer. N Engl J Med 1993;328:184-194.
5. Hong W, Lippman S, Itri M, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med 1990; 322:795-801.
6. Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud T. Larynxpreservation in pyrifonn sinus cancer: preliminal yresults of a European Organization for Research and Treatment of Cancer phase III trial EORTC Head and Neck Cancer Cooperative Group. J Natl Cancer Inst 1996; 88:890-9.
7. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. The Department of Veterans Affairs Laryngeal Cancer Study Group. N Engl J Med 1991; 324:1685-90.
8. Forastiere AA, Berkey B, Maor M, Weber R, Goepfert H, Moni son WH, et al. Phase III Trial to Preserve the Larynx: Induction Chemotherapy and Radiotherapy Versus Concomitant Chemoradiotherapy Versus Radiotherapy Alone, Intergroup Trial R91-11. Proc Am Soc Clin Oncol 2001; 20:A4.
9. Vokes EE, Weichselbaum RR. Concomitant chemoradiotherapy: rationale and clinical experience in patients with solid tumors. J Clin Oncol 1990; 8:911-34.
10. Vokes E. The interaction of chemotherapy and radiation. Semin Oncol 1993; 20:70-79.
11. Byfield J, Shai-p T, Fran kel S, et al. Phase I and II trial of five-day infused 5-fluorouracil and radiation in advanced cancer of the head and neck. J Clin Oncol 1984; 2:406-413.
12. Adelstein D, Sharah V, Eai-Ie A, et al. Long-tenn results after chemo-radiotherapyfor locally confined squamous-cell head and neck cancer. Am J Clin Oncol 1990; 13:440-447.
13. Taylor SI, Murthy A, Caldat-elli D, et al Combined simultaneous cisplatin/fluorouracil chemotherapyand split course radiation in head and neck cancer. J Clin Oncol 1989; 7:846-856.
14. Wendt T, Hallenstien R, Wustrow T, et al. Cisplatin, fluorouracil with leucovorin calcium enhancement, and synchronous accelerated radiotherapy in the management of locally advanced head and neck cancer: a phase II study. J Clin Oncol 1989; 7:471-476.
15. Weppelmann B, Wheeler RH, Peters GE, Kim RY, Spencer SA, Meredith RF, et al. Treatment of recurrent head and neck cancer with 5-fluorouracil, hydroxyurea, and radiation. Int J Radiat Oncol Biol Phys 1992; 22:1051-6.

16. Vokes EE, Panje WR, Schilsky RL, Mick R, Awan AM, Moran WJ, et al. Hydroxy urea, fluorouracil, and concomitant radiotherapy in poor-prognosis head and neck cancer: a phase I-II study. *J Clin Oncol* 1989; 7:761-8.
17. Merlano M, Vitale V, Rosso R, et al. Treatment of advanced squamous-cell carcinoma of the head and neck with alternating chemotherapy and radiotherapy. *N Engl J Med* 1992; 327:1151-1121.
18. Pignon JP, Bourhis J, Domenge C, Desaigne L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. *Meta-Analysis of Chemotherapy on Head and Neck Cancer*. *Lancet* 2000; 355:949-55.
19. Brizel D, Albers M, Fisher S, et al. Hyperfractionated radiation with or without concurrent chemotherapy for locally advanced head and neck cancer. *N Engl J Med* 1998; 338:1798-1804.
20. Calais G, Alfonsi M, Bartlet E, Sire C, Germain T, Bergerot P, et al. Randomized trial of radiation therapy versus concomitant chemotherapy and radiation therapy for advanced-stage oropharynx carcinoma. *J Natl Cancer Inst* 1999; 91:2081-2086.
21. Wendt TG, Grabenbauer GG, Rodel CM, Thiel HJ, Aydin H, Rohloff R, et al. Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. *J Clin Oncol* 1998; 16:1318-24.
22. Al-Sarraf M, LeBlanc M, Gili PG, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. *J Clin Oncol* 1998; 16:1310-7.
23. Adelstein DJ, Li Y, Adams GL, Wagner H, Jr., Kish JA, Ensley JF, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. *J Clin Oncol* 2003; 21:92-8.
24. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, MoTison W, Glisson B, Trott A, Ridge JA, Chao C, Peters G, Lee DJ, Leaf A, Ensley J, Cooper J. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. *N Engl J Med* 2003 Nov 27;349(22):2091-8.
25. Al-Sarraf M, LeBlanc M, Gili P, et al. Superiority of chemo-radiotherapy vs radiotherapy in patients with locally advanced nasopharyngeal cancer: preliminary results of intergroup (0099) (SWOG 8892, RTOG 8817, ECOG 2388) randomized study. *Proc Am Soc Clin Oncol* 1996; 15:313 (Abstr 882).
26. Al-Sarraf M, LeBlanc M, Gili P, Fu F, Cooper J, Vuong T, et al. Superiority of Five Year Survival with Chemo-Radiotherapy vs Radiotherapy in Patients with Locally Advanced Nasopharyngeal Cancer. Intergroup (0099) (SWOG 8892, RTOG 8817, ECOG 2388) Phase III Study: Final Report. *Proc Am Soc Clin Oncol* 2001; 20:A905.
27. Vokes EE, Athanasiadis I. Chemotherapy of squamous cell carcinoma of head and neck: the future is now. *Ann Oncol* 1996; 7:15-29.
28. Dimery I, Hong W. Overview of combined modality therapies for head and neck cancer. *J Natl Cancer Inst* 1993; 85:95-111.

29. Ervin TJ, Clark JR, Weichselbaum RR, Fallon BG, Miller D, Fabian RL, et al An analysis of induction and adjuvant chemotherapy in the multidisciplinary treatment of squamous -cell carcinoma of the head and neck. *J Clin Oncol* 1987; 5:10-20.
30. Rooney M, Kish J, Jacobs J, et al. Improved complete response rate and survival in advanced head and neck cancer after three-course induction therapy with 120-hour 5-FU infusion and cisplatin. *Cancer* 1985; 55:1123-1128.
31. Kies M, Gordon L, Hauck W, Krespi Y, Ossoff R, Pecaro B, et al. Analysis of complete responders after initial treatment with chemotherapy in head and neck cancer. *Laryngol Head Neck Surg* 1985; 93:199-205.
32. Thyss A, Schneider M, Santini J, Caldani C, Vallicioni J, Chauvel P, et al. Induction chemotherapy with cis-platinum and 5-fluorouracil for squamous cell carcinoma of the head and neck. *Br J Cancer* 1986; 54:755-760.
33. Vokes E, Mick R, Lester E, Panje W, Weichselbaum R. Cisplatin and 5-fluorouracil does not yield long-term benefit in locally advanced head and neck cancer: results from a single institution. *J Clin Oncol* 1991; 9:1376-1384.
34. Tannock I, Cummings B, S01rnnti V, Group E. Combination chemotherapy used prior to radiation therapy for locally advanced squamous cell carcinoma of the head and neck. *Cancer Treat Rep* 1982; 66:1421-1424.
35. Schantz SP, Hani son BR, Forastiere A. Tumors of the nasal cavity and paranasal sinuses, nasopharynx, oral cavity, and oropharynx. In: DeVita VT, Hellman S, Rosenberg SA, eds. *Cancer. Principles and practice of Oncology*: Lippincott Williams and Wilkins, 2001:797-860.
36. Domenge C, Hill C, Lefebvre JL, De Raucomt D, Rhein B, Wibault P, et al. Randomized trial of neoadjuvant chemotherapy in oropharyngeal carcinoma. French Groupe d'Etude des Tumeurs de la Tete et du Cou (GETTEC). *Br J Cancer* 2000; 83:1594-8.
37. Paccagnella A, Orlando A, Mai-chi0li C, Zorat PL, Cavaniglia G, Sileni VC, et al. Phase III trial of initial chemotherapy in stage III or IV head and neck cancers: a study by the Grnppo di Studio sui Tum0li della Testa e del Collo. *J Natl Cancer Inst* 1994; 86:265-72.
38. Richai·d JM, Kramai· A, Molinali,R Lefebvre JL, Blanchet F, Jo1tay,A et al. Randomised EORTC head and neck cooperative group trial of preoperative intra-arterial chemotherapy in oral cavity and oropharynxca·cinoma. *Eur J Cancer* 1991; 27:821-7.
39. Vokes E, Weichselbaum R. Combined modality therapy for head and neck cancer. *Principles and Practice of Oncology Update* 1993; 6:1-2.
40. Schuller D, Metch B, Mattox D, Stein D, McCracken J. Prooperative chemotherapy in advanced resectable head and neck cancer: final report of the Southwest Oncology Group. *Laryngoscope* 1988; 98:1205-1211.
41. Laramore GE, Scott CB, al-Sa1Taf M, Haselow RE, Ervin TJ, Wheeler R, et al. Adjuvant chemotherapy for resectable squamous cell carcinomas of the head and neck: report on Intergroup Study 0034. *Int J Radiat Oncol Biol Phys* 1992; 23:705-13.
42. Jacobs C, Makuch R. Efficacy of adjuvant chemotherapy for patients with resectable head and neck cancer: a subset analysis of the head and neck contracts program. *J Clin Oncol* 1990; 8:838-847.

43. Specht L, Larsen SK, Hansen HS. Phase II study of docetaxel and cisplatin in patients with recurrent or disseminated squamous-cell carcinoma of the head and neck. *Ann Oncol* 2000; 11:845-9.
44. Schoffski P, Catimel G, Planting AS, Droz JP, Velweij J, Schrijvers D, et al. Docetaxel and cisplatin: an active regimen in patients with locally advanced, recurrent or metastatic squamous cell carcinoma of the head and neck. Results of a phase II study of the EORTC Early Clinical Studies Group. *Ann Oncol* 1999; 10:119-22.
45. Glisson BS, Mmphy BA, Frenette G, Khuri FR, Forastiere AA. Phase II Trial of docetaxel and cisplatin combination chemotherapy in patients with squamous cell carcinoma of the head and neck. *J Clin Oncol* 2002; 20:1593-9.
46. Mel JR Rodriguez R, Constela M, Davila A, Fernandez-Piera M, Gonzalez-Lama J. Phase II study of docetaxel and cisplatin as induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: preliminary results. *Proc Am Soc Clin Oncol* 1999; 18:A1549.
47. Vemlorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotny D, Kienzer HR, Cupissol D, Peyrade F, Benasso M, Vynnychenko I, De Rancourt D, Bokemeyer C, Schueler A, Amellal N, Hitt R. Platinum- based chemotherapy plus cetuximab in head and neck cancer. *N Engl J Med*. 2008 Sep 11;359(11):1116-27.
48. Baselga J, Trigo JM, Bourhis J, et al. Phase II multicenter study of the antiepidennal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. *J Clin Oncol* 2005;23(24):5568-77.
49. Pfister DG, Su YB, Kraus DH, et al. Concomitant cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. *J Clin Oncol* 2006;24(7):1072-8.
50. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. *Nat Rev Cancer* 2006;6(10):803-12.
51. Taylor SG. Why has so much chemotherapy done so little in head and neck cancer? *J Clin Oncol* 1987; 5:1-3.
52. Tannock IF, Browman G. Lack of evidence for a role of chemotherapy in the routine management of locally advanced head and neck cancer. *J Clin Oncol* 1986; 4:1121-6.
53. Rosenthal DI, Pistenmaa DA, Glatstein E. A review of neoadjuvant chemotherapy for head and neck cancer: partially selected tumors may be both leaner and meaner. *Int J Radiat Oncol Biol Phys* 1994; 28:315-20.
54. Taylor SG, Mmphy AK, Vannetzel JM, Colin P, Dray M, Caldarelli DD, et al. Randomized comparison of neoadjuvant cisplatin and fluorouracil infusion followed by radiation versus concomitant treatment in advanced head and neck cancer. *J Clin Oncol* 1994; 12:385-95.
55. De Andres L, Bnmet, J Lopez-Pousa A, Burgues, J Vega M, Tabemero JM, et al. Randomized trial of neoadjuvant cisplatin and fluorouracil versus carboplatin and fluorouracil in patients with stage IV-M0 head and neck cancer. *J Clin Oncol* 1995; 13:1493-500.
56. Forastiere AA, Metch B, Schuller DE, Ensley JF, Hutchins LF, Tiliozzi P, et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell

carcinoma of the head and neck: a Southwest Oncology Group study. *Journal of Clinical Oncology* 1992; 10:1245-51.

57. Vokes EE, Stenson K, Rosen FR, Kies MS, Rademaker AW, Witt ME, et al. Weekly Carboplatin and Paclitaxel followed by concomitant Paclitaxel, Fluorouracil, and hydroxyurea chemoradiotherapy: curative and organ-preserving therapy for advanced head and neck cancer. *J Clin Oncol* 2003; 21:320-6.

58. Machta M, Rosenthal DI, Hershock D, Jones H, Williamson S, Greenberg MJ, et al Organ preservation therapy using induction plus concurrent chemoradiation for advanced resectable oropharyngeal carcinoma: a University of Pennsylvania Phase II Trial *J Clin Oncol* 2002; 20:3964-71.

59. Gaspar C, Pesudo C, Anibas L, Climent MA, Mengual JL, Molinas C, et al. Induction chemotherapy (ICT) followed by concomitant chemoradiotherapy (CT/RT) for advanced squamous cell carcinomas of head and neck (SCCHN). *Ann Oncol* 2002; 13 (Suppl. 5):152.

60. Weaver A, Fleming S, Ensley J, Kish JA, Jacobs J, Kinzie J, et al. Superior clinical response and survival rates with initial bolus of cisplatin and 120 hour infusion of 5-fluorouracil before definitive therapy for locally advanced head and neck cancer. *American Journal of Surgery* 1984; 148:525-9.

61. Di Blasio B, Barbielli W, Bozzetti A. A prospective randomized trial in resectable head and neck carcinoma: locoregional treatment with and without neoadjuvant chemotherapy. *Proc Am Soc Clin Oncol* 1994; 13:279(abstract).

62. Shin DM, Glisson BS, Khuri FR, Lippman SM, Ginsberg L, Diaz E, Jr., et al. Phase II study of induction chemotherapy with paclitaxel, ifosfamide, and carboplatin (TIC) for patients with locally advanced squamous cell carcinoma of the head and neck. *Cancer* 2002; 95:322-30.

63. Axel Grothey, Elie E. Hedrick, Robert D. Mass, Somnath Sarkar, Sam Suzuki, Ramesh K. Ramanathan, Herbert I. Howitz, Richard M. Goldberg, Daniel J. Sargent. Response-Independent Survival Benefit in Metastatic Colorectal Cancer: A Comparative Analysis of N9741 and AVF207. *Journal of Clinical Oncology*, Vol 26, No 2 (January 10), 2008: pp. 183-189

64. Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, Mitchell EP, Albrecht SR, Schwartz MA, Benson AB 3rd; Eastern Cooperative Oncology Group Study E3200. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. *J Clin Oncol*. 2007 Apr 20;25(12):1539-44.

65. Sandler AB, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. *NEJM* 2006;355:2542A50.

66. Miller KD. E2100: a phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. *Clin Breast Cancer*. 2003 Feb;3(6):421-2.

67. Ozcan C, Wong SJ, Hall P. Reversible posterior leukoencephalopathy syndrome and bevacizumab. *N Engl J Med*. 2006 Mar 2;354(9):980-2; discussion 980-2.

68. Glusker P, Recht L, Lane B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. *N Engl J Med*. 2006 Mar 2;354(9):980-2; discussion 980-2.

69. Scappaticci FA, Fehrenbacher L, Cartwright T, Hainswo1th JD, Heim W, Berlin J, Kabbinavar F, Novotny W, Sarkar S, Hmwitz H. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. *J Surg Oncol.* 2005 Sep 1;91(3):173-80.
70. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, Qian D, Monis L, TidwellM, Chen H, Zwiebel J. Targeting vascular endothelial growth factor for relapsed and refracto1y adult acute myelogenous leukemias : therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. *Clin Cancer Res.* 2004 Jun 1;10(11):3577-85.
71. Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danfo1th D, Hewitt SM, Belman A, Steinberg SM, Liewehr DJ, Plehn J, Doshi A, ThomassonD, McCaithy N, Koeppen H, She1man M, Zujewski J, CamphausenK, Chen H, Swain SM. Antiangiogenic and antitmnor effects of bevacizumab in patients with inflammatol y and locally advanced breast cancer. *J Clin Oncol.* 2006 Feb 10;24(5):769-77. Epub 2006 Jan 3.
72. D'AdamoDR, Anderson SE, Albritton K, Yamada J, Riedel E, Scheu K, Schwatz GK, Chen H, Maki RG. Phase II study of doxornbicin and bevacizumab for patients with metastatic soft-tissue sarcomas. *J Clin Oncol.* 2005 Oct 1;23(28):7135-42.
73. *Posner M R, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova Vet al;* Cisplatin and Fluorouracil Alone or with Docetaxel in Head and Neck Cancer. *NEJM Volume 357:1705-1715, 2007.*
74. Veimorken JB, Remenar E, van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. *N Engl J Med.* 2007;357:1695-1704.
75. Lindel K, Beer KT, Laissue J, Greiner R.H, Aebersold D.M. Human papillomavirns positive squamous cell carcinoma of the orophalynx. A radiosensitive subgroup of head and neck carcinoma. *Cancer* 2001;92:805-13.
76. Mork J, Lie A K, Glattre E, Clark S, Phil D, Hallmans G, Jellum E, Koskela P, Moller B, Pukkala E, Schiller J.T, Wang Z, Youngman L, Lehtinen M, DillnerJ. Human Papillomavirns Infection as a Risk Factor for Squamous-Cell Cai·oma of the Head and Neck. *NEJM* 2001 (15) 344:1125-1131
77. Licitra L, Pe1rnne F, Bossi P, Suai·diS, Mai·iani L, Altusi R, Oggionni M, Rossini C, Cann) G, Squadrelli M, Quattrone P, Locati L.D, Bergamini C, Olmi P, Pierotti M.A, Pilotti S. High-Risk Human PapillomavirusAffects Prognosis in Patients With Surgically Treated Orophaiyngal SquamousCell Carcinoma. *JCO 2006, Vol 24, No 36: 5630-5636.*
78. Hui E.P, Ma B.B, Leung S.F, King A D, Mo F, Kam M.K, Yu B.K, Chiu S.K, Kwan W.H, Ho R, Chan I, Ahuja A T, Zee B.C, Chan A T. Randomized Phase II Trial of ConcmTent Cis platin-Radio therapy Wi th or Without Neoadj uvant Docetaxel and Cisplatin in Advanced Nasophaiyngal Carcinoma. *J Clin Oncol.* 2009 Jan 10;27(2):242-9.
79. V. A Passero, B. F. Bra11Stetter , Y. Shuai , D . E . Heron , M . K . Gi bson , S. Y. Lai, S. W . Kim, R. L. Fenis, J. T. Johnson, A Argiris. "Response assessment by combined positron emission tomography and CT scan versus RECIST in patients with locally advanced head and neck cancer treated with chemoradiotherapy" *Annals of Oncology* 2010;21:2278-83
80. L. H. Dohn, B. V. Jensen, F.O Lai·sen. "Sholttine infusion of bevacizumabin combination with 5FU-based chemotherapy as first-line therapy in a non-selective patient group with metastatic colorectal cancer." *Acta Oncol*, 2010; 49: 395-396.

81. D. L. Reidy, K. Y. Chung, J. P. Timoney, V. J. Park, E. Hollywood, N. T Sklarin, R. J. Muller, L.B. Saltz.
"Bevacizmnab 5mg/kg can be infused safely over 10 minutes." JCO 2007; 25 (19): 2691-2695.

APPENDIX A: ECOG PERFORMANCE STATUS

Grade	ECOG
0	Fully active, able to carry on all pre-disease performance without restriction
1	Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work
2	Ambulatory and capable of all selfcare but unable to carry out any work activities. Up and about more than 50% of waking hours
3	Capable of only limited selfcare, confined to bed or chair more than 50% of waking hours
4	Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair
5	Dead

APPENDIX B: PROCEDURE FOR OBTAINING A URINE PROTEIN / CREATININE RATIO

- 1) Obtain at least 4 mL of a random urine sample (does not have to be a 24 hour urine)
- 2) Determine protein concentration (mg/dL)
- 3) Determine creatinine concentration (mg/dL)
- 4) Divide #2 by #3 above: urine protein / creatinine ratio = protein concentration (mg/dL) / creatinine concentration (mg /dL)

The UPC directly correlates with the amount of protein excreted in the urine per 24 hrs (i.e. a UPC of 1 should be equivalent to 1 g protein in a 24 hr urine collection)

Protein and creatinine concentrations should be available on standard reports of urinalyses, not dipsticks. If protein and creatinine concentrations are not routinely reported at an Institution, their measurements and reports may need to be requested.

APPENDIX C: NCI COMMON TOXICITY CRITERIA (CTCAE V 4.0)

See: <http://evs.nci.nih.gov/ftp1/CTCAE/About.html>

APPENDIX D: FDA MEDWATCH 3500A FORM

See: www.fda.gov/medwatch/safety/FDA-3500A_fillable.pdf

APPENDIX E: NEW YORK HEART ASSOCIATION (NYHA) GUIDELINES

NYHA Classification

Excerpted from Oxford Textbook of Medicine. Vol 2, p.2228. Oxford Press.1997.

Class	Description
I	Subjects with cardiac disease but without resulting limitations of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea, or angina} pain.
II	Subjects with cardiovascular disease resulting in slight limitation of physical activity. They are comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnea, or angina} pain.
III	Subjects with cardiovascular disease resulting in marked limitation of physical activity. They are comfortable at rest. Less than ordinary physical activity causes fatigue, palpitation, dyspnea, or anginal pain.
IV	Subjects with cardiovascular disease resulting in inability to carry on physical activity without discomfort. Symptoms of cardiac insufficiency or of the angina} syndrome may be present even at rest. If any physical activity is undertaken, discomfort is increased.

APPENDIX F: FACT - H&N

Quality of Life, Performance and Patient Priorities

1) Patient Name: _____

2) Patient ID #: / / - / / /

3) Date: / / / / / / /

4) Assessment Point: / /

1 = baseline

2 = post induction

3 = 3 months follow-up

4 = 12 months follow-up

FACT - H&N (Version 4)

Below is a list of statements that other people with your illness have said are important. **By circling one number per line, please indicate how true each statement has been for you during the past 7 days.**

PHYSICAL WELL-BEING	not at all	a little bit	some-what	quite a bit	very much
GP1 I have a lack of energy	0	1	2	3	4
GP2 I have nausea	0	1	2	3	4
GP3 Because of my physical condition, I have trouble meeting the needs of my family	0	1	2	3	4
GP4 I have pain	0	1	2	3	4
GP5 I am bothered by side effects of treatment	0	1	2	3	4

GP6 I feel ill 0 1 2 3 4

GP7 I am forced to spend time in bed 0 1 2 3 4

SOCIAL/FAMILY WELL-BEING	not at all	a little bit	some-what	quite a bit	very much
GSI I feel close to my fiends	0	1	2	3	4
GS2 I get emotional support from my family	0	1	2	3	4
GS3 I get support from my friends	0	1	2	3	4
GS4 My family has accepted my illness	0	1	2	3	4
GS5 I am satisfied with family communication about my illness	0	1	2	3	4
GS6 I feel close to my partner (or the person who is my main support)	0	1	2	3	4

Regardless of your current level of sexual activity, please answer the following question. If you prefer not to answer it, please check the box below and go to the next section.

GS7 I am satisfied with my sex life 0 1 2 3 4

EMOTIONAL WELL-BEING	not at all	a little bit	some-what	quite a bit	very much
GE1 I feel sad	0	1	2	3	4
GE2 I am satisfied with how I am coping with my illness	0	1	2	3	4
GE3 I am losing hope in the fight against my illness	0	1	2	3	4
GE4 I feel nervous	0	1	2	3	4

GE5 I worry about dying 0 1 2 3 4

GE6 I worry that my condition will get worse 0 1 2 3 4

FUNCTIONAL WELL-BEING		not at all	a little bit	some-what	quite a bit	very much
GFI	I am able to work (include work at home)	0	1	2	3	4
GF2	My work (include work at home) is fulfilling	0	1	2	3	4
GF3	I am able to enjoy life	0	1	2	3	4
GF4	I have accepted my illness	0	1	2	3	4
GF5	I am sleeping well	0	1	2	3	4
GF6	I am enjoying the things I usually do for fun	0	1	2	3	4
GF7	I am content with the quality of my life right now	0	1	2	3	4

ADDITIONAL CONCERNS		not at all	a little bit	some-what	quite a bit	very much
H&N1	I am able to eat the foods that I like	0	1	2	3	4
H&N2	My mouth is dry	0	1	2	3	4
H&N3	I have trouble breathing	0	1	2	3	4
H&N4	My voice has its usual quality and strength	0	1	2	3	4
H&N5	I am able to eat as much food as I want	0	1	2	3	4

H&N6 I am unhappy with how my face and neck look	0	I	2	3	4
H&N7 I can swallow naturally and easily	0	I	2	3	4
H&N8 I smoke cigarettes or other tobacco products	0	I	2	3	4
H&N9 I drink alcohol (e.g. beer, wine, etc.)	0	I	2	3	4
H&N10 I am able to communicate with others	0	I	2	3	4
H&N11 I can eat solid foods	0	I	2	3	4
H&N12 I have pain in my mouth, throat or neck	0	I	2	3	4

APPENDIX G: AJCC STAGING SYSTEM, 7TH E DITIO N

1) LIP AND ORAL CAVITY

Patient Name/Information

p e c _____

Tumor Size

Histo _____

Laterality Bilateral Left Right

DEFINITIONS:

Ptimaiy Tumor (T)

- TX Ptimaiy tumor cannot be assessed
- TO No evidence of primaiy tumor
- Tis Carcinoma in situ
- T1 Tumor 2 cm or less in greatest dimension
- T2 Tumor more than 2 cm but not more than 4 cm in greatest dimension
- T3 Tumor more than 4 cm in greatest dimension
- T4a (Lip) Tumor invades through coltical bone, inferior alveolai· nerve, floor of mouth, or skin of face, i.e., chin or nose(l)
(Oral Cavity) Tumor invades through coltical bone, into deep [extlinsic] muscle of tongue (genioglossus, hyoglossus, palatoglossus, and styloglossus), maxilla1y sinus, or skin of face
- T4b Tumor involves masticator space, pte1ygoid plates, or skull base and/or encases internal cai·otid aitely

Regional Lymph Nodes (N)

- NX Regionally lymph nodes cannot be assessed
- NO No regional lymph node metastasis
- NI Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dnnension
- N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dnnension; or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension; or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dnnension
 - N2a Metastasis in single ipsilateral lymph node more than 3 cm but not more than 6 cm in greatest dnnension
 - N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension
 - N2c Metastasis in bilateral or contralateral lymphnodes, none more than 6 cm in greatest dnnension

N3 Metastasis in a lymph node more than 6 cm in greatest dimension

Distant Metastasis (M)

MX Distant metastasis cannot be assessed

MO No distant metastasis

M1 Distant metastasis

Biopsy of metastatic site perfo1med y N

Source of pathologic metastatic specimen

Stage Grouping

0	Tis	NO	MO
I	T1	NO	MO
II	T2	NO	MO
III	T3	NO	MO
	T1	NI	MO
	T2	NI	MO
	T3	NI	MO
IVA	T4a	NO	MO
	T4a	NI	MO
	T1	N2	MO
	T2	N2	MO
	T 3	N2	MO
	T4a	N2	MO
IVB	AnyT	N3	MO
	T4b	AnyN	MO
IVC	AnyT	AnyN	M1

Histologic Grade (G)

GX	Grade cannot be assessed
G1	Well differentiated
G2	Moderately differentiated
G3	Poorly differentiated
G4	Undifferentiated

Residual Tumor (R)

RX Presence of residual tumor cannot be assessed

RO No residual tumor
RI Microscopic residual tumor
R2 Macroscopic residual tumor (continued)

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

y prefix indicates those cases in which classification is performed or following initial multimodality therapy.

The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.

r prefix indicates a recurrent tumor when staged after a disease-free interval and is identified by the "r" prefix: rTNM.

a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Notes

Superficial erosion alone of bone/tooth socket by gingival primary is not sufficient to classify as T4.

Additional Descriptors

- o Lymph-Vascular Invasion (LVI)
- o Lymph-Vascular Invasion Not Present (absent)/Not Identified
- o Lymph-Vascular Invasion Present/Identified
- o Not Applicable
- o Unknown/Indeterminate

Physician's Signature _____ Date _____

2. PHARYNX (INCLUDING BASE OF TONGUE, SOFT PALATE, AND UVULA)

Patient Name/Information

Type of Specimen

Tumor Size

Histopathologic Type

Lary Bilateral Left Right

DEFINITIONS:

Prima1y Tumor (T)

TX Primaiy tumor cannot be assessed

TO No evidence of prima1ytumor

Tis Carcinomain situ

Nasophaiynx

T1 Tmnor confined to the nasophaiynx or tumor extends to orophaiynx and/or nasal cavity without pa1apha1yngeal extension

T2 Tumor with pa1apha1yngeal extension

T3 Tumor involves bony stmctmes of skullbase and/or pa1ansa1 sinuses

T4 Tmnor with intracranial extension and/or involvement of cranial nerves, hypoprhaiynx, orbit, or with extension to the infratemporal fossa/masticatorspace

Orophatynx

T1 Tmnor 2 cm or less in greatest dimension

T2 Tumor more than 2 cm but not more than 4 cm in greatest dimension

T3 Tumor more than 4 cm in greatest dimension

T4a Moderately Advanced Disease

Tumor invades the lalynx, extrinsic muscle of tongue, medial ptely goid, hai·d palate , or mandible

T4b Vety Advanced Disease

Tumor invades lateral ptelygoid muscle, ptelygoid plates, lateral nasophaiynx, or skull base or encases cai·otid altery

Hypophal1ynx

T1 Tumor limited to onesubsite ofhypophaiynx and 2 cm or less in greatest dimension

T2 Tmnor invades more than one subsiteofhypophaiynx or an adjacent site, or measmes more than 2 cm but not more than 4 cm in greatest diameter without fixation of hemilal1ynx

T3 Tumor measures more than 4 cm in greatest dimension or with fixation of hemilal1ynx

T4a Moderately Advanced Disease

Tumor invades thyroid/cricoid cru.tilage , hyoid bone, thyroid gland, esophagus or central compru.tm ent soft tissue(2)

T4b VelyAdvanced Disease

Tmnor invades prevertebral fascia, encases carotid ru.te1y , o r in vo lves mediastinal strnctures

Regional Lymph Nodes (N)

Nasophru.ynx

NX Regional lymph nodes caJ.llot be assessed

NO No regional lymph node metastasis

NI Unilateral metastasis in ce1vical lymph node(s), 6 cm or less in greatest dimension, above the supraclavicular fossa(3) (continued)

2. PHARYNX (INCLUDING BASE OF TONGUE, SOFT PALATE, AND UVULA) (continued)

N2 Bilateral metastasis in cervical lymph node(s), 6 cm or less in greatest dimension, above the supraclavicular fossa(3)

N3 Metastasis in a lymphnode(s)>6 cm and/or to supraclavicular fossa

N3a Greater than 6 cm in dimension

N3b Extension to thesupraclavicular fossa(3)

Orophru.ynx and H ypop h a1ynx

NX Regional lymph nodes cannot be assessed

NO No regional lymph node metastasis

NI Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension

N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension, or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension, or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N2a Metastasis in a single ipsilateral lymph node more than 3 cm but not more than 6 cm in greatest dimension

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension

N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N3 Metastasis in a lymph node more than 6 cm in greatest dimension

Distant Metastasis (M)

MX Distant metastasis cannot be assessed

MO No distant metastasis

M1 Distant metastasis

Biopsy of metastatic site perfonned y N

Source of pathologic metastatic specimen

Stage Grouping:Nasopharynx

0	Tis	NO	MO
I	T1	NO	MO
II	T1	N1	MO
	T2	NO	MO
	T2	NI	MO
III	T1	N2	MO
	T2	N2	MO
	T3	NO	MO
	T3	N1	MO
	T3	N2	MO
IVA	T4	NO	MO
	T4	N1	MO
	T4	N2	MO
IVB	AnyT	N3	MO
IVC	AnyT	AnyN	M1

Stage Grouping: Oropharynx and Hypopharynx

0	Tis	NO	MO
I	T1	NO	MO
II	T2	NO	MO
III	T3	NO	MO
	T1	NI	MO
	T2	NI	MO
	T3	NI	MO
IVA	T4a	NO	MO
	T4a	NI	MO
	T1	N2	MO
	T2	N2	MO
	T3	N2	MO
	T4a	N2	MO
IVB	T4b	AnyN	MO
	AnyT	N3	MO
IVC	AnyT	AnyN	MI

Histologic Grade (G) (Oropharynx Hypopharynx)

GX	Grade cannot be assessed
GI	Well differentiated
G2	Moderately differentiated
G3	Poorly differentiated
G4	Undifferentiated

Residual Tumor (R)

RX	Presence of residual tumor cannot be assessed
RO	No residual tumor
RI	Microscopic residual tumor (continued)
R2	Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

y prefix indicates those cases in which classification is performed during or following initial multimodality therapy.

The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.

r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.

a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Notes

1. Parapharyngeal extension denotes posterolateral infiltration of tumor beyond the pharyngobasilar fascia.
2. Central compartment soft tissue includes prelaryngeal strap muscles and subcutaneous fat.
3. Midline nodes are considered ipsilateral nodes.

Additional Descriptors

Lymph-Vascular Invasion (LVI)

- o Lymph-Vascular Invasion Not Present (absent)/Not Identified
- o Lymph-Vascular Invasion Present/Identified
- o Not Applicable
- o Unknown/Indeterminate

Physician's Signature _____ Date _____

3. LARYNX

Patient Name/Information

Type of Specimen

Tumor Size

Histopathology _____

Lary Bilateral Left Right

DEFINITIONS:

Primary Tumor (T)

TX Primary tumor cannot be assessed

TO No evidence of primary tumor

Tis Carcinoma in situ

Supraglottis

T1 Tumor limited to one subsite of supraglottis with normal vocal cord mobility

T2 Tumor invades mucosa of more than one adjacent subsite of supraglottis or glottis or region outside the supraglottis (e.g., mucosa of base of tongue, vallecula, medial wall of pyriform sinus) without fixation of the larynx

T3 Tumor limited to larynx with vocal cord fixation and/or invades any of the following: postcricoid area, pre-epiglottic tissues, paraglottic space, and/or minor thyroid cartilage erosion (e.g., inner cortex)

T4a Moderately Advanced Local Disease

Tumor invades through the thyroid cartilage and/or invades tissues beyond the larynx (e.g., trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus)

T4b Very Advanced Local Disease

Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures

Glottis

T1 Tumor limited to the vocal cord(s) (may involve anterior or posterior commissure) with normal mobility

T1a Tumor limited to one vocal cord

T1b Tumor involves both vocal cords

T2 Tumor extends to supraglottis and/or subglottis, or with impaired vocal cord mobility

T3 Tumor limited to the larynx with vocal cord fixation, and/or invades paraglottic space, and/or minor thyroid cartilage erosion (e.g., inner cortex)

T4a Moderately Advanced Local Disease

Tumor invades through the thyroid cartilage and/or invades tissues beyond the larynx (e.g., trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus)

T4b Very Advanced Local Disease

Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures

Subglottis

T1 Tumor limited to the subglottis
T2 Tumor extends to vocal cord(s) with n01mal or impaired mobility
T3 Tumor limited to larynx: with vocal cord fixation (continued)
T4a Moderately Advanced Local Disease
Tumor invades cricoid or thyroid cartilage and/or invades tissues beyond the larynx: (e.g., trachea, soft tissues of neck including deep extrinsic muscles of the tongue, strap muscles, thyroid, or esophagus)
T4b Very Advanced Local Disease
Tumor invades prevertebral space, encases carotid artery or invades mediastinal structures

Regional Lymph Nodes (N)

NX Regional lymph nodes cannot be assessed
NO No regional lymph node metastasis
NI Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension
N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension, or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension, or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension
N2a Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension
N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension
N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension
N3 Metastasis in a lymph node, more than 6 cm in greatest dimension

Distant Metastasis (M)

MO No distant metastasis
M1 Distant metastasis
Biopsy of metastatic site performed Y N
Source of pathologic metastatic specimen

Stage Grouping

0	Tis	NO	MO
I	T1	NO	MO
II	T2	NO	MO
III	T3	NO	MO
	T1	NI	MO
	T2	NI	MO
	T3	NI	MO
IVA	T4a	NO	MO
	T4a	NI	MO
	T1	N2	MO
	T2	N2	MO
	T3	N2	MO
	T4a	N2	MO
IVB	T4b	AnyN	MO
	AnyT	N3	MO
IVC	AnyT	AnyN	M1

Histologic Grade (G)

GX Grade cannot be assessed
GI Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated
G4 Undifferentiated

Residual Tumor (R)

RX Presence of residual tumor cannot be assessed
RO No residual tumor
RI Microscopic residual tumor
R2 Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

y prefix indicates those cases in which classification is performed during or following initial multimodality therapy.

The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.

r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.

a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Notes

Additional Descriptors

Lymph-Vascular Invasion (LVI)

- Lymph-Vascular Invasion Not Present (absent)/Not Identified
- Lymph-Vascular Invasion Present/Identified
- Not Applicable
- Unknown/Indeterminate

Physician's Signature _____ Date _____

4. NASAL CAVITY AND PARANASAL SINUSES

Patient Name/Information _____

Type of Specimen _____

~~Specimen~~

~~Histopathology~~ _____

~~Lateral~~ Bilateral Left Right

DEFINITIONS:

Primary Tumor (T)

Maxillary Sinus T1 Tumor limited to the maxillary sinus mucosa with no erosion or destruction of bone

T2 Tumor causing bone erosion or destruction including extension into the hard palate and/or middle nasal meatus, except extension to posterior wall of maxillary sinus and pterygoid plates

T3 Tumor invades any of the following: bone of the posterior wall of maxillary sinus, subcutaneous tissues, floor or medial wall of orbit, pterygoid fossa, ethmoid sinuses

T4a Moderately Advanced Local Disease

Tumor invades anterior orbital contents, skin of cheek, pterygoid plates, infratemporal fossa, cribriform plate, sphenoid or frontal sinuses

T4b Very Advanced Local Disease

Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than maxillary division of trigeminal nerve V2, nasopharynx, or clivus

Nasal Cavity and Ethmoid Sinus

TX Primary tumor cannot be assessed

TO No evidence of primary tumor

Tis Carcinoma in situ

T1 Tumor restricted to any one subsite, with or without bony invasion

T2 Tumor invading two subsites in a single region or extending to involve an adjacent region within the nasoethmoidal complex, with or without bony invasion

T3 Tumor extends to invade the medial wall or floor of the orbit, maxillary sinus, palate, or cribriform plate

T4a Tumor invades any of the following: anterior orbital contents, skin of nose or cheek, minimal extension to anterior cranial fossa, pterygoid plates, sphenoid or frontal sinuses

T4b Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than V2, nasopharynx, or clivus

Regional Lymph Nodes (N)

NX Regional lymph nodes cannot be assessed

NO No regional lymph node metastasis

NI Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension

N2 Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension, or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension, or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N2a Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension
N2c Metastasis in bilateral or contralateral lymphnodes, none more than 6 cm in greatest dimension
N3 Metastasis in a lymphnode, more than 6cm in greatest dimension

Distant Metastasis (M)

MO No distant metastasis
M1 Distant metastasis
 Biopsy of metastatic site perfmmmed y N
 Source of pathologic metastatic specimen

Stage Grouping

0	Tis	NO	MO
I	T1	NO	MO
II	T2	NO	MO
III	T3	NO	MO
	T1	N1	MO
	T2	N1	MO
	T3	N1	MO
IVA	T4a	NO	MO
	T4a	N1	MO
	T1	N2	MO
	T2	N2	MO
	T 3	N2	MO
	T4a	N2	MO
IVB	T4b	AnyN	MO
	AnyT	N3	MO
IVC	AnyT	AnyN	M1

Histologic Grade (G)

GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated
G4 Undifferentiated

Residual Tumor (R)

RX Presence of residual tumor cannot be assessed
RO No residual tumor
R1 Microscopic residual tumor
R2 Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.

r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Notes

Additional Descriptors

Lymph-Vascular Invasion (LVI)

- Lymph-Vascular Invasion Not Present (absent)/Not Identified
- Lymph-Vascular Invasion Present/Identified
- Not Applicable
- Unknown/Indeterminate

Physician's Signature _____ Date _____

APPENDIX H: GENENTECH SAFETY REPORTING FAX COVER SHEET

Genentech

BIOLOGY

SAFETY REPORTING FAX COVERSHEET Investigator Sponsored Trials

SAE FAX No: (650) 225-4682
Alternate Fax No: (650) 225-5288

Study Number (Genentech study number)	
Principal Investigator	
Site Name	
Reporter name	
Reporter Telephone #	
Reporter Fax #	

Initial Report Date (DD/MON/YYYY)	/	/	/
Follow-up Report Date (DD/ MON/ YYYY)	/	/	/

Subject Initials (Please enter a dash if the patient has no middle name)	—	—	—
---	---	---	---

**PLEASE PLACE MEDWATCH REPORT or SAFETY REPORT
BEHIND THIS COVERSHEET**

Please contact Genentech Safety for any questions regarding
SAE or Safety reporting at **(888) 835-2555**