

The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas

A Pilot Test of t:slim X2 with Control-IQ Technology

Version 1.0
October 16, 2017

Protocol Chair

Participating Institutions

Coordinating Center
University of Virginia, Charlottesville, VA

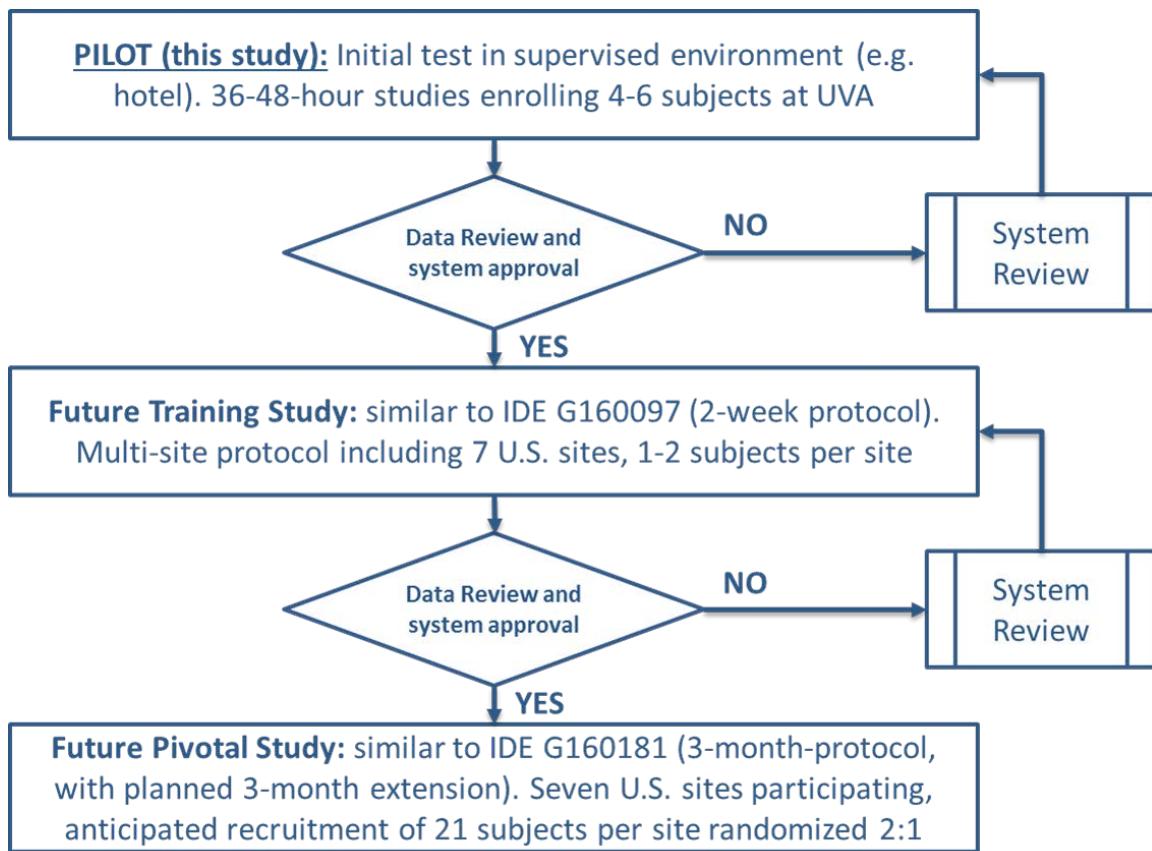
44	TABLE OF CONTENTS	
45		
46	CHAPTER 1: INTRODUCTION	5
47	1.1. Background and Rationale	5
48	1.2. Synopsis of Study Protocol	7
49	1.2.1. Study Objective	7
50	1.2.2. Major Eligibility Criteria	7
51	1.2.3. Sample Size	7
52	1.2.4. Protocol Summary	7
53	1.2.5. Outcomes	8
54	1.3. General Considerations	8
55	CHAPTER 2: VISIT 1: SUBJECT SCREENING AND ENROLLMENT	18
56	2.1. Study Population	18
57	2.2. Eligibility and Exclusion Criteria	18
58	2.2.1. Eligibility	18
59	2.2.2. Exclusion	18
60	2.3. Authorization Procedures	19
61	2.4. Screening and Enrollment Visit Logistics	19
62	2.4.1. Data Collection and Testing	19
63	CHAPTER 3: VISIT 2: 36-48-HOUR SUPERVISED STUDY	21
64	3.1. Timing	21
65	3.2. Procedures upon Arrival to the Study Site	21
66	3.3. Study Device Initiation and Training	21
67	3.4. Procedures during Study	22
68	3.5. Procedures for Monitoring	22
69	3.6. Qualifications and Role of the Staff	23
70	3.7. Visit 3: Follow-up Visit	23
71	CHAPTER 4: SAFETY MEASURES	24
72	4.1. Safety Measures	24
73	4.1.1. CGM Calibration	24
74	4.1.2. Insulin Dosing	24
75	4.1.3. Hypoglycemia Safety Protocol	24
76	4.1.4. Hyperglycemia Safety Protocol	24
77	4.1.5. Study Data Monitoring	25
78	4.1.6. CGM Sensor Connection Failure	25
79	4.1.7. Control-IQ Connection Failure	25
80	4.1.8. Study System Failure	25
81	CHAPTER 5: ADVERSE EVENTS, DEVICE ISSUES, POTENTIAL RISKS, AND STOPPING RULES	26
82	5.1. Adverse Event Definition	26
83	5.2. Recording of Adverse Events	26
84	5.3. Reporting Serious Adverse Events or Unexpected Adverse Device Effects	27
85	5.4. Device Issues	28
86	5.5. Medical Monitor	28
87	5.6. Potential Risks and Side Effects	28
88	5.6.1. Fingerstick Risks	28
89	5.6.2. Subcutaneous Catheter Risks (CGM)	28
90	5.6.3. Risk of Hypoglycemia	28

92	5.6.4 Risk of Hyperglycemia	29
93	5.6.5 Risk of Device Reuse.....	29
94	5.6.6 Questionnaire	29
95	5.6.7 Other Risks	29
96	5.7 Risk Assessment	30
97	5.8 Study Stopping Criteria	30
98	5.8.1 Criteria for Individual Subjects.....	30
99	5.8.2 Criteria for Suspending/Stopping Overall Study	30
100	CHAPTER 6: MISCELLANEOUS CONSIDERATIONS.....	31
101	6.1 Benefits	31
102	6.2 Subject Compensation	31
103	6.3 Subject Withdrawal.....	31
104	6.4 Confidentiality	31
105	CHAPTER 7: STATISTICAL CONSIDERATIONS.....	31
106	CHAPTER 8: DATA COLLECTION AND MONITORING.....	32
107	8.1 Case Report Forms and Device Data	32
108	8.2 Document Storage and Retention	32
109	BIBLIOGRAPHY.....	33
110		

TABLE OF ACRONYMS

Acronym	Abbreviation For
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
NIH	National Institutes of Health
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
SAP	Sensor-Augmented Pump
SD	Standard Deviation
TDD	Total Daily Dose
UI	User Interface
UVA	University of Virginia

CHAPTER 1: INTRODUCTION


1.1. Background and Rationale

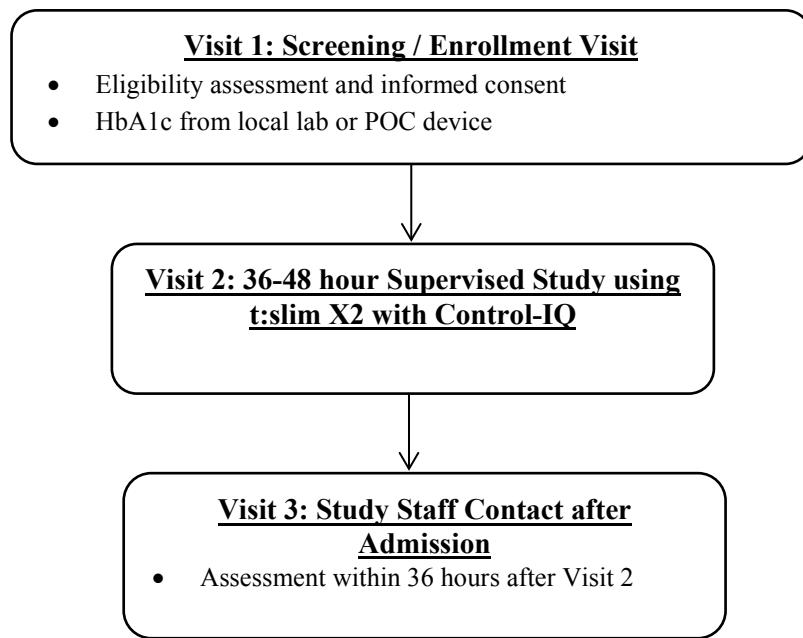
The Tandem X2 insulin pump with Control-IQ Technology is a third-generation closed-loop control (CLC) system retaining the same control algorithm that was initially tested by UVA's DiAs system and then implemented in the inControl system. DiAs is described in 13 IDEs (see IDEs 1-12 and 14 in the list below) and inControl is described in IDEs G160097, G160181, G150240, G140169/S010. For complete algorithmic and clinical background, we refer to these IDEs and to a number of scientific publications that describe glycemic control outcomes and clinical impressions from the use of these systems (see list of 25 peer-reviewed papers and scientific presentations under Bibliography). Overall, this control algorithm has been implemented in two mobile platforms (DiAs and inControl) and has been tested in 30 clinical trials by 450 adults and children with type 1 diabetes for over 280,000 hours of use to date in the U.S. and overseas.

As described in the Background, this project is a result from a sequence of clinical trials that have tested extensively the control system in over 280,000 hours of outpatient human use and in several centers in the U.S. and overseas. The following 16 IDEs reflect this progress:

1. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate monitoring as an exercise marker, approved 10/08/2011;
2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
5. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in adolescents; 6/19/2013;
6. IDE# G130142: Closed loop control in adolescents using heart rate as exercise indicator; 7/16/13;
7. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of type 1 diabetes; 7/19/2013;
8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor augmented pump therapy overnight in type 1 diabetes; 5/14/2014;
10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night in-home use; 6/6/2014;
11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes; 10/3/2014.
12. IDE #G150221: Reducing risks and improving glucose control during extended exercise in youth with T1DM: The AP Ski Camp; 11/09/2015;
13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24 hr closed loop control; 11/12/2015;
14. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform; 03/29/2016;
15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.
16. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The International Diabetes Closed Loop (iDCL) Trial; 09/21/16

We further reference pre-submission Q170885 and our discussion with FDA on July 18, 2017 regarding the structure of studies intended to test inControl implemented on t:slim X2. Based on the input provided by the Agency, we defined a series of three studies leading to a future pivotal trial of this system. The flowchart of these studies is included in Figure 1:

161
162 **Figure 1:** Sequence of planned studies leading to a future pivotal trial of the Tandem X2 insulin
163 pump with Control-IQ Technology. Each study will have a separate IDE submission
164


165 **Closed-Loop Control System**

166 The Closed-Loop Control System contained in t:slim X2 with Control-IQ Technology is described
167 in Master File MAF-2032/A003. Control-IQ Technology is derived from inControl previously
168 described in IDE# G160097, G160181, G150240 and G140169/S010. The CLC is an “artificial
169 pancreas” (AP) application that uses advanced closed loop control algorithms to automatically
170 manage blood glucose levels for people with Type 1 Diabetes. The system modulates insulin to keep
171 blood glucose in a targeted range. The system components include the t:slim X2 with Control-IQ
172 Technology and the Dexcom CGM G6 (Figure 2).

173 **Figure 2: t:slim X2 with Control-IQ and Dexcom G6 system**

174 1.2. **Synopsis of Study Protocol**
175 1.2.1. **Study Objective**
176 The objective of the study is for clinical staff to gain experience using the proposed artificial
177 pancreas system named t:slim X2 with Control-IQ Technology and assess usability in a supervised
178 setting prior to initiating home use in a Training protocol (IDE submission pending).
179
180 1.2.2. **Major Eligibility Criteria**
181 • Clinical diagnosis of type 1 diabetes, treated with insulin for at least 1 year
182 • Use of an insulin infusion pump for at least 6 months
183 • Age 18 to <75 years old
184 • Hemoglobin A1c <10.5%
185 • Currently using no insulins other than one of the following rapid-acting insulins at the time
186 of enrollment: insulin lispro (Humalog), insulin aspart (Novolog), or insulin glulisine
187 (Apidra). Willingness to switch to lispro (Humalog) or aspart (Novolog) if using glulisine
188 (Apidra).
189 • No more than one episode of diabetic ketoacidosis (DKA) or severe hypoglycemia
190 involving a seizure or loss of consciousness in the 6 months prior to enrollment
191 • Total daily insulin dose at least 10 units/day and ≤ 100 U/day
192
193 1.2.3. **Sample Size**
194 This protocol will be conducted at the University of Virginia only and may enroll up to 20 total
195 subjects with the goal that at least 4 subjects will complete the entire study. .
196
197 1.2.4. **Protocol Summary**
198 Subject participation will last approximately 36-48 hours in a supervised setting using the study
199 CGM and study pump as detailed in Figure 3 below.

200

Figure 3: Enrollment Flow Diagram

201 1.2.5. **Outcomes**

202 The primary outcome is a qualitative assessment of the system's suitability for use in an in-home
203 clinical trial based on the results of the Technology Acceptance questionnaire and feedback from
204 clinical staff.

205

206 Descriptive analyses for secondary safety and efficacy measures will be tabulated for each subject
207 as described in CHAPTER 7: STATISTICAL CONSIDERATIONS.

208

209 1.3. **General Considerations**

210 The study is being conducted in compliance with the policies described in the study policies
211 document, with the ethical principles that have their origin in the Declaration of Helsinki, with the
212 protocol described herein, and with the standards of Good Clinical Practice.

213 Data will be directly collected in electronic case report forms, which will be considered the source
214 data.

215 There is no restriction on the number of subjects to be enrolled by each site towards the overall
216 recruitment goal.

217 The protocol is considered a significant risk device study, due to the fact that the closed-loop
218 system is experimental. Therefore, an IDE from the FDA is required to conduct the study.

219 **CHAPTER 2: VISIT 1: SUBJECT SCREENING AND ENROLLMENT**

220

221 **2.1. Study Population**

222 This protocol will be conducted at the University of Virginia only and may enroll up to 20 total
223 subjects with the goal that at least 4 subjects will complete the entire study. The number of
224 subjects is a convenience sample not based on statistical principles.

225

226 **2.2. Eligibility and Exclusion Criteria**

227 **2.2.1. Eligibility**

228 To be eligible for the study, a subject must meet the following criteria:

- 229 1) Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year
230 and using insulin for at least 1 year
- 231 2) Use of an insulin pump for at least 6 months with established parameters for basal rate(s),
232 carbohydrate ratio(s) and insulin sensitivity factor(s) for at least 3 months.
- 233 3) Age 18.0 to <75.0 years
- 234 4) Hemoglobin A1c <10.5%
- 235 5) For females, not currently known to be pregnant

236 *If female and sexually active, must agree to use a form of contraception to prevent pregnancy
237 while a subject in the study. A negative serum or urine pregnancy test will be required for
238 all premenopausal women who are not surgically sterile. Subjects who become pregnant will
239 be discontinued from the study. Also, subjects who during the study develop and express the
240 intention to become pregnant within the timespan of the study will be discontinued.*
- 241 6) Willingness to suspend use of any personal CGM for the duration of the clinical trial once the
242 study CGM is in use
- 243 7) Investigator has confidence that the subject can successfully operate all study devices and is
244 capable of adhering to the protocol
- 245 8) Currently using no insulins other than one of the following rapid-acting insulins at the time
246 of enrollment: insulin lispro (Humalog), insulin aspart (Novolog), or insulin glulisine
247 (Apidra). Willingness to switch to lispro (Humalog) or aspart (Novolog) if using glulisine
248 (Apidra).
- 249 9) Total daily insulin dose (TDD) at least 10 U/day and ≤100 U/day
- 250 10) Weight at least 25 kg and not greater than 140 kg

251

252 **2.2.2. Exclusion**

253 The presence of any of the following is an exclusion for the study:

- 254 1) More than one episode of diabetic ketoacidosis (DKA) in the 6 months prior to enrollment
- 255 2) More than one episode of severe hypoglycemia involving seizure or loss of consciousness in
256 the 6 months prior to enrollment
- 257 3) Concurrent use of any non-insulin glucose-lowering agent (including GLP-1 agonists,
258 Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas and naturaceuticals).
- 259 4) Hemophilia or any other bleeding disorder
- 260 5) A condition, which in the opinion of the investigator or designee, would put the subject or
261 study at risk
- 262 6) Participation in another pharmaceutical or device trial at the time of enrollment or during the
263 study

264 7) Employed by, or having immediate family members employed by Tandem Diabetes Care,
265 Inc. or TypeZero Technologies, LLC, or having a direct supervisor at place of employment
266 who is also directly involved in conducting the clinical trial (as a study investigator,
267 coordinator, etc.); or having a first-degree relative who is directly involved in conducting the
268 clinical trial
269

270 **2.3. Authorization Procedures**

271 Written informed consent must be obtained prior to performing any study specific procedures
272 with the subject that are not part of the subject's routine care.

273 For eligible subjects, the study will be discussed with the subject and the subject will be provided
274 with an Informed Consent Form to read and will be given the opportunity to ask questions. If the
275 subject agrees to participate, the Informed Consent Form will be signed. A copy of the consent
276 form will be provided to the subject.

277 **2.4. Screening and Enrollment Visit Logistics**

278 Potential subjects will be evaluated for study eligibility through the elicitation of a medical
279 history, performance of a physical examination by study personnel and local laboratory testing if
280 needed to screen for exclusionary medical conditions. Subject exclusion will be at the discretion
281 of the investigator based on study inclusion/exclusion criteria.

282 Subjects who do not initially meet study eligibility requirements may be rescreened once at later
283 date per investigator discretion.

284 **2.4.1. Data Collection and Testing**

285 A standard physical exam (including vital signs, height and weight measurements) will be
286 performed by the study investigator or designee (a physician, fellow, nurse practitioner or a
287 physician assistant).

288 The following procedures will be performed/data collected/eligibility criteria checked and
289 documented:

- 290 • Subject fully informed about the study and informed consent form signed according to IRB
291 requirements
- 292 • Inclusion and exclusion criteria assessed
- 293 • Demographics (date of birth, gender, race and ethnicity)
- 294 • Contact information
- 295 • Diabetic history
- 296 • Medical history
- 297 • Substance use history (drinking, smoking, and drug habits)
- 298 • Concomitant medications
- 299 • Physical examination to include:
 - 300 ○ Weight, height
 - 301 ○ Vital signs including measurement of temperature, blood pressure and pulse
- 302 • HbA1c level measured using the DCA2000 or comparable point of care device or local lab
303 (used to assess eligibility)
 - 304 ○ Measurement must be made within two weeks prior to enrollment

310 ○ Measurement performed as part of usual clinical care prior to obtaining informed
311 consent for participation in the trial may be used
312 ● Urine or serum pregnancy test for all premenopausal women who are not surgically sterile
313
314 Screening procedures will last approximately 1-2 hours.
315

316

317

318 **3.1. Timing**

319 Visit 2 may immediately follow Visit 1. The visit will last approximately 36-48 hours and
320 encompass two overnight periods. This visit will occur in an outpatient transitional setting such as
321 a local hotel. Below is the name and address of one possible location. This hotel is 3.3 miles from
322 the UVa Emergency Department.

323

324 Hyatt Place Charlottesville
325 The Shops at Stonefield
326 2100 Bond Street
327 Charlottesville, VA 22901

328

329 **3.2. Procedures upon Arrival to the Study Site**

330 The subjects will be assessed with vital signs. Subjects will not be allowed to initiate the study in
331 the presence of fever or other significant illness within 24-hours of admission. A fingerstick BG
332 and fingerstick ketone measurement will be performed and Glycemic Guidelines followed
333 (Appendix A-11). Female subjects of childbearing potential will perform a urine pregnancy test.
334 If positive, the subject will discontinue study participation. The subject will be asked to seek
335 confirmation of the test and the appropriate medical care.

336

337

338 **3.3. Study Device Initiation and Training**

339 Subjects will receive study system training by a qualified trainer. The study system includes the
340 Tandem t:slim X2 with Control-IQ technology and associated Dexcom G6 CGM.
341

342 Study Pump and CGM training will include:

- 343 • The subject will be fully instructed on the study insulin pump. A qualified staff
344 member will conduct the training and in particular discuss differences from their home
345 pump in important aspects such as calculation of insulin on board and correction
346 boluses. Additional topics not limited to but may include: infusion site initiation,
347 cartridge/priming procedures, setting up the pump, charging the pump, navigation
348 through menus, bolus procedures including stopping a bolus, etc.
- 349 • The study team will assist the subject in study pump infusion site initiation and will
350 start the subject on the study pump. The study pump will be programmed with the
351 subject's usual basal rates and pump parameters. The subject's personal pump will be
352 removed.
- 353 • The subject will be encouraged to review the literature provided with the pump and
354 infusion sets after the training is completed.
- 355 • The subject will learn how to calibrate the CGM unit during the study.
- 356 • The subject will learn how to access the CGM trace via the t:slim X2 with Control-IQ
357 user interface.
- 358 • Subjects will be asked to perform fingerstick blood glucose measurements in
359 accordance with the labeling of the study CGM device.

360

361 Pump training specific to the Control-IQ Technology functions will include:

362 • How to turn on and off Control-IQ technology.
363 • How to understand when Control-IQ is increasing or decreasing basal rates.
364 • How to administer a meal or correction bolus on the t:slim X2 with Control-IQ system
365 • What to do when exercising while using the system.
366 • How to enable the sleep function and set the sleep schedule.
367 • The subject will be assessed for understanding of the system interface and how to react to
368 safety/alert messages.
369 • The subject will be given a User Guide as a reference.
370

371 Blood glucose testing

372 • All study blood glucose meters will be QC tested with at least two different
373 concentrations of control solution if available at the start of the admission. A tested
374 meter will not be used in a study if it does not read within the target range at each
375 concentration per manufacturer labeling.
376 • Subjects will be reminded to use the study blood glucose meter for all fingerstick BGs
377 during the study.

378 Blood ketone testing

379 • All study blood ketone meters will be QC tested with at least two different concentrations
380 of control solution if available at the start of the admission. A tested meter will not be
381 used in a study if it does not read within the target range at each concentration per
382 manufacturer labeling
383 • Subjects will be instructed to perform blood ketone testing as described in Appendix A-
384 11 or Section 4.1.4 **Hyperglycemia Safety Protocol**.

385 **3.4. Procedures during Study**

386 Study subjects will have restaurant meals and offered any snacks per their usual routine. Subjects
387 will participate in supervised exercise per their usual routine (e.g. walking 30-45 minutes).
388 Subjects will simulate an infusion site change and a sensor change during the study.

389 **3.5. Procedures for Monitoring**

390 Subjects will be asked to perform fingersticks prior to meals and any user-initiated correction
391 boluses. Subjects will be asked to perform a fingerstick in the event of a Control-IQ Low Alert or
392 Control-IQ High Alert. Glycemic Guidelines (Appendix A-11) will be followed during the
393 admission.

394 CGM will be recorded from the study system by the study staff at least every 2 hours during the
395 day and every 3 hours at night.

396 Bolus history will be recorded from the study system by the study staff at least every 2 hours
397 during the day and every 3 hours at night.

398 Subjects will be instructed to notify staff of any alerts/alarms received.

399

407 **3.6 Qualifications and Role of the Staff**

408 There will be at least two study staff present at all times at the study site, at least one of whom
409 will be clinical staff (e.g. nurse, physician, nurse practitioner). There will be a physician
410 available either on-site or nearby off-site at all times. Glucagon for the emergency treatment of
411 hypoglycemia will be available on-site.

412

413 **3.7 Visit 3: Follow-up Visit**

414 Subjects will be contacted by study staff within 36 hours of discharge to assess for any adverse
415 events, significant hypoglycemia or significant hyperglycemia.

416

CHAPTER 4: SAFETY MEASURES

417

418 4.1 Safety Measures

419

420 4.1.1 CGM Calibration

421 Throughout the study, subjects will be instructed to calibrate the study CGM in accordance with
422 manufacturer labelling.

423

424 4.1.2 Insulin Dosing

425 When Control-IQ is turned on, subjects are expected to input carbohydrates in order to bolus for a
426 meal and may also administer correction boluses if desired. In case of a system crash or any
427 interruption of communication between t:slim X2 with Control-IQ and the CGM, the pump will
428 revert to open-loop basal delivery within a short period of time. The system has a Max Insulin
429 Alert that is triggered when the 2-hour insulin delivery has administered 50% of the Total Daily
430 Insulin (TDI). No further insulin will be delivered until this condition is no longer present.

431

432 4.1.3 Hypoglycemia Safety Protocol

433 All subjects will be required to set the CGM hypoglycemia threshold alarm to a value no less than
434 60 mg/dL.

435

436 The t:slim X2 with Control-IQ system will issue a hypoglycemia alarm (Control-IQ Low Alert)
437 if the CGM is <70 mg/dL or when the system predicts BG <70 mg/dL within the next 15-30
438 minutes when exercise is not activated.

439

440 If the subject receives a hypoglycemia alarm from t:slim X2 with Control-IQ, a message
441 appears on the UI that is accompanied by vibration followed by vibrations and/or sound if not
442 acknowledged by the user in 5 minutes. This alert remains on the screen until acknowledged
443 by the user. The user is prompted to test blood sugar and treat with carbs.

444

445 4.1.4 Hyperglycemia Safety Protocol

446 Subjects will be required to set the CGM hyperglycemia threshold alarm to a value no greater than
447 300 mg/dL.

448

449 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alarm (Control-
450 IQ High Alert) if the system detects prolonged resistance to insulin treatment and the BG is
451 estimated to be above 200 mg/dL.

452

453 If the subject receives a hyperglycemia alarm from t:slim X2 with Control-IQ, a message
454 appears on the UI that is accompanied by vibration followed by vibrations and/or sound if not
455 acknowledged by the user in 5 minutes. This alert remains on the screen until acknowledged
456 by the user. The user is prompted to check the site for occlusion and test blood glucose.

457

458 If a subject's CGM reading is ≥ 300 mg/dL for over 1 hour, or ≥ 400 mg/dL at any point, the
459 following steps will be taken:

460

- Perform a blood glucose meter check.
- If the blood glucose is >300 mg/dL, check for blood ketones with the study ketone meter.

462 • If the ketone level is >0.6 mmol/L, study staff will assist subject in taking correction
463 insulin or changing the pump infusion set.
464 • If a subject administers correction insulin via insulin syringe, subjects will be instructed to
465 turn Control-IQ off for a few hours and can be restarted per study physician evaluation
466 within 4 hours.

467

468 **4.1.5 Study Data Monitoring**

469 Study staff will download the t:slim X2 at the completion of the admission. These data will be
470 reviewed by the study team. The study pumps following completion of an admission will be sent
471 to Tandem for further analysis of pump function.

472

473 **4.1.6 CGM Sensor Connection Failure**

474 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
475 closed loop will not operate to automatically adjust insulin. If the CGM is not connected, the
476 system will revert to usual function of the pump and deliver insulin with the insulin dosing
477 parameters programmed in the system for that individual. Resumption of Closed-Loop will resume
478 automatically once CGM signal is available again.

479

480 **4.1.7 Control-IQ Connection Failure**

481 If the study system is unable to activate Control-IQ for any reason, the pump will automatically
482 revert to preprogrammed basal insulin delivery without any need for instruction from the user.

483

484 **4.1.8 Study System Failure**

485 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
486 Alarm will display and the subject will be instructed to contact Tandem Technical Support and the
487 study team.

488 **CHAPTER 5: ADVERSE EVENTS, DEVICE ISSUES, POTENTIAL RISKS, AND**
489 **STOPPING RULES**

490 **5.1 Adverse Event Definition**

491 A reportable adverse event for this protocol includes any untoward medical occurrence that meets
492 criteria for a serious adverse event or any unanticipated medical occurrence in a study subject that
493 is study- or device-related, including severe hypoglycemia as defined below and severe
494 hyperglycemia/diabetic ketoacidosis (DKA) as defined below. Skin reactions from sensor
495 placement are only reportable if severe and/or required treatment.

496
497 Hypoglycemic events are recorded as Adverse Events (severe hypoglycemic event) if the event
498 required assistance of another person due to altered consciousness, and required another person to
499 actively administer carbohydrate, glucagon, or other resuscitative actions. This means that the
500 subject was impaired cognitively to the point that he/she was unable to treat himself/herself, was
501 unable to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced
502 seizure or coma. These episodes may be associated with sufficient neuroglycopenia to induce
503 seizure or coma. If plasma glucose measurements are not available during such an event,
504 neurological recovery attributable to the restoration of plasma glucose to normal is considered
505 sufficient evidence that the event was induced by a low plasma glucose concentration.

506
507 Hyperglycemic events are recorded as Adverse Events (severe hyperglycemic event) if the event
508 involved DKA, as defined by the Diabetes Control and Complications Trial (DCCT) and
509 described below, or in the absence of DKA if evaluation or treatment was obtained at a health care
510 provider facility for an acute event involving hyperglycemia or ketosis.

511
512 Hyperglycemic events are classified as DKA if the following are present:

- 513 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
- 514 • Serum ketones >1.5 mmol/L or large/moderate urine ketones;
- 515 • Either arterial blood pH <7.30 or venous pH <7.24 or serum bicarbonate <15 ; and
- 516 • Treatment provided in a health care facility

517
518 **5.2 Recording of Adverse Events**

519 Throughout the course of the study, all efforts will be made to remain alert to possible adverse
520 events or untoward findings. The first concern will be the safety of the study subject, and
521 appropriate medical intervention will be made.

522
523 All reportable adverse events whether volunteered by the subject, discovered by study personnel
524 during questioning, or detected through physical examination, laboratory test, or other means will
525 be reported on an adverse event form online. Each adverse event form is reviewed by the Medical
526 Monitor to verify the coding and the reporting that is required.

527
528 The study investigator will assess the relationship of any adverse event to be related or unrelated
529 by determining if there is a reasonable possibility that the adverse event may have been caused by
530 the study intervention.

531
532 To ensure consistency of adverse event causality assessments, investigators should apply the
533 following general guideline when determining whether an adverse event is related:

535 **Yes**

536 There is a plausible temporal relationship between the onset of the adverse event and the study
537 intervention, and the adverse event cannot be readily explained by the subject's clinical state,
538 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of
539 response to the study intervention; and/or the adverse event abates or resolves upon
540 discontinuation of the study intervention or dose reduction and, if applicable, reappears upon re-
541 challenge.

542 **No**

544 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
545 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
546 medication); and/or the adverse event has no plausible temporal relationship to study intervention.

548 The intensity of adverse events will be rated on a three-point scale: (1) mild, (2) moderate, or (3)
549 severe. It is emphasized that the term severe is a measure of intensity: thus, a severe adverse event
550 is not necessarily serious. For example, itching for several days may be rated as severe, but may
551 not be clinically serious.

552 Adverse events will be coded using the MedDRA dictionary.

555 Adverse events that continue after the study subject's discontinuation or completion of the study
556 will be followed until their medical outcome is determined or until no further change in the
557 condition is expected.

558 **5.3 Reporting Serious Adverse Events or Unexpected Adverse Device Effects**

559 A serious adverse event is any untoward occurrence that:

- 561 • Results in death.
- 562 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might
563 have become life-threatening, is not necessarily considered a serious adverse event).
- 564 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 565 • Results in persistent or significant disability/incapacity or substantial disruption of the
566 ability to conduct normal life functions (sight threatening).
- 567 • Is a congenital anomaly or birth defect.
- 568 • Is considered a significant medical event by the investigator based on medical judgment
569 (e.g., may jeopardize the subject or may require medical/surgical intervention to prevent
570 one of the outcomes listed above).

571 An Unanticipated Adverse Device Effect is defined as any serious adverse effect on health or
572 safety or any life-threatening problem or death caused by, or associated with, a device, if that
573 effect, problem, or death was not previously identified in nature, severity, or degree of incidence
574 in the investigational plan or application (including a supplementary plan or application), or any
575 other unanticipated serious problem associated with a device that relates to the rights, safety, or
576 welfare of subjects (21 CFR 812.3(s)).

579 Serious or unexpected related adverse events will be reported to the local IRB's online adverse
580 event website.

581

582 The principal investigator is responsible for reporting serious study-related adverse events and
583 abiding by any other reporting requirements specific to the local Institutional Review Board.

584

585 **5.4 Device Issues**

586 Device malfunctions (failure of device to perform as intended) will be reported to the
587 manufacturer, irrespective of whether associated with an adverse event. However, CGM sensors
588 lasting fewer than 10 days and tape adherence issues will not be reported unless associated with an
589 adverse event. Additionally, t:slim X2 with Control-IQ component disconnections will not be
590 reported unless associated with an adverse event.

591

592 **5.5 Medical Monitor**

593 The Medical Monitor will be informed of all serious adverse events and any unanticipated adverse
594 device events that occur during the study.

595

596 **5.6 Potential Risks and Side Effects**

597 Loss of confidentiality is a potential risk; however, data are handled to minimize this risk.
598 Hyperglycemia and ketone formation are always a risk in subjects with type 1 diabetes and
599 subjects will be closely monitored for this. When wearing sensors and insulin infusion sets there
600 is always a risk of skin rashes, allergic reactions to the tape, or infections at the insertion site.
601 There is always a risk for a small piece of a sensor remaining under the skin or a sensor or infusion
602 set breaking off under the skin.

603

604 **5.6.1 Fingerstick Risks**

605 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
606 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital
607 laboratory tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of
608 bleeding under the skin will produce a bruise. A small scar may persist for several weeks. The
609 risk of local infection is less than 1 in 1000. This should not be a significant contributor to risks in
610 this study as fingersticks are part of the usual care for people with diabetes.

611

612 **5.6.2 Subcutaneous Catheter Risks (CGM)**

613 Subjects using the CGM will be at low risk for developing a local skin infection at the site of the
614 sensor needle placement. If a catheter is left under the skin for more than 24 hours it is possible to
615 get an infection where it goes into the skin, with swelling, redness and pain. There may be
616 bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10 risk).

617

618 Study staff should verbally alert the subject that on rare occasions, the CGM may break and leave a
619 small portion of the sensor under the skin that may cause redness, swelling or pain at the insertion
620 site. The subject should be further instructed to notify the study coordinator immediately if this
621 occurs.

622

623 **5.6.3 Risk of Hypoglycemia**

624 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
625 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
626 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating,

627 jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or seizures
628 (convulsions) and that for a few days the subject may not be as aware of symptoms of
629 hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values could
630 lead to inappropriate insulin delivery.

631

632 **5.6.4 Risk of Hyperglycemia**

633 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
634 extended period or if the pump or infusion set is not working properly. A CGM functioning
635 poorly and significantly under-reading glucose values could lead to inappropriate suspension of
636 insulin delivery.

637

638 **5.6.5 Risk of Device Reuse**

639 The study CGM system is intended for single use only. The sensor (the component of the system
640 that enters the skin) will be single use only. The transmitter and receiver may be reused during the
641 study after cleaning the device using a hospital-approved cleaning procedure. The transmitter is
642 attached to the sensor but does not enter the skin and the receiver is a hand held device. Subjects
643 will be informed that FDA or relevant national authorities have approved these devices for single
644 use and that by using them among multiple patients, bloodborne pathogens (i.e. Hepatitis B) may
645 be spread through the use of multiple users.

646

647 The study insulin pump is intended for single-patient use. During the study, this device may be
648 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
649 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)
650 Subjects will be informed that FDA or relevant national authorities typically approves insulin
651 pump devices for single use and that by using them among multiple patients, bloodborne
652 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

653

654 The study blood glucose meter and blood ketone meter are labeled for single-patient use. During
655 the study, only one person can use each device as there are rare risks that bloodborne pathogens
656 (i.e. Hepatitis B) may be spread through the use of multiple users.

657

658 **5.6.6 Questionnaire**

659 As part of the study, subjects will complete a Technology Acceptance Questionnaire which
660 includes questions about their private attitudes, feelings and behavior related to t:slim X2 with
661 Control-IQ. It is possible that some people may find these questionnaires to be mildly upsetting.
662 Similar questionnaires have been used in previous research and these types of reactions have been
663 uncommon.

664

665 **5.6.7 Other Risks**

666 Some subjects may develop skin irritation or allergic reactions to the adhesives used to secure the
667 CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion. If
668 these reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm,
669 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
670 medication may be required.

671

672 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion
673 sites are inserted under the skin. It is possible that any part that is inserted under the skin may
674 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or

675 topical antibiotics can be used. The risk of skin problems could be greater if you use a sensor for
676 longer than it is supposed to be used. Therefore, subjects will be carefully instructed about proper
677 use of the sensor.

678 Data downloaded from the CGM, pump, and the home glucose and ketone meter will be collected
679 for the study as measures of diabetes self-management behaviors. Some people may be
680 uncomfortable with the researchers' having such detailed information about their daily diabetes
681 habits.

682 **5.7 Risk Assessment**

683 Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia and
684 hyperglycemia frequently as a consequence of the disease and its management, (2) the study
685 intervention involves periodic automated insulin dosing that may increase the likelihood of
686 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
687 likelihood of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies
688 using similar investigational device system in the home setting, that limit the likelihood of
689 excessive insulin dosing or prolonged withdrawal of insulin, and (4) rapid reversal of
690 hypoglycemia and hyperglycemia can be achieved, it is the assessment of the investigators that
691 this protocol falls under DHHS 46.405 which is a minor increase over minimal risk. In addition, it
692 is the belief of the investigators that this study also presents prospect of direct benefit to the
693 subjects and general benefit to others with diabetes.

694 **5.8 Study Stopping Criteria**

695 **5.8.1 Criteria for Individual Subjects**

696 Rules for stopping the study for an individual subject are as follows:

- 701 1. System or controller malfunctions that impose on the safety of the subject, unless the
702 problem can be clearly identified and the system definitively repaired
- 703 2. Severe hypoglycemia or hyperglycemia/DKA (not associated with infusion set failure) as
704 defined in Section 5.1
- 705 3. The subject requests that the treatment be stopped
- 706 4. Subject pregnancy

707 **5.8.2 Criteria for Suspending/Stopping Overall Study**

708 In case of a system malfunction resulting in a severe hypoglycemia or severe hyperglycemia event
709 (as defined in Section 5.1) that is thought to be device-related (either due to excess insulin
710 administration or suspension due to system malfunction) and occurs more than one time, the
711 overall study will be suspended while the problem is diagnosed. In addition, the study could be
712 suspended if the manufacturer of any constituent study device requires stoppage of device use for
713 safety reasons (e.g. product recall). The study may resume if the underlying problem can be
714 corrected by a protocol or system modification that will not invalidate the results obtained prior to
715 suspension.

716 As stated in section 5.5, the medical monitor will be informed of all serious adverse events and
717 any unanticipated adverse device events that occur during the study. The medical monitor will
718 request suspension or outright stoppage of the study if deemed necessary based on the totality of
719 safety data available.

723

CHAPTER 6: MISCELLANEOUS CONSIDERATIONS

724

6.1 Benefits

725
726
727
728

One purpose of this research is to reduce the frequency of hypoglycemia and severe hypoglycemic events. Hypoglycemia is the number one fear of many individuals and families with someone who has type 1 diabetes and this fear often prevents optimal glycemic control.

729

730
731
732
733

It is expected that this protocol will yield increased knowledge about using an automated closed-loop to control the glucose level. This research is a definitive step on the path towards development of a fully closed-loop system. The individual subject may not benefit from study participation.

734

735

6.2 Subject Compensation

736

Subjects will be paid \$150 for completing the Pilot Study.

737

- Visit #2 (Supervised Hotel Study): \$125
- Visit #3 (Follow-Up Visit) - \$25

738

739

6.3 Subject Withdrawal

740

741

Participation in the study is voluntary, and a subject may withdraw at any time. For subjects who withdraw, their data will be used up until the time of withdrawal.

742

743

6.4 Confidentiality

744

745
746
747
748

For security and confidentiality purposes, subjects will be assigned an identifier that will be used instead of their name. De-identified data will be shared with the Jaeb Center for Health Research in Tampa, FL. De-identified data will also be provided to Tandem for system evaluation purposes.

CHAPTER 7: STATISTICAL CONSIDERATIONS

The intent of this protocol is to introduce the t:slim X2 with Control-IQ system prior to proceeding in a subsequent short-term home trial, which will be submitted with a separate protocol and IDE application. The number of subjects is a convenience sample not based on statistical principles.

We will observe, record, and tabulate any t:slim X2 with Control-IQ errors that would inform us whether system fixes would be needed prior to its deployment in the home trial. We will tabulate technical performance metrics including:

- % time in closed-loop and any other relevant operational modes
- % time CGM data available to the controller
- Rate of relevant failure events and alarms per 24 hours

In addition, descriptive glycemic analyses for secondary efficacy measures will be tabulated for each subject based on CGM data, including:

- mean glucose
- percentage of readings in the target range of 70-180 and 70-140 mg/dl
- glucose variability measured with the standard deviation and coefficient of variation
- percentage of readings <70, 60, and 54 mg/dl
- nadir
- AUC glucose <70, 60, and 54 mg/dl
- low blood glucose index
- percentage of readings >180, 250, and 300 mg/dl
- AUC glucose >180 mg/dl
- high blood glucose index

The technical performance, errors, and glycemic analyses will be split by time of the day: daytime vs. nighttime

CHAPTER 8: DATA COLLECTION AND MONITORING

8.1 Case Report Forms and Device Data

The main study data are collected through a combination of electronic case report forms (CRFs) and electronic device data files obtained from the study software and individual hardware components. These electronic device files and electronic CRFs are considered the primary source documentation.

8.2 Document Storage and Retention

- The Investigator will retain all records and documents pertaining to this study. They will be available for inspection by the appropriate regulatory agencies. In addition, the Investigator will retain the source documents from which the information entered on the CRFs was derived. These records are to be retained in a secure storage facility maintained by the investigational center until 3 years (or longer/shorter if local laws require) after approval of the above-listed study devices or termination of the study, whichever is longer. The investigator should take measures to prevent accidental or early destruction of the clinical study related materials.

BIBLIOGRAPHY

51

52

53 (1) Kovatchev, B.P., Breton, M.D., Keith-Hynes, P.T., Patek, S.D. The Diabetes Assistant (DiAs) –
54 Unified platform for monitoring and control of blood glucose levels in diabetic patients;
55 PCT/US12/43910, 2012.

56 (2) Keith-Hynes, P., Guerlain, S., Mize, L.B., Hughes-Karvetski, C., Khan, M., McElwee-Malloy, M. &
57 Kovatchev, B.P. DiAs user interface: A patient-centric interface for mobile artificial pancreas systems.
58 *J Diabetes Sci Technol*, 7, 1416–1426 (2013). PMID: 24351168

59 (3) Place, J., Robert, A., Ben Brahim, N., Keith-Hynes, P., Farret, A., Pelletier, M.J., Buckingham, B.,
60 Breton, M., Kovatchev, B.P. & Renard, E. DiAs web monitoring: A real-time remote monitoring
61 system designed for artificial pancreas outpatient trials. *J Diabetes Sci Technol*, 7, 1427–1435. (2013).
62 PMID: 24351169

63 (4) Keith-Hynes, P., Mize, B., Robert, A., Place, J. The Diabetes Assistant: A smartphone-based system
64 for real-time control of blood glucose. *Electronics* 2014, 3, 609–623; doi:10.3390/electronics3040609

65 (5) Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M. Brown, S.A.
66 Chernavsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J., Bruttomesso, D., Del Favero, S.,
67 Visentin, R., Filippi, A., Scotton, R., Avogaro, A. & Doyle III, F.J. Feasibility of outpatient fully
68 integrated closed-loop control: First studies of wearable artificial pancreas. *Diabetes Care*, 36, 1851–
69 1858 doi: 10.2337/dc12-1965 (2013). PMID: 23801798, PMCID: PMC3687268

70 (6) Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M., Brown, S.A.,
71 Chernavsky, D.R., Breton, M.D., Mize, L.B., Farret, A., Place, J., Bruttomesso, D., Del Favero, S.,
72 Boscari, F., Galasso, S., Avogaro, A., Magni, L., Di Palma, F., Toffanin, C., Messori, M., Dassay, E.,
73 Doyle, F. III. Safety of outpatient closed-loop control: First randomized crossover trials of a wearable
74 artificial pancreas. *Diabetes Care*, 37, 1789–1796 doi: 10.2337/dc13-2076 (2014). PMID: 24929429,
75 PMCID: PMC4067397

76 (7) DeSalvo, D., Keith-Hynes, P., Peyser, T., Place, J., Caswell, K., Wilson, D., Harris, B., Clinton, P.,
77 Kovatchev, B.P., Buckingham, B.A. Remote glucose monitoring in camp setting reduces the risk of
78 prolonged nocturnal hypoglycemia. *Diabetes Technol Ther*, 16, 1–7 doi:10.1089/dia.2013.0139 (2013).
79 PMID: 24168317

80 (8) Ly, T.T., Breton, M.D., Keith-Hynes, P., De Salvo, D., Clinton, P., Benassi, K., Mize, L.B.,
81 Chernavsky, D.R., Place, J., Wilson, D.M., Kovatchev, B.P., Buckingham, B.A. Overnight glucose
82 control with an automated, unified safety system in children and adolescents with type 1 diabetes at
83 diabetes camp. *Diabetes Care*, 37, doi: 10.2337/dc14-0147 (2014). PMID: 24879841, PMCID:
84 PMC4179507

85 (9) Kropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M., Di Palma, F.,
86 Lanzola, G., Farret, A., Boscari, F., Galasso, S., Magni, P., Avogaro, A., Keith-Hynes, P., Kovatchev,
87 B.P., Bruttomesso, D., Cobelli, C., DeVries, J.H., Renard, E., Magni, L., for the AP@home
88 consortium. 2 month evening and night closed-loop glucose control in patients with Type 1 Diabetes
89 under free-living conditions: A randomised crossover trial. *Lancet Diabetes Endocrinol*, 3(12):939–47
90 dx.doi.org/10.1016/S2213-8587(15)00335-6 (2015).

91 (10) Renard, E et al. Reduction of hyper- and hypoglycemia during two months with a wearable
92 artificial pancreas from dinner to breakfast in patients with type 1 diabetes. 2015-A-3083-Diabetes.
93 *American Diabetes Association 75th Scientific Sessions*, Boston, MA, poster 940-P.

94 (11) Anderson, S et al. First New Year's Night on closed-loop control (CLC) at home: Case reports
95 from a multi-center international trial of long-term 24/7 CLC. 2015-A-4763-Diabetes. *American*
96 *Diabetes Association 75th Scientific Sessions*, Boston, MA, presentation 223–OR.

97 (12) Kovatchev BP. JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control. *Advanced*
98 *Technologies and Treatments for Diabetes (ATT)*, Plenary Session, Milan, Italy, 2016.

99 (13) Kovatchev, B.P. Closed-loop control modalities in type 1 diabetes: Efficacy and system
100 acceptance. *Advanced Technologies and Treatments for Diabetes (ATT)*, Paris, France, 2015.

101 (14) Del Favero S. A multicenter randomized cross-over Italian pediatric summer camp: AP vs SAP in
102 5-8 year old children. *Advanced Technologies and Treatments for Diabetes (ATTD)*, Plenary Session,
103 Milan, Italy, 2016.

104 (15) Cherňavvsky, D. et al. Closed-loop control during extended winter-sport exercise in youth with
105 T1DM: Results from the first AP ski camp. *ATTD Data Club Session*, Milan, (2016).

106 (16) Chernavvsky, D.R., DeBoer, M.D., Keith-Hynes, P., Mize, B., McElwee, M., Demartini, S.,
107 Dunsmore, S.F., Wakeman, C., Kovatchev, B.P., Breton, M.D. Use of an artificial pancreas among
108 adolescents for a missed snack bolus and an underestimated meal bolus. *Pediatric Diabetes*,
109 doi:10.1111/pedi.12230 (2014). PMID: 25348683

110 (17) Brown, S.A., Kovatchev, B.P., Breton, M.D., Anderson, S.M., Keith-Hynes, P., Patek, S.D., Jiang,
111 B., Ben Brahim, N., Vereshchetin, P., Bruttomesso, D., Avogaro, A., Del Favero, S., Boscoli, F.,
112 Galasso, S., Visentin, R., Monaro, M., Cobelli, C. Multinight “bedside” closed-loop control for patients
113 with type 1 diabetes. *Diabetes Technol Ther* 17(3), doi:10.1089/dia.2014.0259 (2015). PMID:
114 25594434, PMCID: PMC4346235

115 (18) Kovatchev BP, Tamborlane WV, Cefalu WT, Cobelli C. The Artificial Pancreas in 2016: A Digital
116 Treatment Ecosystem for Diabetes. *Diabetes Care* 2016; 39:1123-27. PMID: 27330124

117 (19) Del Favero S, Boscoli F, Messori M, Rabbone I, Bonfanti R, Sabbion A, IaFusco D, Schiaffini R,
118 Visentin R, Calore R, Moncada YL, Galasso S, Galderisi A, Vallone V, Di Palma F, Losiuk E1,
119 Lanzola G1, Tinti D, Rigamonti A, Marigliano M, Zanfardino A, Rapini N, Avogaro A, Chernavvsky
120 D, Magni L, Cobelli C, Bruttomesso D. Randomized Summer Camp Crossover Trial in 5- to 9-Year-
121 Old Children: Outpatient Wearable Artificial Pancreas Is Feasible and Safe. *Diabetes Care*.
122 2016;39:1180-5. PMID: 27208335

123 (20) Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J, Visentin R, Calore R, Toffanin
124 C, Di Palma F, Lanzola G, Galasso S, Avogaro A, Keith-Hynes P, Kovatchev BP, Del Favero S.,
125 Cobelli C, Magni L, DeVries HJ. AP@home Consortium. Day and night closed loop glucose control in
126 patients with type 1 diabetes under free-living conditions: comparison of a single-arm, 1-month
127 experience to results of a previously reported feasibility study of evening and night at home. *Diabetes
128 Care* 2016; 39:1151-60. PMID: 27208331

129 (21) Anderson SM, Raghinaru D, Pinsker JE, Boscoli F, Renard E, Buckingham BA, Nimri R, Doyle FJ
130 III, Brown SA, Keith-Hynes P, Breton MD, Chernavvsky D, Bevier WC, Bradley PK, Bruttomesso D,
131 Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT, Shanmugham S, Phillip M,
132 Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW, and Kovatchev BP. Multinational home use
133 of closed-loop control is safe and effective. *Diabetes Care* 2016; 39:1143-1150. PMID: 27208316

134 (22) DeBoer MD, Cherňavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart rate
135 informed artificial pancreas system enhances glycemic control during exercise in adolescents with
136 T1D. *Pediatr Diabetes*. 2016; doi: 10.1111/pedi.12454. PMID: 27734563

137 (23) Kovatchev BP, Cheng P, Anderson SM, Pinsker JE, Boscoli F, Buckingham BA, Doyle FJ. III,
138 Hood KK, Brown SA. Breton MD, Chernavvsky DR, Bevier WC, Bradley PK, Bruttomesso D, Del
139 Favero S, Calore R, Cobelli C, Avogaro A, Ly TT, Shanmugham S, Dassau E, Kollman C, Lum JW,
140 Beck RW, for the Control to Range Study Group. Feasibility of Long-Term Closed-Loop Control: A
141 Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. *Diabetes Technol Ther* 2017; 19: 18-
142 24. doi:10.1089/dia.2016.0333. PMID: 27982707

143 (24) DeBoer MD, Breton MD, Wakeman CA, Schertz EM, Emory EG, Robic JL, Kollar LL, Kovatchev
144 BP, Chernavvsky DR. Performance of an Artificial Pancreas System for Young Children with Type 1
145 Diabetes. *Diabetes Technol Ther* 2017; 19, DOI: 10.1089/dia.2016.0424. PMID: 28426239

146 (25) Breton MD, Cherňavvsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, Messer LH,
147 Kovatchev BP, Maahs DM. Closed Loop Control During Intense Prolonged Outdoor Exercise in
148 Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. *Diabetes Care* 2017 Aug;
149 dc170883. <https://doi.org/10.2337/dc17-0883>