

Tandem PLGS Pivotal Trial:

A randomized clinical trial to assess the efficacy of predictive low glucose suspend versus sensor-augmented pump therapy in the management of type 1 diabetes

IDE Sponsor: Tandem Diabetes Care, Inc.

Version 6.0
21/February/2018

1
2
3

KEY ROLES

Lead Clinical Investigator	
Name, Degree	Bruce Buckingham, MD
Institution Name	Stanford University
JCHR Coordinating Center Director	
Name, Degree	John Lum, M.S.
Institution Name	Jaeb Center for Health Research
Medical Monitor	
Name, Degree	Roy Beck, M.D., Ph.D.
Institution Name	Jaeb Center for Health Research
Sponsor	
Name, Degree	Vance Swanson
Institution Name	Tandem Diabetes Care, Inc

4
5
6
7
8
9

10	Table of Contents	
11	CHAPTER 1: BACKGROUND INFORMATION	12
12	1.1. Introduction	12
13	1.2. Hypoglycemia Minimization Strategy.....	12
14	1.2.1. PLGS System.....	12
15	1.3. Rationale.....	13
16	1.4. Potential Risks and Benefits of the Investigational Device and Study Participation.....	13
17	1.4.1. Risk of Hyperglycemia	13
18	1.4.2. Known Potential Benefits	13
19	1.4.3. Risk Assessment	14
20	1.5. General Considerations.....	14
21	CHAPTER 2: STUDY RECRUITMENT, ENROLLMENT, AND SCREENING.....	15
22	2.1. Participant Recruitment and Enrollment.....	15
23	2.1.1. Informed Consent and Authorization Procedures.....	15
24	2.2. Participant Inclusion Criteria.....	16
25	2.3. Participant Exclusion Criteria.....	16
26	2.4. Screening Procedures	17
27	2.4.1. Data Collection and Testing	17
28	CHAPTER 3: CGM AND SAP TRAINING PHASES	18
29	3.1. Introduction	18
30	3.2. CGM Training Period (10-14 Days).....	18
31	3.2.1. CGM Training Contact and Visit Schedule.....	19
32	3.3. SAP Training Period (14-28 days)	19
33	3.3.1. SAP Training Contact and Visit Schedule.....	20
34	3.3.2. Assessment of SAP Training Period.....	20
35	CHAPTER 4: PLGS PILOT PERIOD	21
36	4.1. PLGS Pilot Period Overview	21
37	4.2. Initiation of PLGS	21
38	4.3. Visit and Contact Schedule.....	21
39	4.4. PLGS Pilot Period Data Review	21
40	CHAPTER 5: CROSSOVER TRIAL.....	22
41	5.1. Crossover Trial Overview	22
42	5.2. Crossover Trial Initiation.....	22
43	5.2.1. Crossover Study Periods.....	22
44	5.3. Home Procedures during the Study Periods	22
45	5.4. Prohibited Medications, Treatments, and Procedures.....	23
46	5.5. Study Visits and Contacts.....	23
47	5.6. Crossover Trial Randomization Visit (Beginning of Study Period 1)	23
48	5.6.1. End of Study Period 1 Follow-up Clinic Visit and Beginning of Study Period 2.....	24
49	5.6.2. End of Study Period 2 and Final Visit	24
50	CHAPTER 6: STUDY DEVICES.....	25
51	6.1. Description of the Investigational Device	25
52	6.1.1. Insulin Pump.....	25
53	6.1.2. Continuous Glucose Monitoring.....	25
54	6.1.3. Blood Glucose Meter and Strips.....	25
55	6.1.4. Ketone Meter and Strips	25
56	6.2. Study Device Accountability Procedures	26
57	6.2.1. Blood Glucose Meter Testing	26
58	6.2.2. Blood Ketone Testing	26
59	6.3. Safety Measures.....	26
60	6.3.1. CGM Calibration	26
61	6.3.2. PLGS Suspend and Resume Alerts.....	26
62	6.3.3. Low Glucose Alert and Safety Protocol	26
63	6.3.4. High Glucose Alert and Safety Protocol.....	27
64	CHAPTER 7: TESTING PROCEDURES AND QUESTIONNAIRES	28
65	7.1. Testing Procedures	28

66	7.2. Questionnaire.....	28
67	7.2.1. Usability Questionnaire	28
68	CHAPTER 8: ADVERSE EVENTS, REPORTING, AND STOPPING RULES	29
69	8.1. Definitions	29
70	8.2. Reportable Adverse Events	29
71	8.2.1. Hypoglycemic Events.....	30
72	8.2.2. Hyperglycemic Events/Diabetic Ketoacidosis.....	30
73	8.2.3. Relationship of Adverse Event to Study Device.....	30
74	8.2.4. Intensity of Adverse Event	31
75	8.2.5. Coding of Adverse Events.....	31
76	8.2.6. Outcome of Adverse Event.....	31
77	8.3. Reportable Device Issues.....	32
78	8.4. Pregnancy Reporting	32
79	8.5. Timing of Event Reporting.....	32
80	8.6. Stopping Criteria	33
81	8.6.1. Participant Discontinuation of Study Device.....	33
82	8.6.2. Criteria for Suspending or Stopping Overall Study	33
83	8.7. Risks	34
84	CHAPTER 9: MISCELLANEOUS CONSIDERATIONS	35
85	9.1. Participant Compensation.....	35
86	9.2. Participant Withdrawal.....	35
87	9.3. Confidentiality	35
88	CHAPTER 10: STATISTICAL CONSIDERATIONS	36
89	10.1. Statistical and Analytical Plans	36
90	10.2. Statistical Hypotheses.....	36
91	10.3. Sample Size	36
92	10.4. Outcome Measures	36
93	10.5. Description of Statistical Methods.....	37
94	10.5.1. General Approach.....	37
95	10.5.2. Analysis Cohorts	37
96	10.6. Analysis of the Primary Efficacy Endpoint	37
97	10.7. Analysis of the Secondary Endpoints	37
98	10.8. Safety Analyses	37
99	10.9. Other Analyses	38
100	10.10. Baseline Descriptive Statistics.....	38
101	10.11. Planned Interim Analyses	38
102	10.12. Sub-Group Analyses.....	39
103	10.13. Multiple Comparison/Multiplicity.....	39
104	10.14. Exploratory Analyses	39
105	CHAPTER 11: DATA COLLECTION AND MONITORING	40
106	11.1. Case Report Forms and Device Data.....	40
107	11.2. Study Records Retention	40
108	11.3. Quality Assurance and Monitoring.....	40
109	11.4. Protocol Deviations	41
110	CHAPTER 12: ETHICS AND PROTECTION OF HUMAN PARTICIPANTS	42
111	12.1. Ethical Standard.....	42
112	12.2. Institutional Review Boards	42
113	12.3. Informed Consent Process	42
114	12.3.1. Consent Procedures and Documentation	42
115	12.3.2. Participant and Data Confidentiality	42
116	12.3.3. Future Use of Stored Specimens.....	43
117	CHAPTER 13: INVESTIGATOR AND SPONSOR OBLIGATIONS.....	44
118	13.1. Role of Sponsor	44
119	13.2. Medical Supervision and Investigator Responsibility	44
120	13.3. Study Initiation and Sponsor Discontinuation	44
121	CHAPTER 14: APPENDIX A – EXTENSION PHASE	46
122	CHAPTER 15: REFERENCES	47

LIST OF ABBREVIATIONS

Abbreviation	Definition
ADE	Adverse Device Effect
AE	Adverse Event
AUC	Area Under the Curve
BG	Blood Glucose
CFR	Code of Federal Regulations
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
DCCT	Diabetes Control and Complications Trial
DKA	Diabetic Ketoacidosis
EGV	Estimated Glucose Values
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
HIPAA	Health Insurance Portability and Accountability Act
IDE	Investigational Device Exemption
ICH	International Conference on Harmonization
IOB	Insulin-on-Board
IRB	Institutional Review Board
IV	Intravenous
JCHR	Jaeb Center for Health Research
MDI	Multiple Daily Injections of insulin
PGV	Predicted Glucose Values
PLGS	Predictive Low Glucose Suspend
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RMB	Risk-Based Monitoring
SAE	Serious Adverse Event
SAP	Sensor-Augmented Pump
SD	Standard Deviation
SMBG	Self-Monitoring of Blood Glucose
T1D	Type 1 Diabetes
UADE	Unanticipated Adverse Device Effect
UI	User Interface

SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

Protocol Title: Tandem PLGS Pivotal Trial: A randomized clinical trial to assess the efficacy of predictive low glucose suspend versus sensor-augmented pump therapy in the management of type 1 diabetes

Protocol Version/Date: v6.0 02-21-2017

I have read the protocol specified above. In my formal capacity as a Site Principal Investigator, my duties include ensuring the safety of the study participants enrolled under my supervision and providing the Jaeb Center for Health Research, which serves as the Coordinating Center for the protocol, with complete and timely information, as required in the conduct of the protocol. It is understood that all information pertaining to the study will be held strictly confidential and that this confidentiality requirement applies to all study staff at this site.

This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as required by the following: United States (US) Code of Federal Regulations (CFR) applicable to clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21, and 21 CFR Part 812).

As the Principal Investigator, I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the sponsor and documented approval from the Institutional Review Board (IRB), except where necessary to eliminate an immediate hazard(s) to the trial participants.

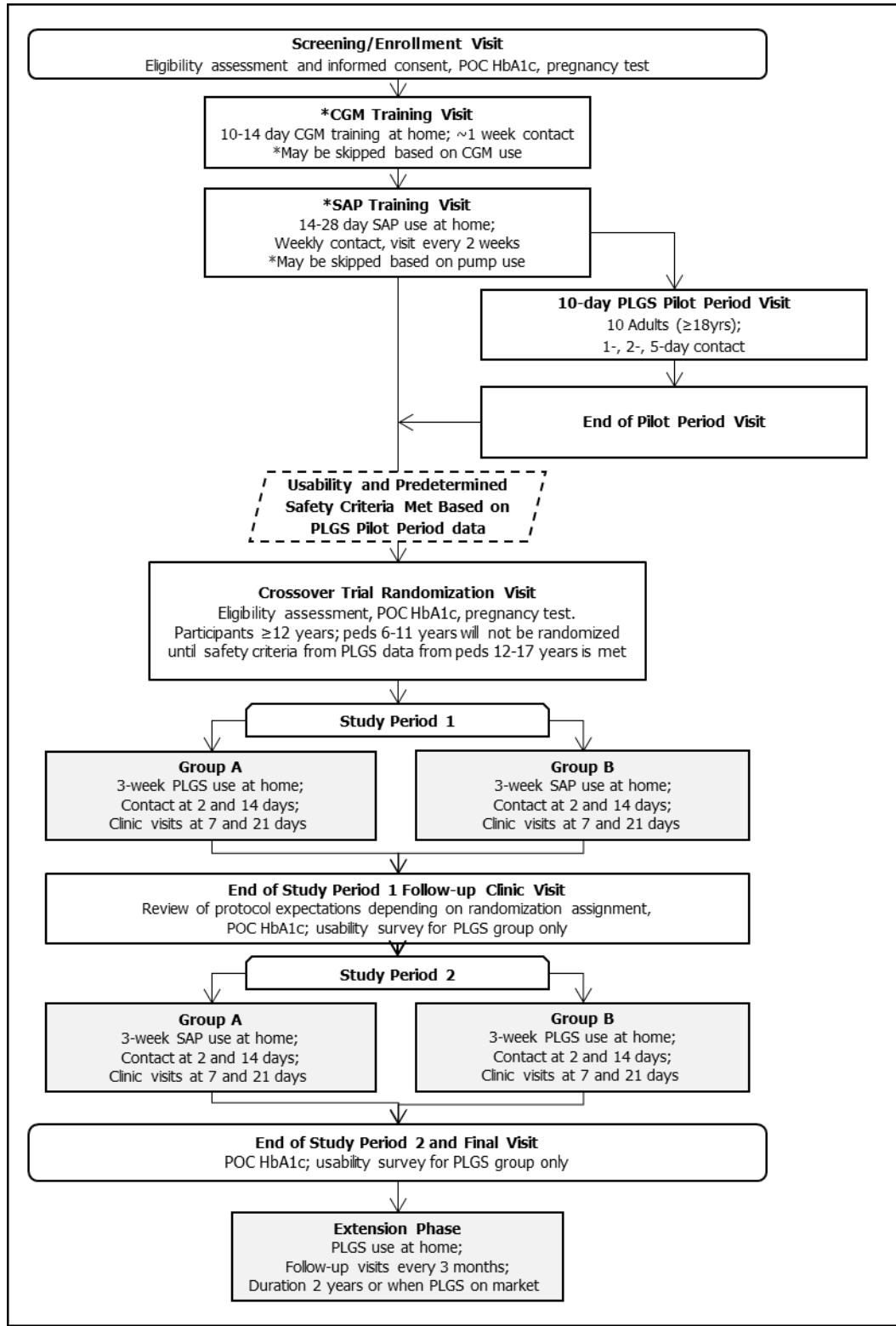
All key personnel at my site have completed Human Participants Protection Training and Good Clinical Practice Training. Further, I agree to ensure that all staff members involved in the conduct of this study are informed about their obligations in meeting the above commitments.

Investigator's Signature: _____ **Date:** _____ / _____ / _____

Date: / /

dd mmm vvvv

Investigator's Name:


Site Name/Number:

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	Tandem PLGS Pivotal Trial: A randomized clinical trial to assess the efficacy of predictive low glucose suspend versus sensor-augmented pump therapy in the management of type 1 diabetes.
Précis	<p>A 6-week crossover study will compare PLGS to SAP outcomes in adults and youth ≥ 6 years old with type 1 diabetes (T1D).</p> <p>An extension phase listed in CHAPTER 14: will include participants who have completed the crossover study. These participants will use the PLGS pump for two years or when the product becomes commercially available, whichever comes first. Additional details can be found in CHAPTER 14:</p>
Investigational Device	<p>The intervention arm (use of PLGS feature) will utilize Tandem Diabetes Care's ambulatory insulin infusion pump with integrated Dexcom G5 CGM and predictive low glucose suspend function. This pump is called the "t:slim X2 with Basal-IQ Technology" and is referred to in the protocol as the Tandem PLGS pump.</p> <p>The control arm (SAP only) will utilize an identical pump in functionality as the Tandem PLGS pump except for the lack of the PLGS feature and the associated UI. This pump is called the t:slim X2 Dexcom G5 Mobile CGM Enabled pump, and is referred to in the protocol as the Tandem SAP pump.</p>
Objectives	To assess the efficacy and safety of a predictive low glucose suspend (PLGS) system that uses continuous glucose monitoring (CGM) measurements to suspend basal insulin delivery when hypoglycemia is predicted as well as resume basal insulin delivery once CGM values begin to increase.
Study Design	<p>Multi-center, randomized, crossover design, consisting of two 3-week periods, with the PLGS System used during one period and SAP therapy used during the other period. The crossover trial will be preceded by a run-in phase in which participants may receive training using the study devices.</p> <p>For 10 adult participants, a PLGS Pilot Period will proceed to the crossover trial to ensure safety and usability objectives are met prior to the start of the crossover trial.</p>
Number of Sites	4-6 in the United States
Endpoint	<p>Primary Efficacy Outcome: Percentage of sensor glucose values <70 mg/dL</p> <p>Key Secondary Efficacy Outcomes:</p> <p><i>Hypoglycemia</i></p> <ul style="list-style-type: none"> Percentage of values <60 mg/dL Percentage of values <50 mg/dL AUC <70 mg/dL Low blood glucose index Frequency of CGM-measured hypoglycemic events (see below): <p><i>Glucose Control</i></p> <ul style="list-style-type: none"> Mean glucose Percentage of values 70 to 180 mg/dL <p><i>Hyperglycemia</i></p> <ul style="list-style-type: none"> Percentage of values >250 mg/dL Percentage of values >180 mg/dL AUC glucose >180 mg/dL High blood glucose index

PARTICIPANT AREA	DESCRIPTION
	<p>Key Safety Outcomes:</p> <ul style="list-style-type: none"> • Diabetic ketoacidosis (DKA), as defined by the Diabetes Control and Complications Trial (DCCT). • Severe clinical hypoglycemic events such that the participant required assistance from another person to actively administer carbohydrate, glucagon, or engage in other resuscitative actions; note severe hypoglycemia could be considered both and efficacy and safety outcome • Ketosis events (blood ketone level >1.0 mmol/L) • All other reported adverse events • Unanticipated adverse device effects
Population	<p>Key Inclusion Criteria:</p> <ul style="list-style-type: none"> • Clinical diagnosis of type 1 diabetes treated with insulin via an insulin pump or injections for at least 1 year • Age ≥ 6.0 years old • For participants <18 years old, living with one or more parents or guardians committed to participating in training and able to contact the participant in case of an emergency • For females, not currently known to be pregnant <p>Key Exclusion Criteria:</p> <ul style="list-style-type: none"> • Anticipated need to use acetaminophen during study participation • Participation in another pharmaceutical or device trial • A condition, which in the opinion of the investigator or designee, would put the participant or study at risk including any contraindication to the use of any of the study devices per FDA labelling
Sample Size	At least 90 participants completing the crossover trial
Treatment Group	Random assignment (1:1) to (A) PLGS in period 1 and SAP in period 2 or (B) SAP in period 1 and PLGS in period 2.
Participant Duration	2-6 months
Protocol Overview/Synopsis	<p>1) Screening and Enrollment</p> <ul style="list-style-type: none"> • Informed consent will be signed and eligibility will be assessed • History and physical examination • HbA1c measurement • Urine or serum pregnancy test (if applicable) • Evaluation of CGM and pump experience <p>2) CGM and SAP Training Period at Home</p> <p>All eligible participants will be assessed based on their CGM and pump experience to determine if the CGM Training Period, the SAP Training Period, or both are required.</p> <ol style="list-style-type: none"> a. CGM Training Period (10-14 days): Participants currently using a CGM may skip the CGM Training Period per investigator discretion, generally requiring that CGM has been used on at least 85% of days during the prior 4 weeks.

PARTICIPANT AREA	DESCRIPTION
	<p>b. SAP Training Period (14-28 days): Participants currently using a Tandem pump concomitantly with a Dexcom CGM may skip both the CGM Training and the SAP Training periods per investigator discretion.</p> <p>i. The Tandem SAP pump will be used during the SAP Training Period and pump training will be customized based on prior pump experience</p> <p>3) PLGS Pilot Phase</p> <p>Prior to the initiation of the crossover trial, 10 adult participants will use the Tandem PLGS pump and CGM system in a 10-day Pilot Period. Data will be evaluated for system usability and predetermined safety metrics before participants ≥ 12 years old can be randomized into the crossover trial.</p> <p>4) Randomized Crossover Trial</p> <p>The crossover trial will begin after the data from the Pilot Period have been reviewed. Enrollment of participants 6 to 11 years old will be deferred until data from 100 post-randomization PLGS participant-days have been evaluated from participants 12 to 17 years old and the same predetermined safety metrics used to evaluate the Pilot Period have been satisfied.</p> <p>At the Crossover Trial initiation visit, the following will be done:</p> <ul style="list-style-type: none"> • The clinician will confirm the participant's willingness to participate in the crossover trial • The participant's HbA1c level will be measured • Random assignment to Group A or Group B <ul style="list-style-type: none"> Group A: intervention period first (PLGS), control period second (SAP) Group B: control period first (SAP), intervention period second (PLGS) <p>During each of the two 3-week periods, a phone, email, or text contact will occur at 2 and 14 days, and a clinic visit at 7 and 21 days. HbA1c will be measured at the end of each period.</p>

Figure 1 – SCHEMATIC OF STUDY DESIGN

Table 1 - SCHEDULE OF STUDY VISITS³, CONTACTS, AND PROCEDURES

Procedure	Screening Visit	CGM and SAP Training-related Visits and Contact	Randomization Visit (Week 0)	Study Period 1 (SP1), Followed by Identical Schedule for Study Period 2 (SP2)			
				Day 2 Follow Up	Day 7 Follow Up	Day 14 Follow Up	Day 21 End of SP1 or SP2
Time from Randomization (SP1) or Crossover (SP2)	0-6w prior	2-6w prior	0	2d ± 1d	7d ± 2d	14d ± 3d	21+7d
Visit (V) or Contact (C)	V	V,C	V	C	V	C	V
Eligibility Assessment	X		X				
Point-of-Care HbA1c	X		X				X
Pregnancy test	X		X				
Device Data Downloads	X	X	X		X		X
PLGS System Training			X				X ¹
System Usability Scale							X ²

171
172 1 – PLGS System Training performed only at end of SP1 for participants who did not use PLGS in SP1
173 2 – For participants who used PLGS in the preceding study period
174 3 – Additional visits associated with a study Extension Period are described in Appendix A

175

176

177

CHAPTER 1: BACKGROUND INFORMATION

178

1.1. Introduction

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The goal of this study is to assess the functionality of an integrated predictive low glucose suspend system designed to minimize the incidence and duration of hypoglycemia by suspending insulin delivery if hypoglycemia is projected. The hypothesis is that the system, utilizing CGM and predictive algorithms, can safely reduce hypoglycemia exposure, especially during sleep.

Most episodes of severe hypoglycemia occur during the night, specifically during sleep (1, 2). Even with the advent of real-time CGM, patients do not awaken to over 70% of nocturnal alarms (3). Certain studies have demonstrated that reducing nocturnal hypoglycemia by using a CGM device with hypoglycemic prediction algorithms to suspend basal insulin delivery is both safe and effective (4-6). However, this benefit has been accompanied by modest increases in mean overnight sensor glucose and morning fasting blood glucose. A 10-subject CRC-based pilot study was conducted using a prototype version of the PLGS system to be used in the current study. The pilot study demonstrated that the system suspended and restarted the insulin pump appropriately in response to falling and rising CGM sensor glucose levels (abstract accepted at ADA 2017).

This protocol is designed to test the safety and efficacy of a predictive low glucose suspend system (PLGS) compared to a sensor-augmented pump (SAP) system during day and night use at home under normal conditions. The study data are intended to be used to support a Premarket Approval (PMA) application.

1.2. Hypoglycemia Minimization Strategy

A predictive low glucose suspend algorithm (PLGS) is used to respond to low glucose readings. The Predicted Glucose Values (PGV) are based on current Estimated Glucose Values (EGV) (i.e., glucose readings) produced by the Dexcom G5 CGM System every 5 minutes. Specifically, the last 4 EGVs are combined using linear regression and used to project future glucose values. Using the calculated rate of change, the resulting PGV extends the past trend into the future by 30 minutes. At least 3 of the last 4 EGV data points must be available in order to provide a prediction.

Both EGV and PGV values are used to regulate insulin delivery. If the PGV is less than 80 mg/dL the system will suspend insulin delivery. If the observed EGV falls below the suspension threshold (70 mg/dL), the system will also suspend insulin delivery, even if a PGV cannot be generated. Insulin will resume when the system detects that EGVs are rising (i.e., when the most recent EGV is 1 mg/dL greater than the previous EGV). Additionally, the insulin will resume if the system has been suspended for more than 120 minutes in the last 150 minutes. These specific rules for suspension and resumption of insulin are applied after each 5-minute CGM reading, are active 24-hours a day, and have been adopted from previously published clinical studies by Buckingham et al. (4-6).

1.2.1. PLGS System

Tandem Diabetes Care's ambulatory insulin infusion pump with integrated Dexcom G5 CGM and predictive low glucose suspend (PLGS) function, "t:slim X2 with Basal-IQ Technology," is

221 intended for subcutaneous delivery of insulin, for the management of diabetes mellitus in persons
222 requiring insulin. The PLGS System includes the Dexcom continuous glucose monitoring
223 (CGM) device indicated for detecting trends and tracking patterns in persons with diabetes. The
224 PLGS System is able to stop and resume basal insulin delivery automatically in response to low
225 sensor glucose values, thereby reducing the incidence and duration of hypoglycemic episodes.
226

227 The system used in this study is a modified version of the previously approved t:slim G4 system
228 (P140015) and is comprised of a CGM sensor and transmitter along with an insulin pump with
229 user interface (UI) for display of system information. The sensor is inserted subcutaneously and
230 transmits data every 5 minutes to the pump via the transmitter. The pump includes the
231 hypoglycemia minimization strategy described in Section 1.2 that will issue insulin delivery
232 commands.
233

234 **Figure 2 - The Tandem insulin infusion pump with integrated Dexcom G5 CGM and**
235 **predictive low glucose suspend function (PLGS): t:slim X2 with Basal-IQ Technology**

236 237 **1.3. Rationale**

238 Hypoglycemia is a significant problem for adults and children with type 1 diabetes (T1D). A
239 system that can reduce insulin delivery when the hypoglycemia is predicted will be very
240 beneficial to reduce the risk of severe hypoglycemia and improve quality of life.
241

242 **1.4. Potential Risks and Benefits of the Investigational Device and Study Participation**

243 **1.4.1. Risk of Hyperglycemia**

244 The main risk of using the PLGS system is hyperglycemia, which could occur if insulin delivery
245 is suspended for an extended period during the operation of the PLGS system. Prior studies have
246 demonstrated that an increase in mild hyperglycemia is likely with prolonged pump suspension
247 (4-6). With prolonged pump suspension, ketonemia may occur, but the risk of DKA should not
248 be increased (7-8). A CGM functioning poorly and significantly underestimating glucose
249 concentrations could lead to inappropriate suspension of insulin delivery.
250

251 **1.4.2. Known Potential Benefits**

252 One purpose of this research is to reduce the frequency and duration of hypoglycemia in addition
253 to severe hypoglycemic events. Hypoglycemia is a major fear of many individuals with T1D and
254 their families and this fear often prevents optimal glycemic control.
255

257 It is expected that this protocol will yield increased knowledge about using a predictive low
258 glucose suspend system to control blood glucose level in persons with T1D. In addition, it is the
259 belief of the investigators that this study also presents prospect of direct benefit to the
260 participants and general benefit to others with T1D.

261

262 **1.4.3. Risk Assessment**

263 Based on the facts that (1) adults and adolescents with diabetes experience frequent
264 hypoglycemia as a consequence of the disease and its management, (2) the study intervention is
265 expected to reduce hypoglycemia without a substantial increase in hyperglycemia, and (3) a
266 similar system has been extensively tested in prior studies, the investigators believe that this
267 protocol falls under DHHS 46.405 which is a minor increase over minimal risk. In addition, it is
268 the belief of the investigators that this study also presents the prospect of direct benefit to the
269 participants and general benefit to others with T1D.

270

271 **1.5. General Considerations**

272 The study is being conducted in compliance with the ethical principles that have their origin in
273 the Declaration of Helsinki, with the protocol described herein, and with the standards of Good
274 Clinical Practice (GCP).

275

276 Data will be directly collected in electronic case report forms, which will be considered the
277 source data.

278

279 The protocol is considered a significant risk device study, due to the fact that the predictive low
280 glucose suspend system is experimental. Therefore, an investigational device exemption (IDE)
281 from the U.S. Food and Drug Administration (FDA) is required to conduct the study.

282

283

284 **CHAPTER 2: STUDY RECRUITMENT, ENROLLMENT, AND SCREENING**

285
286 **2.1. Participant Recruitment and Enrollment**

287 Enrollment will proceed with the goal of at randomizing approximately 100 participants so that
288 least 90 participants complete the crossover trial with sufficient data to include in the primary
289 analysis. A maximum of 200 individuals may be enrolled in the study in order to achieve this
290 goal and potentially support an increase in sample size per the interim analysis described in
291 Chapter 10. Participants who have signed consent and started the screening process will be
292 permitted to continue into the trial, if eligible, even if the trial completion goal has been reached.
293

294 Study participants will be recruited from 4-6 clinical centers in the United States. All eligible
295 participants will be included without regard to gender, race, religion, or ethnicity. There is no
296 restriction on the number of participants to be enrolled by each site towards the overall
297 recruitment goal.

298 The approximate distribution of participants completing the crossover trial is as follows:

300 • 45 participants ≥ 18 years old
301 • 45 participants < 18 years old, with the goal of recruiting a target of:
302 ○ At least 15 participants 12-17 years old
303 ○ At least 15 participants 6-11 years old

304 The above numbers generally will be minimums but could vary depending on the need for
305 participants to successfully complete the run-in, training phase, or both and to complete the
306 crossover trial.

307 The crossover trial will include the following minimum numbers of participants:

308 • 15 pump users
309 • 15 multiple daily injection of insulin (MDI) users
310 • 15 CGM naïve users (may be pump or MDI)
311 • 15 experienced CGM users (may be pump or MDI)

312 Each participant's percentage of sensor glucose values < 70 mg/dL during an approximate two-
313 week period prior to initiation of the crossover trial will be assessed, with a study goal that no
314 more than 25% of crossover trial participants will have a value $< 3\%$. As the study progresses,
315 participation in the crossover trial may be restricted to participants with values $\geq 3\%$ if crossover
316 trial participation is projected to exceed the 25% threshold.

317 Ten eligible adult participants ≥ 18 years old will use the PLGS system in a 10-day Pilot Period.
318

319 **2.1.1. Informed Consent and Authorization Procedures**

320 Potential eligibility may be assessed as part of a routine-care examination. Prior to completing
321 any procedures or collecting any data that are not part of usual care, written informed consent
322 will be obtained.

323 For potential study participants ≥ 18 years old, the study protocol will be discussed with the
324 potential study participant by study staff and an Informed Consent Form will be given. Potential

330 study participants will be encouraged to discuss the study with family members and their
331 personal physicians(s) before deciding whether to participate in the study.

332
333 For potential participants <18 years old, a parent or legal guardian (referred to subsequently as
334 “parent”) will be provided with the Informed Consent Form to read and will be given the
335 opportunity to ask questions. Potential participants meeting the IRB’s minimum age of assent
336 will be given a Child Assent Form to read and discuss with their parents and study personnel. If
337 the parent and child agree to participate, the Informed Consent Form and Child Assent Form will
338 be signed. A copy of the consent form(s) will be provided to the participant and their parent and
339 another copy will be added to the participant’s study record.

340
341 As part of the informed consent process and described in either the same document or a separate
342 document, the potential participant will be informed with respect to the study-specific
343 information that will be collected and to whom that information will be disclosed (i.e., HIPAA
344 requirements).

345
346 A participant is considered enrolled when the informed consent form and assent form, if
347 applicable, have been signed.

348 349 **2.2. Participant Inclusion Criteria**

350 Individuals must meet all of the following inclusion criteria to be eligible to participate in the
351 study:

- 352 1. Clinical diagnosis, based on investigator assessment, of T1D treated with insulin via an
353 insulin pump or injections for at least 1 year, with no major change in the intensity of
354 insulin therapy in the past 3 months (e.g. switching from injections to pump)
- 355 2. Age ≥ 6.0 years old
- 356 3. For participants <18 years old, living with one or more parents or guardians committed to
357 participating in training and able to contact the participant in case of an emergency
- 358 4. For females, not currently known to be pregnant
 - 359 ○ *If female and sexually active, must agree to use a form of contraception to prevent
360 pregnancy while a participant in the study. A negative serum or urine pregnancy
361 test will be required for all females of child-bearing potential. Participants who
362 become pregnant will be discontinued from the study. Also, participants who
363 during the study develop and express the intention to become pregnant within the
364 timespan of the study will be discontinued.*
- 365 5. Investigator has confidence that the participant can successfully use all study devices and
366 is capable of adhering to the protocol

367 368 **2.3. Participant Exclusion Criteria**

369 Individuals meeting any of the following exclusion criteria will be excluded from study
370 participation:

- 371 1. Anticipated need to use acetaminophen during study participation
- 372 2. Participation in another pharmaceutical or device trial at the time of enrollment or plan to
373 participate in another study during the time period of participation in this study
- 374 3. Employed by, or having immediate family members employed by Tandem; or having a
375 direct supervisor at place of employment who is also directly involved in conducting the

376 clinical trial (as a study investigator, coordinator, etc.); or having a first-degree relative
377 who is directly involved in conducting the clinical trial
378 4. A condition, which in the opinion of the investigator or designee, would put the
379 participant or study at risk including any contraindication to the use of any of the study
380 devices per FDA labelling
381 ○ Individuals should not be enrolled with uncontrolled thyroid disease, renal failure
382 (e.g., dialysis or eGFR <30), hemophilia or another major bleeding disorder, or
383 unstable cardiovascular disease.
384 ○ Laboratory testing and other work up needed to determine that an individual is a
385 suitable candidate for the study should be performed as part of usual care.

387 **2.4. Screening Procedures**

388 Potential participants will be evaluated for study eligibility through the elicitation of a medical
389 history, performance of a physical examination by study personnel, and local laboratory testing if
390 needed to screen for exclusionary medical conditions. Participant exclusion will be at the
391 discretion of the investigator based on study inclusion criteria and exclusion criteria.

392 Participants who do not initially meet study eligibility requirements may be rescreened once later
393 per investigator discretion.

396 **2.4.1. Data Collection and Testing**

397 After enrollment (informed consent signed), the following procedures will be performed/data
398 collected/eligibility criteria checked and documented:

- 399 ● Inclusion and exclusion criteria assessed
- 400 ● Demographics (date of birth, sex, race, ethnicity, socioeconomic status)
- 401 ● Contact information (retained at the site and not entered into study database)
- 402 ● Diabetic history, including CGM, insulin, and pump use
- 403 ● Medical history
- 404 ● Concomitant medications
- 405 ● Standard physical exam (including vital signs and height and weight measurements) by
406 the study investigator or designee (a physician, nurse, nurse practitioner or a physician
407 assistant).
- 408 ● Blood draw for HbA1c measurement (point-of-care measurement acceptable)
 - 409 ○ HbA1c within 4 weeks of screening visit is acceptable
- 410 ● Urine or serum pregnancy test for all women of child-bearing potential

412 Screening procedures will last approximately 1 hour.

413

414

415 **3.1. Introduction**416 The run-in phase consists of a CGM training period and SAP training period. The CGM training
417 period will last approximately 10-14 days followed by the SAP training period, which will last
418 approximately 14-28 days.

419

420 Eligible participants may complete the CGM training period and the SAP training period, or may
421 skip one or both based on the participants' device use at the time of enrollment, as described in
422 the table below.423

- 424 Participants currently using a CGM may skip the CGM Training Period per investigator
425 discretion, generally requiring that the CGM has been used on at least 85% of days
426 during the prior 4 weeks.
- 427 Participants currently using a Tandem pump concomitantly with a Dexcom CGM may
428 skip both the CGM Training and the SAP Training periods per investigator discretion.
 - 429 These participants will proceed to the next visit, which can either be the
430 Crossover Trial Randomization Visit, or the 10-day PLGS Pilot Period (see
431 Chapter 4).
- 432 Participants must complete the SAP Training Period if they are either:
 - 433 Not using a CGM
 - 434 Not currently using a Tandem insulin pump

435 **Table 2 - CGM and SAP Training Requirements Based on Device Status at Enrollment**

	CGM Use	Insulin Delivery Mode	CGM Training Period: 10-14 days	SAP Training Period: 14-28 days
Device Use	Current use of CGM	Current use of pump	Skip per investigator's discretion, generally requiring that CGM has been used on at least 85% of days during the prior 4 weeks.	Skip if participant's personal pump is Tandem; else participate using Dexcom study CGM and Tandem study pump
		MDI (No current use of pump)		Participate using Dexcom study CGM and Tandem study pump
	No current use of CGM	Current use of pump or MDI	Participate using Dexcom study CGM while continuing personal pump or MDI	Participate using Dexcom study CGM and Tandem study pump

436

437 **3.2. CGM Training Period (10-14 Days)**438 Participants not currently using a CGM as described above will complete 10-14 days of study
439 CGM use at home with their current form of insulin therapy (personal pump or MDI).

440

441 CGM training will include the following:

442

- 443 Approximately 1-2 hours of training on sensor insertion, transmitter placement, sensor
444 calibration, and the use of CGM in daily diabetes management per manufacturer
guidelines

445 • Participants will be provided with information regarding the potential risk of sensor site
446 infection and bleeding, sensor needle fracture and sensor failure
447 • Participants will be provided with written instructions on using the CGM
448

449 Participants will be provided with a CGM system and sensors; a blood glucose meter, test strips,
450 lancets, and control solution; and a blood ketone meter, test strips, and control solution.

451 **3.2.1. CGM Training Contact and Visit Schedule**

452 Participants will be contacted after 6±1 days to review any issues with CGM use.

453 Participants will use the CGM for at least 10 days and will return to the clinic after 10+4 days.
454 Participants may continue in the study if the investigator judges that the participant can use the
455 CGM safely and consistently in the remainder of the study.

456 **3.3. SAP Training Period (14-28 days)**

457 Participants not currently using a CGM or not currently using a Tandem insulin pump must
458 complete the SAP Training Period. Participants will use the study Dexcom CGM and the
459 Tandem pump called the “t:slim X2 Dexcom G5 Mobile CGM Enabled (referred to subsequently
460 as the Tandem SAP pump) at home for 14-28 days.

461 For participants currently on insulin pump therapy, the Tandem SAP pump will be programmed
462 so that basal insulin delivery and other settings match the participant's personal pump settings.
463 Participants will be expected to use the Tandem SAP pump daily.

464 Participants may use commercially available features of the study CGM system related to mobile
465 data access or remote monitoring, but will be instructed not to use any third-party components
466 for this purpose.

467 For participants not currently on insulin pump therapy, an initial basal insulin profile will be
468 customized on a per-participant basis. Total daily insulin dose will be reduced by approximately
469 20% as a general rule, with a recommended method outlined in a separate procedures manual.
470 Further adjustments to total daily dose and intraday basal rate profile may be made during the
471 course of the SAP Training Period.

472 Pump training will take approximately 1-2 hours and will be customized based on participant's
473 pump experience. General guidelines are as follows:

474 • Participants who are pump-naïve will receive standard insulin pump therapy training
475 including use of the bolus wizard, and will provide a return demonstration of use of the
476 major features of the pump. For participants who are already pump users, differences
477 from their personal pump will be reviewed.
478 • Training topics will include calculation of insulin-on-board (IOB) and correction boluses,
479 infusion site initiation, cartridge/priming procedures, setting up the pump, navigation
480 through menus, bolus procedures including stopping a bolus, etc.
481 • The study team will assist the participant in study pump infusion site insertion and
482 initiation of the pump. The Tandem SAP pump will be programmed with the participant's
483

490 usual basal rates and pump parameters, if available. The participant will be observed
491 using the Tandem SAP pump during at least one meal or snack bolus.
492

493 Participants will be provided with an insulin pump, cartridges, and infusion sets and insulin if
494 they are not already using an insulin that can be used in the Tandem pump. Participants will also
495 be given the appropriate CGM supplies for the SAP Training Period.
496

497 **3.3.1. SAP Training Contact and Visit Schedule**

498 Participants will be contacted via email, phone, or text after 7 ± 1 day (preceded by an upload of
499 the pump and sensor data if possible) and have a visit after $14+3$ days to review use of the study
500 CGM and Tandem SAP pump. Adjustments may be made to optimize pump settings during the
501 SAP Training Period per investigator discretion.
502

503 If the investigator deems it necessary, an additional two-week SAP Training Period may occur,
504 with the same contact and visit schedule as above.
505

506 **3.3.2. Assessment of SAP Training Period**

507 The CGM data will be downloaded and reviewed to assess whether the participant had used the
508 CGM on at least 85% of possible days and the Tandem SAP pump was used every day unless
509 extenuating circumstances existed.
510

511 Participants who do not meet these criteria after an additional two-week SAP Training Period
512 will be withdrawn from the study, unless the investigator believes that there were extenuating
513 circumstances that prevented successful completion.
514

515 Participants will continue to use the study CGM and Tandem SAP pump until the 10-Day Pilot
516 Period initiation visit or crossover trial randomization visit, unless the visit is concomitant with
517 an SAP Training Assessment visit.
518

519
520

CHAPTER 4: PLGS PILOT PERIOD

521

4.1. PLGS Pilot Period Overview

522
523
524
525
526

Prior to the initiation of the crossover trial, 10 adult participants will use the study CGM and Tandem's t:slim X2 with Basal-IQ Technology system that includes the predictive low glucose suspend function (referred to subsequently as "Tandem PLGS pump") in a 10-day Pilot Period. Data will be evaluated for system usability and predetermined safety metrics before participants ≥ 12 years old may be randomized into the crossover trial.

527

528

4.2. Initiation of PLGS

529
530
531

Participants will be trained on the use of the PLGS feature of the pump and instructed to use the Tandem PLGS pump and study CGM daily until returning to the clinic. Participants will be provided with all CGM and pump supplies, including insulin if needed.

532

533

4.3. Visit and Contact Schedule

534
535

Contact via phone, email, or text will occur on days 1, 2, and 5 (± 1 day) to assess for adverse events and system issues.

536

537
538
539
540

Participants will use the PLGS system for at least 10 days and then return to the clinic after 10+4 days. Participants may use commercially available features of the study CGM system related to mobile data access or remote monitoring, but will be instructed not to use any third-party components for this purpose.

541

542
543
544
545

Device data will be downloaded at the day 10 clinic visit. Participants will be transitioned to a study Tandem SAP pump (no PLGS feature) and may continue study CGM use until data review from all Pilot Period participants has been completed. Participants will then return to the clinic to participate in the crossover trial as described below when that part of the study begins.

546

547

4.4. PLGS Pilot Period Data Review

548
549

After the 10th participant completes the Pilot Period, data from approximately 100 participant-days will be evaluated for system usability and predetermined safety metrics.

550

551

Predetermined safety metrics are the following:

552

553

- No PLGS-related DKA
- No severe hypoglycemia related to system malfunction

554

555
556
557
558

All instances of DKA or severe hypoglycemia will be adjudicated by the Medical Monitor to determine whether the events were related to system performance. If the predetermined safety metrics are not satisfied, the study will be stopped for system evaluation as described in Section 8.6.

559

560
561
562
563

Usability will be assessed on participant and investigator feedback. If system changes are required due to safety or usability issues, any necessary regulatory or IRB reviews will be performed. Then the Pilot Period will be repeated, and the results will again be evaluated for safety and usability prior to the crossover trial.

CHAPTER 5: CROSSOVER TRIAL

5.1. Crossover Trial Overview

The main part of the study, a six-week crossover trial, consists of two arms which will receive different treatments. Participants will be randomly assigned to one treatment option, then cross over to the other treatment option after three weeks. The two treatment options are:

- Intervention (PLGS Group): Use of the Dexcom G5 CGM with an insulin pump that has a PLGS feature (t:slim X2 with Basal-IQ Technology)
- Control (SAP Group): Use of the Dexcom G5 CGM with an insulin pump that does not have a PLGS feature (t:slim X2 Dexcom G5 Mobile CGM Enabled)

The two Tandem pumps, referred to as the Tandem PLGS and the Tandem SAP pumps, respectively, are identical in functionality and user interface (UI) with the exception of the PLGS feature and associated UI component.

5.2. Crossover Trial Initiation

The crossover trial will begin after successful completion of the Pilot Period (see Chapter 4).

Initially, participants ≥ 12 years old can be entered into the crossover trial. Initiation of the crossover trial by participants 6 to 11 years old will be deferred until data from 100 post-randomization PLGS participant-days have been evaluated from participants 12 to 17 years old (of which at least 50 participant-days will come from participants 12 to <15 years old) and the same predetermined safety metrics used to evaluate the Pilot Period have been satisfied.

- If the safety criteria to proceed to the younger age group are not met, then there will be a hold on initiating the crossover trial in this age group until either additional data are collected from the active participants or a revision is made to the risk mitigation plan and approved by FDA before proceeding

Randomization into the crossover trial may be restricted to participants with at least 3% of sensor glucose values <70 mg/dL during an approximately two-week period prior to randomization if the crossover trial is projected to include fewer than 75% of such participants.

5.2.1. Crossover Study Periods

- Study Period 1: 3-week period of PLGS (Group A) or SAP (Group B)
- Study Period 2: 3-week period of PLGS (Group B) or SAP (Group A)

5.3. Home Procedures during the Study Periods

During the two study periods, participants will be asked to:

- Use the study pump and study CGM every day
- Keep the PLGS feature activated if using the Tandem PLGS pump
- Not change pump settings related to insulin delivery (such as basal rate, correction factor, and carb ratio) without first discussing with study staff
- Ensure proper calibration of the CGM at all times, using the study-provided glucose meter
- Measure blood ketones with the study-provided ketone meter when CGM glucose is >300 mg/dL on awakening or for at least one hour at other times, or >400 mg/dL at any time. CGM glucose >300 mg/dL should be confirmed by self-monitoring of blood glucose (SMBG) readings
- Participants may use commercially available features of the study CGM system related to

611 mobile data access or remote monitoring, but will be instructed not to use any third-party
612 components for this purpose. Participants will be encouraged to be consistent with their use of
613 any such features between the two periods of the crossover study.

614 • Contact the study staff if:

615 ○ Blood ketone readings are ≥ 1.5 mmol/L
616 ○ There are any technical issues with the system
617 ○ There are any symptoms or occurrences of DKA, severe hypoglycemia, or development
618 of other medical problems
619 ○ Pregnancy is possible
620 ○ Discontinuation of study participation is desired

621 Participants will also receive study staff contact information to ask any questions they may have during
622 the study.

623 **5.4. Prohibited Medications, Treatments, and Procedures**

624 Participants will be instructed that acetaminophen must be avoided during the study. If acetaminophen
625 is inadvertently taken, the participant will be instructed to disable the PLGS feature for 4 hours and to
626 not use the CGM measurements for diabetes management during this time.

627 Participants will be instructed not to add any new glucose-lowering agents during the study.

628 **5.5. Study Visits and Contacts**

629 The schedule for follow-up visits and contacts is the same during both periods of the crossover trial.

630 • 2 ± 1 day: Contact via phone, email, or text
631 • 7 ± 2 days: Visit
632 • 14 ± 3 days: Contact via phone, email, or text
633 • 21 ± 7 days: Visit

634 At each contact and visit, the occurrence of device issues and adverse events will be solicited. Device
635 data will be uploaded at the day 7 visit (and from home if possible) and are needed to assess issues that
636 may arise.

637 Additional visits and contacts may occur at investigator discretion.

638 **5.6. Crossover Trial Randomization Visit (Beginning of Study Period 1)**

639 The following procedures will be completed at the crossover trial randomization visit:

640 • Eligibility criteria will be reviewed to verify that there have been no changes that could affect
641 eligibility since enrollment
642 • The individual's understanding of the protocol and willingness to participate in the crossover
643 trial will be reviewed
644 • HbA1c will be measured using the DCA Vantage or similar point-of-care (POC) device or local
645 lab if not already measured on the same day during the screening visit
646 • A pregnancy test will be performed if not already performed on the same day during the
647 screening visit
648 • All needed study supplies will be given to the participant

649 Study personnel will enter data on the study website to verify eligibility and obtain random assignment

658 to Group A or Group B
659 • Group A: intervention period first (PLGS), control period second (SAP)
660 • Group B: control period first (SAP), intervention period second (PLGS)

661
662 Group A participants will receive PLGS training (if not previously received through participation in
663 the Pilot Period).

664

665 **5.6.1. End of Study Period 1 Follow-up Clinic Visit and Beginning of Study Period 2**

666 The following procedures will occur during this visit:

- 667 • Data will be reviewed for potential safety issues, and if none pump settings will not be adjusted
668 prior to initiation of Study Period 2
- 669 • HbA1c level will be measured using the DCA Vantage or similar point-of-care device or local
670 lab
- 671 • Group A participants will complete the PLGS usability survey (see Chapter 7)
- 672 • Initiation of Study Period 2
 - 673 ○ Group A participants will return the Tandem PLGS pump and receive the Tandem SAP
674 pump with all needed supplies.
 - 675 ○ Group B participants will return the Tandem SAP pump and receive the Tandem PLGS
676 pump with all needed supplies, and will receive training (or refresher training if applicable)
677 on the PLGS feature of the pump.

678

679 **5.6.2. End of Study Period 2 and Final Visit**

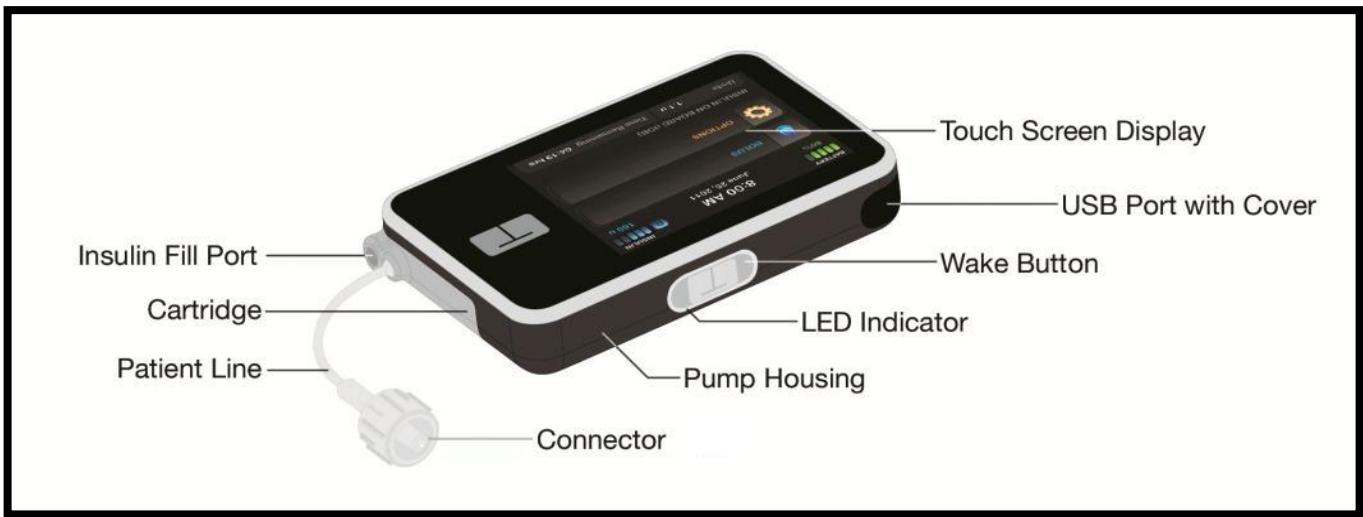
680 The following procedures will occur at the end of Study Period 2:

- 681 • Data will be reviewed for potential safety issues
- 682 • HbA1c level will be measured using the DCA Vantage or similar point-of-care device or local
683 lab
- 684 • Group B participants will complete the PLGS usability survey (see Chapter 7)
- 685 • All applicable study supplies will be returned to the clinic

688 CHAPTER 6: STUDY DEVICES

689

690 6.1. Description of the Investigational Device


691 6.1.1. Insulin Pump

692 The Tandem Diabetes ambulatory infusion pump with PLGS (t:slim X2 with Basal-IQ Technology) is
693 intended for the subcutaneous delivery of insulin for the management of diabetes mellitus in persons
694 requiring insulin. A touch sensitive Liquid Crystal Display (LCD) provides both the pump information
695 to the user as well as the interface for the user to program insulin delivery timing and quantity, both
696 basal and bolus delivery of insulin at set and variable rates.

697 Additionally these pumps are integrated with and display continuous glucose data (CGM) and contain
698 a Predictive Low Glucose Suspend (PLGS) algorithm which allows the user to set the system to
699 automatically suspend delivery of insulin when the predicted glucose value falls below a predefined
700 threshold.

702 The device system components include an insulin pump and cartridge, infusion catheter, CGM sensor
703 and transmitter, and a blood glucose meter for CGM calibrations.

705 706 Figure 3 - Tandem Pump Showing Labeled Components

707 708 709 6.1.2. Continuous Glucose Monitoring

710 The study CGM will include an unmodified Dexcom G5 Mobile transmitter and sensors. This is an
711 FDA-approved device system with no changes to its hardware or firmware components. The CGM
712 sensor will be replaced at least once every seven days.

713 714 6.1.3. Blood Glucose Meter and Strips

715 Blood glucose levels will be measured and the CGM device will be calibrated using the Accu-Chek
716 Guide Blood Glucose Monitoring System in accordance with the manufacturer labeling.

717 718 6.1.4. Ketone Meter and Strips

719 Blood ketone levels will be measured using the Abbott Precision Xtra meter and strips in accordance
720 with the manufacturer's labeling. The blood glucose meter component of the Precision Xtra device will
721 not be used.

722

723 **6.2. Study Device Accountability Procedures**

724 Device accountability procedures will be detailed in the study procedures manual.

725

726 **6.2.1. Blood Glucose Meter Testing**

- 727 • Participants will be provided with instructions to perform QC testing per manufacturer
728 guidelines.
- 729 • All study blood glucose meters will be QC tested with at least two different concentrations of
730 control solution if available during all office visits. A tested meter will not be used in a study if
731 it does not read within the target range at each concentration per manufacturer labeling. The
732 Participant will be instructed to contact study staff for a replacement of the meter, test strips,
733 and control solution if a meter fails QC testing at home.
- 734 • Participants will be reminded to use the study blood glucose meter for all fingerstick blood
735 glucose measurements
- 736 • Participants will be asked to perform fingerstick blood glucose measurements in accordance
737 with the labelling of the study CGM device.

738

739 **6.2.2. Blood Ketone Testing**

- 740 • Participants to perform QC testing at home per manufacturer guidelines.
- 741 • All study blood ketone meters will be QC tested with at least two different concentrations of
742 control solution if available during all office visits. A tested meter will not be used in a study if
743 it does not read within the target range at each concentration per manufacturer labeling. The
744 Participant will be instructed to contact study staff for a replacement of the meter, test strips,
745 and control solution if a meter fails QC testing at home.
- 746 • Participants will be instructed on how to perform blood ketone testing
- 747 • Participants will be given guidelines for treatment of elevated blood ketones

748

749 **6.3. Safety Measures**

750 **6.3.1. CGM Calibration**

751 Throughout the study, participants will be instructed to calibrate the study CGM in accordance with
752 manufacturer labelling.

753 **6.3.2. PLGS Suspend and Resume Alerts**

754 By default, the Tandem PLGS pump's audible PLGS suspend and resume alerts will be disabled when
755 the participant receives the pump. The participant will be permitted to enable these audible alerts if
756 desired during system use.

757 **6.3.3. Low Glucose Alert and Safety Protocol**

758 Participants will be required to set the CGM low glucose alert level between 60 mg/dL and 70 mg/dL
759 during the course of the study, and not to change this setting during the crossover trial.

760 If a participant receives a CGM low glucose alert or notes that the CGM glucose is below the low
761 glucose threshold alert value, confirmatory fingerstick testing will be performed if required by CGM

765 labelling and the participant will be instructed to treat hypoglycemia with ~16 grams of fast-acting oral
766 glucose.

767

768 **6.3.4. High Glucose Alert and Safety Protocol**

769 Participants will be required to set the CGM high glucose alert level between 200 mg/dL and 300
770 mg/dL during the course of the study, and not to change this setting during the crossover trial.

771

772 If a participant receives a CGM hyperglycemia threshold alert or notes that the CGM glucose is above
773 the hyperglycemia threshold alert value, confirmatory fingerstick testing will be performed if required
774 by CGM labelling.

775

776 If a participant's CGM reading is ≥ 300 mg/dL when fasting in the morning upon awakening, ≥ 300
777 mg/dL for over 1 hour during the day, or ≥ 400 mg/dL at any point, the participant will be instructed to
778 take the following steps:

779

- 780 • Perform a blood glucose meter check.
- 781 • If the blood glucose is ≥ 300 mg/dL, then blood ketones should be measured with the study
ketone meter.
- 782 • Correction insulin may be taken per the participant's usual routine.
- 783 • Participants will be instructed to change their pump site and administer correction insulin via
784 insulin syringe or pen for ketones ≥ 0.6 mmol/L and to additionally notify study staff for
785 ketones ≥ 1.5 mmol/L.

CHAPTER 7: TESTING PROCEDURES AND QUESTIONNAIRES

7.1. Testing Procedures

The following tests and test procedures will be performed during the study:

- 1) Hemoglobin A1c (HbA1c) will be tested using a DCA Vantage or similar point-of-care device or local lab
- 2) Pregnancy tests will be performed using a urine or serum pregnancy test

7.2. Questionnaire

The following questionnaire will be completed by each participant after the crossover study period during which the PLGS system was used. The procedures for administration are described in the study procedures manual.

7.2.1. Usability Questionnaire

The System Usability Scale (SUS) is a 10-item questionnaire that measures the overall usability of a system that will be administered to all participants. It is a valid and reliable measure of the perceived usability of a system and is technology-agnostic. The questionnaire presents statements with five response options (anchoring the options from strongly disagree to strongly agree) and asks users to rate their agreement to the statements. User scores are transformed into a composite score, from 0 to 100, and this score is taken as an overall measure of the system's usability; higher scores indicate better perceived usability.

Administration time is approximately 5 minutes.

CHAPTER 8: ADVERSE EVENTS, REPORTING, AND STOPPING RULES

8.1. Definitions

Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the relationship between the adverse event and the device(s) under investigation.

Serious Adverse Event (SAE): Any untoward medical occurrence that:

- Results in death.
- Is life-threatening; (a non-life-threatening event which, had it been more severe, might have become life-threatening, is not necessarily considered a serious adverse event).
- Requires inpatient hospitalization or prolongation of existing hospitalization.
- Results in persistent or significant disability/incapacity or substantial disruption of the ability to conduct normal life functions (sight threatening).
- Is a congenital anomaly or birth defect.
- Is considered a significant medical event by the investigator based on medical judgment (e.g., may jeopardize the participant or may require medical/surgical intervention to prevent one of the outcomes listed above).

Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or any life-threatening problem or death caused by, or associated with, a device, if that effect, problem, or death was not previously identified in nature, severity, or degree of incidence in the investigational plan or application (including a supplementary plan or application), or any other unanticipated serious problem associated with a device that relates to the rights, safety, or welfare of participants (21 CFR 812.3(s)).

Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which the device may have caused or to which the device may have contributed. (Note that an Adverse Event Form is to be completed in addition to a Device Deficiency or Issue Form).

Device Complaints: A device complication or complaint is something that happens to a device or is related to device performance, whereas an adverse event happens to a participant. A device complaint may occur independently from an AE, or along with an AE. An AE may occur without a device complaint or there may be an AE related to a device complaint.

Device Malfunction: Any failure of a device to meet its performance specifications or otherwise perform as intended. Performance specifications include all claims made in the labeling for the device. The intended performance of a device refers to the intended use for which the device is labeled or marketed. (21 CFR 803.3)

8.2. Reportable Adverse Events

For this protocol, a reportable adverse event includes any untoward medical occurrence that meets one of the following criteria:

- 1) A serious adverse event
- 2) An Adverse Device Effect as defined in Section 8.1, unless excluded from reporting in Section 8.3
- 3) An Adverse Event occurring in association with a study procedure
- 4) Hypoglycemia meeting the definition of severe hypoglycemia as defined below
- 5) Diabetic ketoacidosis (DKA) as defined below

857 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
858 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement are
859 only reportable if severe and/or required treatment.

860
861 Pregnancy occurring during the study will be recorded.
862

863 **8.2.1. Hypoglycemic Events**

864 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
865 when the following definition for severe hypoglycemia is met: the event required assistance of another
866 person due to altered consciousness, and required another person to actively administer carbohydrate,
867 glucagon, or other resuscitative actions. This means that the participant was impaired cognitively to the
868 point that he/she was unable to treat himself/herself, was unable to verbalize his/ her needs, was
869 incoherent, disoriented, and/or combative, or experienced seizure or coma. These episodes may be
870 associated with sufficient neuroglycopenia to induce seizure or coma. If plasma glucose measurements
871 are not available during such an event, neurological recovery attributable to the restoration of plasma
872 glucose to normal is considered sufficient evidence that the event was induced by a low plasma
873 glucose concentration.

874 875 **8.2.2. Hyperglycemic Events/Diabetic Ketoacidosis**

876 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
877 when one of the following criteria is met: (1) the event involved DKA, as defined by the Diabetes
878 Control and Complications Trial (DCCT) and described below, or (2) in the absence of DKA if
879 evaluation or treatment was obtained at a health care provider facility for an acute event involving
880 hyperglycemia or ketosis.

881
882 Hyperglycemic events are classified as DKA if the following are present:

- 883 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
- 884 • Serum ketones >1.5 mmol/L or large/moderate urine ketones;
- 885 • Either arterial blood pH <7.30 or venous pH <7.24 or serum bicarbonate <15 ; and
- 886 • Treatment provided in a health care facility

887
888 All reportable Adverse Events whether volunteered by the participant, discovered by study personnel
889 during questioning, or detected through physical examination, laboratory test, or other means will be
890 reported on an adverse event form online. Each adverse event form is reviewed by the Medical
891 Monitor to verify the coding and the reporting that is required.

892 893 **8.2.3. Relationship of Adverse Event to Study Device**

894 The study investigator will assess the relationship of any adverse event to be related or unrelated by
895 determining if there is a reasonable possibility that the adverse event may have been caused by the
896 study device.

897
898 To ensure consistency of adverse event causality assessments, investigators should apply the following
899 general guideline when determining whether an adverse event is related:

900
901 **Yes**

902 There is a plausible temporal relationship between the onset of the adverse event and the study
903 intervention, and the adverse event cannot be readily explained by the participant's clinical state,
904 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of

905 response to the study intervention; and/or the adverse event abates or resolves upon discontinuation of
906 the study intervention or dose reduction and, if applicable, reappears upon re-challenge.
907

908 **No**

909 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
910 preexisting medical condition, underlying disease, intercurrent illness, or concomitant medication);
911 and/or the adverse event has no plausible temporal relationship to study intervention.
912

913 **8.2.4. Intensity of Adverse Event**

914 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or (3)
915 severe. It is emphasized that the term severe is a measure of intensity: thus a severe adverse event is
916 not necessarily serious. For example, itching for several days may be rated as severe, but may not be
917 clinically serious.

- 918 • **MILD:** Usually transient, requires no special treatment, and does not interfere with the
919 participant's daily activities.
- 920 • **MODERATE:** Usually causes a low level of inconvenience or concern to the participant and
921 may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.
- 922 • **SEVERE:** Interrupts a participant's usual daily activities and generally requires systemic drug
923 therapy or other treatment.

924 **8.2.5. Coding of Adverse Events**

925 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review the
926 investigator's assessment of causality and may agree or disagree. Both the investigator's and Medical
927 Monitor's assessments will be recorded. The Medical Monitor will have the final say in determining
928 the causality.

929 Adverse events that continue after the participant's discontinuation or completion of the study will be
930 followed until their medical outcome is determined or until no further change in the condition is
931 expected.

932 **8.2.6. Outcome of Adverse Event**

933 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 934 • **RESOLVED** – The participant recovered from the AE/SAE without sequelae. Record the
935 AE/SAE stop date.
- 936 • **RESOLVED WITH SEQUELAE** – The event persisted and had stabilized without change in
937 the event anticipated. Record the AE/SAE stop date.
- 938 • **FATAL** – A fatal outcome is defined as the SAE that resulted in death. Only the event that was
939 the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time of
940 death; however, were not the cause of death, will be recorded as “resolved” at the time of death.
- 941 • **UNKNOWN** – An unknown outcome is defined as an inability to access the participant or the
942 participant's records to determine the outcome (for example, a participant that was lost to
943 follow-up).
- 944 • **ONGOING** – An ongoing AE/SAE is defined as the event was ongoing with an undetermined
945 outcome.
 - 946 ○ An ongoing outcome will require follow-up by the site in order to determine the final
947 outcome of the AE/SAE.

951 ○ The outcome of an ongoing event at the time of death that was not the cause of death,
952 will be updated and recorded as “resolved” with the date of death recorded as the stop
953 date.

954 All clinically significant abnormalities of clinical laboratory measurements or adverse events occurring
955 during the study and continuing at study termination should be followed by the participant’s physician
956 and evaluated with additional tests (if necessary) until diagnosis of the underlying cause, or resolution.
957 Follow-up information should be recorded on source documents.

958 If any reported adverse events are present when a participant completes the study, or if a participant is
959 withdrawn from the study due to an adverse event, the participant will be contacted for re-evaluation
960 within 2 weeks. If the adverse event has not resolved, additional follow-up will be performed as
961 appropriate. Every effort should be made by the Investigator or delegate to contact the participant until
962 the adverse event has resolved or stabilized.

963 **8.3. Reportable Device Issues**

964 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
965 whether an adverse event occurred, except in the following circumstances.

966 The following device issues are anticipated and will not be reported on a Device Issue Form but will
967 be reported as an Adverse Event if the criteria for AE reporting described above are met:

- 968 • Component disconnections
- 969 • CGM sensors lasting fewer than 7 days
- 970 • CGM tape adherence issues
- 971 • Pump infusion set occlusion not leading to ketosis
- 972 • Battery lifespan deficiency due to inadequate charging or extensive wireless communication
- 973 • Intermittent device component disconnections/communication failures not leading to system
974 replacement
- 975 • Device issues clearly addressed in the user guide manual that do not require additional
976 troubleshooting
- 977 • Skin reactions from CGM sensor placement or pump infusion set placement that don’t meet
978 criteria for AE reporting

979 **8.4. Pregnancy Reporting**

980 If pregnancy occurs, the participant will be discontinued from the study and a final visit will be
981 conducted. The occurrence of pregnancy will be reported on an AE Form.

982 **8.5. Timing of Event Reporting**

983 Serious or unexpected device-related adverse events must be reported to the Coordinating Center
984 within 24 hours via completion of the online serious adverse event form.

985 Other reportable adverse events and device malfunctions (with or without an adverse event) will be
986 reported within 3 days of the investigator becoming aware of the event by completion of an electronic
987 case report form.

988 Device complaints not associated with device malfunction or an adverse event must be reported within
989 7 days of the investigator becoming aware of the event.

998
999 The Coordinating Center will notify all participating investigators of any adverse event that is serious,
1000 related, and unexpected. Notification will be made within 10 days after the Coordinating Center
1001 becomes aware of the event.
1002
1003 Each principal investigator is responsible for reporting serious study-related adverse events and
1004 abiding by any other reporting requirements specific to his/her Institutional Review Board or Ethics
1005 Committee.
1006
1007 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report the
1008 results of the investigation to the sites' IRBs, and the FDA within ten working days of the Sponsor
1009 becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must determine if the
1010 UADE presents an unreasonable risk to participants. If so, the Medical Monitor must ensure that all
1011 investigations, or parts of investigations presenting that risk, are terminated as soon as possible but no
1012 later than 5 working days after the Medical Monitor makes this determination and no later than 15
1013 working days after first receipt notice of the UADE.
1014
1015 Device malfunctions will be handled by the Sponsor or designee as described below. In the case of a
1016 CGM transmitter or sensor device malfunction, the Coordinating Center will be contacted and the
1017 Sponsor will be notified accordingly.
1018
1019 **8.6. Stopping Criteria**
1020 **8.6.1. Participant Discontinuation of Study Device**
1021 Rules for discontinuing study device use are described below.
1022
1023 1. The investigator believes it is unsafe for the participant to continue on the intervention. This
1024 could be due to the development of a new medical condition or worsening of an existing
1025 condition; or participant behavior contrary to the indications for use of the device that imposes
1026 on the participant's safety
1027 2. The participant requests that the treatment be stopped
1028 3. Two distinct episodes of DKA
1029 4. Two distinct severe hypoglycemia events as defined in Section 8.2
1030
1031 Even if the study device system is discontinued, the participant will be encouraged to remain in the
1032 study through the final study visit.
1033
1034 Participants who become pregnant will be discontinued from the study with a final clinic visit and no
1035 subsequent use of study device components.
1036
1037 **8.6.2. Criteria for Suspending or Stopping Overall Study**
1038 In the case of a system malfunction resulting in a severe hypoglycemia or severe hyperglycemia event
1039 (as defined in Section 8.2), use of the study device system will be suspended while the problem is
1040 diagnosed.
1041
1042 In addition, study activities could be similarly suspended if the manufacturer of any constituent study
1043 device requires stoppage of device use for safety reasons (e.g. product recall). The affected study
1044 activities may resume if the underlying problem can be corrected by a protocol or system modification
1045 that will not invalidate the results obtained prior to suspension.

1046
1047 The study Medical Monitor will be informed of all serious adverse events and any unanticipated
1048 adverse device events that occur during the study and will review compiled safety data at periodic
1049 intervals. The medical monitor may request suspension of study activities or stoppage of the study if
1050 deemed necessary based on the totality of safety data available.
1051
1052 **8.7. Risks**
1053 The potential risks associated with use of the study device are described in Section 1.4.
1054
1055 Additional risks are minor and/or infrequent and include
1056

- Pain, bruising, redness, or infection from blood draws
- Loss of confidentiality
- Stress from completing quality of life questionnaires
- Skin irritation, infection, or bleeding from CGM sensor or pump infusion set or adhesive
1059 tap
- Breaking of CGM sensor with small portion retained under skin causing redness, swelling,
1060 or pain

1061
1062
1063
1064 The risk of hypoglycemia should be no greater and possibly less than it is in everyday living for
1065 someone with T1D.
1066

CHAPTER 9: MISCELLANEOUS CONSIDERATIONS

9.1. Participant Compensation

Participants will be compensated \$50 for each protocol-specified clinic visit during the study.

Participants will typically receive these amounts at the end of each clinic visit. For completing all required study visits, participants will be compensated a minimum of \$300 and a maximum of \$600 due to additional study visits that may be required for some participants.

9.2. Participant Withdrawal

Participation in the study is voluntary, and a participant may withdraw at any time. For participants who withdraw, their data will be used up until the time of withdrawal.

9.3. Confidentiality

For security and confidentiality purposes, participants will be assigned an identifier that will be used instead of their name. Protected health information gathered for this study will be shared with the coordinating center, the Jaeb Center for Health Research in Tampa, FL. De-identified participant information may be provided to research sites involved in the study.

1084 CHAPTER 10: STATISTICAL CONSIDERATIONS

1085

1086 10.1. Statistical and Analytical Plans

1087 The approach to sample size and statistical analyses are summarized below. A detailed statistical
1088 analysis plan will be written and finalized prior to the completion of the study. The analysis plan
1089 synopsis in this chapter contains the framework of the anticipated final analysis plan.

1090 10.2. Statistical Hypotheses

- 1092 Null hypothesis: There will be no difference in percentage of CGM-measured glucose values
1093 <70 mg/dL between PLGS and SAP
- 1094 Alternate hypothesis: PLGS will improve the percentage of CGM-measured glucose values <70
1095 mg/dL over SAP.

1096 10.3. Sample Size

1097 Data from the JDRF Continuous Glucose Monitoring Randomized Clinical Trial was used to estimate
1098 SD and the frequency of time <70 mg/dL for the pump or MDI population. Assuming a crossover
1099 design with two 3 weeks periods, a 2-tailed test, a 33% relative reduction in 24-hour time <70 mg/dL,
1100 standard deviation of the paired differences = 3%, a type I error = 5%, and 90% power; a sample of 52
1101 participants is required.

1102 With a sample size of 90 participants, the primary analysis will have 99% power. The larger sample
1103 size will provide increased precision for safety analyses and subgroup analyses.

1104 10.4. Outcome Measures

1105 Primary Efficacy Endpoint:

- 1106 Percentage of sensor glucose values <70 mg/dL

1107 Secondary Efficacy Endpoints:

1108 *Hypoglycemia*

- 1109 Percentage of values <60 mg/dL
- 1110 Percentage of values <50 mg/dL
- 1111 AUC <70 mg/dL
- 1112 Low blood glucose index
- 1113 Frequency of CGM-measured hypoglycemic events (see below):

1114 *Glucose Control*

- 1115 Mean glucose
- 1116 Percentage of values 70 to 180 mg/dL

1117 *Hyperglycemia*

- 1118 Percentage of values >250 mg/dL
- 1119 Percentage of values >180 mg/dL
- 1120 AUC glucose >180 mg/dL
- 1121 High blood glucose index

1122 Each of the metrics listed will be calculated over 24 hours and separately for daytime (6am – 10pm)
1123 and nighttime (10pm – 6am). Secondary outcomes will also include the percentage of sensor glucose
1124 values <70 mg/dL calculated separately for daytime and nighttime.

1131
1132 A CGM-measured hypoglycemic event will be defined as at least 2 sensor values <54 mg/dl that are 15
1133 or more minutes apart plus no intervening values >54 mg/dl; at least 2 sensor values >70 mg/dl that are
1134 30 or more minutes apart with no intervening values <70 mg/dl, are required to define the end of an
1135 event, at which point the study participant becomes eligible for a new event..
1136

1137 **10.5. Description of Statistical Methods**
1138 **10.5.1. General Approach**
1139 This is a crossover study where each participant is randomized to treatment order. All analyses will
1140 compare the 3-week period of PLGS to the 3 week period of SAP and will follow the intention-to-treat
1141 principle with each period analyzed according to the treatment assigned by randomization regardless of
1142 actual PLGS utilization. All participants who have at least one CGM reading in each 3-week period
1143 will be analyzed. All p-values will be two-sided.
1144

1145 **10.5.2. Analysis Cohorts**
1146 • All randomized participants who have at least one CGM reading in each 3-week period will
1147 be analyzed for the Intention-to-Treat (ITT) Analysis.
1148 • Safety outcomes will be reported for all enrolled participants, irrespective of whether the
1149 study was completed.
1150 • A per-protocol analysis restricted to participants with at least 200 hours of CGM data in
1151 each 3 week period will also be conducted provided that there are at least 5 participants
1152 with less than 200 hours of CGM data in both treatment periods.
1153

1154 **10.6. Analysis of the Primary Efficacy Endpoint**
1155 The percentage of sensor glucose values <70 mg/dL will be calculated for each participant in each 3-
1156 week treatment period by pooling all sensor glucose readings that occur within each 3-week period. All
1157 sensor glucose readings will be weighted equally in the pooled percentages regardless of how they
1158 distribute across weeks. The percentage in the PLGS period will then be compared to the percentage in
1159 the SAP period for the same participant.
1160

1161 Summary statistics appropriate to the distribution will be calculated for % time below <70 mg/dL
1162 separately by treatment arm. A repeated measures regression model with an unstructured covariance
1163 structure will be fit for percent time below <70 mg/dL to compare the two treatments. The
1164 model will adjust for period as a covariate. If residual values from the regression model have a skewed
1165 distribution then an appropriate transformation or a nonparametric analysis based on ranks will be
1166 performed.
1167

1168 There will be no imputation of missing CGM data.
1169

1170 **10.7. Analysis of the Secondary Endpoints**
1171 Analysis of the secondary endpoints and additional CGM metrics will parallel the analysis of the
1172 primary endpoint above.
1173

1174 **10.8. Safety Analyses**
1175 The following safety outcomes will be tabulated by participant within each 3-week treatment period.
1176 The summary statistics will include start date, stop date, severity, relationship, resolution, and duration.

- Diabetic ketoacidosis (DKA), as defined by the Diabetes Control and Complications Trial (DCCT).
- Severe clinical hypoglycemic events such that the participant required assistance from another person to actively administer carbohydrate, glucagon, or engage in other resuscitative actions; note severe hypoglycemia could be considered both and efficacy and safety outcome
- Ketosis events (blood ketone level >1.0 mmol/L)
- All other reported adverse events
- Unanticipated adverse device effects

10.9. Other Analyses

The following outcomes will be tabulated separately over 24-hour period, daytime, and nighttime where applicable:

- Insulin delivery including total insulin, basal insulin, and bolus insulin
- Frequency of insulin suspension events and duration of events, including individual suspensions and cumulative suspension time
- CGM glucose nadir during suspension events and peak within 2 hours after events
- The amount of CGM use in both 3-week periods.
- Percentage of time PLGS is active.

10.10. Baseline Descriptive Statistics

Baseline demographic and clinical characteristics of the study cohort including CGM metrics will be tabulated. For continuous variables, summary statistics appropriate to the distribution will be given. For discrete variables, number and percentage will be reported for each category.

10.11. Planned Interim Analyses

An interim analysis to re-estimate sample size will be conducted approximately when the 90th subject is enrolled into the screening phase of the study. The objective is to assess whether the observed rate of hypoglycemia in the control arm matches the value assumed in the original sample size calculation.

A longitudinal regression model will be fit using CGM data from SAP use during run-in and available outcome data from the control arm during Period 1 (for subjects randomized to control-first) and during Period 2 (for subjects randomized to control-second). The dependent variable will be CGM measured hypoglycemia to match the primary outcome described above. This model will be used to estimate the amount of hypoglycemia in the control arm.

The required sample size is roughly proportional to the amount of hypoglycemia in the control arm. The adjusted sample size will therefore be calculated as:

$$52*4\% / \text{estimated hypoglycemia rate in control arm}$$

where the estimated rate in the denominator is calculated from the regression model described above. This new sample size would be restricted to be a minimum of N=90 and a maximum of N=150 subjects completing the crossover trial with sufficient data to include in the primary analysis. If conditional power is <20% even with a sample size of N=150, the study may be stopped and limited to the subjects who have already been randomized (N not to be less than approximately 100).

1223
1224 Simulations show that basing the sample size on the estimated control arm rate in this manner does not
1225 materially inflate the type 1 error rate.
1226
1227 **10.12. Sub-Group Analyses**
1228 The primary outcome will be tabulated by:
1229

- age
- diabetes duration
- baseline HbA1c
- baseline CGM hypoglycemia

1230
1231
1232
1233
1234 These analyses are considered exploratory and are not being evaluated as independent hypothesis tests.
1235
1236 **10.13. Multiple Comparison/Multiplicity**
1237 The primary analysis involves a simple treatment arm comparison for a single outcome measure so no
1238 correction for multiple comparisons will be performed.
1239
1240 For the secondary analyses described above, the false discovery rate will be controlled using the
1241 adaptive Benjamini-Hochberg procedure for multiple comparisons. Note that this procedure can
1242 handle correlated outcome metrics and does not assume independent hypothesis tests.
1243
1244 **10.14. Exploratory Analyses**
1245 No additional exploratory analyses are planned.

1246 CHAPTER 11: DATA COLLECTION AND MONITORING

1247 1248 **11.1. Case Report Forms and Device Data**

1249 The main study data are collected through a combination of electronic case report forms (CRFs) and
1250 electronic device data files obtained from the study software and individual hardware components.
1251 These electronic device files and electronic CRFs from the study website are considered the primary
1252 source documentation.

1253 When data are directly collected in electronic case report forms, this will be considered the source data.
1254 Each participating site will maintain appropriate medical and research records for this trial, in
1255 compliance with ICH E6 and regulatory and institutional requirements for the protection of
1256 confidentiality of participants.

1257 1258 **11.2. Study Records Retention**

1259 Study documents should be retained for a minimum of 2 years after the last approval of a marketing
1260 application in an ICH region and until there are no pending or contemplated marketing applications in
1261 an ICH region or until at least 2 years have elapsed since the formal discontinuation of clinical
1262 development of the investigational product. These documents should be retained for a longer period,
1263 however, if required by local regulations. No records will be destroyed without the written consent of
1264 the sponsor, if applicable. It is the responsibility of the sponsor to inform the investigator when these
1265 documents no longer need to be retained.

1266 1267 **11.3. Quality Assurance and Monitoring**

1268 Designated personnel from the Coordinating Center will be responsible for maintaining quality
1269 assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is
1270 conducted and data are generated, documented and reported in compliance with the protocol, Good
1271 Clinical Practice (GCP) and the applicable regulatory requirements. Adverse events will be prioritized
1272 for monitoring.

1273 1274 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course of the
1275 study, consistent with the FDA “Guidance for Industry Oversight of Clinical Investigations — A Risk-
1276 Based Approach to Monitoring” (August 2013). Study conduct and monitoring will conform with 21
1277 Code of Federal Regulations (CFR) 812.

1278 1279 The data of most importance for monitoring at the site are participant eligibility and adverse events.
1280 Therefore, the RBM plan will focus on these areas. As much as possible, remote monitoring will be
1281 performed in real-time with on-site monitoring performed to evaluate the verity and completeness of
1282 the key site data. Elements of the RBM may include:

- 1283 1284 • Qualification assessment, training, and certification for sites and site personnel
- 1285 1286 • Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- 1287 1288 • Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol review
of entered data and edits, statistical monitoring, study closeout
- 1289 1290 • On-site monitoring (site visits): source data verification, site visit report
- 1291 1292 • Agent/Device accountability
- Communications with site staff
- Patient retention and visit completion

1293 • Quality control reports
1294 • Management of noncompliance
1295 • Documenting monitoring activities
1296 • Adverse event reporting and monitoring
1297

1298 Coordinating Center representatives or their designees may visit the study facilities at any time in order
1299 to maintain current and personal knowledge of the study through review of the records, comparison
1300 with source documents, observation and discussion of the conduct and progress of the study.

1301

1302 **11.4. Protocol Deviations**

1303 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure
1304 requirements. The noncompliance may be either on the part of the participant, the investigator, or the
1305 study site staff. As a result of deviations, corrective actions are to be developed by the site and
1306 implemented promptly.

1307

1308 The site PI/study staff is responsible for knowing and adhering to their IRB requirements. Further
1309 details about the handling of protocol deviations will be included in the monitoring plan.

1310 **CHAPTER 12: ETHICS AND PROTECTION OF HUMAN PARTICIPANTS**

1311 **12.1. Ethical Standard**

1313 The investigator will ensure that this study is conducted in full conformity with Regulations for
1314 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50,
1315 21 CFR Part 56, and/or the ICH E6.

1316 **12.2. Institutional Review Boards**

1318 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1319 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1320 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1321 require review and may require approval by the IRB before the changes are implemented to the
1322 study. All changes to the consent form will be IRB approved; a determination will be made
1323 regarding whether previously consented participants need to be re-consented.

1324 **12.3. Informed Consent Process**

1325 **12.3.1. Consent Procedures and Documentation**

1327 Informed consent is a process that is initiated prior to the individual's agreeing to participate in
1328 the study and continues throughout the individual's study participation. Extensive discussion of
1329 risks and possible benefits of participation will be provided to the participants and their families.
1330 Consent forms will be IRB-approved and the participant will be asked to read and review the
1331 document. The investigator will explain the research study to the participant and answer any
1332 questions that may arise. All participants will receive a verbal explanation in terms suited to their
1333 comprehension of the purposes, procedures, and potential risks of the study and of their rights as
1334 research participants. Participants will have the opportunity to carefully review the written
1335 consent form and ask questions prior to signing.

1337 The participants should have the opportunity to discuss the study with their surrogates or think
1338 about it prior to agreeing to participate. The participant will sign the informed consent document
1339 prior to any procedures being done specifically for the study. The participants may withdraw
1340 consent at any time throughout the course of the trial. A copy of the informed consent document
1341 will be given to the participants for their records. The rights and welfare of the participants will
1342 be protected by emphasizing to them that the quality of their medical care will not be adversely
1343 affected if they decline to participate in this study.

1344 **12.3.2. Participant and Data Confidentiality**

1346 Participant confidentiality is strictly held in trust by the participating investigators, their staff,
1347 and the sponsor(s) and their agents. This confidentiality is extended to cover testing of biological
1348 samples in addition to the clinical information relating to participants. Therefore, the study
1349 protocol, documentation, data, and all other information generated will be held in strict
1350 confidence. No information concerning the study or the data will be released to any unauthorized
1351 third party without prior written approval of the sponsor.

1353 The study monitor, other authorized representatives of the sponsor, representatives of the IRB or
1354 device company supplying study product may inspect all documents and records required to be
1355 maintained by the investigator, including but not limited to, medical records (office, clinic, or

1356 hospital) and pharmacy records for the participants in this study. The clinical study site will
1357 permit access to such records.

1358

1359 The study participant's contact information will be securely stored at each clinical site for
1360 internal use during the study. At the end of the study, all records will continue to be kept in a
1361 secure location for as long a period as dictated by local IRB and Institutional regulations.

1362

1363 Study participant research data, which is for purposes of statistical analysis and scientific
1364 reporting, will be transmitted to and stored at the Jaeb Center for Health Research. This will not
1365 include the participant's contact or identifying information. Rather, individual participants and
1366 their research data will be identified by a unique study identification number. The study data
1367 entry and study management systems used by clinical sites and by Jaeb Center for Health
1368 Research staff will be secured and password protected. At the end of the study, all study
1369 databases will be de-identified and archived at the Jaeb Center for Health Research.

1370

1371 **12.3.3. Future Use of Stored Specimens**

1372 Not applicable

1373

1374 **CHAPTER 13: INVESTIGATOR AND SPONSOR OBLIGATIONS**

1375 **13.1. Role of Sponsor**

1376 As the study sponsor of this clinical trial, Tandem Diabetes Care, Inc. has the overall responsibility for
1377 the conduct of the study, including the assurance that the study meets regulatory requirements and is
1378 conducted according to Good Clinical Practice.

1380 **13.2. Medical Supervision and Investigator Responsibility**

1381 Medical supervision is the responsibility of the investigator named on the Investigator Agreement. The
1382 investigator may delegate day-to-day activities to a sub-investigator or study staff member, but retains
1383 overall responsibility for ensuring that the study is conducted properly and in accordance with the
1384 study protocol. A delegation list is to be maintained that includes all qualified persons to whom the
1385 investigator may delegate significant study-related duties. The investigator is responsible for ensuring
1386 that drugs and devices are available for treating possible medical emergencies, or that emergency
1387 medical facilities are available and accessible. The investigator is responsible for ensuring that the
1388 study is conducted according to Good Clinical Practice (GCP), other applicable regulatory guidelines,
1389 and sound medical practices.

1391 **13.3. Study Initiation and Sponsor Discontinuation**

1392 Prior to initiation of the study, the investigator must provide the Sponsor or designee with the
1393 following documents (copies of which must be maintained by the investigator):

- 1394 • Completed and signed original Investigator Agreement
- 1395 • Current curriculum vitae, signed and dated; also required is a state license for the investigator
1396 and for other medically qualified sub-investigators
- 1397 • Completed Financial Disclosure information
- 1398 • Signed copy of the Institutional Review Board (IRB) approval letter that lists the approved
1399 items
- 1400 • List of the IRB members who voted on the approval, including their specialty and affiliation, or
1401 the IRB assurance numbers if the roster cannot be obtained
- 1402 • Copy of the IRB-approved informed consent
- 1403 • Copy of the IRB-approved Authorization to Use and Disclose Protected Health Information
1404 form, consistent with the Health Insurance Portability and Accountability Act of 1996 (HIPAA)
1405 legislation (if separate from the informed consent form)

1406 Upon receipt of all necessary paperwork, the Sponsor or designee will arrange for all study material to
1407 be delivered to the clinical study site. The Sponsor or designee will conduct an initiation conference
1408 call or visit to orient and provide in-depth training for all personnel expected to be involved in the
1409 study. Study protocol procedures, instruction for data capture, and overall responsibilities, including
1410 device accountability and study file maintenance, will be reviewed.

1411 The Sponsor has the right to terminate the study for any of the following reasons:

- 1412 • Non-adherence to the protocol
- 1413 • Unavailability of the investigator or the study personnel to the sponsor's monitoring personnel
1414 (or their designee)
- 1415 • Inability to recruit the expected participant population
- 1416 • Other administrative reasons

1421 Throughout the course of the study, the investigator is to make a reasonable effort to maintain the
1422 enrollment rate that was agreed upon with the Sponsor. The investigator will also make a reasonable
1423 effort to enroll appropriate participants. The sponsor may elect to terminate the study at a given site if
1424 the enrollment rate lags or if significant numbers of non-evaluable participants are enrolled.
1425
1426

1427 CHAPTER 14: APPENDIX A – EXTENSION PHASE

1428 1429 **Introduction**

1430 The Tandem PLGS Pivotal Trial is being extended to allow interested trial participants to continue to
1431 use the Tandem PLGS pump system after completion of the main trial.

1432 1433 **Study Design**

1434 All participants will be assigned the Tandem PLGS pump and will return to the clinic approximately
1435 every 13 weeks (± 2 weeks). The Extension Phase will continue until the system is commercially
1436 available or two years after the initial regulatory approval date, whichever comes first.

1437 1438 **Participant Eligibility and Informed Consent**

1439 Participants who completed the PLGS Pivotal Trial within the previous 6 months will be eligible for
1440 the Extension Phase.

1441 1442 Study sites will inform the participants regarding the Extension Phase. Interested participants,
1443 parents/guardians, or both will sign new consent/assent forms.

1444 1445 **Extension Phase Procedures**

1446 At the initial visit after the consent (and assent if applicable) is signed, the participant will be provided
1447 with study supplies and device training as needed. Study supplies include: study pump and related
1448 supplies, study CGM and related supplies, and study blood glucose and ketone meters and test strips.

1449 1450 The home procedures will be the same as described in sections 5.3 and 5.4. Device use will be as
1451 described in Chapter 6.

1452 1453 At each 13-week (± 2 weeks) follow-up visit and for the final visit, device data will be uploaded. The
1454 occurrence of adverse events and device issues will be solicited, as well as any new medications or
1455 medical conditions since the previous visit. Other testing and changes in diabetes management will be
1456 performed as part of usual care. Additional supplies will be distributed as needed. The System
1457 Usability Scale (SUS) will also be completed by each participant at each visit. Administration time is
1458 approximately 5 minutes.

1459 There will be no compensation to participants for completion of visits.

1460

1461 **Statistical Analyses**

1462 CGM data will be compiled across visits and the metrics listed in section 10.4 will be descriptively
1463 reported. Frequency of pump use, CGM use, adverse events, and device issues will be tabulated.

1464

1465
1466
1467 1. Davis E, Keating B, Byrne G, Russell M, Jones T: Hypoglycemia: incidence and clinical predictors
1468 in a large population-based sample of children and adolescents with IDDM. *Diabetes Care* 20:22-25,
1469 1997
1470
1471 2. The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the diabetes
1472 control and complications trial. *Diabetes* 46:271-286, 1997
1473
1474 3. Buckingham B, Block J, Burdick J, Kalajian A, Kollman C, Choy M, Wilson DM, Chase P, for the
1475 Diabetes Research in Children Network. Response to nocturnal alarms using a real-time glucose
1476 sensor. *Diabetes Technol Ther* 7:440-447, 2005
1477
1478 4. Buckingham BA, Cameron F, Calhoun P, Maahs DM, Wilson DM, Chase HP, Bequette BW, Lum J,
1479 Sibayan J, Beck RW, Kollman C. Outpatient safety assessment of an in-home predictive low-glucose
1480 suspend system with type 1 diabetes participants at elevated risk of nocturnal hypoglycemia. *Diabetes*
1481 Technol Ther 15:622-627, 2013
1482
1483 5. Buckingham BA, Raghinaru D, Cameron F, Bequette BW, Chase HP, Maahs DM, Slover R, Wadwa
1484 RP, Wilson DM, Ly T, Aye T, Hramiak I, Clarson C, Stein R, Gallego PH, Lum J, Sibayan J, Kollman
1485 C, Beck RW. Predictive Low-Glucose Insulin Suspension Reduces Duration of Nocturnal
1486 Hypoglycemia in Children Without Increasing Ketosis. *Diabetes Care* 38:1197-1204, 2015
1487
1488 6. Maahs DM, Calhoun P, Buckingham BA, Chase HP, Hramiak I, Lum J, Cameron F, Bequette BW,
1489 Aye T, Paul T, Slover R, Wadwa RP, Wilson DM, Kollman C, Beck RW. A randomized trial of a
1490 home system to reduce nocturnal hypoglycemia in type 1 diabetes. *Diabetes Care* 37:1885-1891, 2014
1491
1492 7. Beck, RW, Raghinaru D, Wadwa RP, Chase HP, Maahs DM, Buckingham BA. Frequency of
1493 morning ketosis after overnight insulin suspension using an automated nocturnal predictive low
1494 glucose suspend system. *Diabetes Care* 37:1224-1229, 2014
1495
1496 8. Wadwa RP, Chase HP, Raghinaru D, Buckingham BA, Hramiak I, Maahs DM, Messer L, Ly T, Aye
1497 T, Clinton P, Kollman C, Beck RW, Lum J. Ketone production in children with type 1 diabetes, ages
1498 4-14 years, with and without nocturnal insulin pump suspension. *Pediatric Diabetes*. doi:
1499 10.1111/pedi.12410. 2016
1500
1501