

School of Medicine

UVA CENTER FOR DIABETES TECHNOLOGY

Adaptive Biobehavioral Control (ABC) of Automated Insulin Delivery: A Randomized, Controlled Pilot Study

NCT04784637

Version Number: v1.3

30-Jun-2021

KEY ROLES

Protocol Principal Investigator	
Name, degree	Sue A. Brown, MD
Institution Name	University of Virginia Center for Diabetes Technology

PROTOCOL VERSION HISTORY

Version Number	Author(s)	Approver	Effective Date	Revision Description
1.0	Jon Olson, Mary Oliveri	Sue Brown	17-Nov-2020	Original Protocol
1.1	Jon Olson	Mary Oliveri	20-Nov-2020	<p>FDA modifications</p> <ul style="list-style-type: none">Added “Participants will be notified that eA1c is for informational purposes only and not to be used for short-term changes to insulin settings (section 5.3).Modified study stopping criteria to include three severe hypoglycemia events or three DKA events (section 9.9.2)
1.2	Jon Olson	Sue Brown	11-Jan-2020	<p>IRB Pre-Review</p> <ul style="list-style-type: none">Corrected visit numbering (section 6.7)
1.3	Mary Oliveri	Sue Brown	30-Jun-2021	<p>Study Team</p> <ul style="list-style-type: none">Modified use of personal CGM equipment (Section 3.2 & 5.1)Added Participant Compliance definitions (section 6.5)

CLINICAL PROTOCOL

SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

Protocol Title: Adaptive Biobehavioral Control (ABC) of Automated Insulin Delivery: A Randomized, Controlled Pilot Study

Protocol Version/Date: v1.3/30-Jun-2021 I have read the protocol specified above. In my formal capacity as a Site Principal Investigator, my duties include ensuring the safety of the study participants enrolled under my supervision. It is understood that all information pertaining to the study will be held strictly confidential and that this confidentiality requirement applies to all study staff at this site.

This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as required by the following: United States (US) Code of Federal Regulations (CFR) applicable to clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21 CFR Part 812).

As the Principal Investigator, I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the sponsor and documented approval from the Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary to eliminate an immediate hazard(s) to the trial participants.

All key personnel (all individuals responsible for the design and conduct of this trial) have completed Human Participants Protection Training and Good Clinical Practice Training. Further, I agree to ensure that all staff members involved in the conduct of this study are informed about their obligations in meeting the above commitments.

Investigator's Signature _____ Date: ____ / ____ / ____

Investigator's Name: _____

Site Name: University of Virginia

CLINICAL PROTOCOL

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
ABC	Adaptive Biobehavioral Control
AID	Automated Insulin Delivery Device
ATM	Auto Titration Module
ADRR	Average Daily Risk Range
AP	Artificial Pancreas
APG	Ambulatory Glucose Profile
API	Application Programming Interface
AWS	Amazon Web Services
BAM	Behavioral Anticipation Module
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CF	Insulin sensitivity factor
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
Control-IQ	Tandem t:slim X2 Insulin Pump with Control-IQ Technology
CR	Carbohydrates Ratios Profile
CSII	Continuous Subcutaneous Insulin Injection
DKA	Diabetic Ketoacidosis
DSMB	Data Safety Monitoring Board
eA1c	Estimated Hemoglobin A1c
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
HBGI	High Blood Glucose Index
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
LBGI	Low Blood Glucose Index
NIH	National Institutes of Health
O/P	Office Visit / Phone Visit
POC	Point-of-Care
SAP	Sensor-Augmented Insulin Pump
QC	Quality Control

CLINICAL PROTOCOL

UI	User Interface
WIT	Web Information Tool
WST	Web Simulation Tool

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	Adaptive Biobehavioral Control (ABC) of Automated Insulin Delivery: A Randomized, Controlled Pilot Study
Investigational Device	<p>Web Information Tool (WIT) - A web-based software providing additional information regarding glucose variability, estimated A1c, risks for hypo- and hyperglycemia, and potential changes of insulin pump parameters, to users of the Control-IQ system. The <u>WIT</u> is the clinical implementation of the ABC concept, which includes the following modules:</p> <ul style="list-style-type: none">• Behavioral Anticipation Module (BAM) - an app running on a smart phone which provides on-demand information to the participant primarily on glycemic risks.• Auto Titration Module (ATM) that provides recommendations to the participant to periodically update insulin parameters.• Web Simulation Tool (WST) - is intended to allow users of the Control-IQ system replay treatment scenarios in computer simulation, thereby allowing user training with carbohydrate and insulin action.
Investigational Medication	None
Objectives	Assess the safety and feasibility of two modules (BAM and ATM / WST) used in conjunction with an FDA approved automated insulin delivery system (t:slim X2 with Control-IQ technology)
Study Design	Randomized parallel group trial.
Number of Sites	1
Endpoint	<p><u>Primary Outcome:</u> Safety assessment of ATM / WST and BAM modules.</p> <p><u>Secondary Outcomes:</u></p> <ul style="list-style-type: none">• Percent of readings in the target ranges of 70-180 and 70-140 mg/dL• Other CGM-based metrics;• Questionnaires addressing BAM and participant preferences for system/technology use.
Population	<p>Key Inclusion Criteria</p> <ul style="list-style-type: none">• Age 18-70, inclusive, with Type 1 Diabetes for at least one year• Current user of t:slim X2 insulin pump with Control-IQ Technology <p>Key Exclusion Criteria</p> <ul style="list-style-type: none">• Recent severe hypoglycemic event or DKA during the past one year
Sample Size	Recruit up to 45 participants of Control-IQ with the objective of randomizing 30 subjects
Treatment Groups	<ul style="list-style-type: none">• Group 1: Control-IQ + Auto Titration Module (ATM) and Web Simulation Tool (WST) for 6 weeks• Group 2: Control-IQ + Auto Titration Module (ATM) and Web Simulation Tool (WST) +Behavioral Adaptation Module (BAM) for 6 weeks
Participant Duration	8 weeks

Protocol Overview/Synopsis	Two-week baseline use of personal Control-IQ system followed by randomization 1:1 into two groups. Group 1 will use their personal Control-IQ system and add an auto titration module (ATM) and web simulation tool (WST) in which insulin parameters may be adjusted on a weekly basis. Group 2 will use their personal Control-IQ system and add the ATM / WST on a weekly basis as well as a behavioral adaptation module (BAM). The BAM will consist of information modules in which information only is given to participants (e.g. hypoglycemic risks, daily glycemic profiles, eA1c, and variability tracker).
-----------------------------------	---

CLINICAL PROTOCOL

Table 1 Schedule of Study Visits and Procedures

Visit Name	Visit 1	Visit 2	Visit 3	Visit 4	Visit 5	Visit 6	Visit 7	Visit 8	Visit 9
Description	Screening Visit	Device Training & Run-In	Randomization	Weekly Check-In	Final Visit				
Timing	-8 to -2 weeks	-28 to -14 days	Day 1	Day 7±3	Day 14±3	Day 21±3	Day 28±3	Day 35±3	Day 42±3
Location	O/P	O/P	O/P	O/P	O/P	O/P	O/P	O/P	O/P
Informed Consent	X								
Eligibility Assessment	X								
Medical History	X								
HbA1c	X								X
Screening Blood Testing: CMP, TSH if applicable	X								
Pregnancy test (if applicable)	X	X	X						X
Physical Exam	X								
Vital Signs (including height/weight)	X								
Training on Relevant Devices or Modules		X	X						
Randomization			X						
Questionnaires			X						X
Review diabetes management and AEs	X	X	X	X	X	X	X	X	X

CLINICAL PROTOCOL

1	Table of Contents	
2	Chapter 1: Background	14
3	1.1 Introduction	14
4	1.2 Description of the Equipment.....	18
5	1.3 Description of the Information Modules.....	19
6	Chapter 2: Study Description	22
7	2.1 Study Objective	22
8	2.2 Study Design.....	22
9	2.3 Purpose/Objectives of Clinical Study	23
10	2.4 Study Participants	23
11	2.5 Clinical Sites	23
12	2.6 Primary Specific Aim	23
13	2.7 Secondary Specific Aim	23
14	Chapter 3: Study Devices	24
15	3.1 Insulin Pump	24
16	3.2 Continuous Glucose Monitor.....	24
17	3.3 Blood Glucose Meter and Strips	24
18	3.4 Ketone Meter and Strips.....	24
19	3.5 Study Devices Accountability Procedures.....	24
20	Chapter 4: Study Screening.....	25
21	4.1 Participant Recruitment and Enrollment.....	25
22	4.2 Informed Consent and Authorization Procedures.....	25
23	4.3 Screening Procedures	25
24	4.4 Participant Inclusion Criteria.....	26
25	4.5 Participant Exclusion Criteria	26
26	4.6 Screening Procedures	27
27	Chapter 5: Study Equipment Training.....	30

CLINICAL PROTOCOL

28	5.1 CGM Training	30
29	5.2 Insulin Pump Training	30
30	5.3 Training on the Investigational Applications	31
31	5.4 Ancillary Device Training.....	32
32	5.5 Blood Glucose Training	33
33	5.6 Blood Ketone Training.....	33
34	Chapter 6: Study Procedures.....	34
35	6.1 Run-In Phase (Visit 2).....	34
36	6.2 Randomization Visit (Visit 3).....	34
37	6.3 Optimization of Insulin Pump Settings	35
38	6.4 Check-In Visits (Visit 4-8)	35
39	6.5 Participant Study Compliance.....	35
40	6.6 Study System Issues	35
41	6.7 Repeating Visits & Unscheduled Visits	36
42	6.8 Final Visit (Visit 9).....	36
43	6.9 Post-Study Check-In Visit	36
44	6.10 Early Withdraw	36
45	Chapter 7: Testing Procedures	37
46	7.1 Laboratory / Point of Care Testing.....	37
47	7.2 Questionnaires.....	37
48	Chapter 8: Risks Associated with Clinical Trial	39
49	8.1 Potential Risks and Benefits of the Investigational Device.....	39
50	8.2 General Considerations.....	41
51	Chapter 9: Adverse Events, Device Issues, and Stopping Rules.....	42
52	9.1 Definitions.....	42
53	9.2 Reportable Events.....	43
54	9.3 Relationship of Adverse Event to Study Device.....	44

CLINICAL PROTOCOL

55	9.4 Intensity of Adverse Event	45
56	9.5 Coding of Adverse Events	45
57	9.6 Outcome of Adverse Events.....	45
58	9.7 Reportable Device Issues	46
59	9.8 Timing of Event Reporting	47
60	9.9 Stopping Criteria	47
61	Chapter 10: Miscellaneous Considerations.....	49
62	10.1 Prohibited Medications, Treatments, and Procedures	49
63	10.2 Participant Withdrawal.....	49
64	10.3 Confidentiality.....	49
65	Chapter 11: Statistical Consideration	50
66	11.1 Design and Randomization	50
67	11.2 Sample Size	50
68	11.3 Outcome Measures.....	50
69	11.4 Safety Analyses	51
70	11.5 Baseline Descriptive Statistics.....	52
71	11.6 Device Issues	52
72	11.7 Analysis of Secondary CGM-based Outcomes.....	52
73	Chapter 12: Data Collection and Monitoring	54
74	12.1 Case Report Forms and Device Data.....	54
75	12.2 Study Records Retention	54
76	12.3 Protocol Deviations.....	54
77	Chapter 13: Ethics/Protection of Human Participants.....	55
78	13.1 Ethics Standard	55
79	13.2 Institutional Review Boards	55
80	13.3 Informed Consent Process	55
81	Chapter 14: References.....	57

CLINICAL PROTOCOL

82

83

CLINICAL PROTOCOL

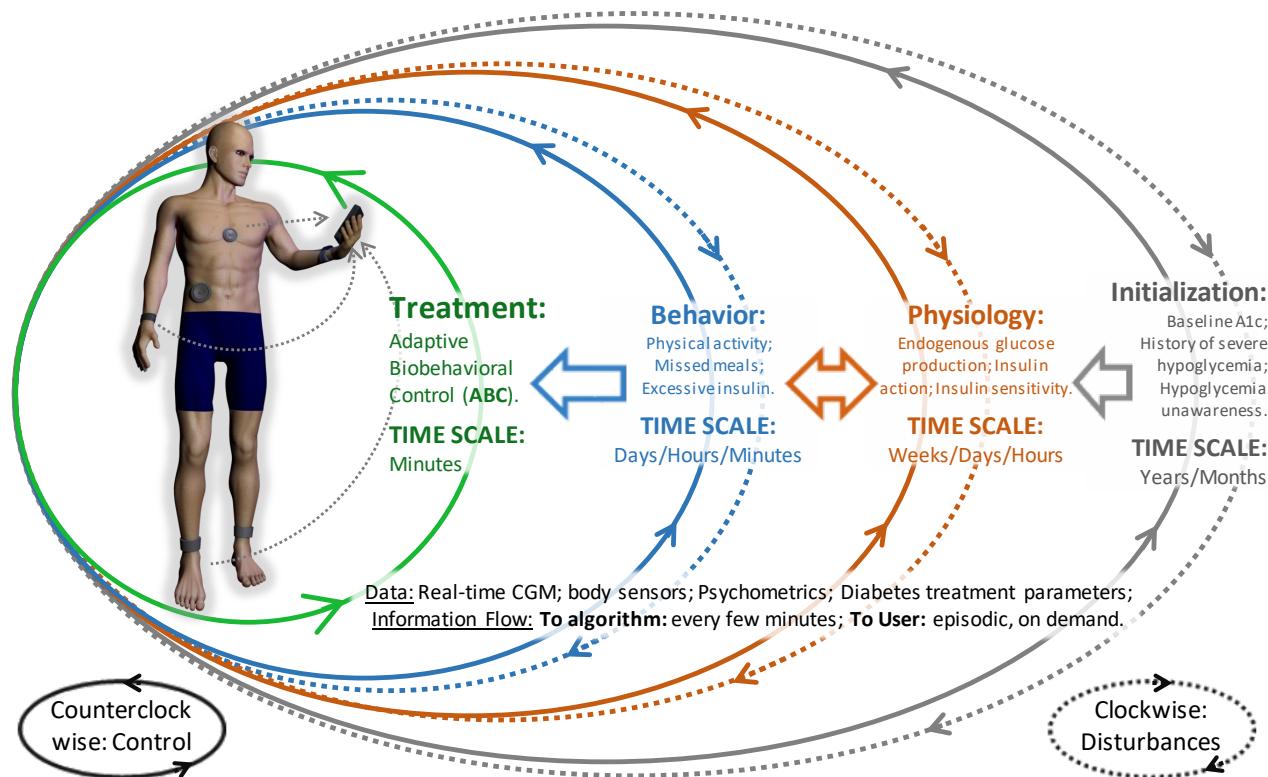
84 Chapter 1: Background

85 1.1 Introduction

86 Large-scale artificial pancreas studies, including two multi-center pivotal trials recently
87 completed by our team, have established the current capabilities of closed-loop control (CLC)
88 and identified its deficiencies, e.g. inferior control during the day due to slow insulin response to
89 fast biobehavioral perturbations. We therefore propose to pilot test *elements of a next-*
90 *generation CLC system – Adaptive Biobehavioral Control (ABC) based on the novel concept of*
91 *human-machine co-adaptation* – which uses a stochastic-process approximation of the day-to-
92 day variation in human physiology and behavior to individualize and optimize CLC. The ABC
93 concept recognizes *both* the necessity for the control algorithm to adapt to changes in human
94 physiology *and* the necessity for the person to adapt to CLC action. This pilot-feasibility study is
95 intended to test the Web Information Tool (WIT), a web-based software that provides additional
96 information regarding glucose variability, estimated A1c, risks for hypo- and hyperglycemia, and
97 potential changes of insulin pump parameters, to users of the Control-IQ system (Tandem
98 Diabetes Care, San Diego, CA).

99 The ABC concept was conceived during our extensive studies carried under NIH/NIDDK project
100 UC4DK108483 “Clinical Acceptance of the Artificial Pancreas: the International Diabetes Closed
101 Loop (iDCL) Trial.” The iDCL Trial became most successful study funded by NIDDK under RFA-DK-
102 14-024 “Advanced Clinical Trials to test Artificial Pancreas Device Systems in Type 1 Diabetes
103 (UC4).” We completed three clinical protocols, DCLP1, DCLP3, and DCLP5, which became three
104 of the largest closed-loop control studies attempted to date:

- 105 1) Protocol 1 (DCLP1, NCT02985866, IDE#G160181) established that a mobile Artificial Pancreas
106 (AP) system using a smart phone as a computational hub running the control algorithm, is a
107 viable treatment for T1D. This protocol was executed at seven U.S. sites and was coordinated
108 by the Jaeb Center for Health Research. DCLP1 recruited N=127 subjects randomized to AP
109 vs. sensor-augmented pump (SAP). The results were published in *Diabetes Care*, showing that
110 the study met its predefined criteria for success.¹
- 111 2) Protocol 3 (DCLP3, NCT03563313, IDE #G180053) was a pivotal trial which, responding to the
112 requirements of RFA-DK-14-024, aimed at regulatory clearance of Control-IQ – a system that
113 includes a Dexcom G6 sensor and a t:slim pump (Tandem Diabetes Care). This system is based
114 on a control algorithm developed at the University of Virginia under the NIDDK-funded grant
115 RO1 DK 085623. DCLP3 randomized N=168 participants to Control-IQ vs. SAP, *all* of whom
116 completed the 6-month trial and then continued with a 12-month study extension. DCLP3
117 met *all* of its predefined primary and secondary outcomes. The results were published in the
118 *New England Journal of Medicine*.² As a result, the Control-IQ system received FDA clearance
119 for clinical use by children and adults ages 14 and up.


CLINICAL PROTOCOL

120 3) Protocol 5 ([DCLP5](#), NCT03844789, IDE #G180053/S008) was also a pivotal trial, which aimed
121 at regulatory clearance of Control-IQ in children ages 6-13 years old. DCLP5 randomized
122 N=101 participants to Control-IQ vs. SAP, and met *all* of its predefined primary and secondary
123 outcomes. The results were also published in the *New England Journal of Medicine*.³ As a
124 result, the Control-IQ system received FDA clearance for clinical use by children ages 6-13
125 years old as well.

126 **Defining the ABC Process:** The ABC process consists of interacting cycles developing on different
127 time scales:⁴ (1) First, it is initialized by individual characteristics, such as HbA_{1c}, history of severe
128 hypoglycemia, or hypoglycemia unawareness that sets the stage for further control adaptation;
129 this initialization is slow, develops over months or years, and can be favorable or unfavorable to
130 CLC (e.g. individuals at overall good vs. poor control would fare differently using CLC;² (2) Natural
131 variation in a person's metabolic parameters occurs within a day (e.g. circadian rhythms) and
132 between days; slower changes are possible, e.g. due to illness; (3) Behavioral perturbations
133 challenge the metabolic system with meals or physical activity, which may trigger low BG events
134 and escalate to recurrent hypoglycemia; this cycle includes significant randomness and is
135 therefore best described by a stochastic process (dotted lines—clockwise cycles in Figure 1). This
136 bio-behavioral interplay amplifies or attenuates the BG fluctuations of a person and is detected
137 as degree of GV by CGM and/or other signals. (4) In this context, the control co-regulation
138 objective is two-fold: gradual and safe stabilization of the metabolic system by adapting control
139 parameters to the specifics and physiological variation of the metabolic system, and fast
140 response to biobehavioral challenges that may require behavioral adaptation by the user, e.g.
141 around meals and exercise (solid lines—counterclockwise cycles in Figure 1).

CLINICAL PROTOCOL

142

143 Figure 1: Main premise, signals, time scales, and control action of the recursive ABC
144 process: initialization with routine T1D treatment parameters; behavioral and
145 physiological perturbations monitored through CGM and other signals, and human-
146 machine co-adaptation using pattern/risk information presented to the user and to the
147 control algorithm. Clockwise cycles indicate system disturbances; Counterclockwise
148 cycles indicate adaptation.

149 **Monitoring the ABC Process:** Observed in time, the compounded effect of the recurrent
150 processes presented in Figure 1 is a stochastic process of glycemic variation⁵ governed by
151 transition probabilities from one CGM daily profile to the next. We introduced this concept in
152 February 2019, in two consecutive presentations at the international ATTD conference, focusing
153 on its applications to patient decision support⁶ and adaptation of automated control built upon
154 a virtual image of the patient (VIP).⁷ These two applications will be used in the proposed study to
155 enable: (i) behavioral co-adaptation through pattern/risk information provided to the user and
156 intended to provoke thoughts and prompt, but not suggest or require, adaptive behavioral
157 reaction, and (ii) adaptation of the insulin pump parameters used by control algorithm, which
158 will be proposed to the user, but not implemented automatically in this pilot phase of research.

CLINICAL PROTOCOL

159 Pattern Recognition, Clustering, and Classification: At the core of the ABC technology is an
160 innovative method for pattern-based therapy optimization. In this approach, the collection of all
161 possible daily patterns, i.e. the state space of the ABC process, is defined by machine-learning
162 classification of CGM profiles into clusters derived from our library of over 50,000 CGM daily
163 profiles accumulated in our studies. To illustrate how this works, we use data from the
164 International Diabetes Closed-Loop (iDCL) Trial Protocol 1, NCT02985866. This study yielded
165 ~9,000 CGM daily profiles, which allowed performing the following steps: (1) CGM daily profiles
166 are classified into identifiable clusters; (2) Over time, each person transitions through a sequence
167 of clusters, which are approximated by a stochastic Markov chain identified by an individual
168 transition probability matrix; (3) Treatment adaptation is then assisted by presenting pattern/risk
169 predictions to the patient and to the control algorithm, aiming to maximize the probabilities of
170 favorable daily transitions. For illustrative purposes, Figure 2 shows results for a 3-cluster
171 solution. Clusters are color coded according to their clinical interpretation: **Cluster 1: Tight**
172 **Control/Intensive Treatment; Cluster 2: Hyperglycemic exposure; Cluster 3: Intermediate/Average Control.**

174 Each cluster is associated with a specific level of glucose control, and over time each person
175 transitions through a sequence of clusters, each describing this person's glycemic control for
176 one day.

177 The color-coded profiles in Figure 2 present the daily stochastic transitions of two participants in
178 the iDCL Protocol 1 using sensor-augmented pump (SAP) and CLC, respectively. Underneath, we
179 present a set of glycemic control metrics that reflect the state of each person when s/he was in
180 each one of the
181 three clusters. By
182 cluster design,
183 despite the marked
184 differences in the
185 overall control of
186 these subjects,
187 their glycemic
188 characteristics are
189 very similar when
190 they are in the
191 same cluster. For
192 example, both had
193 mean glucose of
194 151-152mg/dL
195 when in a blue

Control Subject			
Transition Probabilities			
CL	1	2	3
1	0.00	0.00	1.00
2	0.00	0.58	0.42
3	0.07	0.41	0.51

CL	mean	SD	CV	LBGI	HBGI	<70	70-180	>180	#Days
1	151.29	51.48	34.34	0.52	5.55	1.97	71.88	26.16	3
2	236.85	85.66	37.02	0.84	22.03	3.76	24.17	72.07	39
3	180.68	68.17	38.95	1.21	11.14	5.28	47.39	47.33	41
total	206.01	75.78	37.88	1.01	16.05	4.45	37.36	58.19	83

Experimental Subject			
Transition Probabilities			
CL	1	2	3
1	0.67	0.00	0.33
2	1.00	0.00	0.00
3	0.57	0.04	0.39

CL	mean	SD	CV	LBGI	HBGI	<70	70-180	>180	#Days
1	152.49	49.02	32.10	0.51	5.61	1.53	72.66	25.81	44
2	234.89	108.77	46.31	0.04	22.25	0.00	43.10	56.90	1
3	185.69	76.14	41.09	0.28	11.84	0.59	55.58	43.83	23
total	164.93	59.07	35.35	0.43	7.96	1.19	66.45	32.36	68

Figure 2: Daily transitions, cluster assignment, and transition probability for two representative participants in iDCL Protocol 1.

CLINICAL PROTOCOL

196 cluster for the day, or 237-235mg/dL when in a red cluster. *The major difference between these*
197 *two study participants is the time they spent in each cluster type, e.g., 44 days in the blue cluster*
198 *for the CLC Subject and only 3 days for the SAP Subject* (Figure 2). Further, each person's
199 stochastic transitions from one day to the next are approximated by a Markov chain⁵ governed
200 by individual transition probability matrices presented in Figure 2. For example, the probability
201 is zero for the control subject to remain in tight control for two consecutive days (blue-to-blue),
202 while this probability is 67% for the Experimental Subject. *We therefore conclude that: (i) A library*
203 *of clinically-relevant clusters describes the possible one-day glycemic profiles for each person; (ii)*
204 *When in the same cluster, the glycemic metrics for different people are similar; (iii) However, each*
205 *person transitions through a different sequence of daily profiles, governed by individual transition*
206 *probability matrices; (iv) This allows each person's ABC process to be encoded in a Markov chain*
207 *of consecutive daily profiles; (v) This encoding results in estimates of the probabilities for*
208 *upcoming events, i.e. the chances from transition to a particular cluster tomorrow, which informs*
209 *a person's treatment decisions and the control algorithm's adaptation.*

210 With this conceptual description in mind, the overall objective of the ABC strategy is to enable a
211 new generation of artificial pancreas technologies which will: (i) Provide information to the user
212 to inform user's adaptation to the CLC system, and (ii) Adapt automatically the action of the
213 control algorithm to follow daily changes in physiology and behavior. To the best of our
214 knowledge, such bi-directional *human-machine co-adaptation* has not been attempted before,
215 partially due to underestimation of the behavioral challenges related to CLC use, and partially
216 due to the relative immaturity of CLC systems, which until recently could not sustain long-term
217 use without facing significant technical problems or requiring extensive user involvement.

218 In this IDE application, we make the case that we are now equipped with well-established CLC
219 technology (Control-IQ, Tandem Diabetes Care), with which we have very extensive experience.
220 We will rely on our extensive track record of behavioral interventions concerning technology,⁸
221 and on one of the largest CLC databases collected to date. Thus, we can confidently propose to
222 pilot test and evaluate the ability of an adaptive CLC system to optimize metabolic control in the
223 context of behavioral management and response to such technology. *In this first pilot study, the*
224 *feedback to the patient will be limited to information about relevant glycemic parameters and*
225 *risks. No prescription will be given for behavioral changes or adaptation. Similarly, adjustment of*
226 *the control parameters, will be proposed to the user and will be accompanied by an option to*
227 *replay treatment scenarios via computer simulation, but will not be implemented automatically.*

228 **1.2 Description of the Equipment**

229 Closed-Loop Control System:

230 Trade/Device Name: Control-IQ Technology

CLINICAL PROTOCOL

231 Regulation Name: Interoperable automated glycemic controller

232 System components include:

233 • t:slim X2 insulin pump with Control-IQ technology, and

234 • Dexcom G6 continuous glucose monitor (CGM).

235 The CLC system and its components are approved by the FDA for clinical use in children and adults

236 ages 6 years old or older.

237 **1.3 Description of the Information Modules**

238 The WIT is the clinical implementation of the ABC concept, which includes:

239 • A Behavioral Adaptation Module (BAM);

240 • An Auto Titration Module (ATM), and

241 • A Web Simulation Tool (WST).

242 The three information modules BAM, ATM, and WST will be provided to users of the t:slim X2

243 with Control-IQ closed-loop system in a Web-based interactive format via a website that allows

244 for unique login. These modules will provide the user with potentially useful recommendations,

245 but will not interfere automatically with the functioning of the CLC system. The primary purpose

246 of this pilot trial is safety testing and receiving feedback from the participants regarding module

247 functionality and user interface.

248 Briefly, the WIT presents daily updates by the BAM first, and allows the user to navigate to other
249 modules. Details for all algorithm modules are provided in Appendix A-2.

250 BAM uses the concept described in the Introduction under “Monitoring the ABC Process” and
251 well-established metrics of glycemic control computed daily:

CLINICAL PROTOCOL

Measure	Computed From
Estimated A1c	14 days of CGM data plus lab HbA _{1c} calibration ¹⁰
Low/High BG [Risk] Indices (LBGI/HBGI) – measures of risk for hypo- or hyperglycemia	Previous day of CGM data ⁸
Average Daily Risk Range (ADRR) – a measure of glucose variability	Computed as the average of the HRRs (Hourly Risk Range) for the previous day ⁸
Forecast-today	8 days of CGM data, plus today's readings by 6AM

252

Table 2: Glycemic metrics used by the BAM

253 Results will be presented every morning, e.g. at 7AM. All Variability and Risk metrics are mapped
254 to the interval [0-11] as follows: 0 is mapped to 0; 99th percentile of the metric is mapped to 11.

255 ATM is a set of optimization algorithms designed to use the participants' data and provide weekly
256 updates for their default insulin pump parameters: basal rate profile, insulin to carbohydrates
257 ratios profile (CR), and insulin sensitivity factors profile (CF). The module is derived from the
258 optimization already used in G200122 and is largely identical but for one key element: the CR and
259 CF profiles are not using fixed timestamps (e.g. 3am-11am and 11am-3am), but automatically
260 determined in concert with the basal profile so as to ensure no more than 12 segments for the
261 combinations of the daily profiles. As the timing of each CR/CF profile segments is not fixed, the
262 algorithm has been modified to use all historical boluses for each profile segments (vs using only
263 boluses that fell in the segment specific time interval) with appropriate weighing (a historical
264 bolus at 1pm has a much larger influence on a noon-3pm segment than a historical 11pm bolus).

265 WST is a simulation infrastructure that allows individuals to interact with their data in a novel
266 way: each user can not only see their historical CGM/insulin/meal data streams, summary
267 indices, and summary graphical representation (in a format similar to an ambulatory glucose
268 profile, AGP), but can also modify their insulin treatment strategies, play "what-if" scenarios, and
269 observe the predicted glycemic impact. For example, a user could observe an early morning
270 hypoglycemia tendency (from the summary graphical representation), reduce the underlying
271 basal rate (say 3am-6am) by 10%, and see if such change would have limited the hypoglycemic
272 exposure and/or increase late morning hyperglycemia. Therefore, WST can be considered an
273 advanced education tool for people with T1D to leverage their own data and experience and gain
274 insight in possible behavioral/therapeutic changes they may want to consider with their care
275 team. This module is based on our replay simulation technology¹¹⁻¹³ and is supported by a
276 transfer of data from the user devices (in the case of this study, an automated transmission of

CLINICAL PROTOCOL

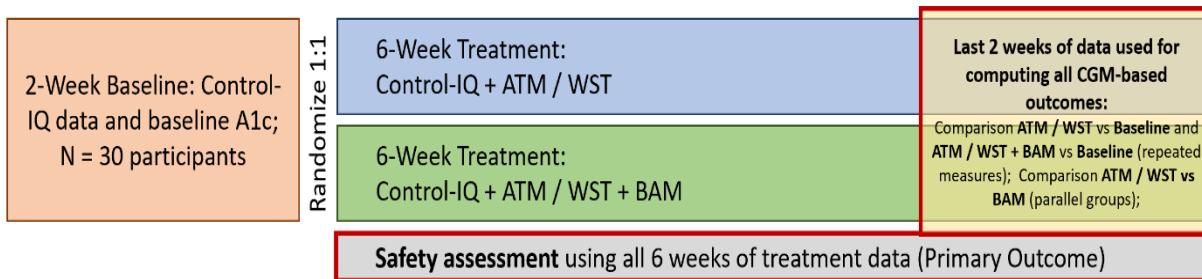
277 the t:slim X2 data to the Tandem phone app and then to the t:connect web system, with a
278 frequent (every 6h) pull triggered by our AWS infrastructure of the t:connect data via a Tandem
279 API) (Application Programming Interface).

CLINICAL PROTOCOL

280 **Chapter 2: Study Description**

281 **2.1 Study Objective**

282 The purpose of this pilot study is to test the safety and feasibility of using two or three research
283 modules in conjunction with an approved automated insulin delivery device (AID) (t:slim X2
284 insulin pump with Control-IQ technology, Tandem Diabetes Care).


285 This concept is implemented in the Adaptive Biobehavioral Control (ABC) system – ABC will use
286 human-machine co-adaptation of CLC, recognizing both the necessity for the control algorithm
287 to adapt to changes in human physiology, and the necessity for the person to adapt to CLC action.
288 ABC will be implemented on the Web Information Tool (WIT) platform/system and includes the
289 following modules to be used alongside the automated insulin delivery device:

- 290 • Behavioral Adaptation Module (BAM) – a behavioral intervention deployed in a mobile
291 app to assist a person's adaptation to automated insulin delivery by information and risk
292 assessment primarily regarding glycemic risks, and
- 293 • Auto Titration Module (ATM) — a web-based tool with an automated procedure to track
294 risk status and changes in the participant's metabolic profile. This module will present
295 updated insulin control parameters (e.g. basal rate, carb ratio, correction factor) to the
296 user once a week using a web-based format accessible to the participant. These adjusted
297 parameters are not able to directly update the pump automatically, so the participant will
298 then need to manually enter the suggested changes directly onto their insulin pump.
- 299 • Web-based Simulation Tool (WST) --a web-based education tool for participants to
300 interact with their data to visualize and replay various scenarios to understand the impact
301 of insulin parameter changes.

302 **2.2 Study Design**

303 This is a safety and feasibility study with a randomized two-arm parallel group trial in which both
304 groups will use the AID (Control-IQ) plus ATM and WST. The difference between the two groups
305 will be the behavioral module. One group will be randomized to add BAM and one group will not
306 use BAM. This is illustrated in Figure 2:

CLINICAL PROTOCOL

307

308 **Figure 3: Study Diagram**

309 **2.3 Purpose/Objectives of Clinical Study**

310 This pilot study is intended to test a Web-based Information Tool (WIT) software providing
311 additional information regarding glucose variability, estimated A1c, risks for hypo- and
312 hyperglycemia, and potential changes of insulin pump parameters, to users of the Control-IQ
313 system.

314 **2.4 Study Participants**

315 Enrollment in the study will proceed with the goal of completing approximately 30 subjects.
316 Study duration is between 8-10 weeks.

317 Up to 45 participants may sign the consent form.

318 **2.5 Clinical Sites**

319 The study will be performed at the University of Virginia.

320 **2.6 Primary Specific Aim**

321 The primary outcome will be a safety assessment using all 6 weeks of treatment data in terms of
322 incidence of DKA or severe hypoglycemia.

323 **2.7 Secondary Specific Aim**

324 The secondary outcome of interest will be primarily CGM-based metrics using the last two weeks
325 of the treatment data and the two-week baseline to compare:

326 • ATM / WST vs. Baseline
327 • ATM / WST + BAM vs. Baseline
328 • Group 1 vs. Group 2: ATM / WST vs. ATM / WST + BAM.

CLINICAL PROTOCOL

329 **Chapter 3: Study Devices**

330 **3.1 Insulin Pump**

331 Participants will use their personal FDA-approved Tandem t:slim X2 with Control-IQ Technology
332 which will be used without modifications.

333 **3.2 Continuous Glucose Monitor**

334 Participants will be provided a study provided CGM that includes Dexcom G6 transmitter and
335 sensors while using the Tandem t:slim X2 insulin pumps. The CGM sensor is viable for 10 days.
336 All participants will be provided a Dexcom G6 system by the study team as needed. This system
337 will be used without modifications. The CGM device will be calibrated, if needed, using the
338 glucometer in accordance with the manufacturer's labeling. The participant may elect to
339 continue use of their personal CGM during the study. The study will provide CGM supplies, as
340 necessary. As a previously noted, data may be obtained through the commercial applications
341 (e.g. t:connect and Dexcom G6).

342 **3.3 Blood Glucose Meter and Strips**

343 Blood glucose levels will be measured using the participant's personal glucometer.

344 **3.4 Ketone Meter and Strips**

345 Blood ketone levels will be measured using the Abbott Precision Xtra meters and strips in
346 accordance with the manufacturer's labeling. The blood glucose meter component of the
347 Precision Xtra Device will not be used.

348 **3.5 Study Devices Accountability Procedures**

349 Device serial numbers will be recorded and use of equipment will be tracked.

CLINICAL PROTOCOL

350 **Chapter 4: Study Screening**

351 **4.1 Participant Recruitment and Enrollment**

352 Enrollment in the study will proceed with the goal of completing approximately 30 subjects.

353 Up to 45 participants may sign the consent form.

354 Recruitment, screening, and enrollment may be performed as an office visit, or via
355 telecommunication.

356 **4.2 Informed Consent and Authorization Procedures**

357 Before consent has been obtained, participants will be asked inclusion/exclusion criteria
358 questions during pre-screening to determine study eligibility. Before completing any procedures
359 or collecting any data that are not part of usual care, written informed consent will be obtained.
360 Potential eligibility may be assessed as part of a routine-care examination.

361 A participant is considered enrolled when the informed consent form has been signed by the
362 participant and the study team.

363 Consenting procedures and documentation is defined in section 13.3.

364 Telecommunicated study visits may take the place of all in-person study visits as deemed feasible
365 by the study team.

366 **4.3 Screening Procedures**

367 After informed consent has been signed, a potential participant will be evaluated for study
368 eligibility through the elicitation of a medical history, performance of a physical examination
369 by licensed study personnel or using a historical exam within 12 months if the visit is done
370 remotely, and pregnancy testing (if applicable) to screen for exclusionary medical conditions.

371 Once all results of the screening evaluations are available, a decision will be made to determine
372 the participant's eligibility for the study, or if one or more parts of the screening will have to be
373 repeated. These may be repeated at the discretion of the Principal Investigator

374 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
375 date per investigator discretion.

CLINICAL PROTOCOL

376 **4.4 Participant Inclusion Criteria**

377 The participants must meet all the following inclusion criteria in order to be eligible to participate
378 in the study.

- 379 1. Age ≥ 18.0 and ≤ 70 years old at time of consent
- 380 2. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one
381 year
- 382 3. Currently using insulin pump for at least six months
- 383 4. Currently using insulin for at least six months
- 384 5. Currently using or anticipated to be using the t:slim X2 insulin pump with Control-IQ
385 technology at the start of the run-in phase (Visit 1).
- 386 6. Using or willing to use insulin parameters such as carbohydrate ratio and correction
387 factors consistently on their pump in order to dose insulin for meals or corrections
- 388 7. Access to internet and willingness to upload data during the study as needed
- 389 8. Willing to use an app on a smart phone during the study.
- 390 9. For females, not currently known to be pregnant or breastfeeding
- 391 10. If female, sexually active, and of childbearing potential, must agree to use a form of
392 contraception to prevent pregnancy while a participant in the study. A negative serum or
393 urine pregnancy test will be required for all females of childbearing potential. Participants
394 who become pregnant will be discontinued from the study. Also, participants who during
395 the study develop and express the intention to become pregnant within the timespan of
396 the study will be discontinued.
- 397 11. Willingness to use only insulin analogs approved for use in the t:slim X2 pump such as
398 lispro (Humalog) or aspart (Novolog) and not use ultra-rapid acting insulin analogs (e.g.
399 FiAsp) during the study
- 400 12. Total daily insulin dose (TDD) at least 10 units per day
- 401 13. Willingness not to start any new non-insulin glucose-lowering agent during the course of
402 the trial (including metformin, GLP-1 agonists, pramlintide, DPP-4 inhibitors, biguanides,
403 and sulfonylureas)
- 404 14. An understanding and willingness to follow the protocol and signed informed consent

405 **4.5 Participant Exclusion Criteria**

406 The participant must not have any exclusion criteria in order to be eligible to participate in the
407 study.

- 408 1. Concurrent use of any non-insulin glucose-lowering agent other than metformin
409 (including GLP-1 agonists, pramlintide, DPP-4 inhibitors, SGLT-2 inhibitors, sulfonylureas)

CLINICAL PROTOCOL

- 410 2. A condition, which in the opinion of the investigator or designee, would put the
411 participant at risk or interfere with the completion of the protocol.
- 412 3. History of diabetic ketoacidosis (DKA) in the 12 months prior to enrollment
- 413 4. Severe hypoglycemia resulting in seizure or loss of consciousness in the 12 months prior
414 to enrollment
- 415 5. Currently being treated for a seizure disorder
- 416 6. Hemophilia or any other bleeding disorder
- 417 7. Planned surgery during study duration
- 418 8. Participation in another pharmaceutical or device trial at the time of enrollment or during
419 the study
- 420 9. Having a direct supervisor at place of employment who is also directly involved in
421 conducting the clinical trial (e.g. study investigator, coordinator, etc.); or having a first-
422 degree relative who is directly involved in conducting the clinical trial.

423 **4.6 Screening Procedures**

424 The participant will be evaluated for study inclusion and exclusion eligibility after the informed
425 consent form has been signed by the participant and the study team.

426 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
427 date per investigator discretion.

428 Screening procedures will last approximately 1-2 hours. The visit may occur in-person or by
429 telecommunication. The following procedures may be performed/data collected/eligibility
430 criteria checked and documented:

- 431 • Inclusion and exclusion criteria assessed
- 432 • Demographics (date of birth, gender, race and ethnicity, and socioeconomic indicators)
- 433 • Contact information
- 434 • Diabetes history including severe hypoglycemia history
- 435 • Medical history
- 436 • Concomitant Medications
- 437 • Physical examination to include (a physical exam report within last 52 weeks may be
438 substituted):
- 439 • Weight, height (may be self-reported)
- 440 • Vital signs including measurement of blood pressure and pulse (may use medical record
441 within 6 months or self-report)
- 442 • Urine or serum pregnancy test for all females of child-bearing potential (this test can be
443 done remotely with results sent to the study team)
- 444 • HbA1c level measured using the DCA Vantage or similar point of care device or local lab

CLINICAL PROTOCOL

- 445 • If needed based on medical history, investigators may include baseline chemistry panel,
446 liver function tests, hematocrit and thyroid stimulating hormone (lab results within one
447 year of screening appointment may be used)
- 448 • Diabetes Management Information: We will record the participant's average total daily
449 insulin use, carbohydrate ratio, correction factor (insulin sensitivity factor), and insulin
450 infusion basal rate profile. Up to 6 months of historical data from the participant's
451 personal insulin pump, glucometer, or continuous glucose monitor may be downloaded
452 or recorded.
- 453 • Data will be obtained from the participant's personal insulin pump and CGM. This data
454 may be obtained through the commercial applications (e.g. t:connect and Dexcom G6).
- 455 • If participants are on-site, the participant's glucometer may be uploaded to ensure that
456 the participant can successfully upload the equipment.
- 457 • Any labs required may be obtained at a local laboratory (e.g. LabCorp) convenient to the
458 participant.

459 This study is not meant to find out if the participant has any other disease or problem. The study
460 leaders will alert the participant if any of the research results are important to his/her health
461 during the study. The participant may have a copy of the screening tests to discuss with the
462 personal physician. When the blood tests are completed, any blood left over will be thrown away.
463 It will not be stored for any future testing.

464 Participants travelling from a distance or participants wishing to be pre-screened for eligibility
465 may elect to have the consent read and explained by study staff by phone. Once all questions
466 have been answered, the signed consent will be sent to study personnel and the participant may
467 then have pre-screening with labs performed locally (e.g. LabCorp) prior to Visit 1.

468 The study physician or physician designee will have the discretion to repeat screening tests. The
469 repeat screening tests may be conducted locally (e.g. LabCorp). The participant may request a
470 copy of any of the results from the screening evaluation to review with their primary care
471 provider.

472 If an exclusionary condition is identified, the study participant will be excluded from participation
473 with follow up and referral to their primary care physician as needed.

474 If the study participant is pregnant, the study physician will discuss the results of the blood test
475 with the participant and the participant will be asked to seek confirmation of the test and the
476 appropriate medical care.

CLINICAL PROTOCOL

- 477 Participants may be re-screened at a later date if their clinical situation changes as determined
- 478 by the study physician.

CLINICAL PROTOCOL

479 **Chapter 5: Study Equipment Training**

480 Equipment training relevant to the study visit may begin immediately after screening eligibility
481 has been met or may be deferred for a maximum of 30 days.

482 All participants will be asked to use their personal t:slim X2 insulin pump with Control-IQ
483 Technology and study Dexcom G6 CGM throughout the study period from Run-In Visit through
484 the Final Study Visit. Study supplied phones will be available upon request.

485 Study contact information will be provided to the participant. The study team will be available by
486 phone as needed throughout the study duration.

487 All study training may be performed as an office visit, or via telecommunication.

488 **5.1 CGM Training**

489 A Dexcom G6 CGM will be provided to all participants at the training session. The participants
490 may choose to use their personal CGM equipment or will be provided with study CGM
491 equipment. Participants will be instructed to use the study CGM on a daily basis. If the participant
492 has prior use of the CGM, re-training will be specific to the individual. The study team may elect
493 to have less frequent CGM users watch the Dexcom online training videos
494 (<https://www.dexcom.com/training-videos>) to assist in the training session.

495 The participants will be asked to perform fingerstick blood glucose measurements (if needed) in
496 accordance with the labeling of the CGM device.

497 **5.2 Insulin Pump Training**

498 Participants are current users of Control-IQ and therefore do not require training on the pump.
499 The participant will be instructed on how to use the system if insulin is delivered by any means
500 other than the Control-IQ pump (e.g. injection of subcutaneous insulin via syringe in the event of
501 infusion site failure). If insulin is delivered by any means other than the study pump, the
502 participant will be instructed to turn off Control-IQ for approximately four hours.

503 The participant will be provided with contact information and will be asked to call the study
504 clinical staff during periods of illness with an elevated temperature >101.5 degrees Fahrenheit
505 (38.6 degrees Celsius), periods of significant illness, or during periods of use of medications such
506 as epinephrine for the emergency treatment of a severe allergic reaction or asthma attack in
507 addition to use of oral or injectable glucocorticoids to determine if automated insulin delivery
508 should be temporarily discontinued.

509 The participant will be provided Glycemic Treatment Guidelines (Appendix A-11) to use at home.

CLINICAL PROTOCOL

510 **5.2.1 Optimization of Insulin Pump Settings**

511 Throughout the study, study clinicians will refrain from adjusting insulin pump settings beyond
512 the once-weekly Auto-titration adjustments. However, data-driven optimization of pump
513 settings can occur at any time during the study for safety reasons, particularly if the participant
514 contacts the study team due to concerns about their pump settings due to recurring hypo- or
515 hyperglycemia.

516 **5.2.2 Autotitration of Insulin Pump Settings**

517 Participants will receive recommendations via email for adjustments to insulin parameters
518 derived from the WIT once a week. Participants will be asked to implement those parameters as
519 suggested and will manually change the settings on their personal pump. Participants may
520 contact the study clinicians to discuss concerns they may have with the suggested settings. The
521 study clinician will then evaluate and may alter the implementation of some or all of the
522 parameters if deemed a significant safety concern.

523 **5.3 Training on the Investigational Applications**

524 All participants in both groups will be trained on the WIT application.

525 Autotitration / WST training consists of:

- 526 • Review of how to access the web-based application (e.g. on a smart phone, iPAD or
527 computer).
- 528 • Review of menus of the application.
- 529 • Review of actual parameters being adjusted (e.g. basal rates, correction factors)
- 530 • Review of frequency of parameter updates (i.e. once weekly)
- 531 • Participants will be instructed to contact the study team to review parameters updates at
532 any time if they are concerned about appropriateness of adjustments
- 533 • Participants will be instructed to contact the study team to confirm the institution of
534 parameter adjustments
- 535 • Participants will be instructed to how to run a simulation and interrupt the results
536 displayed on the screen

537 Participants who are randomized to Group 2 will also receive BAM training and will generally
538 consist of the following:

- 539 • Review of how to access the BAM application components and troubleshooting.
- 540 • Hands-on training of identification of information modules components and how to
541 access the information modules and an explanation of those modules

CLINICAL PROTOCOL

542 • Hands-on training of how to access prescriptive modules on demand and an explanation
543 of those modules
544 • Participants will be notified that eA1c is for informational purposes only and not to be
545 used for short-term changes to insulin settings

546 Information Modules will include:

547 i. *Hypoglycemia Risk Indicator* based on pattern recognition and risk assessment;
548 ii. Daily glycemic profile forecast;
549 iii. *Estimated A1c* (eA1c) which will assist with tracking average glycemia and goal setting,
550 and
551 iv. *Variability tracker* highlighting glycemic patterns related to behavioral challenges such
552 as meals and exercise.

553 Study staff will be available 24/7 to assist the participant and troubleshoot the BAM and auto-
554 titration modules.

555 **5.4 Ancillary Device Training**

556 Participants will have the option to receive a study-owned smartphone or to use their personal
557 smartphone in order to collect the data from the CGM and insulin pump devices and stream it to
558 respective cloud servers. The chosen phone will also allow the participant to access the WIT
559 application.

560 If participants choose the study-owned smartphone option, they will be provided a study phone
561 with a data plan, an anonymous email account, the Dexcom G6 app, the Tandem t:connect
562 Mobile App, and access to the WIT system for the duration of the study. The Dexcom app will
563 allow the participant to monitor the CGM values and alerts in real-time and stream CGM data to
564 the Dexcom Clarity cloud. The Tandem t:connect Mobile App will be downloaded to their phone
565 in order allow the participant to stream insulin pump data to the Tandem t:connect cloud. Study
566 staff will register a subject account and login so that the subject can access the WIT system via
567 the smartphone.

568 If the participant elects to use a personal smartphone, the Dexcom G6 app and the Tandem
569 t:connect Mobile App will be downloaded to their phones if they are not already installed.

570 In both cases, the participant will have the option of using their personal Dexcom and their
571 personal Tandem t:connect accounts or anonymous, study-provided accounts. Participants who
572 do not wish to use their personal accounts, or do not have personal accounts and do not wish to
573 create one, will be provided an anonymous account created by study staff.

CLINICAL PROTOCOL

574 Participants who elect to use a study phone will be trained on the basic functioning of the phone
575 (e.g. charging, password entry, accessing apps). All participants will be asked to verify successful
576 installation of apps (where applicable) and account access.

577 **5.5 Blood Glucose Training**

578 Participants will use their personal home glucometer.

579 The study team may inquire about glucometer readings if the study visits are performed
580 remotely. If visits are done in person, the glucometer may be uploaded. Participants will be
581 reminded to use the same blood glucose meter for all fingerstick BGs during the study.

582 **5.6 Blood Ketone Training**

583 Participants will be provided with a study blood ketone meter and test strips to be used at home
584 per manufacturer guidelines.

585 All study blood ketone meters will be QC tested by study staff with at least two different
586 concentrations of control solution, if available. A tested meter will not be used in a study if it
587 does not read within the target range at each concentration per manufacturer labeling.

588 Participants will be instructed to perform blood ketone testing as described in Glycemic
589 Treatment Guidelines (see Participant Manual). A home glucagon emergency kit is considered
590 standard of care. Participants who currently do not have one will be asked to obtain a
591 prescription for the glucagon emergency kit.

592 The study team may inquire about ketone readings if the study visits are performed remotely. If
593 visits are done in person, the glucometer may be uploaded.

CLINICAL PROTOCOL

594 **Chapter 6: Study Procedures**

595 **6.1 Run-In Phase (Visit 2)**

596 After eligibility is confirmed, participants will undergo a run-in phase. This visit may occur on the
597 same day as the screening visit and should be completed within 30 days once screening elements
598 are completed and eligibility determined. This visit may occur as an in-person office visit or via
599 telecommunication. For visits occurring remotely, these relevant devices will be shipped to the
600 participant.

601 The purpose of the run-in phase is to obtain about 14 days of baseline data while the participant
602 is following their usual care with their personal t:slim X2 study pump and Dexcom G6 CGM. The
603 study team may elect to allow the participant to repeat the run-in phase as needed.

604 At Visit 2, participants will be trained on the CGM and insulin pump, if relevant, as described in
605 section 5.1 and 4.2. Participants will also be trained on blood glucose meter if relevant and the
606 ketone meter as described in section 5.5 and 4.6.

607 A pregnancy test will be repeated as needed if more than 30 days has elapsed since the
608 prior pregnancy test.

609 Study clinicians may optimize insulin pump settings if needed during this visit. Participants will
610 be allowed to make insulin dosing decisions per their usual care but will be asked to avoid
611 changing insulin pump settings during the two-week run-in.

612 **6.2 Randomization Visit (Visit 3)**

613 **6.2.1 Randomization Criteria**

614 After the completion of at least 2 weeks of run-in data, participants will have a randomization
615 visit. This visit can occur between 14-28 days from Visit 2. This visit can be conducted either in-
616 person office visit or as a remote visit.

617 Screening failures and study dropout participants may be replaced.

618 This visit may be performed as an office visit, or via telecommunication.

619 **6.2.2 Participants**

620 Participants will be randomized 1:1 to either:

621 • Group 1: Use of AID and ATM / WST for 6 weeks

CLINICAL PROTOCOL

622 • Group 2: Use of AID, ATM / WST, and BAM for 6 weeks

623 The randomization scheme will be completed prior to the first study participant and will be done
624 by a study team member who is not involved with enrollment.

625 **6.3 Optimization of Insulin Pump Settings**

626 Insulin pump optimization will occur during the study as described in Section 4.2.1.

627 **6.4 Check-In Visits (Visit 4-8)**

628 These visits will occur either as in-person office visits or remote visits. These visits will occur
629 weekly (+/- 3 day). Prior to each phone visit, participants will be asked to download any relevant
630 devices if applicable (i.e. not using a shared web-based app for data such as the t:connect mobile
631 app or G6 mobile app). During these visits, the study team will:

632 • Answer any questions and inquire about any device complaints.

633 • Inquire about new medications, updates to medical conditions, adverse events, and
634 whether the adverse event was related to study device use.

635 • Inquire about ketone readings (a ketone meter download will not be required)

636 • Review the downloaded/uploaded data to assess completeness.

637 **6.5 Participant Study Compliance**

638 The study team may contact the study participant as needed to ensure study compliance.

639 Group 1 will be asked to have a minimum of weekly interaction to review and implement weekly
640 parameter settings.

641 Group 2 will be asked to have a minimum of weekly interaction to review and implement weekly
642 parameter settings. Participants engaging in the BAM module will be asked to have daily contact
643 with that module.

644 The study team will determine if non-compliance should result in additional study weeks or
645 discontinuation from the study.

646 **6.6 Study System Issues**

647 The study team will be available to troubleshoot with the investigational WIT, BAM, and ATM /
648 WST.

649 The AID system will used per approved use without modification.

CLINICAL PROTOCOL

650 **6.7 Repeating Visits & Unscheduled Visits**

651 Participants may have unscheduled visits during the study period if required for additional device
652 training or other unanticipated needs per the study investigator discretion.

653 **6.8 Final Visit (Visit 9)**

654 The following procedures will be performed in both groups at the final study visit:

- 655 • Adverse events, adverse device effects, and device issues
- 656 • All devices will be downloaded (i.e. insulin pump, CGM, glucometer, ketone meter)
- 657 • Study team or participant may download the study equipment
- 658 • Questionnaires will be completed electronically when possible
- 659 • Blood will be drawn for HbA1c (which can be done on-site or locally)
- 660 • Pregnancy test (if applicable)
- 661 • Equipment may be returned in person or via Federal Express

662 Study participants will be instructed on how to transition back to the home insulin regimen.
663 Subjects will be informed that there may be a risk of severe hypoglycemia and/or severe
664 hyperglycemia during the transition back to the subject's usual home insulin parameters. The
665 study physician will be available for consultation during this transition period.

666 All study devices will be returned except the study glucometers or ketone meters may be retained
667 by the study participant after download is completed.

668 **6.9 Post-Study Check-In Visit**

669 Approximately 48 hours after the participant completes the home use of the equipment portion
670 of the study, the study team will contact the participant via phone/email/text to assess:

- 671 • Adverse events
- 672 • Confirm HbA1c completed
- 673 • Equipment returned in person or via Federal Express

674 **6.10 Early Withdraw**

675 Participants who withdraw from the study will be asked to complete the Final and Post Study
676 Check-In Visit requirements.

CLINICAL PROTOCOL

677 **Chapter 7: Testing Procedures**

678 **7.1 Laboratory / Point of Care Testing**

679 **7.1.1 HbA1c**

- 680 • A blood sample will be obtained at screening to obtain a baseline hemoglobin A1c level.
681 Blood test obtained within 2 weeks prior to enrollment may be used.
- 682 • HbA1c level may be measured by study team using the DCA2000, a comparable point of
683 care device, at time of screening
- 684 • Labs may be obtained at a local laboratory convenient to the participant.

685 **7.1.2 Comprehensive Metabolic Panel/TSH/Hematocrit**

- 686 • A blood sample may be obtained at screening to assess kidney and liver functioning,
687 thyroid function or hematocrit.
- 688 • Labs may be obtained at a local laboratory convenient to the participant.

689 **7.1.3 Pregnancy Test**

- 690 • A serum or urine pregnancy test will be required for women of childbearing potential at
691 the screening visit, prior to each study equipment training session and at the end of the
692 study. Test must be negative to participate in the study.

693 **7.2 Questionnaires**

694 Questionnaires are completed as noted below for all participants.

695 **7.2.1 Questionnaire Schedule**

696 **Screening:**

- 697 • ABC Pilot Study Baseline: This questionnaire has 5 open-ended questions for baseline
698 assessment of expectations for the investigational system.
699 Administration time is approximately 5 minutes.
- 700 • INSPIRE Survey: The INSPIRE (Insulin Delivery Systems: Perceptions, Ideas, Reflections and
701 Expectations) survey was developed to assess various aspects of a user's experience
702 regarding automated insulin delivery. The surveys include various topics important to
703 patients with type 1 diabetes based upon >200 hours of qualitative interviews and focus
704 groups. The adult survey includes 31 items. Response options for all surveys include a 5-
705 point Likert scale from strongly agree to strongly disagree, along with an N/A option.

CLINICAL PROTOCOL

706 Administration time is approximately 5 minutes.

707 **Final Visit:**

708 • ABC Pilot Study Follow-up: This questionnaire has 5 open-ended questions for post-study
709 assessment of experience with investigational system that are similar to the baseline
710 questionnaire.

711 Administration time is approximately 5 minutes.

712 • INSPIRE Survey: Similar survey administered at Screening Visit.

713 Administration time is approximately 5 minutes.

CLINICAL PROTOCOL

714 **Chapter 8: Risks Associated with Clinical Trial**

715 **8.1 Potential Risks and Benefits of the Investigational Device**

716 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data are
717 handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are always a
718 risk in participants with type 1 diabetes and participants will be monitored for these symptoms.

719 **8.1.1 Venipuncture Risks**

720 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws can
721 cause some common reactions like pain, bruising, or redness at the sampling site. Less common
722 reactions include bleeding from the sampling site, formation of a small blood clot or swelling of
723 the vein and surrounding tissues, and fainting.

724 **8.1.2 Fingerstick Risks**

725 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
726 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital
727 laboratory tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount
728 of bleeding under the skin will produce a bruise. A small scar may persist for several weeks. The
729 risk of local infection is less than 1 in 1000. This should not be a significant contributor to risks in
730 this study as finger sticks are part of the usual care for people with diabetes.

731 **8.1.3 Subcutaneous Catheter Risks (CGM)**

732 Participants using the CGM will be at low risk for developing a local skin infection at the site of
733 the sensor needle placement. If a catheter is left under the skin for more than 24 hours it is
734 possible to get an infection where it goes into the skin, with swelling, redness and pain. There
735 may be bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10
736 risk).

737 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
738 leave a small portion of the sensor under the skin that may cause redness, swelling, or pain at
739 the insertion site. The participant should be further instructed to notify the study coordinator
740 immediately if this occurs.

741 **8.1.4 Risks of Hypoglycemia**

742 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
743 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
744 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating,

CLINICAL PROTOCOL

745 jitteriness, and not feeling well. There is the possibility of fainting or seizures (convulsions) and
746 that for a few days the participant may not be as aware of symptoms of hypoglycemia. A CGM
747 functioning poorly and significantly over-reading glucose values could lead to inappropriate
748 insulin delivery.

749 **8.1.5 Risks of Hyperglycemia**

750 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
751 extended period or if the pump or infusion set is not working properly. A CGM functioning poorly
752 and significantly under-reading glucose values could lead to inappropriate suspension of insulin
753 delivery.

754 **8.1.6 Hb1Ac Risk**

755 An NGSP Point of Care analyzer (i.e. DCA Vantage Analyzer) may be utilized at the research site
756 to obtain the subject's HbA1c level.

757 **8.1.7 Other Risks**

758 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
759 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
760 If these reactions occur, different adhesives or "under-taping" (such as with IV 3000, Tegaderm,
761 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
762 medication may be required.

763 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion
764 sites are inserted under the skin. It is possible that any part that is inserted under the skin may
765 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or
766 topical antibiotics can be used. The risk of skin problems could be greater if you use a sensor for
767 longer than it is supposed to be used. Therefore, participants will be carefully instructed about
768 proper use of the sensor.

769 Data downloaded from the CGM, pump, and glucose and ketone meter will be collected for the
770 study as measures of diabetes self-management behaviors. Some people may be uncomfortable
771 with the researchers' having such detailed information about their daily diabetes habits.

772 **8.1.8 Known Potential Benefits**

773 It is expected that this protocol will yield increased knowledge about using an automated insulin
774 delivery system with anticipatory action to control glucose levels. The individual participant may
775 not benefit from study participation.

CLINICAL PROTOCOL

776 **8.1.9 Risk Assessment**

777 Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia
778 and hyperglycemia frequently as a consequence of the disease and its management, (2) the study
779 intervention involves periodic automated insulin dosing that may increase the likelihood of
780 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
781 likelihood of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies
782 using the investigational device system in the home setting, that limit the likelihood of excessive
783 insulin dosing or prolonged withdrawal of insulin, and (4) rapid reversal of hypoglycemia and
784 hyperglycemia can be achieved, it is the assessment of the investigators that this protocol falls
785 under DHHS 46.405 which is a minor increase over minimal risk. In addition, it is the belief of the
786 investigators that this study also presents prospect of direct benefit to the participants and
787 general benefit to others with diabetes.

788 **8.2 General Considerations**

789 The study is being conducted in compliance with the policies described in the study policies
790 document, with the ethical principles that have their origin in the Declaration of Helsinki, with
791 the protocol described herein, and with the standards of Good Clinical Practice (GCP).

792 Whenever possible, data will be directly collected in electronic case report forms, which will be
793 considered the source data.

794 The protocol is considered a significant risk device study, due to the fact that investigational
795 modules of BAM and ATM / WST are experimental. Therefore, an investigational device
796 exemption (IDE) from the U.S. Food and Drug Administration (FDA) is required to conduct the
797 study.

CLINICAL PROTOCOL

798 **Chapter 9: Adverse Events, Device Issues, and Stopping Rules**

799 **9.1 Definitions**

800 **9.1.1 Adverse Events (AE)**

801 Any untoward medical occurrence in a study participant, irrespective of the relationship between
802 the adverse event and the device(s) under investigation (section 9.2) for reportable adverse
803 events for this protocol).

804 **9.1.2 Serious Adverse Event (SAE)**

805 Any untoward medical occurrence that:

- 806 • results in death.
- 807 • is life-threatening; (a non-life-threatening event which, had it been more severe, might
808 have become life-threatening, is not necessarily considered a serious adverse event).
- 809 • requires inpatient hospitalization or prolongation of existing hospitalization.
- 810 • results in persistent or significant disability/incapacity or substantial disruption of the
811 ability to conduct normal life functions (life threatening).
- 812 • is a congenital anomaly or birth defect.
- 813 • is considered a significant medical event by the investigator based on medical judgment
814 (e.g., may jeopardize the participant or may require medical/surgical intervention to
815 prevent one of the outcomes listed above).

816 **9.1.3 Unanticipated Adverse Device Effect (UADE)**

817 Any serious adverse effect on health or safety or any life-threatening problem or death caused
818 by, or associated with, a device, if that effect, problem, or death was not previously identified in
819 nature, severity, or degree of incidence in the investigational plan or application (including a
820 supplementary plan or application), or any other unanticipated serious problem associated with
821 a device that relates to the rights, safety, or welfare of participants (21 CFR 812.3(s)).

822 **9.1.4 Adverse Device Effect (ADE)**

823 Any untoward medical occurrence in a study participant which the device may have caused or to
824 which the device may have contributed.

825 **9.1.5 Device Complaints and Malfunctions**

826 A device complication or complaint is something that happens to a device or related to device
827 performance, whereas an adverse event happens to a participant. A device complaint may occur

CLINICAL PROTOCOL

828 independently from an AE, or along with an AE. An AE may occur without a device complaint or
829 there may be an AE related to a device complaint. A device malfunction is any failure of a device
830 to meet its performance specifications or otherwise perform as intended. Performance
831 specifications include all claims made in the labeling for the device. The intended performance
832 of a device refers to the intended use for which the device is labeled or marketed. (21 CFR 803.3).

833 **9.2 Reportable Events**

834 For this protocol, a reportable adverse event includes any untoward medical occurrence that
835 meets one of the following criteria:

- 836 • a serious adverse event as defined in section 9.1.2
- 837 • an adverse device effect as defined in section 9.1.4, unless excluded from reporting in
838 section 9.7
- 839 • an adverse event as defined in section 9.1.4 occurring in association with a study
840 procedure
- 841 • an ae as defined in section 9.1.1 which leads to discontinuation of a study device for 2 or
842 more hours
- 843 • hypoglycemia meeting the definition of severe hypoglycemia as defined in section 9.2.1
- 844 • diabetic ketoacidosis (DKA) as defined in section 9.2.2 or in the absence of DKA, a
845 hyperglycemic or ketosis event meeting the criteria defined below
- 846 • hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as
847 adverse events unless associated with an Adverse Device Effect. Skin reactions from
848 sensor placement are only reportable if severe and/or required treatment.

849 **9.2.1 Hypoglycemia Event**

850 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
851 when the following definition for severe hypoglycemia is met:

- 852 • the event required assistance of another person due to altered consciousness, and
853 required another person to actively administer carbohydrate, glucagon, or other
854 resuscitative actions;
- 855 • impaired cognitively to the point that he/she was unable to treat himself/herself, was
856 unable to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or
857 experienced seizure or coma. These episodes may be associated with sufficient
858 neuroglycopenia to induce seizure or coma;

CLINICAL PROTOCOL

859 • if plasma glucose measurements are not available during such an event, neurological
860 recovery attributable to the restoration of plasma glucose to normal is considered
861 sufficient evidence that the event was induced by a low plasma glucose concentration.

862 **9.2.2 Hyperglycemia Events/Diabetes Ketoacidosis**

863 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
864 event when one of the following four criteria is met:

865 • the event involved DKA, as defined by the Diabetes Control and Complications Trial
866 (DCCT) and described below
867 • evaluation or treatment was obtained at a health care provider facility for an acute event
868 involving hyperglycemia or ketosis
869 • blood ketone level ≥ 1.5 mmol/L and communication occurred with a health care provider
870 at the time of the event
871 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
872 provider

873 Hyperglycemic events are classified as DKA if the following are present:

874 • symptoms such as polyuria, polydipsia, nausea, or vomiting;
875 • serum ketones ≥ 1.5 mmol/l or large/moderate urine ketones;
876 • treatment provided in a health care facility
877 • all reportable Adverse Events—whether volunteered by the participant, discovered by
878 study personnel during questioning, or detected through physical examination,
879 laboratory test, or other means—will be reported on an adverse event form online.

880 **9.3 Relationship of Adverse Event to Study Device**

881 The study investigator will assess the relationship of any adverse event to be related or unrelated
882 by determining if there is a reasonable possibility that the adverse event may have been caused
883 by the study device.

884 To ensure consistency of adverse event causality assessments, investigators should apply the
885 following general guideline when determining whether an adverse event is related:

886 • There is a plausible temporal relationship between the onset of the adverse event and
887 the study intervention, and the adverse event cannot be readily explained by the
888 participant's clinical state, intercurrent illness, or concomitant therapies; and/or the
889 adverse event follows a known pattern of response to the study intervention; and/or the

CLINICAL PROTOCOL

890 adverse event abates or resolves upon discontinuation of the study intervention or dose
891 reduction and, if applicable, reappears upon re-challenge.
892 • Evidence exists that the adverse event has an etiology other than the study intervention
893 (e.g., preexisting medical condition, underlying disease, intercurrent illness, or
894 concomitant medication); and/or the adverse event has no plausible temporal
895 relationship to study intervention.

896 **9.4 Intensity of Adverse Event**

897 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or
898 (3) severe. It is emphasized that the term severe is a measure of intensity: thus, a severe adverse
899 event is not necessarily serious. For example, itching for several days may be rated as severe,
900 but may not be clinically serious.

901 • **MILD:** Usually transient, requires no special treatment, and does not interfere with the
902 participant's daily activities.
903 • **MODERATE:** Usually causes a low level of inconvenience or concern to the participant and
904 may interfere with daily activities, but is usually ameliorated by simple therapeutic
905 measures.
906 • **SEVERE:** Interrupts a participant's usual daily activities and generally requires systemic
907 drug therapy or other treatment.

908 **9.5 Coding of Adverse Events**

909 Adverse events will be coded per the UVA IRB website instructions (i.e. mild, moderate, severe).

910 Adverse events that continue after the participant's discontinuation or completion of the study
911 will be followed until their medical outcome is determined or until no further change in the
912 condition is expected.

913 **9.6 Outcome of Adverse Events**

914 The outcome of each reportable adverse event will be classified by the investigator as follows:

915 • **RECOVERED/RESOLVED** – The participant recovered from the AE/SAE without sequelae.
916 Record the AE/SAE stop date.
917 • **RECOVERED/RESOLVED WITH SEQUELAE** – The event persisted and had stabilized without
918 change in the event anticipated. Record the AE/SAE stop date.
919 • **FATAL** – A fatal outcome is defined as the SAE that resulted in death. Only the event that
920 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the

CLINICAL PROTOCOL

921 time of death; however, were not the cause of death, will be recorded as “resolved” at
922 the time of death.

- 923 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined as the
924 event was ongoing with an undetermined outcome.
- 925 • An ongoing outcome will require follow-up by the site in order to determine the final
926 outcome of the AE/SAE.
- 927 • The outcome of an ongoing event at the time of death that was not the cause of death,
928 will be updated and recorded as “resolved” with the date of death recorded as the stop
929 date.
- 930 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or
931 the participant’s records to determine the outcome (for example, a participant that was
932 lost to follow-up).

933 All clinically significant abnormalities of clinical laboratory measurements or adverse events
934 occurring during the study and continuing at study termination should be followed by the
935 participant’s physician and evaluated with additional tests (if necessary) until diagnosis of the
936 underlying cause, or resolution. Follow-up information should be recorded on source
937 documents.

938 If any reported adverse events are present when a participant completes the study, or if a
939 participant is withdrawn from the study due to an adverse event, the participant will be
940 contacted for re-evaluation within 2 weeks. If the adverse event has not resolved, additional
941 follow-up will be performed as appropriate. Every effort should be made by the Investigator or
942 delegate to contact the participant until the adverse event has resolved or stabilized.

943 **9.7 Reportable Device Issues**

944 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
945 whether an adverse event occurred, except in the following circumstances.

946 The following device issues are anticipated and will not be reported but will be reported as an
947 Adverse Event if the criteria for AE reporting described above are met:

- 948 • Component disconnections
- 949 • CGM sensors lasting fewer than the number of days expected per CGM labeling
- 950 • CGM tape adherence issues
- 951 • Pump infusion set occlusion not leading to ketosis
- 952 • Battery lifespan deficiency due to inadequate charging or extensive wireless
953 communication

CLINICAL PROTOCOL

- Intermittent device component disconnections/communication failures not leading to system replacement
- Device issues clearly addressed in the user guide manual that do not require additional troubleshooting
- Skin reactions from CGM sensor placement or pump infusion set placement that do not meet criteria for AE reporting

9.8 Timing of Event Reporting

- UADEs must be reported within 10 working days to the FDA after the sponsor first receives notice of the adverse effect.
- Other reportable adverse events, device malfunctions (with or without an adverse event) and device complaints should be reported promptly, but there is no formal required reporting period.
- The IDE Sponsor will investigate the UADE and if indicated, report the results of the investigation to the IRBs and FDA, within 10 working days of the study team becoming aware of the UADE per 21CFR 812.46(b) (2).
- In the case of a device system component malfunction (e.g. pump, CGM, control algorithm), information will be forwarded to the responsible manufacturer by the study personnel.

9.9 Stopping Criteria

9.9.1 Participant Discontinuation

Rules for discontinuing study device use are described below.

- The investigator believes it is unsafe for the participant to continue on the intervention. This could be due to the development of a new medical condition or worsening of an existing condition; or participant behavior contrary to the indications for use of the device that imposes on the participant's safety
- The participant requests that the treatment be stopped
- Two distinct episodes of DKA
- Two distinct severe hypoglycemia events as defined in section 9.2.1.

9.9.2 Suspending/Stopping Overall Study

In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe hyperglycemia event (as defined in section 9.2), use of the study device system will be suspended while the problem is diagnosed.

CLINICAL PROTOCOL

986 In addition, study activities could be similarly suspended if the manufacturer of any constituent
987 study device requires stoppage of device use for safety reasons (e.g. product recall). The affected
988 study activities may resume if the underlying problem can be corrected by a protocol or system
989 modification that will not invalidate the results obtained prior to suspension. Definition of a Data
990 Breach.

991 The study must also stop if there are three severe hypoglycemia events or three DKA events.
992 After further medical/safety review of the events, the study may resume if the events are
993 determined to be unrelated to an unanticipated system malfunction.

994 A data breach is defined in the HITECH Act (43 USC 17932) as an unauthorized acquisition, access,
995 or use of protected health information (PHI) that compromises the security or privacy of such
996 information.

CLINICAL PROTOCOL

997 **Chapter 10: Miscellaneous Considerations**

998 **10.1 Prohibited Medications, Treatments, and Procedures**

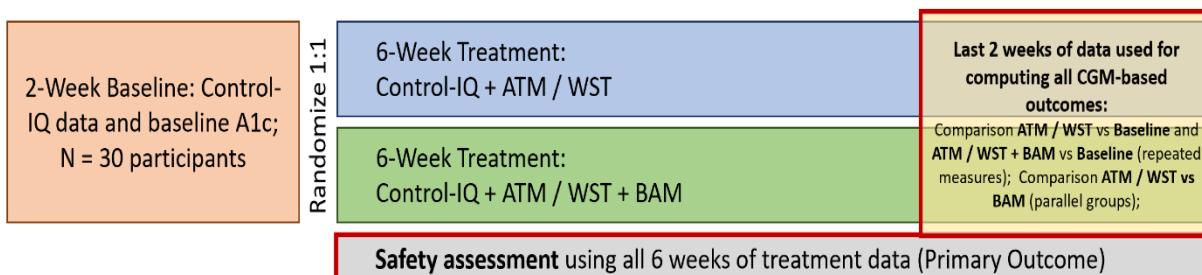
999 Participants using non-approved insulins at the time of enrollment will be asked to contact their
1000 personal physician to change their prescribed personal insulin to a rapid-acting insulin approved
1001 for use in the t:slim X2 pump (e.g. lispro or aspart) for the duration of the trial.

1002 The devices (insulin pump, CGM) must be removed before Magnetic Resonance Imaging (MRI),
1003 Computed Tomography (CT) or diathermy treatment. Participants may continue in the trial after
1004 temporarily discontinuing use if requiring one of the treatments above.

1005 **10.2 Participant Withdrawal**

1006 Participation in the study is voluntary. Participant may withdraw at any time. For participants
1007 who do withdraw from the study, the study team will determine if their data will be used in
1008 analysis.

1009 **10.3 Confidentiality**


1010 For security and confidentiality purposes, subjects will be assigned an identifier that will be used
1011 instead of their name. Protected health information gathered for this study may be shared with
1012 the third party collaborators. De-identified subject information may also be provided to
1013 collaborators involved in the study after the appropriate research agreement has been executed.

CLINICAL PROTOCOL

1014 Chapter 11: Statistical Consideration

1015 The intent of this pilot-feasibility study is to introduce and initially test elements of two modules
1016 to be included in a future Adaptive Biobehavioral Control (ABC) system: (1) A Behavioral
1017 Adaptation Module (BAM) and (2) An Auto Titration Module (ATM) and a Web Simulation Model
1018 (WST). BAM and ATM / WST will be provided to users of the t:slim X2 with Control-IQ closed-loop
1019 system. The only purpose of this trial is safety testing and receiving feedback from the
1020 participants regarding system functionality and user interface.

1021 11.1 Design and Randomization

1022 The study will recruit current users of the Control-IQ system. Following a 2-week baseline using
1023 Control-IQ only, the participants will be randomized 1:1 to Control-IQ + ATM / WST vs Control IQ
1024 + ATM / WST + BAM and will be followed for 6 weeks. The randomization list will use a sequence
1025 of computer-generated pseudorandom Bernoulli trials. The 6 weeks of active trial will be used
1026 for assessment of the safety and usability of ATM / WST and BAM. The baseline data and the last
1027 2 weeks of the active trial will be used for secondary comparisons of CGM-based metrics of
1028 glycemic control.

1030 11.2 Sample Size

1031 We intend to recruit up to 45 users of Control-IQ, with the objective to randomize N=30 subjects.
1032 The number of participants is a convenience sample not based on statistical principles. This
1033 sample will provide ~180 weeks of data for the assessment of the safety and utility of the ATM
1034 and up to 90 weeks for assessment of the safety and utility of the BAM.

1035 11.3 Outcome Measures

1036 11.3.1 Primary Efficacy Endpoint

1037 Safety assessment of ATM / WST and BAM.

1038 11.3.2 Secondary Outcome

1039 CGM-based metrics and user experience (UX) questionnaires, including:

CLINICAL PROTOCOL

1040 • Percentage of readings in the target ranges of 70-180 and 70-140 mg/dl;
1041 • Mean glucose;
1042 • Glucose variability measured by standard deviation and coefficient of variation;
1043 • Percentage of readings <70, 60, and 54 mg/dl;
1044 • Low blood glucose index (LBGI)¹⁰
1045 • Percentage of readings >180, 250, and 300 mg/dl;
1046 • High blood glucose index (HBGI)¹⁰
1047 • ABC Pilot Pre and Post Study Questionnaire
1048 • INSPIRE

1049 **11.4 Safety Analyses**

1050 All randomized participants will be included in these analyses and the circumstances of all
1051 reportable cases of the following will be summarized and tabulated by treatment group:

1052 • Severe hypoglycemia;
1053 • Diabetic ketoacidosis (DKA);
1054 • Ketone events defined as a calendar day with ketone level >1.0 mmol/L;
1055 • Serious adverse events (SAE) with a possible or greater relationship to a study device
1056 (including anticipated and unanticipated adverse device effects);
1057 • Other serious adverse events not related to a study device, and
1058 • Adverse device effects (ADE) that do not meet criteria for SAE.

1059 Criteria for Success have been discussed with FDA during the submission of our previous pilot
1060 study (IDE G170255, “A Pilot Test of t:slim X2 with Control-IQ Technology”), which was used to
1061 introduce Control-IQ and enable a subsequent pivotal trial. These criteria included system safety
1062 checks and CGM-based performance criteria consistent with the recommendations of the
1063 International Consensus on Time-in-Range. Because these criteria are well established, we will
1064 keep them to gauge the success of the pilot evaluation of the new modules ATM / WST and BAM:

1065 • No critical ATM / WST or BAM errors;
1066 • No SAE or ADE related to the use of ATM / WST or BAM;
1067 • Percent time in the range 70-180 mg/dL: mean 71% \pm 11;
1068 • Percent time <70 mg/dL: median <5%.
1069 • Percent time >250 mg/dL: median <10%.

CLINICAL PROTOCOL

1070 **11.5 Baseline Descriptive Statistics**

1071 Baseline demographic and clinical characteristics of the cohort of all randomized participants will
1072 be summarized in a table using summary statistics appropriate to the distribution of each
1073 variable. Descriptive statistics will be displayed overall and by treatment group, and will include:

- 1074 • Demographics (e.g. age, duration of diabetes, and other);
- 1075 • Baseline HbA1c, and
- 1076 • CGM-based metrics from the 2-week baseline use of Control-IQ:
 - 1077 ○ Percentage of readings in the target ranges of 70-180 and 70-140 mg/dl;
 - 1078 ○ Mean glucose;
 - 1079 ○ Glucose variability measured by standard deviation and coefficient of variation;
 - 1080 ○ Percentage of readings <70, 60, and 54 mg/dl;
 - 1081 ○ Low blood glucose index (LBGI);¹⁰
 - 1082 ○ Percentage of readings >180, 250, and 300 mg/dl;
 - 1083 ○ High blood glucose index (HBGI).¹⁰

1084 **11.6 Device Issues**

1085 The following tabulations and analyses will be performed by treatment group to assess device
1086 issues:

- 1087 • Device malfunctions requiring study team contact and other reported device issues
- 1088 • Sensor performance metrics (difference, absolute relative difference, and International
1089 Organization for Standardization criteria) – if applicable, by sensor version.
- 1090 • % time CGM data available - overall and by month
- 1091 • % time in different operational modes per week - overall and by month

1092 **11.7 Analysis of Secondary CGM-based Outcomes**

1093 The study design includes repeated measures (baseline vs last 2 weeks of study) on all secondary
1094 CGM and UX outcomes (Figure 1); thus, we will use a linear mixed-effect model that corresponds
1095 well to this structure^{5,6} (e.g. Linear Mixed Models in SPSS.⁷), with “Subject” as a random factor
1096 and “Group” as a fixed factor. The models will adjust for age and HbA1c as fixed effects. We
1097 should note that similar results may be generated by repeated measures ANOVA, but mixed
1098 models handle missing data better (e.g. ANOVA only uses listwise deletion, which could reduce
1099 power and introduce bias towards study completers).^{8,9}

1100 The general principles that will be followed during analysis are:

- 1101 • The analysis will follow an Intention-to-treat (ITT) approach;

CLINICAL PROTOCOL

1102 • All randomized participants will be included in the primary safety analysis and in the
1103 secondary analyses of CGM metrics.

1104 • All covariates obtained on a continuous scale will be entered into the models as
1105 continuous variables, unless it is determined that a variable does not have a linear
1106 relationship with the outcome. In such a case, categorization and/or transformation will
1107 be explored. All p-values will be two-sided.

1108 • Standard residual diagnostics will be performed for all analyses. If values are highly
1109 skewed, then an alternate transformation or nonparametric methods will be used.
1110 Previous experience suggests that no transformation or nonparametric analyses will be
1111 necessary for TIR 70-180 mg/dL, TIR above 180 mg/dL, mean glucose, or HbA_{1c}. Other
1112 outcomes, such as TIR below 70 mg/dL are typically skewed.

CLINICAL PROTOCOL

1113 **Chapter 12: Data Collection and Monitoring**

1114 **12.1 Case Report Forms and Device Data**

1115 The study data are collected through a combination of case report forms (electronic and paper)
1116 and electronic device data files obtained from the software and individual hardware
1117 components. These electronic device files and electronic CRFs are considered the primary source
1118 documentation.

1119 When data are directly collected in electronic case report forms, this will be considered the
1120 source data. Records will be maintained in accordance with ICH E6 and institutional regulatory
1121 requirements for the protection of confidentiality of participants.

1122 **12.2 Study Records Retention**

1123 Study documents should be retained for a minimum of 2 years after the last approval of a
1124 marketing application in an ICH region and until there are no pending or contemplated marketing
1125 applications in an ICH region or until at least 2 years have elapsed since the formal
1126 discontinuation of clinical development of the investigational product. These documents should
1127 be retained for a longer period, however, if required by local regulations. No records will be
1128 destroyed without the written consent of the sponsor, if applicable. It is the responsibility of the
1129 sponsor to inform the investigator when these documents no longer need to be retained.

1130 **12.3 Protocol Deviations**

1131 A protocol deviation is any noncompliance with the clinical trial protocol, Good Clinical Practices
1132 (GCP), or procedure requirements. The noncompliance may be either on the part of the
1133 participant, the investigator, or the study site staff. As a result of deviations, corrective actions
1134 may be developed by the site and implemented as appropriate. Major deviations will be reported
1135 to the IRB-HSR within 7 calendar days of when the study team becomes aware of the event.

CLINICAL PROTOCOL

1136 **Chapter 13: Ethics/Protection of Human Participants**

1137 **13.1 Ethics Standard**

1138 The investigator will ensure that this study is conducted in full conformity with Regulations for
1139 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21
1140 CFR Part 56, and/or the ICH E6.

1141 **13.2 Institutional Review Boards**

1142 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1143 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1144 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1145 require review and approval by the IRB before the changes are implemented to the study. All
1146 changes to the consent form will be IRB approved; a determination will be made regarding
1147 whether previously consented participants need to be re-consented.

1148 **13.3 Informed Consent Process**

1149 **13.3.1 Consent Procedures and Documentation**

1150 Informed consent is a process that is initiated prior to an individual's agreement to participate in
1151 the study and continues throughout the individual's study participation. Extensive discussion of
1152 risks and possible benefits of participation will be provided. Consent forms will be IRB approved
1153 and the participant will be asked to read and review the document. The investigator or their
1154 delegate will explain the research study to the participant and answer any questions that may
1155 arise. All participants will receive a verbal explanation in terms suited to their comprehension of
1156 the purposes, procedures, and potential risks of the study and of their rights as research
1157 participants. Participant will have the opportunity to carefully review the written consent form
1158 and ask questions prior to signing.

1159 The participant will sign the informed consent document prior to any procedures being done
1160 specifically for the study. A copy of the informed consent document will be given to the
1161 participant for their records. The rights and welfare of the participants will be protected by
1162 emphasizing to them that the quality of their medical care will not be adversely affected if they
1163 decline to participate in this study.

1164 **13.3.2 Participant and Data Confidentiality**

1165 The study monitor, representatives of the IRB or device company supplying study product may
1166 inspect all documents and records required to be maintained by the investigator, including but
1167 not limited to, medical records (office, clinic, or hospital) for the participants in this study.

CLINICAL PROTOCOL

1168 The study participant's contact information will be securely stored at the clinical site for internal
1169 use during the study. At the end of the study, all records will continue to be kept in a secure
1170 location for as long a period as dictated by local IRB and Institutional regulations.

1171 Study participant research data, which is for purposes of statistical analysis and scientific
1172 reporting, will be transmitted to and stored at the University of Virginia Center for Diabetes
1173 Technology. The study data entry and study management systems used by research staff will be
1174 secured and password protected. At the end of the study, all study databases may be de-
1175 identified and archived at the University of Virginia Center for Diabetes Technology.

CLINICAL PROTOCOL

1176 Chapter 14: References

- 1177 1. Kovatchev BP, Anderson SM, Raghinaru D, et al, for the iDCL Trial Research Group.
1178 Randomized Controlled Trial of Mobile Closed-Loop Control. *Diabetes Care*. 2020; 43:607-
1179 615. PMID: 31937608
- 1180 2. Brown SA, Kovatchev BP, Raghinaru D, et al, for the iDCL Trial Research Group. 6-month
1181 randomized multicenter trial of closed-loop control in type 1 diabetes. *N Engl J Med*. 2019;
1182 381: 1707-17. PMID: 31618560.
- 1183 3. Breton MD, Kanapka LG, Beck RW, et al, for the iDCL Trial Research Group. A Randomized
1184 Trial of Closed-Loop Control in Children with Type 1 Diabetes. *N Engl J Med*. 2020; 383:836-
1185 845. PMID: 32846062.
- 1186 4. Kovatchev BP, Cobelli C. Glucose variability: timing, risk analysis, and relationship to
1187 hypoglycemia in diabetes. *Diabetes Care*. 2016; 39: 502-510. PMCID: PMC4806774
- 1188 5. Ching Ng W-K, Ching MK W. *Markov Chains*. Springer-Verlag; 2006.
- 1189 6. Kovatchev BP. Decision Support System for Patients with Diabetes: Concept, Goals, and
1190 Feasibility. *Advanced Technologies and Treatments for Diabetes (ATT)*, Berlin, Germany,
1191 2019.
- 1192 7. Kovatchev BP. Building a Virtual Image of a Patient – the VIP Approach to Precision Medicine
1193 for Diabetes. *Advanced Technologies and Treatments for Diabetes (ATT)*, Berlin, Germany,
1194 2019
- 1195 8. Kovatchev BP, Mendosa P, Anderson SM, Hawley JS, Ritterband LM, Gonder-Frederick L.
1196 Effect of automated bio-behavioral feedback on the control of type 1 diabetes. *Diabetes Care*.
1197 2011; 34: 302-307. PMCID: PMC3024338
- 1198 9. Fabris C, Heinemann L, Beck RW, Cobelli C, Kovatchev B. Estimation of Hemoglobin A1c From
1199 Continuous Glucose Monitoring Data in Individuals With Type 1 Diabetes: Is Time in Range All
1200 We Need? *Diabetes Technol Ther*. 2020 doi: 10.1089/dia.2020.0236
- 1201 10. Kovatchev BP. Metrics for glycaemic control: from HbA1c to continuous glucose monitoring.
1202 *Nature Reviews Endocrinology*. 2017; 13: 425-436. PMID: 28304392
- 1203 11. Patek SD, Lv D, Ortiz EA, Hughes-Karvetski C, Kulkarni S, Zhang Q, Breton MD. Empirical
1204 representation of blood glucose variability in a compartmental model. In *Prediction Methods
1205 for Blood Glucose Concentration* 2016 (pp. 133-157). Springer, Cham.
- 1206 12. Colmegna P, Wang K, Garcia-Tirado J, Breton MD. Mapping data to virtual patients in type 1
1207 diabetes. *Control Engineering Practice*. 2020 Oct 1;103:104605.
- 1208 13. Hughes J, Gautier T, Colmegna P, Fabris C, Breton MD, Replay Simulations with Personalized
1209 Metabolic Model for Treatment Design and Evaluation in Type 1 Diabetes. *Journal of Diabetes
1210 Technology and Therapeutics*, 2020 In Press

CLINICAL PROTOCOL

1211 14. Brown S, Raghinaru D, Emory E, and Kovatchev BP. First Look at Control-IQ: A New-
1212 Generation Automated Insulin Delivery System. *Diabetes Care* 2018; 41:2634-2636, PMID:
1213 30305346

1214 15. Kovatchev BP, Kollar L, Anderson SM, Barnett C, Breton MD, Carr K, Gildersleeve R, Oliveri
1215 MC, Wakeman CA, Brown SA. Evening and overnight closed-loop control versus 24/7
1216 continuous closed-loop control for type 1 diabetes: a randomized crossover trial. *Lancet*
1217 *Digital Health* 2020; 2: e64-e73.

1218 16. Ekhlaspour L, Forlenza GP, Chernavsky D, Maahs DM, Wadwa RP, DeBoer MD, Messer LH,
1219 Town M, Pinnata J, Kruse G, Kovatchev BP, Buckingham BA, Breton MD. Closed Loop Control
1220 in Adolescents and Children During Winter Sports: Use of the Tandem Control-IQ AP System.