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DEFINITION OF TERMS

Term Source
Calendar days NAOB
Disability pension NAV
Employment ILO/WHO
Part-time employment ILO/WHO
Prolonged sickness [1-5]
absence

Sick leave/sickness EULAR
absence/work absence

Work assessment NAV
allowance

Work disability ILO
Workdays NAOB

Last revision 6th February 2023

Definition

Every day on the calendar, including weekends and
public holidays.

Regular income to individuals who are unable to
work due to a permanent disability. To be eligible
for disability pension, the illness and/or injury must
be the main cause of reduced work and earning
capacity.

An agreement to produce goods or services for a
specific period in time for compensation by a salary,
a wage or in kind. Different types of employment
exist, among which is self-employment.

When the hours of work are less than the ‘normal’
hours of work of comparable full-time employment.
Sick leave for >90 continuous days or >180
continuous days

Time off from work that workers can use to stay
home to address their health and safety needs
without losing pay.

Financial support provided by the government for
people who are unable to work due to illness or
injury, but are expected to return to work in the near
future.

When an individual is unable to perform work-
related tasks due to physical or mental impairments
or disability.

Any of those days of a week on

which work is done, officially Monday to Friday, a 5-
day workweek.

Abbreviations: EULAR, European Alliance of Associations for Rheumatology; ILO, International
Labour Organisation; NAOB, Norwegian Academy Dictionary; NAV, Norwegian Labour and Welfare

Service; WHO, World Health Organization.
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BACKGROUND

Long-term sickness absence due to musculoskeletal disorders (MSDs) is associated
with substantial societal costs, constituting a major concern for the welfare state in
western societies [6]. In Norway, the sickness absence rate is among the highest in
Northern Europe and MSDs accounted for 35-39% of the total sickness absence [7].
Although itis only a small proportion of individuals that experience long-term sick leave,
this group is responsible for the majority of the total sick leave cost [6]. Early
identification of workers on sick leave at risk of prolonged work absence is therefore
important to guide stratified prevention strategies to improve individual outcomes and
reduce societal costs [8]. This targeting can be done by using prognostic models [9].

There have been some previous attempts to develop prognostic regression models for
predicting work absence. However, most of these models were either developed for
individuals without an employment contract or for workers not already on sick leave,
aiming at primary prevention strategies [4,10-15]. Of the few prognostic models
developed for secondary prevention, the models have either demonstrated insufficient
performance, lack external validation [14,16], have been developed in a homogenous
sample with a specific diagnosis [4], or in a specific work sector [17]. Thus, a crucial
need exists for accurate models to predict risk of long-term, or prolonged, sickness
absence used within the earlier stage of an MSD-related sick leave.

To address this, we aim to develop and externally validate prognostic models to predict
an individual’s risk of prolonged sickness absence due to MSDs in a social insurance
setting in Norway. However, the definition of prolonged or long-term work absence
outcomes can vary greatly, with most previous prognosis studies using anything from
over 14 days to over 365 days [2,10,18,19]. In this study, we have defined three binary
outcomes for prolonged sickness absence: (1) being on sick leave for more than 90
consecutive days, (2) more than 180 consecutive days, and (3) any new episode or
increase in work assessment allowance (WAA) and/or disability pension (DP) during a
1-year follow-up [1-5]. Therefore, we need to develop three separate prognostic

models for each outcome.
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Objectives
Our study objectives are to:

1. Develop and internally validate three prognostic models for prolonged sickness
absence (>90 consecutive days, >180 consecutive days, and granted WAA/DP)
used within the first 4-12 weeks of sick leave due to an MSD in a social
insurance setting.

2. Externally validate these models and assess their clinical usefulness in a new
sample separate from the sample used in the development stage.

METHODS

Our study design will be informed by the PROGRESS framework [9] and will be
reported according to the Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) statement for prediction studies [20,21].

Data sources

This study involves analysis of data from three data sources: a cohort study and two
randomised controlled trials (RCTs). All three studies collected 12 months of sick leave
data from participants. We will use all arms of the RCTs (intervention and control
groups). The study protocols and details of these studies have been published
elsewhere [22-24], and detail on study populations is briefly described below and in
Table 1.

Development sample

To develop the models, we will combine data from a prospective cohort study [22] and
an RCT (MI-NAV trial) [25]. The prospective cohort study was carried out from
November 2018 to February 2020, involving workers on sick leave due to MSDs who
were invited to participate through the electronic communication website of the
Norwegian Labour and Welfare Service (NAV). The inclusion criteria were workers
aged 18 to 67 years on sick leave for a minimum of 4 weeks with a diagnosis within
the musculoskeletal (L) chapter of ICPC-2 (International Classification of Primary Care,

Second edition) [26]. Exclusion criteria were insufficient Norwegian or English
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language skills to participate in the study. This study recruited 549 participants with
median age of 50.1 (interquartile range [IQR], 41.9-56.9) years, who had been on sick
leave at a median of 37.8 (IQR, 26.1-80.3) workdays the year prior to the baseline

assessment.

The MI-NAV trial was a multi-arm randomised controlled trial investigating the
effectiveness of adding motivational interviewing or stratified vocational care
intervention to usual care in a sample of workers on sick leave due to MSDs. The
inclusion criteria in this trial were similar to the prospective cohort study: participants
were eligible if they were aged 18-67 years, employed full or part-time, and on sick
leave due to MSDs (L-chapter of ICPC-2) for at least 50% of their contracted work
hours for more than 7 weeks. Exclusion criteria included serious somatic or mental
health disorders, pregnant women, those who were unemployed, freelancers, self-
employed workers and people lacking sufficient Norwegian or English language skills.
This trial consisted of 514 participants, median age 48.8 (IQR, 40.8-55.3) years, who
had been on sick leave at a median of 36.8 (IQR, 29.3-50.0) workdays the year prior
to the baseline assessment. The MI-NAV trial showed a 7-day non-statistically
significant reduction in sickness absence over 6 months for the intervention groups

compared to usual care.

Table 1. Characteristics of the datasets that will be used in this study.

\| Study type County, Diagnosis Follow- Inclusion criteria Linkage to Intended
Country coding up time sickness use of
absence database
registry data
Prospective = 549 @ Prospective | All ICPC-2 12 Sick leave due to Yes Development
cohort cohort counties, months MSD for at least 4
study [22] Norway weeks.
Aged 18-67 years.
MI-NAV 514 | Three-arm Vestfold, ICPC-2 12 Sick leave due to Yes Development
trial [25,27] parallel Norway months MSD for at least 7
RCT weeks (>50 % of
contracted working
hours).
Aged 18-67 years.
MI study 865 | Three-arm Trendelag, ICPC-2 12 Sick leave due to Yes External
[24] parallel Norway months any diagnoses for validation
RCT at least 8 weeks
(>50 % of

contracted working
hours). Aged 18-
60 years.
Abbreviations: ICPC-2, International Classification of Primary Care 2™ version; MI, motivational interviewing; MSD,

musculoskeletal disorders; RCT, randomised controlled trial.
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Validation sample

We will externally validate the models using data from all arms of a second RCT (Ml
study) [24]. This study evaluated the effect of motivational interviewing on return to
work in a social security setting using a parallel group design. Participants aged 18 to
60 who had been on sick leave for more than 8 weeks were recruited through the NAV
system. Individuals who were not employed or pregnant were excluded. This trial
comprised 865 participants, median age 45.0 (IQR, 37.0-52.0) years, who had been
on sick leave at a median of 52.1 (IQR, 40.4-65.6) workdays the previous year. The
results from this trial have not been published yet.

The inclusion criteria for all studies are pragmatic and unrestricted, indicating that they
are likely to be representative of the target population. We plan to use data from all
arms (intervention and control) of the RCTs.

Source population
Our prognostic models will be focused on information collected between the initial 4-
12 weeks of a sick leave spell due to MSDs. As such, participants of each dataset will
be eligible if they at baseline were:
- On sick leave due to a musculoskeletal diagnosis within the musculoskeletal (L)
chapter of ICPC-2 [26].
- On sick leave for at least 50% of their contracted work hours for 4-12
consecutive weeks.

Individuals on sick leave for more than 12 weeks at baseline were excluded.

Setting

All data sources are from a social insurance setting in Norway.

Sickness absence data
Sickness absence days will be measured using registry data from the National Social
Security System Registry where all individuals receiving any form of benefits in Norway
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are registered by their social security number. We will extract sick leave data for each
participant from 12 months before and 12 months after baseline.

In Norway, after 12 months of sick leave, it is possible to apply for long-term medical
benefits: work assessment allowance, and disability pension. Both provide
approximately 66% of the income and can be granted for 20-100% of ordinary working
hours. Disability pension can be combined with part-time work. Therefore, a person
receiving disability pension can also be on part-time sick leave.

In this study, we will calculate days of medical benefits according to a 7-day week for
every month during follow-up. Days on sick leave will be adjusted for part-time sick
leave, work assessment allowance, and disability pension. Any new episode or
increase in disability pension during follow-up will be counted as sick leave.
Furthermore, we will adjust days on sick leave based on the participant’s contracted
working hours. For example, a person who works part-time at 50% and is 100% on
sick leave will have 3.5 calendar days of sick leave during a week.

Start-point (time of prediction)
The start-point, the time of intended prediction, will be within the initial 4-12 weeks of
sick leave due to an MSD.

We chose this time window (within 4-12 weeks) based on two aspects. Firstly, the
majority of workers on sick leave with MSDs will return to work within the first 4 weeks
[5], and we therefore believe that it is not beneficial to screen all individuals within their
first weeks on sick leave. Secondly, it is important not to wait too long with intervention
strategies, as the longer people are away from work the less likely they are to return
[28,29]. This time window is in line with recommendations for when work disability
prevention strategies should be initiated [30-32].

End-points (outcome definitions)
The end-points (outcomes) to be predicted are three binary end-points that
characterise prolonged sickness absence during the follow-up of 12 months:
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1. Over 90 days of work absence during the first sick leave spell, defined as the
number of calendar days during a continuous episode of full-time or part-time
sick leave. Coded as 0 = ’'<90 days’, 1 = '>90 days’.

2. Over 180 days of work absence during the first sick leave spell, defined as the
number of calendar days during a continuous episode of full-time or part-time
sick leave. Coded as 0 =’<180 days’, 1= >180 days’.

3. Any new episode or increase in work assessment allowance (WAA) and/or
disability pension (DP) during follow-up. Coded as 0 = 'no WAA/DP’, 1 = 'new
episode/increase in WAA/DP’.

For end-point 1 and 2, the end of the first sick leave spell will be censored at ‘full
sustainable return to work’ or end of follow-up. We defined ‘full sustainable return to
work’ as having returned to work for 4 weeks or more without benefits [24,33].

We considered a large number of end-points to capture the concept of prolonged
sickness absence since the definition of prolonged or long-term sickness absence
varies in different studies and no consensus exists. End-points predicted by existing
prognostic models were also considered. We regarded a cut-off of 90- and 180-days
to be clinically meaningful. This agrees with a recent report on sick leave in Nordic
countries [5] and previous studies [2,4,34,35]. Furthermore, these end-points are in
line with a recent recommendation for measuring work participation, stating that
absenteeism should include sick leave duration in days [36]. However, since no
consensus exists, we plan to conduct a sensitivity analysis for different end-points (see
“Sensitivity analysis” section).

Identification of candidate prognostic factors

When developing a prognostic model, selection of candidate prognostic factors should
be guided by evidence from the literature and consultations with content experts [37].
The included studies collected candidate predictors based on existing literature and
expert knowledge using sociodemographic and clinical variables. The predictor data
from the cohort and the MI-NAV study are nearly identical, but differ slightly from the
MI study. For model development, we identified those prognostic factors that are
available in all three datasets. Since the aim of our prognostic models is to predict
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prolonged sickness absence with as good accuracy as possible, we included both
modifiable and non-modifiable prognostic factors.

We identified a set of prognostic factors for the model development based on an
iterative approach:

1. We identified candidate predictors of sickness absence from available
literature: The first author (TR) reviewed all available best-evidence synthesis
of systematic reviews [28], systematic reviews [38—43], prognostic model
studies [10-15,17,18,35,44-51], and expert opinions from Delphi-studies
[52,53]. Additional focused searches on PubMed

(https://pubmed.ncbi.nlm.nih.gov) for relevant prognosis studies were also

conducted to identify additional evidence for candidate prognostic factors.

2. Clinical grounds through discussion in a multidisciplinary group: The
candidate prognostic factors from the literature review were shared with the
research group, and through discussion we selected a set of prognostic factors
to be used for model development, restricted to data availability and sample size

calculation (see “Sample size” section).

The prognostic factors that were identified and that will be included in the model are
summarised in Table 2. Because we will use data from randomised controlled trials,
we must consider the extraneous trial effects which can limit the generalisability of the
model validation [54]. Thus, we will model for treatment effect by following the guidance
provided by Pajouheshnia et al. [54]. We will code the intervention predictor as a binary
variable, to avoid overcomplicating the model.

Table 2. Summary of selected prognostic factors for model development with
definition, variable type, unit/categories, measurement method, number of predictor

parameters, and evidence.

Prognostic Definition Variable Unit/categories Measurement No. of Evidence

factor type method predictor
parameters

Expectation Expectation of Continuous 0-10, 10 = best Self-reported [14,17,28,40,5

of RTW probability of using item 2,56-63]
returning to work from OMPSQ-
within 3 months SF [55]

Pain intensity = Pain intensity last Continuous 0-10, 10 = worst Self-reported 1 [17,38,43,52,5
week 3,61-65]
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Depression/
anxiety

Education
level

Age

Previous sick
leave

Disability
pension
status

General
health

Fear-
avoidance

Workability
(job
performance)

Intervention

Self-reported
depression or
anxiety

Completed
education

Age

Days of sick leave

previous year

Receiving work
assessment
allowance or

disability pension

at starting-point
Self-perceived
general health

Fear that
movement or

activity will worsen

the injury

Self-reported

current workability
compared to at its

best

Participant in a
trial arm with an
effective
intervention

Categorical

Binary

Continuous

Continuous

Binary

Continuous

Binary

Continuous

Binary

Recategorized from 5
to 3 categories

0 ‘Lower education:
primary/secondary/voc
ational school’ 1
‘Higher education:
College/University.
Recategorized from 4
to 2 categories

Years

Days

0‘No’ 1 ‘Yes’

0-100

0‘No’ 1 ‘Yes’

0-10, 10=best

0‘No’ 1 ‘Yes’

Last revision 6th February 2023

Self-reported
using item
from EQ5D
[66]
Self-reported

Self-reported

Register data

Register data

Self-reported
using VAS
from EQ5D

[66]

Self-reported
using item
from Keele
STarT MSK
tool [68,69]

Self-reported
using item
from Work
Ability Index

(39]

3

Total 13

[10,28,43,67]

[10,13,14,18,2
8,44,45 52,53,
59]

[4,10,14,17,18
28,38-40,43—
46,52,53,56,5
8-63]
[4,10,17,18,28
45,46,52,53,5
6]
[4,10,17,18,28
45,46,52,53,5
6]

[10,18,40,44,4
5,52,53,61,62]

[39,40,43,53]

[18,35,44,46,5
2,53]

[70]

Abbreviations: EQ5D, Euroqol questionnaire 5-dimensions; OMPSQ-SF, Orebro Musculoskeletal Pain Screening Questionnaire

short form; RTW, return to work; SA, sickness absence; VAS, visual analogue scale.

Exploratory prognostic factors

The review and discussion process also resulted in a list of exploratory prognostic

factors, that are less well-established in the literature but are considered to be

important factors for sickness absence. These prognostic factors will be investigated

to see if the model performance improves by adding one or more of these exploratory

factors to the model. The scope of this exploratory analysis depends on the sample

size calculation and the number of predictor parameters of the full model (see ‘Sample

size’ section). Therefore, this will be investigated outside the planned principal

analysis.
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Sample size

The flow of study participants for both the development sample

sample is presented in Figure 1.

Last revision 6th February 2023

and the validation

Development cohort Validation cohort
MI-NAV cohort MI-NAV ftrial MI trial
Exclude individuals
without MSD
§ 444

Apply initial inclusion Apply initial inclusion Apply initial inclusion

criteria: criteria: criteria:

* Individuals with * Individuals with * Individuals with
sick leave length of sick leave length of sick leave length of
0-12 weeks at 0-12 weeks at 0-12 weeks at
screening time screening time screening time

Participants included Participants included
in analyses in analyses

Figure 1. Flow of participants through study.

Development

The sample size is fixed at 934 participants in the development sample. To adequately
power the regression analysis and potential exploratory analysis, we will follow recent
sample size recommendations by Riley et al. [71,72] using the pmsampsize module in
STATA 16.1 (StataCorp LLC, Texas, USA). This prediction sample size calculator is

also available online: https://riskcalc.org/pmsamplesize/.

In order to include all prognostic factors, corresponding to Table 1 and including 2
parameters for each continuous predictor to account for potential non-linear trends, 19
parameters (P) are needed. We will target an expected shrinkage factor (S) of 0.9, to
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reflect small optimism in predictor effect estimates, as recommended by Riley et al.
[72]. We assume that the models will have a modest Nagelkerke’s R? of 25% which

corresponds to a Cox-Snell R? of 0.185.

- For the first end-point (>90 days), the event rate is 0.403 (416 events of 934),
which gives a minimum required sample size (n) of 826 (with 368 events),
resulting in an event per predictor parameter (EPP) of 19.35.

- For the second end-point (>180 days), the event rate is 0.172 (161 events of
934), which results in a minimum required sample size (n) of 826 (with 143
events) and an EPP of 7.48.

- For the third end-point (WAA/DP), the event rate is 0.108 (101 events of 934),
which gives a minimum required sample size (n) of 826 (with 90 events) and an
EPP of 4.7.

Our fixed sample size exceeds these minimum requirements. Therefore, we expect
our study to be adequately powered which will lead to minimal shrinkage and reliable

results.

External validation

Our validation cohort has a fixed sample size of 336. To ensure unbiased and precise
performance measures (e.g., calibration and discrimination), Collins et al. [73]
recommend that external validation samples have a minimum of 100 events. We will

adhere to this guideline when interpreting the results from the external validation.

Missing data

We plan to perform a complete case analysis if <56% of the participants are excluded
from the regression analyses due to missing data [37]. If >5% are missing, we will use
multiple imputation by chained equations. Multiple imputation was chosen as an
adequate method, as it avoids removing people from the study and is a suitable
technique to deal with missing prognostic factor data [74]. We will create imputed
datasets using the mim module in STATA. To reduce bias and increase the precision
of the imputation, we will include auxiliary variables in the imputation model. Auxiliary

variables are variables within the data that are not included in the analysis but are
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highly correlated to the prognostic variables of interest [75]. To ensure reliable
imputations across the imputed datasets, we will compare observed and imputed
values by visual inspection (tables and plots). Using registry data, we do not expect
missing data on the primary outcome (sickness absence days). Nevertheless, multiple
imputation of the outcome will not be performed.

Statistical analysis methods

Model development

Considering the sample sizes of our data, we will develop the prognostic models based
on the ‘full model approach’ (Figure 2). That is, using the pre-selected prognostic
factors based on literature review and clinical grounds without any being excluded at
a later stage [37]. This approach has several advantages compared to other selection
methods (such as stepwise methods), as it avoids the risk of removing clinically
important prognostic factors, reduces estimation bias and overfitting, and avoids the
selection process to be overly data-driven [37,76,77].

Qutcome:
—»<_ Prognostic model 1 — prolonged work
absence of >90 days
Prognostic factors:
Age
Education level
Sick days last year
Management of DP status Outcome:
prolonged work || Expectation of RTW »<~ Prognostic model 2 N prolonged work
absence due to MSD Pain intensity absence of >180 days
Depression/anxiety
General health
Fear-avoidance
Workability
Intervention
Qutcome:
L Prognostic model 3 new episode or

increase in DP/WAA

Figure 2. Flow diagram of model development. Abbreviations: DP, disability pension;
MSD, musculoskeletal disorder; RTW, return to work; WAA, work assessment

allowance.
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We will use multivariable logistic regression, since this method is recommended when
the outcome is binary, and the independent variables are dichotomous, continuous,
categorical or a combination [20,37]. Continuous variables will be kept continuous and
not categorised to avoid losing prognostic information [78]. Nonlinear transformations
will be checked using multivariable fractional polynomials using STATA package mfp
(or mfmpi for multiple imputation data) [79] or other methods for nonlinear modelling

(e.g., splines or segmented regression).

Model performance

The predictive performance of the apparent model in the development sample will be
assessed using measures of overall performance, calibration, and discrimination.
Overall performance will be assessed using Nagelkerke’s pseudo R?. Calibration will
be examined by plotting (calibration plot) the observed proportions of events against
the predicted risks for groups defined by ranges of individual predicted risks. To
quantify the performance of calibration, the calibration will be described by calibration-
in-the-large (intercept) and calibration slope, with perfect calibration characterised by
an intercept of 0 and a slope of 1 [37]. We will also assess the ratio of Expected to
Observed cases (E/O). To explore the model’s ability to discriminate those at higher
risk of having an event from those at lower risk, c-statistic will be used. The c-statistic
is equivalent to the area under the curve (AUC) statistic from receiver operating
characteristic (ROC) curves. An index measure of 1 indicates perfect discrimination,
whilst 0.5 demonstrates that the discrimination of the model is no better than by chance
alone [37]. A c-statistic of 0.60-0.69 represents poor discrimination, 0.70-0.79 fair,
0.80-0.89 excellent, and 20.90 outstanding discrimination [80].

To decrease the possibility of overfitting the model, the amount of optimism in the
model will be assessed and corrected by internal validation techniques, using
bootstrap re-sampling to estimate the degree of optimism due to overfitting [81]. To
adjust for this overfitting, we will use the bsvalidation module in STATA or similar
commands in STATA or R software. The bootstrap procedure will include all modelling
steps for the assessment of the model’s performance. The model building will be
repeated for 500 bootstrap samples [82,83]. Initially, the difference in bootstrap
performance and test performance will be averaged over the 500 samples. This will
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give a single estimation of the optimism of the model. Finally, this estimate will be
subtracted from the estimates of the apparent model performance.

After the optimism estimate has been subtracted from the model’s performance, a new
calibration plot will be performed to provide a shrinkage factor. This factor will be
applied to all predictor effects in the apparent model to shrink for overfitting. A re-
estimation of the intercept of the model will then be performed [21,37]. After these
adjustments, the final apparent model is complete.

External validation

We will externally validate the models to determine the validity of predictions for
workers on sick leave outside the development sample. We will use data from the Ml
study, which included participants from a different geographical region than the
development sample. Hence, this validation is called external geographic validation.
External geographic validation has been found to have higher generalisability than
internal validation and is essential before a prognostic model can be applied to practice
[37,84].

To assess the extent of transportability or reproducibility, we will estimate the
relatedness between the development and validation samples according to Debray et
al. [85]. This will be performed using two approaches. In the first approach, we will
examine relatedness of the samples by estimating a binary logistic regression model
(membership model), to predict the probability that a participant belongs to the
development sample (“1”) compared with the validation sample (“0”). The independent
variables in this model will include the primary outcome (long-term sickness absence),
age, sex, education level, and all the predictors from the prognostic model. Thereby,
we will assess the discriminative ability of this membership model by quantifying the c-
statistic. Low values (close to 0.5) indicate that the samples are largely the same and
that the case-mix is indistinguishable between the datasets. In the second approach,
we will compare the mean and standard deviation of the linear predictor of the
prognostic model in the development and validation sample. A large difference in the
linear predictor indicates a heterogeneity of the case-mix between the two samples.
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Model performance will be tested in the external validation sample using the predictive
performance statistics calculated as detailed above in the model performance section.
It will be estimated using the model coefficients from the developed models to calculate
the individual risk scores [86]. In addition to these performance measures, we will also
assess the clinical usefulness of the prognostic models by calculating decision-curve
analysis for the model. This will evaluate the ability to make better decisions with a
prognostic model than without, by using a decision-curve analysis that estimates the
net benefit and compares this to decision-making strategies (treat all/treat none)
[82,87].

Sensitivity analysis

We will perform several sensitivity analyses to assess the robustness of the findings
based on our primary analyses. The results of the sensitivity analyses will either be
published in the main paper or as an additional paper.

1. Candidate predictors. To ensure that important predictors are not missed during
the development, we plan to conduct analyses by adding other important
candidate predictors that are only present in the development sample and not
in the validation sample. This is to determine if some of these candidate
predictors improve the accuracy of the models.

2. End-point definitions. Since no consensus on the definition of long-term
sickness absence exists, we will perform sensitivity analysis to explore the
differences in model performance between varying end-points, such as >120
days and >270 days.

3. Sick leave days adjustment. As graded sick leave only applies in some countries
(e.g., Norway and Sweden), we will also conduct sensitivity analyses where we
do not adjust sick leave days for sick leave grading or percentage of contracted
work hours.

4. Full-time absenteeism. Those who are on full-time sick leave have the highest
risk of long-term disability benefits [88]. Therefore, we will undertake sensitivity
analyses to evaluate the models’ predictive ability to predict the end-points (>90
days and >180 days) when we only include full-time absenteeism in the

calculation of these end-points.

Page 16 of 24



Statistical analysis plan Last revision 6th February 2023

5. Predicting a second dialogue meeting. Within week 26 of the sick leave process,
the Norwegian Labour and Welfare Service (NAV) must summon the employee
and the employer to a second dialogue meeting. The purpose of this meeting is
for the parties to review the situation and create a follow-up plan for the
employee’s return to work. Dialogue meetings are legally mandated, and all
parties are required to participate. Today, it is the NAV caseworker’s
assessments that form the basis for the decision on whether to hold a second
dialogue meeting or not. A recent report from NAV [89] has highlighted that
caseworkers use a lot of resources to assess if the second dialogue meeting
should be held or not, and that they find this assessment difficult as the
information base is scarce. Moreover, NAV must already by week 17 decide if
a second dialogue meeting will be necessary, that is, whether the sick employee
will be fit to work again within week 26 or not. Therefore, we will also explore if
our model can be used to predict the risk of still being on sick leave at week 26.

6. Inclusion criteria. Since the duration of sick leave is an important prognosis
factor of prolonged sickness absence [28], a sensitivity analysis will be
performed to evaluate the predictive performance of the prognostic models after
the removal of participants who had been on sick leave for more than 8 weeks
at the start-point.

7. Imputation of missing data. Depending on how we handle missing data (multiple
imputation or complete cases) as described in ‘Missing data’-section, we will
perform a sensitivity analysis to compare the proposed methods.

8. External validation. We also want to evaluate the model's predictive ability in the
entire validation sample, that is, to include participants with all types of sick
leave causes (e.g., mental disorders).

DISCUSSION

This study will provide externally validated prognostic models for risk of prolonged
sickness absence in workers on sick leave due to MSDs. This will be explored using
three different outcomes of prolonged work absenteeism over a 1-year follow-up
[36,90]. The models will be developed using predictors that are selected on the
grounds of the best available evidence and clinical acceptability, which ensures that
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the model development is based on existing evidence of importance and validity. This
approach (‘full-model approach’) will also minimise the potential overfitting of the new
models [37,76]. To our knowledge, this study will also be the first to assess the clinical
usefulness of a prognostic model for predicting prolonged sickness absence. If the
models show good predictive performance, we plan to create an online risk calculator
that provides risk individual estimates, which automates the complex modelling
methods using an interactive graphical interface. Essentially, before we develop a web-
based risk calculator, we will consider issues regarding privacy and data storage, as
well as transparent reporting of model equations and possible model changes over
time [91].
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