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fMRI data pre-processing

Pre-processing of fMRI data was performed using SPM12
(http://www fil.ion.ucl.ac.uk/spm/software/spm12/). For each participant, we aligned all functional
volumes for both sleep sessions to the first acquired functional volume to correct for head motion.
We then realigned and averaged the ten whole-brain EPI volumes, and co-registered the mean
whole-brain EPI to the anatomical T1 image. The mean functional volume was then co-registered
to the mean whole-brain EPI, and this transformation was applied to all functional volumes. Spatial
normalization was performed by normalizing the T1 anatomical images to the MNI (Montreal
Neurological Institute) space using the six tissue probability map provided by SPM12. For
multivariate analysis, the resulting deformation fields were applied to searchlight-based maps of
decoding accuracy (see below). The normalized decoding accuracy maps were spatially
smoothed with a 6 x 6 x 6 mm full-width half-maximum (FWHM) Gaussian kernel before group-
level statistical testing. For functional connectivity and univariate analyses (see below), the
motion-corrected and co-registered functional images were normalized to MNI space using the
previously estimated deformation fields and spatially smoothed with a 6 x 6 x 6 mm FWHM
Gaussian kernel.

Multivoxel pattern analysis

We implemented a searchlight-based multi-voxel pattern analysis (MVPA) (Howard & Kahnt,
2018; Kahnt, Grueschow, Speck, & Haynes, 2011) to decode information about food vs. non-food
odors. We first estimated general linear models (GLM) for each subject, separately for each
session, using the non-normalized and un-smoothed functional images. The GLM included three
regressors of interest specifying onset times for the following conditions: 1) food odors, 2) non-
food odors, 3) clean air. We also included the following nuisance regressors: the smoothed and
normalized respiratory trace, down-sampled to scanner temporal resolution (0.5 Hz); the 6
realignment parameters (3 translations, 3 rotations), calculated for each volume during motion
correction; the derivate, square, and the square of the derivative of each realignment regressor;
the absolute signal difference between even and odd slices, and the variance across slices in
each functional volume (to account for fMRI signal fluctuation caused by within-volume head
motion); additional regressors as needed to model out individual volumes in which particularly
strong head motion occurred (absolute difference between odd and even slices >5 SD or slice
variance >4 SD). The parameter estimates from the first two regressors of this GLM reflect the
voxel-wise response amplitudes for food and non-food odors, separately for each run and sleep
session.

Next, we used these voxel-wise parameter estimates in a searchlight-based, leave-one-run-out
cross-validated decoding approach. We decoded food vs. non-food odors from patterns of odor-
evoked activity, separately for each of the two sleep sessions. We used The Decoding Toolbox
(TDT) to implement the searchlight (Hebart, Gorgen, & Haynes, 2014) and LIBSVM (Chang & Lin,
2011) for the linear support vector machine (SVM) classifier. To test for brain regions that encoded
food vs. non-food odors, at each searchlight (sphere with 8 mm radius), we trained a SVM to
discriminate between activity patterns evoked by food vs. non-food odors in three of the four runs
per session (DS or NDS), and tested it on activity patterns evoked by food vs. non-food from the
fourth “left out” run of the same session. The procedure was repeated four times leaving a different
run out, and decoding accuracies were averaged and mapped to the center voxel of the
searchlight. This procedure was repeated for every voxel within a 10% gray-matter mask (based
on SPMs tissue probability map that was inverse-normalized into the individual native space, as
described in (Howard & Kahnt, 2018)). The resulting accuracy maps for food vs. non-food odors
for DS and NDS sessions were subtracted (DS > NDS), normalized, and smoothed (6mm FWHM).
We tested for significant differences between DS and NDS sessions at the group level using
voxel-wise one-sample t-tests. Statistical thresholds were set to P<0.05, family-wise error (FWE)



small-volume corrected for multiple comparisons at the voxel-level in a functional mask of piriform
cortex that was obtained from a one-sample t-test of decoding accuracy for food vs. non-food
odors, averaged across sleep sessions.

Analysis of food intake

Food items were weighed before and after eating to determine the amount of food consumed.
Total calorie and energy density (kcal/g) of consumed food was calculated from the product
nutrition labels. Changes in food intake in the deprived sleep (DS) session were computed as
percentage change from non-sleep deprived baseline (NSD) and tested against zero using one-
sample t-tests.

Analysis of hormones

Ghrelin, leptin, insulin, and cortisol were measured in blood samples collected at each session.
Changes in hormone levels in the deprived sleep (DS) session were computed as percentage
change from non-sleep deprived baseline (NSD) and tested against zero using one-sample t-
tests.
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