

1

2

3 **STUDY OF ADULT STRABISMUS**

4 **(SAS1)**

5

6 **A Prospective Observational Study of Adult**

7 **Strabismus**

8

9 **SAS1a: A Prospective Observational Study of Adult Convergence Insufficiency (CI)**

10 **SAS1b: A Prospective Observational Study of Adult Divergence Insufficiency (DI)**

11 **SAS1c: A Prospective Observational Study of Adult Small-Angle Hypertropia (HT)**

12

13

14 **PROTOCOL**

15

16 **Version 2.0**

17 **April 11, 2016**

33 **A PROSPECTIVE OBSERVATIONAL STUDY OF ADULT STRABISMUS (SAS1)**

34

35 **PROTOCOL AMENDMENT I (4-11-16)**

36

37 **Proposed Change #1**

38 Current Protocol

39 • Enrollment visit: Questionnaires and the symptom survey (if applicable) should be
40 administered to the subject prior to other examination procedures.
41 • Follow-up visits: No specific mention regarding order of testing with respect to
42 questionnaires and the symptom survey.

43

44 **Proposed Change**

45 • Enrollment visit: Remove specific language regarding order of testing to allow
46 questionnaires and the symptom survey (if applicable) to be completed at any time during
47 the enrollment visit.
48 • Follow-up visits: Add specific language regarding order of testing at follow-up visits to
49 require questionnaires and the symptom survey (if applicable) to be completed prior to
50 testing.

51

52 **Rationale for Change**

53 At the time of enrollment, treatment has not yet been initiated, therefore having knowledge of
54 clinical assessments prior to completion of the questionnaires and the symptom survey is not
55 expected to introduce any bias. In contrast, the questionnaires and symptom survey should be
56 completed prior to clinical testing at any follow-up visit.

57

58 **Proposed Change #2**

59 Current Protocol – For subjects enrolled with Divergence Insufficiency

60 Distance esodeviation of 2 PD to 30 PD and at least 50% greater than at near by PACT

61

62 Proposed Change – For subjects enrolled with Divergence Insufficiency

63 Distance esodeviation of 2 PD to 30 PD and distance deviation is at least 1.25 times (25% larger
64 than) near deviation by PACT (i.e., maximum near deviation is at least 20% smaller than
65 distance deviation). The distance deviation must exceed the near deviation by at least the
66 amounts provided in the table below.

67

68 **PACT Values for DI Eligibility**

Distance Deviation	2	3	4	5	6	7	8	9	10	12	14	16	18	20	25	30
*Max Near Deviation	1	2	3	4	4	5	6	7	8	9	10	12	14	16	20	20

69 Calculation: Distance \geq Near \times 1.25 or Near \leq Distance \times 0.8

70 *Near deviation is the nearest study-permitted prism based on Strabismus Procedures Manual.

71

72 **Rationale for Change**

73 The previous DI definition was developed by the SAS1 Planning Committee after literature
74 review and chart reviews. After the study started, the Strabismus Steering Committee has
75 lowered the threshold based on feedback from SAS1 investigators.

76
77
78 **CONTACT INFORMATION**
79
80

81 **COORDINATING CENTER**
82 Raymond T. Kraker, M.S.P.H. (Director)
83 Jaeb Center for Health Research
84 15310 Amberly Drive, Suite 350
85 Tampa, FL 33647
86 Phone (888) 79PEDIG or (813) 975-8690
87 Fax (888) 69PEDIG or (813) 975-8761
88 Email: pedig@jaeb.org
89
90

91 **PROTOCOL CHAIR**
92 Eric Crouch, M.D.
93 Virginia Pediatric Eye Center
94 880 Kempsville Road, Suite 2500
95 Norfolk, VA 23502
96 Phone (757) 461-0050
97 Fax (757) 461-4538
98 Email: ercrouch@virginiapediatriceye.com
99

TABLE OF CONTENTS

100	
101	
102	CHAPTER 1: BACKGROUND AND SUMMARY
103	1.1 Background
104	1.2 Rationale for the study
105	1.3 Considerations.....
106	1.4 Study Objectives
107	1.5 Synopsis of Study Design
108	1.5.1 Synopsis of Study Design for CI
109	1.5.2 Study Flow Chart: CI.....
110	1.5.3 Synopsis of Study Design for DI
111	1.5.4 Study Flow Chart: DI.....
112	1.5.5 Synopsis of Study Design for HT
113	1.5.6 Study Flow Chart: HT.....
114	CHAPTER 2: SUBJECT ENROLLMENT
115	2.1 Eligibility Assessment and Informed Consent
116	2.2 Eligibility and Exclusion Criteria.....
117	2.2.1 Eligibility Criteria for CI
118	2.2.2 Eligibility Criteria for DI.....
119	2.2.3 Eligibility Criteria for HT
120	2.3 Historical Information.....
121	2.4 Procedures at the Enrollment Visit.....
122	2.4.1 Enrollment Procedures for CI
123	2.4.2 Enrollment Procedures for DI.....
124	2.4.3 Enrollment Procedures for HT
125	CHAPTER 3: TREATMENT AND FOLLOW-UP
126	3.1 Treatment
127	3.2 Visit Schedule
128	3.3 Follow-up Visit Testing Procedures (10-week and 12-month visits).....
129	3.3.1 Follow-up Visit Testing Procedures for CI.....
130	3.3.2 Follow-up Visit Testing Procedures for DI.....
131	3.3.3 Follow-up Visit Testing Procedures for HT
132	3.4 Non-study Visits
133	3.5 Initiating a New Treatment
134	CHAPTER 4: MISCELLANEOUS CONSIDERATIONS
135	4.1 Contacts by the Jaeb Center for Health Research and Sites
136	4.2 Subject Withdrawals
137	4.3 Management of Refractive Error.....
138	4.4 Risks.....
139	4.4.1 Risks of Examination Procedures
140	4.5 Reporting of Adverse Events
141	4.5.1 Risk Assessment
142	4.6 Discontinuation of Study.....
143	4.7 Travel Reimbursement
144	4.8 Study Costs
145	4.9 General Considerations
146	CHAPTER 5: SAMPLE SIZE ESTIMATION AND STATISTICAL ANALYSIS
147	5.1 Assessment of Investigator Interest / Recruitment Potential.....
148	5.2 Sample Size.....
149	5.3 Primary Analysis – Symptom Success at One Year.....
150	5.4 Secondary Analysis – Motor Success at One Year
151	5.5 Additional Analyses.....
152	5.5.1 Secondary Outcomes at One Year
153	5.5.2 Outcomes at 10 Weeks
154	CHAPTER 6: REFERENCES
155	

156 CHAPTER 1: BACKGROUND AND SUMMARY

157

158 This study is being conducted by the Pediatric Eye Disease Investigator Group (PEDIG) and is
159 funded through a cooperative agreement from the National Eye Institute.

160

161 1.1 Background

162 Epidemiology and clinical characteristics:

163 New onset adult strabismus has been estimated to affect 54.1/100,000 in a recent population-
164 based study in the USA.¹ In this study, the most common types of new onset strabismus in
165 adults, after paralytic strabismus, were convergence insufficiency (8.4/100,000), small angle
166 hypertropia (7.5/100,000) and divergence insufficiency (6.0/100,000). For each of these
167 types the incidence increased with increasing age.¹

168

169 Convergence insufficiency:

170 Convergence insufficiency (CI) is characterized by an exodeviation greater at near than at
171 distance and a remote near point of convergence and/or decreased positive fusional vergence.²
172 It is typically associated with symptoms such as diplopia, eyestrain, asthenopia, frontal
173 headaches or problems reading.²⁻⁴ Treatment consists of either exercises,^{3, 4} prisms,^{3, 4} surgery,⁴⁻
174 ⁶ or botulinum toxin injection.⁷

175

176 There is a paucity of evidence for the effectiveness of treatment for CI in adults, with most
177 previous reports studying effects in children. A recent Cochrane review² identified two
178 previous randomized clinical trials in adults. Teitelbaum et al⁸ randomly assigned 29
179 presbyopic patients with symptomatic CI to either progressive addition lenses with base-in
180 prism or progressive addition lenses with no prism. The authors concluded that base-in prism
181 glasses were effective in reducing the symptoms of CI, although interestingly, symptoms also
182 significantly improved with progressive addition lenses with no prism.⁸ Birnbaum et al⁹
183 randomly assigned 60 male adult patients to receive office-based vision therapy/orthoptics with
184 supplemental home therapy, home vision therapy alone, or no treatment. Office vision therapy
185 with supplemental home therapy was reported to be most effective with a success rate of 62%.
186 Despite the findings of these two randomized trials there remains much uncertainty as to which
187 treatments are most effective for a given adult patient with CI and what are realistic success
188 rates.

189

190 Divergence insufficiency:

191 Divergence insufficiency (DI) esotropia is a comitant esodeviation worse at distance fixation
192 than at near, typically associated with symptoms of diplopia at distance.¹⁰ Treatment most often
193 consists of either prism correction¹⁰⁻¹³ or strabismus surgery.^{14, 15} The established surgical
194 procedure for DI esotropia is lateral rectus resection.¹⁶⁻¹⁸ Nevertheless, in recent years bilateral
195 medial rectus recession has been advocated.^{14, 15, 19} There are few studies comparing treatments
196 for DI esotropia, and little data on treatment outcomes, especially over the long-term. One recent
197 study¹⁹ claimed medial rectus recession was equivalent to lateral rectus resection but it was
198 retrospective, not randomized, and had small sample size (n=24) and therefore of insufficient
199 power to make such a determination.

200

201 Hypertropia:

202 New onset small angle hypertropia (HT) in adults presents as a comitant hyperdeviation,
203 typically less than 10 prism diopters, in the absence of oblique muscle dysfunction. The patient

204 typically experiences symptoms of vertical diplopia. There are a range of possible causes for
205 such vertical misalignment including skew deviation, sagging eye syndrome,²⁰ myotoxicity
206 following cataract surgery,^{21, 22} presumed micro-vascular event, or even central peripheral rivalry
207 (dragged fovea-diplopia syndrome).²³⁻²⁵ Treatment most often consists of prism correction of
208 diplopia or strabismus surgery, although partial occlusion may be used in cases of central
209 peripheral rivalry. Regarding surgical approaches for small angle HT, some surgeons perform
210 superior rectus recession, while others have advocated mini-tenotomy (snip) procedures.²⁶ There
211 are, however, limited data on the effectiveness of these treatments for small angle HT and few
212 studies, if any, comparing treatment outcomes.

213

214 **Prospective Observational Studies:**

215 A prospective observational study monitors different forms of treatment applied to patients with
216 a certain condition. Individuals are enrolled in a prospective observational study on the basis of
217 either disease or exposure status. The care provider, not a protocol, decides how a patient gets
218 treated. Through direct data collection from care providers, the results of the ongoing disease
219 process and medical care can then be observed.

220

221 Prospective observational studies have the advantage of applying inclusion/exclusion criteria and
222 not dictating management. The large patient sample often enables better estimation of outcome
223 rates. Also, since data are collected within standard clinical practice, the results have high
224 external validity. Weaknesses of observational studies include difficulty in identifying and
225 controlling all sources of bias, and challenges with respect to data analyses. There may also be
226 variability in time intervals between visits and treatments, and the potential for confounding
227 makes treatment group comparisons difficult to interpret. Despite these weaknesses, future
228 randomized controlled trials may be developed based on preliminary estimates of treatment
229 effects that an observational study provides for the studied conditions.

230

231 **1.2 Rationale for the study**

232 **Purpose of an adult CI-DI-HT strabismus prospective observational study:**

233 A prospective adult strabismus observational study will provide data on the numbers, types and
234 clinical characteristics of adult patients with CI, DI or HT who are seen by PEDIG investigators
235 and are receiving certain types of treatments , and on the outcomes of those treatments over one
236 year. These data will be used to generate hypotheses for possible future PEDIG studies,
237 including randomized trials. Data collected will include angle of deviation, diplopia severity,
238 treatment type, and treatment outcome.

239

240 **Public health importance:**

241 There are limited prospective, standardized data available on adults with convergence
242 insufficiency, divergence insufficiency or small angle hypertropia, the commonest causes of non-
243 paralytic adult strabismus. This study will inform regarding the numbers and types of adults
244 with these conditions seen by PEDIG investigators, enabling the generation of hypotheses for
245 potential PEDIG studies and estimation of their recruitment feasibility.

246

247 **1.3 Considerations**

248 It is recognized that estimates of treatment success may be biased by patient selection, but for
249 some conditions / treatments, these data will be the best available for planning future PEDIG
250 studies.

252 **1.4 Study Objectives**

253 To describe clinical characteristics, treatments, and one-year outcomes of adults with
254 convergence insufficiency, divergence insufficiency, or small angle hypertropia. Treatment
255 comparisons within the studied conditions will also be done to help develop future studies.

256 **1.5 Synopsis of Study Design**

257 **1.5.1 Synopsis of Study Design for CI**

258 Major Eligibility Criteria (see section 2.2.1 for full details)

- Adults ≥ 18 years of age (adult onset of CI not required)
- No strabismus surgery in the past 10 years
- CI Symptom Survey score ≥ 21 points
- Near exodeviation of $\geq 4\Delta$ and at least 4Δ larger than at distance by PACT
- Distance exodeviation $\leq 15\Delta$ by PACT
- Vertical deviation $\leq 2\Delta$ at distance and near by PACT
- No constant exotropia at distance or near
- Reduced positive fusional vergence (PFV) at near ($< 20\Delta$ or fails Sheard's criterion that the PFV measures less than twice the magnitude of the near phoria)
- Near point of convergence (NPC) of ≥ 6 cm break
- No paralytic strabismus, paretic strabismus, restrictive strabismus, monocular diplopia, thyroid eye disease, myasthenia gravis, chronic progressive external ophthalmoplegia, or eye movement abnormalities associated with known neurological disease. Patients with Parkinson's disease can be enrolled if non-paretic deviation.
- Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
- Ability to fuse with prism in space (see section 2.4.1)
- Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection or surgery
- If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be within 60 days of enrollment.
- Treatment to be initiated has not been used within the past one year

282 Treatment

283 Treatment is per the investigator's usual clinical practice.

284 Data will be collected for the following treatment modalities:

- Bilateral medial rectus muscle resection surgery
- Single medial rectus muscle resection surgery
- Recess lateral rectus muscle resection medial rectus muscle surgery
- Bilateral lateral rectus muscle recession surgery
- Single lateral rectus muscle recession surgery
- Botulinum toxin injection
- Prisms
- Orthoptic exercises, including computer-based therapy

295 Sample Size

296 50 subjects per non-surgical treatment modality (prism, orthoptic exercises) and up to 100
297 subjects undergoing surgery (maximum 50 per surgical modality) will be enrolled, for a total of

298 up to 200 subjects with CI. Recruitment will continue for 1 year, at which time the determination
299 will be made whether the recruitment period should be extended to allow for additional subjects
300 to be enrolled in treatment modality groups that have not reached their maximum.

301

302 Visit Schedule

303 • Baseline Visit
304 • 10 week \pm 3 weeks following intervention
305 • 12-months \pm 2 months following intervention

306

307 Visits will be timed from the date of surgery or botulinum toxin injection (if applicable); or if
308 prescribed prism or orthoptic exercises, visits will be timed from the day of enrollment. Subjects
309 can remain in the study up to an additional year and have up to two additional follow up visits if
310 their treatment modality is changed during the study.

311

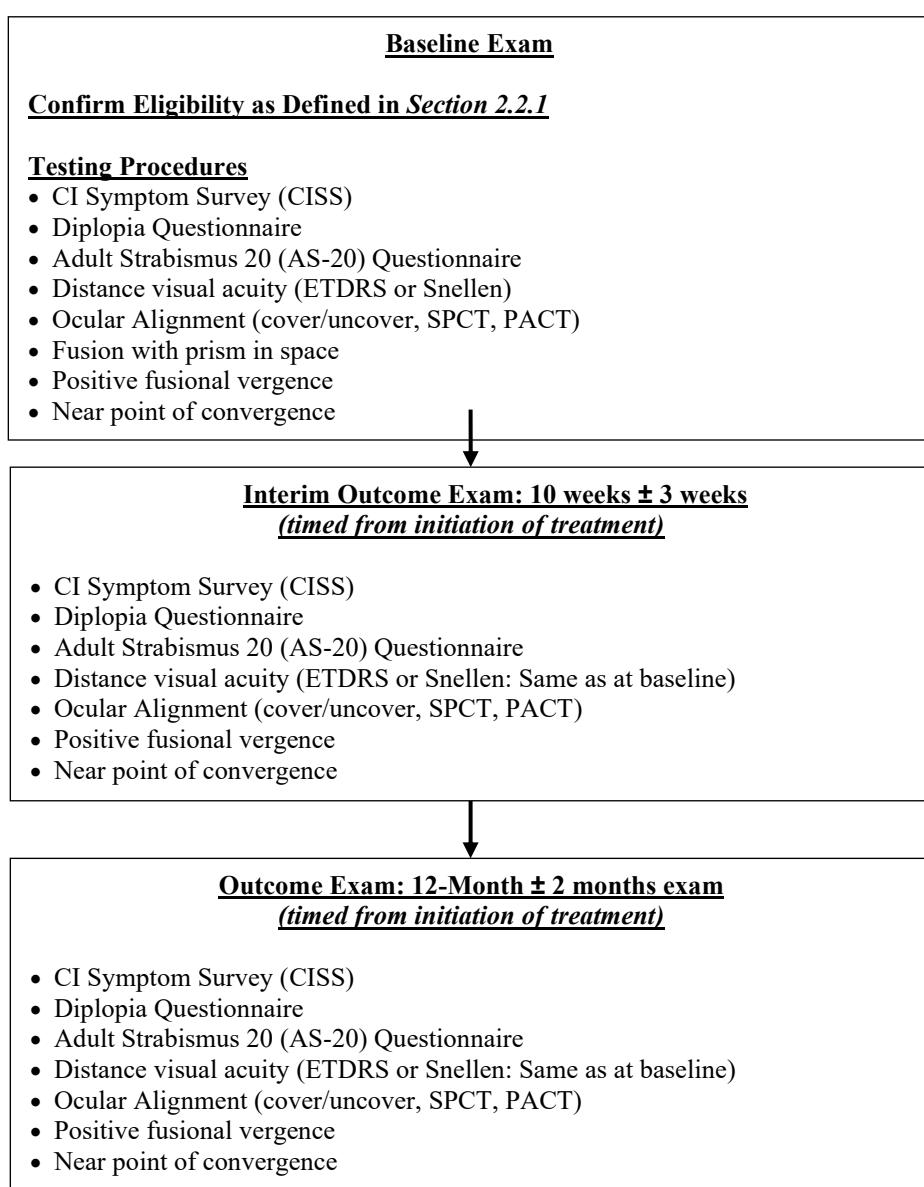
312 Outcome

313 The primary outcome will be symptom success at the 10-week and 12-month visit, defined as
314 improvement of CI Symptom Survey (CISS) score of at least 9 points and an outcome score of
315 <21 points. For surgical treatment, a secondary, motor outcome will evaluate how often subjects
316 have become orthotropic at distance and near after treatment.

317

318 1.5.2 Study Flow Chart: CI

319


320

321

322

323

324

325 **1.5.3 Synopsis of Study Design for DI**

326 **Major Eligibility Criteria (see section 2.2.2 for full details)**

- 327 • Adults \geq 18 years of age
- 328 • Adult-onset DI (at \geq 18 years of age)
- 329 • No prior strabismus surgery
- 330 • Symptoms of diplopia at distance with a frequency of sometimes or worse in primary
331 position
- 332 • Distance esodeviation of 2Δ to 30Δ and distance deviation is at least 1.25 times (25% larger
333 than) near deviation by PACT (i.e., maximum near deviation is at least 20% smaller than
334 distance deviation). The distance deviation must exceed the near deviation by at least the
335 amounts provided in the table below.

336 **PACT Values for DI Eligibility**

Distance Deviation	2	3	4	5	6	7	8	9	10	12	14	16	18	20	25	30
*Max Near Deviation	1	2	3	4	4	5	6	7	8	9	10	12	14	16	20	20

338 Calculation: Distance \geq Near $\times 1.25$ or Near \leq Distance $\times 0.8$

339 *Near deviation is the nearest study-permitted prism based on Strabismus Procedures Manual.

- 340 • No more than 5Δ difference between right and left gaze by PACT
- 341 • No more than 10Δ difference between primary position and either upgaze or downgaze by
342 PACT
- 343 • Any coexisting vertical deviation must be less than the distance esodeviation and $\leq 10\Delta$ by
344 PACT
- 345 • No paralytic strabismus, paretic strabismus, restrictive strabismus, monocular diplopia,
346 thyroid eye disease, myasthenia gravis, chronic progressive external ophthalmoplegia, or eye
347 movement abnormalities associated with known neurological disease. Patients with
348 Parkinson's disease can be enrolled if non-paretic deviation
- 349 • Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
- 350 • Ability to fuse with prism in space (see section 2.4.2)
- 351 • Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection,
352 or surgery
- 353 • If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be
354 within 60 days of enrollment.
- 355 • Treatment to be initiated has not been used within the past one year

356 **Treatment**

357 Treatment is per the investigator's usual clinical practice.

358 Data will be collected for the following treatment modalities:

- 359 • Bilateral lateral rectus muscle resection surgery
- 360 • Single lateral rectus muscle resection surgery
- 361 • Recess medial rectus muscle resection lateral rectus muscle surgery
- 362 • Bilateral medial rectus muscle recession surgery
- 363 • Single medial rectus muscle recession surgery
- 364 • Botulinum toxin injection

368 • Prisms
369 • Orthoptic exercises, including computer-based therapy
370

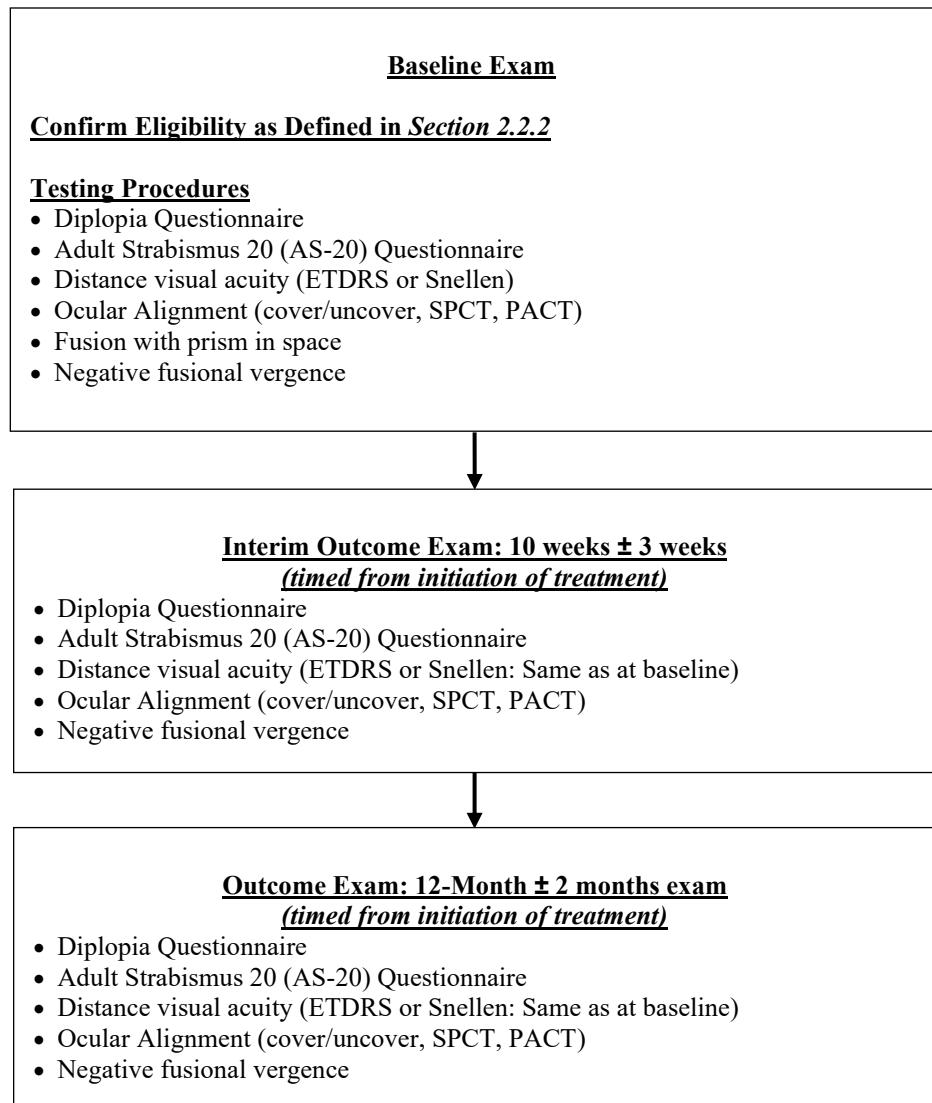
371 Sample Size

372 50 subjects per non-surgical treatment modality (prism, orthoptic exercises) and up to 150
373 subjects undergoing surgery (maximum 50 per surgical modality) will be enrolled, for a total of
374 up to 250 subjects with DI. Recruitment will continue for 1 year, at which time the
375 determination will be made whether the recruitment period should be extended to allow for
376 additional subjects to be enrolled in treatment modality groups that have not reached their
377 maximum.

378
379 Visit Schedule

380 • Baseline Visit
381 • 10 week \pm 3 weeks following intervention
382 • 12-months \pm 2 months following intervention

383 Visits will be timed from the date of surgery or botulinum toxin (if applicable); or if prescribed
384 prism or orthoptic exercises, visits will be timed from the day of enrollment. Subjects can
385 remain in the study up to an additional year and have up to two additional follow up visits if their
386 treatment modality is changed during the study.


387
388 Outcomes

389 The primary outcome will be symptom success at the 10-week and 12-month visit, defined as
390 diplopia “rarely” or “never” in primary position at distance on the diplopia questionnaire. For
391 surgical treatment, a secondary, motor outcome will evaluate how often subjects have become
392 orthotropic at distance and near after treatment.

393
394

395 1.5.4 Study Flow Chart: DI

396
397

398 **1.5.5 Synopsis of Study Design for HT**

399 **Major Eligibility Criteria (see section 2.2.3 for full details)**

- 400 • Adults ≥ 18 years of age
- 401 • Adult-onset HT (at ≥ 18 years of age)
- 402 • No prior strabismus surgery
- 403 • Symptoms of diplopia at distance or near with a frequency of sometimes or worse in primary position at distance or reading position
- 404 • Vertical deviation $\geq 1\Delta$ to $\leq 10\Delta$ at distance and near by prism and alternate cover test (PACT)
- 405 • No more than 4Δ difference from the primary in any gaze position by PACT
- 406 • Any coexisting esodeviation must be less than the vertical deviation by PACT
- 407 • Any coexisting exodeviation $\leq 10\Delta$ by PACT
- 408 • No convergence insufficiency as defined in *section 2.2.1*
- 409 • No paralytic strabismus, paretic strabismus, restrictive strabismus, monocular diplopia, thyroid eye disease, myasthenia gravis, chronic progressive external ophthalmoplegia, or eye movement abnormalities associated with known neurological disease. Patients with Parkinson's disease can be enrolled if non-paretic deviation
- 410 • Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
- 411 • Ability to fuse with prism in space (*see section 2.4.3*)
- 412 • Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection or surgery
- 413 • If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be within 60 days of enrollment.
- 414 • Treatment to be initiated has not been used within the past one year

421 **Treatment**

422 Treatment is per the investigator's usual clinical practice.

423

424 Data will be collected for the following treatment modalities:

- 425 • Vertical rectus muscle recession surgery
- 426 • Vertical rectus muscle mini-tenotomy (snip) surgery
- 427 • Botulinum toxin injection
- 428 • Prisms
- 429 • Orthoptic exercises, including computer-based therapy

430

431 **Sample Size**

432 50 subjects per non-surgical treatment modality (prism, orthoptic exercises) and up to 100 subjects undergoing surgery (maximum 50 per surgical modality) will be enrolled, for a total of up to 200 subjects with HT. Recruitment will continue for 1 year, at which time the determination will be made whether the recruitment period should be extended to allow for additional subjects to be enrolled in treatment modality groups that have not reached their maximum.

433

434 **Visit Schedule**

- 435 • Baseline Visit
- 436 • 10-week \pm 3 weeks following intervention
- 437 • 12-months \pm 2 months following intervention

438

445 Visits will be timed from the date of surgery or botulinum toxin injection (if applicable); or if
446 prescribed prism or orthoptic exercises, visits will be timed from the day of enrollment. Subjects
447 can remain in the study up to an additional year and have up to two additional follow up visits if
448 their treatment modality is changed during the study.

449

450 Outcomes

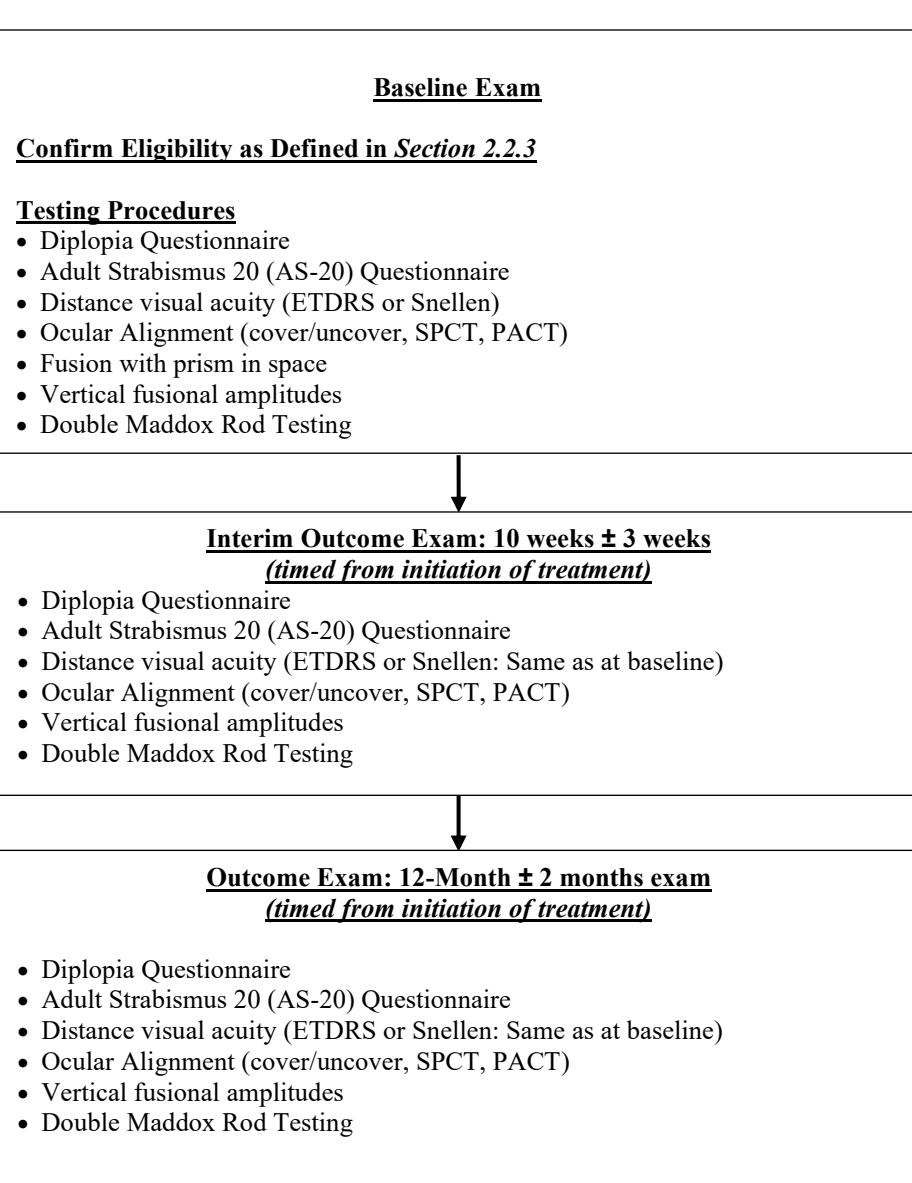
451 The primary outcome will be symptom success at the 10-week and 12-month visit, defined as
452 diplopia “rarely” or “never” both in primary position at distance and in reading position on the
453 diplopia questionnaire. For surgical treatment, a secondary, motor outcome will evaluate how
454 often subjects have become orthotropic at distance and near after treatment.

455

456

457 **1.5.6 Study Flow Chart: HT**

458


459

460

461

462

463

2.1 Eligibility Assessment and Informed Consent

467 A maximum of 650 subjects will be enrolled in the study. A maximum of 50 subjects per
468 treatment modality (prism, orthoptic exercises, surgery of a specific type) per condition (CI, DI,
469 HT) will be enrolled, with up to 100 CI subjects treated with surgery, up to 150 DI subjects
470 treated with surgery, and up to 100 HT subjects treated with surgery. Recruitment will continue
471 for 1 year, at which time the determination will be made whether the recruitment period should
472 be extended to allow for additional subjects to be enrolled in treatment modality groups that have
473 not reached their maximum.

474

475 A subject is considered for the study after undergoing a routine eye examination (by a study
476 investigator as part of standard of care), or a referral, that identifies CI, DI, or HT that appears to
477 meet the eligibility criteria. The study will be discussed with the subject. Subjects who express
478 an interest in the study will be given a copy of the informed consent form to read. Written
479 informed consent must be obtained from the subject prior to performing any study-specific
480 procedures that are not part of the subject's routine care.

481

482

2.2 Eligibility and Exclusion Criteria

484

2.2.1 Eligibility Criteria for CI

485 The following criteria must be met for the subject to be enrolled into the study:

- Adults ≥ 18 years of age (adult onset of CI not required)
- No strabismus surgery within the past 10 years
- CI Symptom Survey score ≥ 21 points
- Near exodeviation of $\geq 4\Delta$ and at least 4Δ larger than at distance by PACT
- Distance exodeviation $\leq 15\Delta$ by PACT
- Vertical deviation $\leq 2\Delta$ at distance and near by PACT
- No constant exotropia at distance or near
- Reduced positive fusional vergence (PFV) at near ($< 20\Delta$ or fails Sheard's criterion that the PFV measures less than twice the magnitude of the near phoria)
- Near point of convergence (NPC) of ≥ 6 cm break
- Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
- No paralytic strabismus (e.g., 3rd, 4th, or 6th cranial nerve palsies, skew deviation, Duane syndrome)
- No restrictive strabismus (e.g., blowout fracture, thyroid eye disease, post scleral buckle, Brown syndrome)
- No monocular diplopia
- No paretic strabismus, thyroid eye disease, myasthenia gravis, chronic progressive external ophthalmoplegia, or eye movement abnormalities associated with known neurological disease. Patients with Parkinson's disease can be enrolled if non-paretic deviation.
- No inferior or superior oblique overaction defined as 2+ or greater
- Ability to fuse with prism in space (*see section 2.4.1*)
- Ability to understand and complete a survey
- Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection or surgery

510 • If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be
 511 within 60 days of enrollment
 512 • Single treatment modality is planned (e.g., no combined prism and orthoptic exercises)
 513 • Treatment to be initiated has not been used within the past one year
 514

515 **2.2.2 Eligibility Criteria for DI**

516 The following criteria must be met for the subject to be enrolled into the study:

517 • Adults ≥ 18 years of age
 518 • Adult-onset DI (at ≥ 18 years of age)
 519 • No prior strabismus surgery
 520 • Symptoms of diplopia at distance with a frequency of sometimes or worse in primary
 521 position (in current glasses if wearing glasses)
 522 • Distance esodeviation of 2Δ to 30Δ and distance deviation is at least 1.25 times (25% larger
 523 than) near deviation by PACT (i.e., maximum near deviation is at least 20% smaller than
 524 distance deviation). The distance deviation must exceed the near deviation by at least the
 525 amounts provided in the table below.

526 **PACT Values for DI Eligibility**

Distance Deviation	2	3	4	5	6	7	8	9	10	12	14	16	18	20	25	30
*Max Near Deviation	1	2	3	4	4	5	6	7	8	9	10	12	14	16	20	20

527 Calculation: Distance \geq Near $\times 1.25$ or Near \leq Distance $\times 0.8$

*Near deviation is the nearest study-permitted prism based on Strabismus Procedures Manual.

530

531 • No more than 5Δ difference between right and left gaze by PACT
 532 • No more than 10Δ difference between the primary position at distance and either upgaze or
 533 downgaze $\leq 10\Delta$ by PACT
 534 • Any coexisting vertical deviation must be less than distance esodeviation and $\leq 10\Delta$ by PACT
 535 • Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
 536 • No paralytic strabismus (e.g., 3rd, 4th, or 6th cranial nerve palsies, skew deviation, Duane
 537 syndrome)
 538 • No restrictive strabismus (e.g., blowout fracture, thyroid eye disease, post scleral buckle,
 539 Brown syndrome)
 540 • No monocular diplopia
 541 • No paretic strabismus, thyroid eye disease, myasthenia gravis, chronic progressive external
 542 ophthalmoplegia, or eye movement abnormalities associated with known neurological
 543 disease. Patients with Parkinson's disease can be enrolled if non-paretic deviation
 544 • No inferior or superior oblique overaction defined as 2+ or greater
 545 • Ability to fuse with prism in space (*see section 2.4.2*)
 546 • Ability to understand and complete a survey
 547 • Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection
 548 or surgery
 549 • If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be
 550 within 60 days of enrollment
 551 • Single treatment modality planned (e.g., no combined prism and orthoptic exercises)
 552 • Treatment to be initiated has not been used within the past one year

553

554 **2.2.3 Eligibility Criteria for HT**

555 The following criteria must be met for the subject to be enrolled into the study:

- 556 • Adults ≥ 18 years of age
- 557 • Adult-onset HT (at ≥ 18 years of age)
- 558 • No prior strabismus surgery
- 559 • Symptoms of diplopia at distance or near with a frequency of sometimes or worse in primary
560 or reading position (in current glasses if wearing glasses)
- 561 • Vertical deviation $\geq 1\Delta$ to $\leq 10\Delta$ at distance and near by PACT
- 562 • No more than 4Δ difference from the primary in any gaze position by PACT
- 563 • Any coexisting esodeviation must be less than the vertical deviation
- 564 • Any coexisting exodeviation $\leq 10\Delta$ by PACT
- 565 • No convergence insufficiency as defined in *section 2.2.1*
- 566 • Visual acuity 20/50 or better in both eyes by ETDRS or Snellen
- 567 • No paralytic strabismus (e.g., 3rd, 4th, or 6th cranial nerve palsies, skew deviation, Duane
568 syndrome)
- 569 • No restrictive strabismus (e.g., blowout fracture, thyroid eye disease, post scleral buckle,
570 Brown syndrome)
- 571 • No monocular diplopia
- 572 • No paretic strabismus, thyroid eye disease, myasthenia gravis, chronic progressive external
573 ophthalmoplegia, or eye movement abnormalities associated with known neurological
574 disease. Patients with Parkinson's disease can be enrolled if non-paretic deviation.
- 575 • No inferior or superior oblique overaction defined as 2+ or greater
- 576 • Ability to fuse with prism in space (*see section 2.4.3*)
- 577 • Ability to understand and complete a survey
- 578 • Investigator is initiating treatment with prism, orthoptic exercises, botulinum toxin injection
579 or surgery
- 580 • If initiating treatment with botulinum toxin or surgery, planned injection or surgery to be
581 within 60 days of enrollment
- 582 • Single treatment modality planned (e.g., no combined prism and orthoptic exercises)
- 583 • Treatment to be initiated has not been used within the past one year

584

585 **2.3 Historical Information**

586 Historical information collected at enrollment will include the following:

- 587 • Presence of co-existing neurological conditions (e.g., Parkinson's, Progressive supranuclear
588 palsy, basal ganglia disease, stroke, or intracranial tumor) and any treatment
- 589 • Presence of epiretinal membrane, age-related macular degeneration (dry or neovascular), or
590 macular pathology (if known)
- 591 • Heart disease
- 592 • Diabetes
- 593 • Autoimmune disease (other than myasthenia gravis and thyroid eye disease)
- 594 • Previous treatment for strabismus (surgical and/or non-surgical)
- 595 • Other major medical problems (e.g., significant head trauma)

596

597 **2.4 Procedures at the Enrollment Visit**

598 All examination procedures must be tested before initiating planned treatment and within 7 days
599 of enrollment. All examination procedures at enrollment are performed in the subject's current
600 correction, if required, and without cycloplegia. Any subjects wearing pre-study prism
601 correction will be measured in trial frames without prism (unless otherwise noted below). If new
602 correction is prescribed on the day of testing, or if the subject forgot to bring his/her spectacles,
603 then testing should be done in trial frames. Full details for each procedure are listed in the
604 *Procedures Manual*.

605 **606 2.4.1 Enrollment Procedures for CI**

607 **608 1. Convergence Insufficiency Symptom Survey (CISS)**

609 **610 2. Diplopia Questionnaire (DQ)**

611 **612 3. Adult Strabismus 20 (AS-20) Questionnaire**

613 **614 4. Distance Visual Acuity**

- 615 ▪ Monocular distance visual acuity testing will be performed in each eye using
616 ETDRS or Snellen optotypes.
- 617 ▪ If wearing ground-in prism correction, testing will be done wearing current
618 correction with prism; if wearing Fresnel prism, testing will be done in trial
619 frames without prism correction.

620 **621 The following must be tested by an examiner who is a pediatric ophthalmologist,
622 pediatric optometrist, or certified orthoptist.**

623 **624 5. Ocular Alignment Testing**

- 625 ▪ Ocular alignment will be assessed by the cover/uncover test and by simultaneous
626 prism and cover test (SPCT) in primary gaze position at distance (6 meters) and at
627 near (1/3 meter).
- 628 ▪ Prism and alternate cover test (PACT) will be tested at distance (6 meters) and
629 near (1/3 meter) in primary position.

630 **631 6. Fusion with Prism in Space**

- 632 ▪ Ability to fuse with prism in space will be determined by asking the subject to
633 view a 20/50 single optotype at 6 meters while neutralizing the deviation with free
634 prisms. Subjects should be asked if they can make the image single. Subjects
635 who are unable to make the image single are ineligible.

636 **637 7. Positive Fusional Vergence (PFV)**

- 638 ▪ PFV will be measured with a horizontal prism bar and a hand-held fixation target
639 (20/50 single optotype) at 40 cm. Blur, break, and recovery points will be
640 recorded. If no blur point is detected, the PFV score will be the break point
641 measurement.

642 **643 8. Near Point of Convergence (NPC)**

- 644 ▪ Break and recovery values will be measured.

645
646 **2.4.2 Enrollment Procedures for DI**

647
648 1. Diplopia Questionnaire
649
650 2. Adult Strabismus 20 (AS-20) Questionnaire
651
652 3. Distance Visual Acuity
653 ■ Monocular distance visual acuity testing will be performed in each eye using
654 ETDRS or Snellen optotypes.
655 ■ If wearing ground-in prism correction, testing will be done wearing current
656 correction with prism; if wearing Fresnel prism, testing will be done in trial
657 frames without prism correction.

658
659 **The following must be tested by an examiner who is a pediatric ophthalmologist,
660 pediatric optometrist, or certified orthoptist.**

661
662 4. Ocular Alignment Testing
663 ■ Ocular alignment will be assessed by the cover/uncover test and by simultaneous
664 prism and cover test (SPCT) in primary gaze position at distance (6 meters) and at
665 near (1/3 meter).
666 ■ Prism and alternate cover test (PACT) will be tested at distance (6 meters) and
667 near (1/3 meter) in primary position.
668
669 5. Fusion with Prism in Space
670 ■ Ability to fuse with prism will be determined by asking the subject to view a
671 20/50 single optotype at 6 meters, and using prism(s), determine if any
672 combination allows the subject to have single vision. Subjects who are unable to
673 make the image single are ineligible.
674
675 6. Negative Fusional Vergence (NFV)
676 ■ NFV will be measured with a horizontal prism bar while the subject is viewing an
677 accommodative target (20/50 single optotype) at 6 meters. Blur, break, and
678 recovery points will be recorded. If no blur point is measured, the NFV score will
679 be the break point measurement.

680
681 **2.4.3 Enrollment Procedures for HT**

682
683 1. Diplopia Questionnaire
684
685 2. Adult Strabismus 20 (AS-20) Questionnaire
686
687 3. Distance Visual Acuity
688 ■ Monocular distance visual acuity testing will be performed in each eye using
689 ETDRS or Snellen optotypes.
690 ■ If wearing ground-in prism correction, testing will be done wearing current
691 correction with prism; if wearing Fresnel prism, testing will be done in trial
692 frames without prism correction.

693

694 **The following must be tested by an examiner who is a pediatric ophthalmologist,**
695 **pediatric optometrist, or certified orthoptist.**

696

697 **4. Ocular Alignment Testing**

698

- Ocular alignment will be assessed by the cover/uncover test and by simultaneous prism and cover test (SPCT) in primary gaze position at distance (6 meters) and at near (1/3 meter).
- Prism and alternate cover test (PACT) will be tested at distance (6 meters) and near (1/3 meter) in primary position.

703

704 **5. Fusion with Prism in Space**

705

- Ability to fuse with prism will be determined by asking the subject to view a 20/50 single optotype at 6 meters, and using prism(s), determine if any combination allows the subject to have single vision. Subjects who are unable to make the image single are ineligible.

709

710 **6. Vertical Fusional Amplitudes**

711

- Vertical fusional amplitudes will be measured with a vertical prism bar while the subject is viewing an accommodative target (20/50 single optotype) at 6 meters. Break and recovery points will be recorded. Measurements will be taken in both vertical directions to measure the range of vertical fusion.
- Vertical deviation should be corrected at least with sufficient prism to give the subject single vision either in current correction (if pre-study prism) or with prism correction in trial frames.

718

719 **7. Double Maddox Rod Testing**

720

- Ocular cyclotorsion will be assessed by double Maddox rod in primary gaze position at near (1/3 meters).

722

CHAPTER 3: TREATMENT AND FOLLOW-UP

3.1 Treatment

Treatment is at investigator discretion and may be changed or discontinued at any time during the study. The type of treatment and other treatment details (e.g., magnitude of prism, amount of orthoptic exercises) will be recorded at the time of enrollment when the treatment is prescribed. For surgical subjects, the type and amount of surgery will be recorded. If an adjustable technique is used, the final location of the muscle and alignment after adjustment will be recorded. For those treated with botulinum toxin injection, the muscle(s) injected and dose will be recorded. The timing of surgical intervention after enrollment is at investigator discretion; however, the enrollment assessments must be redone if surgery is not done within 60 days.

Changing treatment within a modality (e.g., frequency, strength, intensity) has no impact on the subject's visit schedule. Switching to a different treatment or adding a second treatment to the initial treatment has implications for the subject's visit schedule (*see section 3.5*).

3.2 Visit Schedule

Subjects enrolled will have visits at the following times:

- 10 weeks \pm 3 weeks following intervention
- 12 months \pm 2 months following intervention

Visits will be timed from the date of surgery or botulinum toxin injection (if applicable); or if prescribed prism or orthoptic exercises, will be timed from the day of enrollment. If a new treatment is initiated, the visit schedule may restart or the subject's study participation may end, according to the details in *section 3.5*.

3.3 Follow-up Visit Testing Procedures (10-week and 12-month visits)

At each visit, data on treatments received, any change in the amount/intensity of treatment, or any major change in eye condition since the last visit will be collected. In addition, the following will be performed / completed as done at the enrollment exam in the subject's current correction, if required, and without cycloplegia. Questionnaires and the symptom survey (if applicable) should be administered to the subject prior to other examination procedures. Any subjects wearing prism correction will be measured in trial frames without prism (unless otherwise noted below). If new correction is prescribed on the day of testing, or if the subject forgot to bring his/her spectacles, then testing should be done in trial frames.

3.3.1 Follow-up Visit Testing Procedures for CJ

See section 2.4.1 for details.

1. CISS
2. Diplopia Questionnaire
3. AS-20 Questionnaire
4. Distance Visual Acuity
 - If wearing ground-in prism correction, testing will be done wearing current correction with prism; if wearing Fresnel prism, testing will be done in trial frames without prism correction.
5. Ocular Alignment Testing
6. Positive Fusional Vergence

770 7. Near Point of Convergence

771

772 **3.3.2 Follow-up Visit Testing Procedures for DI**

773 See *section 2.4.2* for details.

774 1. Diplopia Questionnaire

775 2. AS-20 Questionnaire

776 3. Distance Visual Acuity

777 • If wearing ground-in prism correction, testing will be done wearing current correction
778 with prism; if wearing Fresnel prism, testing will be done in trial frames without
779 prism correction.

780 4. Ocular Alignment Testing

781 5. Negative Fusional Vergence

782

783 **3.3.3 Follow-up Visit Testing Procedures for HT**

784 See *section 2.4.3* for details.

785 1. Diplopia Questionnaire

786 2. AS-20 Questionnaire

787 3. Distance Visual Acuity

788 • If wearing ground-in prism correction, testing will be done wearing current correction
789 with prism; if wearing Fresnel prism, testing will be done in trial frames without
790 prism correction.

791 4. Ocular Alignment Testing

792 5. Vertical Fusional Amplitudes

793 • Vertical deviation should be corrected at least with sufficient prism to give the subject
794 single vision either in current correction (if pre-study prism) or with prism correction
795 in trial frames.

796 6. Double Maddox Rod Testing

797

798 **3.4 Non-study Visits**

799 Additional non-study visits and treatment are at investigator discretion. Investigators must
800 follow the procedures for initiating a new treatment during the study as outlined in *section 3.5*.

801

802 **3.5 Initiating a New Treatment**

803 If any new treatment is initiated during the study an early outcome exam as outlined in *section*
804 3.3 will be completed. Study participation will end if the new treatment is prism or exercises,
805 unless initially enrolled in the surgery or botox injection group. If the new treatment is a new
806 surgical modality or botox injection (not a re-operation or re-injection in the study), the
807 examination will serve both as the outcome exam for the initial treatment and the baseline exam
808 for the newly initiated surgery or botox injection, if the subject still meets eligibility criteria. The
809 subject will then be followed for an additional 12-months in the study in the new treatment, as if
810 they had been newly enrolled.

811

812 In the event that the study category for the newly initiated surgical modality is no longer
813 recruiting subjects, the subject will complete an early outcome exam at the time the new surgery
814 or botox injection is prescribed and study participation will end for this subject.

816 Subjects who have had surgery or botox injection as their initial treatment (or as a new treatment
817 during the study) will continue to be followed until the 12-month outcome exam whether or not
818 an additional treatment is initiated. The exception is if a re-operation or re-injection is planned
819 prior to the 12-month outcome. In this case, an early outcome exam will be completed at the
820 time surgery is prescribed. Study participation will end following the outcome examination.
821

822 Subjects who have completed the study and are returning for additional treatment following an
823 unspecified period of time beyond the outcome exam may be enrolled a second time provided
824 they meet eligibility criteria and the study category for the newly initiated treatment is still
825 recruiting subjects. Subjects enrolling as a study subject a second time must repeat the consent
826 process.
827

828 **CHAPTER 4: MISCELLANEOUS CONSIDERATIONS**

829

830 **4.1 Contacts by the Jaeb Center for Health Research and Sites**

831 The Jaeb Center serves as the PEDIG Coordinating Center. The Jaeb Center will be provided
832 with the subject's contact information. The Jaeb Center will contact each subject one month
833 before any 12-month visit (including a second 12-month visit which could be required if the
834 patient changed treatments during the study). Permission for such contacts will be included in
835 the Informed Consent Form. The principal purpose of the contacts will be to help coordinate
836 scheduling of the 12-month outcome examination.

837

838 **4.2 Subject Withdrawals**

839 Subjects may withdraw from the study at any time. This is expected to be a very infrequent
840 occurrence in view of the study design's similarity to routine clinical practice. If the subject
841 indicates they want to withdraw from the study, the investigator personally should attempt to
842 speak with them to determine the reason. If their interest is in transferring their care to another
843 eye care provider, every effort should be made to comply with this and at the same time try to
844 keep the participant in the study under the new provider's care.

845

846 **4.3 Management of Refractive Error**

847 Management of refractive error is at the discretion of the investigator.

848

849 **4.4 Risks**

850 There are no risks in this study that would not be part of usual care.

851

852 **4.4.1 Risks of Examination Procedures**

853 The procedures in this study are part of daily eye care practice in the United States and pose no
854 known risks.

855

856 **4.5 Reporting of Adverse Events**

857 No treatments are being prescribed that are not part of usual care. Investigators will abide by
858 local IRB reporting requirements.

859

860 **4.5.1 Risk Assessment**

861 It is the investigators' opinion that the protocol's level of risk is research not involving greater
862 than minimal risk.

863

864 **4.6 Discontinuation of Study**

865 The study may be discontinued by the Steering Committee (with approval of the Data and Safety
866 Monitoring Committee) prior to the preplanned completion of enrollment and follow-up for all
867 subjects.

868

869 **4.7 Travel Reimbursement**

870 Subjects will be compensated \$25 for each 10-week visit and \$50 for each 12-month visit (by
871 money-card) up to a maximum of \$150. If there are extenuating circumstances, and the subject

872 is unable to complete study visits without additional funds for travel costs, additional funds may
873 be provided.

874

875 **4.8 Study Costs**

876 The study will pay for visits specific to the research study, but will not pay for usual care visits
877 that would occur whether or not the subject was in the study. The cost of usual care visits will be
878 the responsibility of the participant or his/her insurance company.

879

880 Any costs associated with treatment will not be paid for by the study and will be the
881 responsibility of the participant or his/her insurance company.

882

883 **4.9 General Considerations**

884 The study is being conducted in compliance with the policies described in the network policies
885 document, with the ethical principles that have their origin in the Declaration of Helsinki, with
886 the protocol described herein, and with the standards of Good Clinical Practice.

887

888 Data will be directly collected in electronic case report forms, which will be considered the
889 source data.

890

891 There is no restriction on the number of participants to be enrolled by a site. A risk-based
892 monitoring approach will be followed, consistent with the FDA “Guidance for Industry
893 Oversight of Clinical Investigations — A Risk-Based Approach to Monitoring” (August 2013).

894 **CHAPTER 5: SAMPLE SIZE ESTIMATION AND STATISTICAL ANALYSIS**

895

896 **5.1 Assessment of Investigator Interest / Recruitment Potential**

897 At the February 2014 PEDIG Study Group meeting, 18 (44%) of 41 ophthalmologist
898 investigators and 26 (65%) of 40 optometrists investigators indicated they would be willing to
899 participate in this study. In addition, 8 (20%) of 41 ophthalmologists and 8 (20%) of 40
900 optometrists rated this protocol in the top 5 of 18 protocol ideas reviewed with the group. The
901 study ranked 13th among the 18 protocol ideas reviewed with the group for the 81 investigators
902 overall.

903

904 Table 1 shows a summary of the results from a February 2015 email survey of PEDIG
905 investigators. For each condition (CI, DI, and HT), investigators were asked whether they
906 treated patients with the condition and how many they treated with various treatment modalities
907 over the course of one year.

908

909 **Table 1: Assessment of Recruitment Potential**

Condition	Number of Patients Treated in One Year In PEDIG Network*		
	Prism	Orthoptic Exercises	Surgery
CI	229	192	23**
DI	119	20	85***
HT	194	10	39****

910 * Cases treated with more than one type of treatment are counted for each type of treatment.

911 ** Bilateral medial rectus resection (N=11), other (N=12)

912 *** Bilateral medial rectus recession (N=51), bilateral lateral rectus resection (N=13), other (N=21)

913 ****Vertical rectus recession (N=37), other (N=2)

914

915 **5.2 Sample Size**

916 The maximum total sample size of 650 is based on a convenience sample of a maximum of 50
917 subjects per treatment modality (prism, orthoptic exercises, surgery of a specific type) per
918 condition (CI, DI, HT), with up to 100 subjects treated with surgery for CI and for HT, and up to
919 150 subjects treated with surgery for DI (Table 2).

920

921 **Table 2: Maximum Sample Size for Each Condition/ Treatment Modality**

Condition	Maximum Sample Size		
	Prism	Orthoptic Exercises	Surgery
CI	50	50	100*
DI	50	50	150*
HT	50	50	100*

922 *Within this limit for the total number of surgeries for a given condition, no more than 50 surgeries of a specific
923 type (e.g. bilateral medial rectus recessions, bilateral lateral rectus resection, botulinum toxin injection, etc.) may be
924 enrolled.

925

926 Based on the assessment of recruitment potential (*section 5.1*), about half of the
927 modality/condition groups would be expected to be filled to 50 subjects within one year (see
928 Table 1). The remaining modality/condition groups might have a smaller-than-desired sample
929 size for analysis or might require recruitment for more than one year.

932 Table 3 shows the expected half-widths for the 95% confidence interval for the success
933 proportion estimate for each modality/condition group.
934

935 **Table 3: Expected $\frac{1}{2}$ -Width of 95% Confidence Interval as a Function of Sample Size and**
936 **Success Proportion***

One-Year Success Proportion	Sample Size				
	10	20	30	40	50
1%	6%	4%	4%	3%	3%
3%	11%	8%	6%	5%	5%
5%	14%	10%	8%	7%	6%
10%	19%	13%	11%	9%	8%
15%	22%	16%	13%	11%	10%
20%	25%	18%	14%	12%	11%
25%	27%	19%	16%	13%	12%
30%	28%	20%	16%	14%	13%
40%	30%	22%	18%	15%	14%
50%	31%	22%	18%	15%	14%

937 *Note: The grey boxes indicate that validity of confidence interval widths is questionable because the normal
938 approximation might not be valid given these low probability of success and/or small sample sizes.
939

940 After accounting for up to 5% loss to follow-up, a sample size of 50 patients per treatment
941 modality (prism, orthoptic exercises, surgery of a specific type) per condition would contribute
942 about 47 subjects to the point estimate for a dichotomous success/failure outcome at one year.
943 With 47 subjects, the maximum width of the resulting confidence intervals on each point
944 estimate would be $\pm 14\%$.
945

946 **5.3 Primary Analysis – Symptom Success at One Year**

947 For each of the modality/condition groups, the primary analysis will be an estimation of the
948 proportion of patients of patients with treatment success based on improvement of symptoms at
949 10 weeks post intervention and at one year, with 95% confidence intervals.
950

951 Table 4 shows the criteria for symptom success for each condition, which will be used to assess
952 all treatment modalities.
953

954 **Table 4: One-Year Symptom Success Criteria for Each Condition**

Condition	One-Year Symptom Success Criteria
CI	improvement of CI Symptom Survey (CISS) score of at least 9 points AND a score of <21 points
DI	diplopia no more than rarely in the past week in the primary position (question #1.1 on the Diplopia questionnaire)
HT	diplopia no more than rarely in the past week both in the primary position and for reading (questions #1.1 and #1.2 on the Diplopia questionnaire)

955 For patients who initiate a new treatment before completing one year of follow-up, the symptom
956 success/failure status from the visit at which treatment was changed (i.e., the 10-week interim
957 visit or an early outcome visit) will be brought forward as their one-year outcome.
958

960 Rubin's multiple imputation²¹ will be used to impute outcome for patients who have not changed
961 treatments but who are lost to follow-up or withdraw from the study prior to one-year
962 exam.

963

964 **5.4 Secondary Analysis – Motor Success at One Year**

965 For each surgery type within a condition, a secondary objective will be to calculate the
966 proportion of patients with motor success at one year and a 95% confidence interval. Motor
967 success will be defined as orthotropia by cover/uncover at distance and near fixation in primary
968 position at one year. Similar to the primary analysis of symptom success, for patients who
969 change treatments before completing one year of follow-up, the motor success/failure status from
970 the visit at which treatment was changed (i.e., the 10-week interim visit or an early outcome
971 visit) will be brought forward as the one-year outcome. In addition, Rubin's multiple
972 imputation²¹ will be used to impute outcome for patients who have not changed treatments but
973 who are lost to follow-up or withdraw from the study prior to one-year exam.

974

975 **5.5 Additional Analyses**

976 **5.5.1 Secondary Outcomes at One Year**

977 Secondary outcomes at one year will be evaluated within each modality/condition. Secondary
978 outcomes to be assessed include motor alignment, near point of convergence (CI only), positive
979 fusional vergence (CI only), negative fusional vergence (DI only), vertical fusional vergence (HT
980 only), and the Adult Strabismus 20 (AS-20) questionnaire. In addition, mean CI Symptom
981 Survey (CISS) score will be evaluated for CI, and the AS-20 and Diplopia Questionnaire will be
982 evaluated as a continuous outcomes for all three conditions.

983

984 **5.5.2 Outcomes at 10 Weeks**

985 Outcomes at the 10-week interim visit will be evaluated similarly to the primary and secondary
986 analyses defined for one-year time points (*sections 5.3, 5.4 and 5.5.1*).

987

988

CHAPTER 6: REFERENCES

990

991 1. Martinez-Thompson JM, Diehl NN, Holmes JM, Mohney BG. Incidence, types, and lifetime
992 risk of adult-onset strabismus. *Ophthalmology* 2014;121:877-882.

993 2. Scheiman M, Gwiazda J, Li T. Non-surgical interventions for convergence insufficiency.
994 *Cochrane Database of Systematic Reviews* 2011;16:CD006768.

995 3. Lavrich JB. Convergence insufficiency and its current treatment. *Current Opinion in*
996 *Ophthalmology* 2010;21:356-360.

997 4. Cooper J, Jamal N. Convergence insufficiency-a major review. *Optometry* 2012;83:137-158.

998 5. von Noorden GK. Resection of both medial rectus muscles in organic convergence
999 insufficiency. *American Journal of Ophthalmology* 1976;81:223-226.

1000 6. Choi DG, Rosenbaum AL. Medial rectus resection(s) with adjustable suture for intermittent
1001 exotropia of the convergence insufficiency type. *Journal of AAPOS: American Association*
1002 *for Pediatric Ophthalmology & Strabismus* 2001;5:13-17.

1003 7. Saunte JP, Holmes JM. Sustained improvement of reading symptoms following botulinum
1004 toxin A injection for convergence insufficiency. *Strabismus* 2014;22:95-99.

1005 8. Teitelbaum B, Pang Y, Krall J. Effectiveness of base in prism for presbyopes with
1006 convergence insufficiency. *Optometry and Vision Science* 2009;86:153-156.

1007 9. Birnbaum MH, Soden R, Cohen AH. Efficacy of vision therapy for convergence
1008 insufficiency in an adult male population. *Journal of the American Optometric Association*
1009 1999;70:225-232.

1010 10. Scheiman M, Gallaway M, Ciner E. Divergence insufficiency: characteristics, diagnosis, and
1011 treatment. *American Journal of Optometry & Physiological Optics* 1986;63:425-431.

1012 11. Tamhankar MA, Ying GS, Volpe NJ. Effectiveness of prisms in the management of diplopia
1013 in patients due to diverse etiologies. *Journal of Pediatric Ophthalmology and Strabismus*
1014 2012;49:222-228.

1015 12. Prangen Ade H, Koch FL. Divergence Insufficiency: A Clinical Study. *Transactions of the*
1016 *American Ophthalmological Society* 1937;35:136-148.

1017 13. Godts D, Mathysen DG. Distance esotropia in the elderly. *British Journal of Ophthalmology*
1018 2013;97:1415-1419.

1019 14. Thomas AH. Divergence insufficiency. *Journal of AAPOS: American Association for*
1020 *Pediatric Ophthalmology & Strabismus* 2000;4:359-361.

1021 15. Bothun ED, Archer SM. Bilateral medial rectus muscle recession for divergence
1022 insufficiency pattern esotropia. *Journal of AAPOS: American Association for Pediatric*
1023 *Ophthalmology & Strabismus* 2005;9:3-6.

1024 16. Wiggins RE, Jr., Baumgartner S. Diagnosis and management of divergence weakness in
1025 adults. *Ophthalmology* 1999;106:1353-1356.

1026 17. Simpson GV. Primary divergence insufficiency. *Transactions of the American*
1027 *Ophthalmological Society* 1973;71:152-161; discussions 161-152.

1028 18. Stager DR, Sr., Black T, Felius J. Unilateral lateral rectus resection for horizontal diplopia in
1029 adults with divergence insufficiency. *Graefes Archive for Clinical and Experimental*
1030 *Ophthalmology* 2013;251:1641-1644.

1031 19. Chaudhuri Z, Demer JL. Medial rectus recession is as effective as lateral rectus resection in
1032 divergence paralysis esotropia. *Archives of Ophthalmology* 2012;130:1280-1284.

1033 20. Chaudhuri Z, Demer JL. Sagging eye syndrome: connective tissue involution as a cause of
1034 horizontal and vertical strabismus in older patients. *JAMA Ophthalmology* 2013;131:619-
1035 625.

1036 21. Rainin EA, Carlson BM. Postoperative diplopia and ptosis. A clinical hypothesis based on
1037 the myotoxicity of local anesthetics. *Archives of Ophthalmology* 1985;103:1337-1339.

1038 22. Johnson DA. Persistent vertical binocular diplopia after cataract surgery. *American Journal*
1039 *of Ophthalmology* 2001;132:831-835.

1040 23. Burgess D, Roper-Hall G, Burde RM. Binocular diplopia associated with subretinal
1041 neovascular membranes. *Archives of Ophthalmology* 1980;98:311-317.

1042 24. Brazis PW, Lee AG, Bolling JP. Binocular vertical diplopia due to subretinal neovascular
1043 membrane. *Strabismus* 1998;6:127-131.

1044 25. De Pool ME, Campbell JP, Broome SO, Guyton DL. The dragged-fovea diplopia syndrome:
1045 clinical characteristics, diagnosis, and treatment. *Ophthalmology* 2005;112:1455-1462.

1046 26. Wright KW. Mini-tenotomy procedure to correct diplopia associated with small-angle
1047 strabismus. *Transactions of the American Ophthalmological Society* 2009;107:97-102.

1048