

**A randomized controlled trial comparing the safety and efficacy of
IDegLira versus basal 3 bolus in patients with poorly controlled type 2
diabetes: IDegLira HIGH trial**

NCT03737240

Date: October 10, 2021
IRB00104726

Title: A randomized controlled trial comparing the safety and efficacy of IDegLira versus basal bolus in patients with poorly controlled type 2 diabetes: IDegLira **HIGH** trial

INVESTIGATOR-SPONSORED STUDY PROPOSAL
UNIVERSAL TRIAL NUMBER (UTN): U1111-1199-0366

Co-Principal Investigators:

Assistant Professor of Medicine

Professor of Medicine

Co- Investigators:

Assistant Professor of Medicine

Assistant Professor of Medicine

Assistant Professor of Medicine

Assistant Professor of Medicine

Correspondence to:

Assistant Professor of Medicine

Emory University School of Medicine

Department of Medicine/Endocrinology

Email:

Phone:

38 **Abstract:**
39
40 Basal-bolus insulin therapy is recommended for patients with poorly controlled type 2
41 diabetes and HbA1c >9%. However, basal-bolus insulin is labor intensive and associated with
42 increased risk of hypoglycemia, glycemic variability, weight gain and poor compliance. Thus,
43 there is a critical need for a simpler treatment regimen that could overcome these limitations.
44 IDegLira, a fixed-ratio combination (FRC) therapy consisting of insulin degludec and liraglutide,
45 is an attractive option for this population given its proven benefits on glycemic control, weight
46 and compliance. *Accordingly, we propose a prospective randomized controlled trial comparing*
47 *IDegLira and basal-bolus insulin therapy in achieving glycemic control (efficacy end-point), while*
48 *preventing hypoglycemia and reducing glycemic variability and weight gain (safety end-point) in*
49 *patients with uncontrolled T2D and HbA1c between ≥ 9-15%.* This study aims to show that a
50 simpler regimen using a novel FRC agent (IDegLira) can improve glycemic control, decrease
51 hypoglycemia, reduce the burden of diabetes care, and improve satisfaction/adherence in
52 patients with poorly controlled T2D with HbA1c between ≥ 9-15%. This open-label, treat-to-
53 target, two-arm parallel, controlled trial will randomize (1:1 ratio) patients with T2D and HbA1c ≥
54 9%, treated with oral antidiabetic agents and/or basal insulin therapy (TDD ≤50 units), to
55 IDegLira or basal-bolus insulin for 26 weeks. We will recruit a total of 150 patients from
56 participating institutions. We anticipate recruiting 3-4 patients per week for a total recruitment
57 period of approximately 12 months.

58

59 **BACKGROUND:**

60

61 Extensive literature from landmark studies have shown that persistent hyperglycemia is
62 associated with short- and long-term complications^{1,2}. The UKPDS study, the largest study in
63 patients with type 2 diabetes, showed that intensive glycemic control can reduce the risk of
64 microvascular complications¹⁻³. Sustained hyperglycemia, also known as glucotoxicity, leads to
65 progressive loss of beta-cell function and is considered a key pathophysiological process in the
66 development of T2D⁴. Patients with severe hyperglycemia may respond poorly to oral anti-
67 diabetic agents (OAD) alone initially and frequently require insulin to achieve glycemic targets
68 ^{5,6}. Current guidelines recommend to initiate therapy with basal insulin and progressively step-
69 up to basal-bolus insulin in patients with high HbA1c >9%, particularly if symptomatic or with
70 catabolic symptoms⁶⁻⁸.

71 Basal-bolus insulin regimen increases the risk of hypoglycemia, weight gain and
72 glycemic variability^{9,10}, which are limiting factors in achieving glycemic targets. Basal-bolus
73 insulin regimen is also labor intensive and often requires multiple daily injections, further
74 increasing the burden of diabetes care¹¹⁻¹⁴ and decreasing patient adherence^{12,13}. In contrast,
75 simplified treatment plans may improve adherence, leading to glycemic targets
76 achievement^{12,13,15}. Thus, there is a critical need for simpler regimens that could overcome
77 clinical inertia, improve patient adherence, and decrease glycemic variability in patients with
78 poorly controlled type 2 diabetes. With the advent of continuous glucose monitoring (CGM), we
79 have recognized that hypoglycemia and glycemic variability are common events in many
80 patients, even in patients with well-controlled T2D¹⁶⁻²⁰. Despite large data supporting the efficacy
81 and safety of combination therapy with basal insulin and GLP1-RA -including fixed-ratio
82 combination (FRC) agents^{21,22}; no previous studies have compared the efficacy and safety of
83 IDegLira in patients with very high HbA1c vs the standard-of-care with basal-bolus insulin
84 regimen. *Accordingly, this prospective randomized control trial will compare IDegLira to basal*
85 *bolus insulin regimen in achieving glycemic control (efficacy end-point), while reducing*
86 *hypoglycemia, glycemic variability and weight gain (safety end-point) in patients with*
87 *uncontrolled T2D and HbA1c ≥9%.*

89 **SPECIFIC AIMS:**

90 **Specific Aim 1:**

91 ***1. To determine whether treatment with IDegLira will result in similar improvement in***
92 ***glycemic control, as measured by change in HbA1c (non-inferiority limit of 0.4%),***
93 ***compared to treatment with basal-bolus insulin regimen in patients with poorly***
94 ***controlled T2D (HbA1c \geq 9-15%).***

- 95 - Primary outcome: change in HbA1c from baseline after 26 weeks of treatment with
96 IDegLira vs basal-bolus insulin (with metformin, unless contraindicated).
- 97 - **Hypothesis:** After 26 weeks of treatment, IDegLira will result in similar improvement in
98 glycemic control compared to basal-bolus insulin therapy.

99 **Specific Aim 2:**

100 ***2. To determine whether treatment with IDegLira will result in lower rate of***
101 ***hypoglycemic events and less glycemic variability (superiority), as measured by***
102 ***continuous glucose monitoring (CGM), compared to basal-bolus insulin in patients***
103 ***with T2D and HbA1c \geq 9-15%.***

- 104 - Patients with poorly controlled T2D randomized to IDegLira or basal-bolus (with
105 metformin, unless contraindicated) will have a one-week blinded CGM study performed
106 during follow-up visits at 1, 12, and 26 weeks as well as 8-point self-monitored blood
107 glucose (SMBG). CGM will allow better detection of hypoglycemic events, particularly
108 asymptomatic and nocturnal hypoglycemia. It will also provide critical information on
109 time in glycemic range and glycemic variability.
- 110 - **Hypothesis:** IDegLira will result in less hypoglycemia and glycemic variability
111 compared to basal-bolus insulin regimen.

112 **Specific Aim 3:**

113 ***3. To determine whether treatment with IDegLira will result in improved patient***
114 ***satisfaction compared to treatment with basal-bolus in patients with T2D and high***
115 ***HbA1c (\geq 9-15%).***

- 116 - Patients with poorly controlled T2D randomized to IDegLira or Basal-Bolus will
117 complete the Diabetes Treatment Satisfaction Questionnaire (DTSQ) and Treatment-
118 related impact measures for diabetes (TRIM-D) survey during follow-up visits.
- 119 - **Hypothesis:** Use of IDegLira is associated with higher patient satisfaction and
120 adherence compared to a multiple-daily injection regimen with basal-bolus insulin.

122 **CURRENT STATUS OF WORK IN THE FIELD**

123 **Epidemiology and treatment of patients with poorly controlled T2D and HbA1c >9%**

124

125

126 Based on NHANES data from 2007-2010, up to 135 with Diabetes: US and Emory Data

127 12.6% of patients with diagnosed diabetes (18.8 millions) 136

128 have an HbA1c >9%²³. In the Emory Health Care system 137

129 the largest academic health system in Georgia, over 138

130 64,000 patients have a diagnosis of diabetes, with ~16% 139

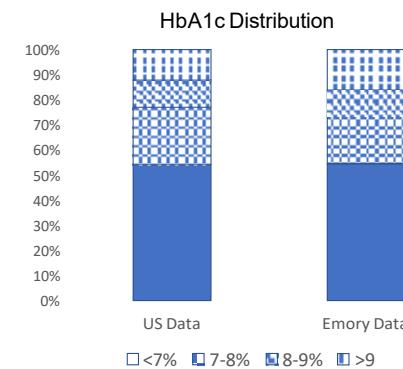
131 having an HbA1c>9% (Figure 1). The evidence on the 140

132 management of patients with T2D and very high HbA1c 141

133 very limited, with most studies excluding patients with 142

134 HbA1c > 10%²⁴⁻²⁷. Figure 1. HbA1c Distribution in Patients 143

135 144


136 145

137 146

138 147

139 148

140 149

150 In a recent multi-national study of insulin-naïve patients with T2D, treated with or without
151 oral agents, showed that only ~40% of patients with HbA1c > 9% were started on basal insulin.
152 Moreover, the study showed that only 20.9% of such patients achieved HgA1c target (< 7%) at 3
153 months after initiating basal insulin, indicating a need for coverage of prandial-related
154 hyperglycemic excursions. Notably, failure to achieve HbA1c targets at 3 months was associated
155 with an increased risk of not achieving HbA1c targets at 24 months, with < 30% of patients
156 achieving glycemic targets²⁸. This study suggests that providers delayed initiation of basal insulin
157 as recommended by national guidelines, and frequently failed to intensify therapy to cover
158 prandial-related hyperglycemic excursions. A recent study in ambulatory patients with T2D and
159 high HbA1c (>10%) on metformin and sulfonylurea treatment, randomized patients to
160 combination (COMB) therapy with exenatide plus pioglitazone vs basal-bolus insulin regimen.
161 COMB provided greater HbA1c reduction at 6 months, with significantly less weight gain.
162 However, the rates of hypoglycemia were unusually high, up to 56% and 83% in COMB and BB,
163 respectively²⁶. Our group recently validated the efficacy of a hospital discharge algorithm based
164 on the admission HbA1c²⁷. Among those patients with high admission HbA1c> 9% (n: 81), 54
165 were discharged on basal-bolus insulin regimen. Mean admission HbA1c of 11.1% decreased to
166 8.8% and to 8.0% after 4 and 12 weeks of hospital discharge (p<0.01), respectively. However, up
167 to 44% of patients had hypoglycemia (BG < 70 mg/dl) during follow-up. Thus, there is a critical
168 need for effective but safe and simpler anti-diabetic regimen for this high-risk population.

169

170

171 **“Standards-of-Care” for Patients with Severe Hyperglycemia**

172 Based on expert consensus, the American Diabetes Association recommends “dual
173 therapy” for patients with HbA1c >9% to achieve glycemic targets faster than with “sequential
174 therapy” after 3 months of not achieving such targets. Based on historical availability and with
175 no hierarchical preference by the ADA, dual therapy includes metformin and any of the following
176 agents: sulfonylureas (SU), thiazolidinedione (TZD), glinides (GLN) dipeptidyl peptidase-4
177 inhibitors (DPP-4), SGLT-2 inhibitors, GLP-1 agonists and basal insulin⁸. Similarly, the American
178 Association of Clinical Endocrinologists (AACE) based on expert consensus recommends the
179 addition of insulin in patients with HbA1c >9% if symptomatic, or on maximum doses of dual
180 therapy⁶. Moreover, in patients with HbA1c >8% on dual therapy and/or long history of diabetes,
181 AACE suggests that the addition of insulin will more likely achieve glycemic targets over adding
182 a third agent⁶. It was also suggested that the addition of GLP-1 to dual oral therapy may
183 similarly help achieving glycemic targets⁶, but still many patients will require insulin in this
184 scenario^{29,30}. In patients with HbA1c > 10%, or blood glucose > 300 mg/dl, and/or symptomatic
185 hyperglycemia (polyuria or polydipsia) and catabolic symptoms (ketosis and weight loss), the
186 ADA recommends “combination insulin injectable therapy”. This regimen includes: basal-bolus
187 insulin or basal plus GLP1-RA or pre-mixed insulin⁸. Notably, recommendations from national
188 guidelines in this area are mostly based on expert consensus and the notion that “dual injectable
189 therapy” for patients with HbA1c >9% may achieve glycemic targets faster than with “sequential
190 therapy” after re-evaluation every three months, rather than based on strong clinical trials
191 evidence^{6,8}. Unfortunately, the evidence is very limited in patients with T2D and v e r y high
192 HbA1c, with most studies excluding patients with HbA1c > 10%²⁴⁻²⁷.

193
194 In clinical practice, many patients with uncontrolled T2D and HbA1c > 9% are started on
195 basal insulin, followed by dose up-titration and addition of prandial insulin (basal bolus)–in
196 concordance with national guidelines^{6,8}. Intensive insulin therapy, by either continuous
197 subcutaneous insulin infusion (CSII) or multiple daily insulin injections (MDI), early in the
198 disease course of patients with T2D results in rapid glycemic control within days, suggesting
199 that avoiding the negative effects of long-term exposure to hyperglycemia may prevent further
200 beta-cell failure³¹⁻³³. However, the basal bolus regimen increases the risk of hypoglycemia and
201 weight gain^{9,10}, which are well-recognized limiting factors to achieve glycemic targets. More
202 importantly, basal bolus regimen is labor intensive and increases the burden of diabetes care,
203 number of injections per day¹¹⁻¹⁴, which may lead to poor patient adherence, increase re-
204 admission rates, and increased risk of hypoglycemia^{12,13}. Studies comparing GLP1-RA therapy
205 vs thrice-daily bolus insulin added to basal insulin plus oral agents have found similar HbA1c

206 reduction^{30,34,35} accompanied by weight loss compared to weight gain in basal-bolus insulin
207 regimen^{30,35}. GLP1-RA therapy was also associated with better patient satisfaction and better
208 quality of life³⁴. *Indeed, the combination of basal insulin and GLP1-RA is an attractive and*
209 *simpler option for many patients with uncontrolled diabetes – ideally in a single daily injection*
210 *from a fixed-ratio combination agent.* Moreover, there is evidence suggesting that GLP-1
211 agonist therapy may preserve beta-cell function³⁶. Based on data from meta-analysis and
212 randomized studies^{34,35,37}, some authors favor this combination over basal-bolus insulin in
213 patients with uncontrolled T2D on basal insulin^{38,39}.

214

215 **Combination of basal insulin and GLP-1 agonists – fixed-ratio combination agents**

216 The combination of basal insulin and GLP1-RA therapy offers a complementary
217 mechanism to target the main physiologic defects in T2D, by addressing fasting and prandial
218 hyperglycemia^{21,22}. GLP1-RAs decrease post-prandial glycemic excursions and complement
219 basal-insulin therapy by enhancing endogenous insulin responses in a glucose-dependent
220 manner, inhibiting glucagon secretion, slowing gastric emptying and promoting satiety⁴⁰. This
221 combination has been shown to provide better glycemic control, less hypoglycemia, less weight
222 gain, and reduce glycemic variability compared to basal bolus therapy or GLP1-RA
223 alone^{21,22,41,42}. IDegLira is a novel fixed-ratio combination of degludec 100 u/ml and liraglutide
224 3.6 mg in a pre-filled pen. IDegLira has been shown to improve glycemic control, with lower risk
225 of hypoglycemia, less weight gain, and better patient satisfaction compared to basal-bolus or
226 stepped-up basal therapy^{43,44}. Pharmacokinetics studies showed that IDegLira provided
227 coverage over the 24-hours interval at steady levels⁴³. In the recent DUAL V trial, IDegLira
228 resulted in greater HbA1c reduction, weight loss and less hypoglycaemia, compared to up-
229 titration of insulin glargine in patients with T2D with HbA1c 7-10%⁴⁵. More recently in the DUAL
230 VII trial, patients with HgA1c 7-10% randomize to IDegLira had similar HbA1c reduction, but
231 with an 89% reduction in the rate of severe or confirmed symptomatic hypoglycemia and weight
232 loss compared to basal-bolus insulin⁴⁶. Thus, IDegLira is an attractive and option for patients
233 with severe hyperglycemia, due to potent HbA1c reduction, lower hypoglycemic risk, and
234 flexibility of once-daily administration, compared to up to five injections per day in basal-bolus
235 regimen. However, no previous studies have compared the efficacy and safety of IDegLira in
236 patients with high HbA1c >9-15%.

237

238

239 **SIGNIFICANCE AND INNOVATION:**

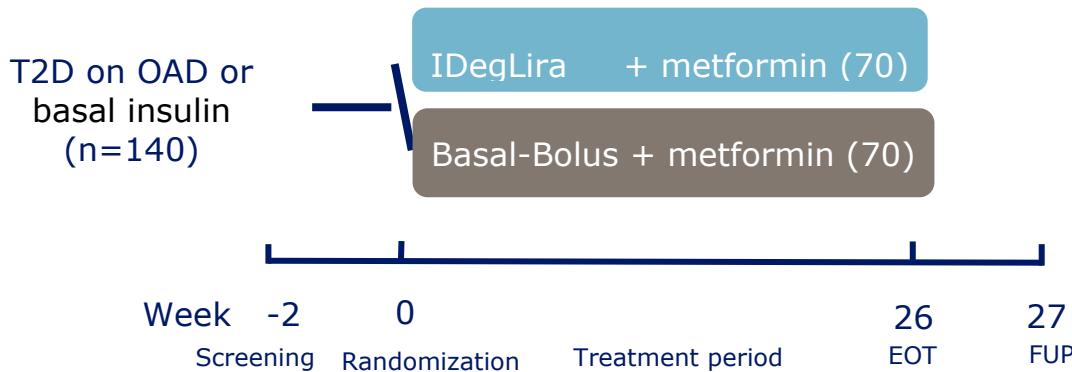
240 The proposed study will test three innovative questions in patients with poorly controlled
241 T2D and HbA1c $\geq 9\%$: 1) whether IDegLira, a novel FRC of degludec and liraglutide, results in
242 similar glycemic control, 2) less hypoglycemia, less glycemic variability and less weight gain
243 compared to a basal-bolus, and 3) whether IDegLira results in better patient satisfaction and
244 treatment adherence compared to a more complex multiple-daily insulin injection regimen. If
245 successful, this study will show that a once-a-day simpler regimen using IDegLira can improve
246 glycemic control, decrease hypoglycemia, improve satisfaction and decrease the burden of
247 diabetes care, which in turn will improve patient adherence. Since improvements in HbA1c
248 strongly correlate with a reduction in the risk of microvascular and macrovascular complication³,
249 improved glycemic control with a simpler regimen like IDegLira have the potential to reduce the
250 burden of complications associated with T2D. In addition, we will perform professional/blinded
251 CGM at weeks -1, 12 and 26 of follow-up. By incorporating CGM, we will improve our ability to
252 detect asymptomatic/unrecognized and/or nocturnal hypoglycemia and assess glycemic
253 variability^{17,47} compare to SMBG (standard-of-care). Since IDegLira therapy is expected to result
254 in less clinical significant hypoglycemia (defined as interstitial glucose < 54 mg/dl), less
255 nocturnal hypoglycemia and less glycemic variability (as measured by MAGE, %CV or SD)
256 compared to basal-bolus, this simpler regimen could become the standard-of-care for patients
257 with uncontrolled T2D and HbA1c $\geq 9\%$.

258
259 **RESEARCH DESIGN and METHODS**
260
261

262 **ENDPOINTS:**

263 The **primary outcome** of the study is to determine the difference in change in HbA1c at 26
264 weeks of treatment to a non-inferiority limit of 0.4% between IDegLira and basal-bolus insulin
265 therapy.

266 The **secondary outcomes** are to compare differences between IDegLira and basal-bolus
267 insulin therapy in any of the following measures:


- 268 • Mean fasting and mean daily blood glucose (per 8-point SMBG profile)
- 269 • Percent of patients with HbA1c $< 7.0\%$ at 26 weeks and hypoglycemia
- 270 • Percent of patients reaching A1c $< 7\%$ without weight gain and no hypoglycemia”
271 (responder’s rate)
- 272 • Percent of patients reaching A1c $< 7.5\%$ without weight gain and no hypoglycemia”
- 273 • Percent of patients with A1c $> 10\%$ and $> 11\%$ that achieve A1c $< 7.5\%$ and $< 8\%$

- Percent of patients with HbA1c <7.0% at 26 weeks and no weight gain
- Percent of patients with HbA1c <7.0% at 12 weeks and no hypoglycemia
- Incidence of documented symptomatic hypoglycaemia, defined as an event with typical symptoms of hypoglycaemia accompanied by SMBG or CGM (<70 mg/dL and < 54 mg/dL) that occurs at any time of the day
- Incidence of asymptomatic hypoglycaemia, defined as no typical symptoms reported by the subject but detected by SMBG or CGM (<70 mg/dL and < 54 mg/dL)
- Incidence of severe hypoglycaemia, defined as severe cognitive impairment requiring assistance from another person
- Incidence of nocturnal symptomatic hypoglycaemia, defined as an event with typical symptoms of hypoglycaemia accompanied by SMBG or CGM <70 mg/dL and < 54 mg/dL that occurs between 00:00 and 05:59 hrs
- Incidence of nocturnal asymptomatic hypoglycaemia, defined as SMBG or CGM <70 mg/dL and < 54 mg/dl between 00:00 and 05:59 hrs
- Percentage of time below 70 mg/dL and <54 mg/dl as obtained by CGM
- Percentage of time in range (BG 70-180) as measured by CGM
- Glycemic variability, as measured by SD (standard deviation), %CV (coefficient of variance), Mean Amplitude Glucose Excursions (MAGE)
- Patient satisfaction and quality of life, as measured by the DTSQ and T R I M - D questionnaires
- Number of emergency room visits and hospital readmissions
- Change from baseline in total insulin dose (units/day)
- Number of treatment emergent AE

300 **STUDY DESIGN AND METHODS:**

301 The study is a 26-week, open-label, treat-to-target, two-arm parallel, randomized, controlled trial
302 investigating the efficacy and safety of IDegLira versus basal-bolus insulin in patients with T2D.
303 Patients with HbA1c \geq 9% treated with oral antidiabetic agents and/or basal insulin therapy
304 (TDD \leq 50 units) will be randomized in a 1:1 manner to receive IDegLira or basal-bolus insulin
305 regimen (plus metformin unless contraindicated), as shown in Fig 2. Subjects will have contact
306 with the study team via clinic visits or phone contacts for a total of 29-weeks, as shown in the
307 figure below (Fig 2 and Table 1).

308
309 Figure 2. Study design

311 Legend: OAD: Oral anti-diabetic agents, EOT: End-of-treatment, FUP: Follow-up safety visit

312
313 Visits will be distributed as follows: initial screening visit/CGM insertion (visit 1), 2 weeks of
314 screening/run-in period, randomization visit (visit 2), 26-week treatment period (visits 4-18), and
315 a follow-up safety visit after the end the 26-weeks treatment period (visit 19). Subjects will have
316 contact with the study team via clinic visits or phone contacts for a total of 9 clinic visits and 9
317 telephone contacts. This study will include patients with a known history of T2D, age 18-80,
318 treated with oral antidiabetic agents including metformin, sulfonylurea, repaglinide/nateglinide,
319 pioglitazone, DPP4 inhibitors, SGLT2 inhibitors, (monotherapy + basal insulin) or in combination
320 therapy (2-3 agents), and/or on basal insulin at a total daily dose (TDD) of ≤ 50 units.

321 Participants previously using basal insulin [neutral protamine hagedorn (NPH), mixed insulin,
322 detemir or glargine insulin], will be switched to study-provided Degludec or IDegLira and/or
323 Aspart pens. Metformin will be continued at same dose during the study, unless contraindicated.
324 Patients previously treated ambulatory with basal-bolus insulin therapy and/or GLP1-RA will be
325 excluded. Patients transiently treated with basal-bolus insulin (standard-of-care treatment)
326 during hospital admission can be included. Recommendations on insulin adjustment will be
327 provided at each visit or phone encounter by a study physician.

328 329 **Rationale for study design**

330 Based on the DUAL trial program, a total of 26 weeks of treatment is sufficient to reach
331 stable HbA1c levels, with a minimum of 12 weeks in the maintenance period. This timeline has
332 been previously shown to be sufficient to collect data for efficacy and safety. A parallel design
333 will allow for assessment of efficacy and safety in the shortest time in each group, compared to
334 a cross-over design. An open label design allows us to use a simpler regimen with a single
335 injection of IDegLira, as blinding the subjects will require a double dummy design with three
336 extra subcutaneous injections per day, thus imposing a high burden on subjects, thereby
337 increasing the non-compliance and withdrawal rates. Patients in both arms will
338 receive the same degree of self-monitoring and follow-up. Patients will have

339 blinded CGM to avoid the bias of glycemic improvement by using real-time glucose
340 data from CGM. The primary endpoint will use HgA1c changes, a standard
341 laboratory test shown to correlate with risk of diabetes complication, thus limiting
342 the assessment bias. Secondary endpoints will include rates of asymptomatic
343 hypoglycemia or nocturnal hypoglycemia as detected by CGM, which will typically
344 not be detected by the standard-of-care SMBG.

345

346 Table 1- Schedule of events during the study period

Visit # (V) Phone visit (P)	V1*	V2*	P3*	P4*	P5*	V6*	P7*	P8*	P9*	V10**	P11**	V12**	V13**	P14**	V15**	P16**	V17**	V18**
Time-wks	-2	0	1	2	3	4	5	6	7	8	10	12	14	16	20	24	26	27
Inf. Consent		X																
Inc/exclusion	X	X																
Rando@		X																
Withdrawal cx		X	X	X	X	X	X	X	X	X	X	X	X	x	X	x	x	
Drug compl		X				X				X		X	X	x		X	x	
Dose adjust			X	X	X	X	X	X	X	X	X	X	X	x	X	X	x	
Efficacy																		
Vital signs@	X	X				X				X		X	x		x	X	x	
Phys exam	x																	
Pregnancy test*	X	X				X				X		X					X	
Body Measurements	X	X				X				X		X	X		x		X	
BMI	X	X				X				X		X	x		x			
HbA1c	x											X					X	
CMP	X&											X					X	
Fasting glucose&		X				X				X		X				X	x	
Instruct 8-p SMBG	x				X						X					X		
Collect 8-pt SMBG		X				X						X					X	
Labs	X^																X^*	
7d-CGM insert	X ¹											X					X	
7d- CGM collect	x											x					x	
DTSQ&TRIM-D		X										X					X	
Safety																		
Adverse events			X	X	X	X	X	X	X	X	X	X	x	X	X	X	X	
Hypoglycemia			X	X	X	X	X	X	X	X	X	X	x	X	X	X	X	
Trial material																		
Drug dispensing		X				X				X		X						
Drug account			X		X					X		X				x		
End-of-Trial															x			

391 *+/- 3 days. **+/- 7 days. Labs: ^ pregnancy test, ketones, lipid panel^* and GAD65 (If concern for Type 1 diabetes, GAD65 and ketones
392 will be ordered during screening, per PI discretion). Pregnancy test for WOCP as deemed by investigator & fasting defined as at least 8
393 hours without food or drinks or diabetes medications, except water and other prescribed medications. ¹ +/- 7 days, but before
394 randomization visit. Fasting glucose could be obtained from a chemistry sample obtained during the visit or POC BG. Body
395 measurement includes: weight, height and waist and hip circumference. @ During "randomization" and "vital signs" visits, subjects will
396 receive training on device use.

397 **Treatment of subjects:**

398 **Group 1) IDegLira Group**

399 • Discontinue OADs (SU, DPPIVi, glinides, and pioglitazone), except metformin
400 (unless contraindicated) and SGLT2i.

401 • Start IDegLira at 16 dose steps (degludec 16 units/liraglutide 0.6 mg), per U.S
402 labeling indications and/or provider discretion.

403 • IDegLira will be given once daily, at the same time of the day with or without food.

404 • IDegLira will be titrated until the maximum dose (50 steps) is reached, up to target fasting
405 BG between 70 and 100 mg/dl (Treat-To-Target Trial protocol), see algorithm below.

406 • Titration will occur twice a week: 1) self-titration by patients once a week and 2) phone call/
407 contact by research team once a week, for the initial 8 weeks. After that, patients will self-
408 titrate study medications per dosing algorithm.

409 • IDegLira will be titrated by 2-step-dose increment (2 IU of degludec and 0.072 of liraglutide),
410 to a maximum of 8 steps per week.

411 • The maximum allowed dose of IDegLira 50 dose steps provide 50 U of degludec and 1.8mg
412 of liraglutide.

413 • Titration will be performed twice weekly (every 3 to 4 days) based on the previous self-
414 monitored fasting (pre-breakfast) BG measurement (mean of 3 consecutive days). Patients
415 will be provided with self-titration algorithms for insulin adjustments.

416 • Subjects not at goal (fasting or mean SMBG from 3 consecutive days > 300 mg/dl) requiring
417 > 50 dose steps of IDegLira, will be considered “treatment failures”. Degludec will be added
418 to IDegLira as “rescue” basal insulin therapy. The dose of IDegLira will remain unchanged.

419 • The dose of “rescue” Degludec will be recorded and titrated twice weekly to target FPG of
420 70-100 mg/dl, per provider discretion, as shown below.

Titration algorithm for IDegLira and Degludec pens	Insulin dosage IU/d)*
≥ 181	8
141-180	6
121-140	4
101-120	2
71-100	no adjustments
<70	-2 If dose > 45 U/d, decrease by 10%
<56	-4 If dose > 45 U/d, decrease by 10%

* Maximum titration dose per week: 8 units

Group 2: Basal-Bolus Insulin Group (Begin BB trial⁴⁸)

- Discontinue OADs (SU, DPPIVi, glinides, and pioglitazone), except metformin (unless contraindicated) and SGLT2i.
- Insulin naïve participants will start at a daily dose of 10 units of degludec U-100 (or 0.2 u/kg/d per investigator discretion).
- Participants previously using basal insulin [neutral protamine hagedorn (NPH), mixed insulin, detemir or glargine U100] will be switched to study-provided degludec pens.
- For participants taking basal insulin prior to randomization, the conversion dose is 1:1 unit. The total daily basal dose could be the same or reduced by 20% at the investigator's discretion.
- Titration will be performed twice weekly based on the previous self-monitored fasting (pre-breakfast) BG measurement (mean of 3 consecutive days). Titration will occur as follows: 1) self-titration by patients once a week and 2) phone call/ contact by research team once a week, for the initial 8 weeks. After that, patients will self-titrate study medications per dosing algorithm.
- Degludec will be given once daily at the same time, and titrate up to fasting blood glucose 70-100 mg, with no maximum dose.
- Basal insulin should be adjusted before adjusting pre-meal aspart, as shown below.

448 **Degludec U100 Insulin adjustment**

449

Mean fasting BG from preceding 3 days (mg/dl)	Insulin dosage IU/d)
>181	8
141-180	6
121-140	4
101-120	2
71-100	no adjustments
<70	-2 If dose > 45 U/d, decrease by 5%
<56	-4 If dose > 45 U/d, decrease by 10%

450

451

452 **Aspart Insulin dosage:**

453 • Aspart will be given before meals, to target pre-meal BG < 70-100 mg/dl.

454 • At the start of the trial, participants will be prescribed 4 U insulin aspart before the
455 largest/main meal or; before each main meal (3 typical large meals per day:
456 breakfast, lunch, and dinner, \leq 4 times per day) per investigator discretion.

457 • For insulin naïve participants or per investigator discretion, total aspart dose will
458 calculated at 0.2 u/kg/d, and equally divided in three doses to be started before the
459 main/largest meal or before each meal (3 typical large meals per day: breakfast,
460 lunch, and dinner, \leq 4 times per day), per investigator discretion.

461 • If patients are started on only one dose for the largest meal, a second and third dose
462 may be added, as detailed above. Subjects will be provided with titration algorithms.

463 • The dose adjustment of insulin aspart will be based on the pre-prandial BG of the
464 subsequent meal or bedtime BG (i.e. the pre-dinner value will be based on the
465 bedtime BG), per provider discretion, as shown below:

Pre-prandial and bedtime BG (mean BG from preceding 3 days), mg/dl	Aspart dosage IU/d)
>181	+4
141-180	+3
101-140	+2
71-100	no adjustments
<70	-2
<56	-4

475

476

477 **Study population:**

478 A total of 150 subjects (75 subjects in each arm) will be included in the study (screening
479 about 300), randomized in a 1:1 manner, and started on study medications (as show in Fig 2).
480 Based on an anticipated screening failure rate of 40% and an attrition rate of 20%, total of 300
481 patients will be screened. The study will be conducted at Emory University Hospital Midtown
482 and Grady Hospital in Atlanta, Ga and second site TBA

483
484 **Inclusion Criteria**

485 1. Males or females between the ages of 18 to 80 years
486 2. Type 2 diabetes, diagnosed for \geq 6 months
487 3. HbA1c \geq 9% - 15%
488 4. Previously treated with oral antidiabetic agents, including metformin, sulfonylurea,
489 repaglinide/nateglinide, pioglitazone, DPP4 inhibitors, SGLT2 inhibitors, (monotherapy +
490 basal insulin) or in combination therapy (2-3 agents), and/or on basal insulin (neutral
491 protamine hagedorn (NPH), mixed insulin, detemir or glargine U100) at a total daily dose
492 (TDD) \leq 50 units (stable doses of basal insulin for at least 90 days, defined as up to \pm 10%
493 variability)
494 5. BMI \leq 45 Kg/m²

495
496

497 **Exclusion Criteria**

498 1. Age $<$ 18 or $>$ 80 years
499 2. Subjects with type 1 diabetes or LADA: positive GAD-65 antibody and/or ketones
500 3. Subjects with a BG $>$ 400 mg/dL during the screening visit and laboratory evidence of diabetic
501 ketoacidosis
502 4. Previous treatment with GLP-1 agonists (during prior 3 months)
503 5. Previous treatment with basal-bolus insulin (within prior 3 months, except transient treatment
504 with during hospital admission)
505 6. Recurrent severe hypoglycemia or known hypoglycemia unawareness.
506 7. Personal or family history of medullary thyroid cancer or multiple endocrine neoplasia 2
507 8. Patients with acute or chronic pancreatitis, pancreatic cancer
508 9. Patients with clinically significant hepatic disease (cirrhosis, jaundice, end-stage liver
509 disease) or significantly impaired renal function (GFR $<$ 30 ml/min).
510 10. Treatment with oral or injectable corticosteroid (equivalent or higher than prednisone 5
511 mg/day), parenteral nutrition and immunosuppressive treatment.
512 11. Mental condition rendering the subject unable to understand the nature, scope, and possible

513 consequences of the study
514 12. Hypersensitivity to study drugs
515 13. Participating in another investigational drug trial
516 14. The receipt of any investigational drug (within 3 months) prior to this trial.
517 14. Previously randomized in this trial
518 15. Heart Failure NYHA class 4 or uncontrolled hypertension (blood pressure > 180/110
519 mmHg)
520 16. Female subjects who are pregnant or breast-feeding at time of enrollment into the study
521 17. Females of childbearing potential who are not using adequate contraceptive methods (as
522 required by local law or practice)
523 18. Known or suspected allergy to trial medications (degludec, liraglutide, aspart), excipients, or
524 related products.
525 19. Subjects could be excluded based on PI's discretion
526 20. Unable to comply with trial protocol, and/or at investigator discretion
527 21. Patients receiving treatment for active diabetic retinopathy or with proliferative retinopathy

528 **Withdrawal Criteria**

530 - The subject may withdraw at will at any time during the trial.
531 - Pregnancy or intention of becoming pregnant.
532 - The subject may be withdrawn at the discretion of the investigator due to non-
533 compliance or due to a safety concern
534 - The subject will be withdrawn if starting any drugs that interfere with glucose metabolism
535 (steroids doses equivalent to prednisone > 5 mg/day)
536 - The subject may be withdrawn if diagnosed with acute pancreatitis (defined as meeting 2
537 of the following 3 rules: typical abdominal pain, amylase/lipase > 3x UNL and/or
538 characteristic US, CT or MRI findings)
539 - If the fasting or mean SMBG during 3 consecutive days is > 300 mg/dl, the investigator
540 will schedule an unplanned visit as soon as possible, to obtain confirmatory fasting BG
541 and investigate the cause. If no apparent or intercurrent cause is detected, the patient
542 may be withdrawn.
543 - Unable to comply with trial protocol, at investigator discretion.

544 **Subject Replacement**

546 There will be no replacement of subjects withdrawn after randomization in this trial.
547
548

549
550
551 **Rationale for Study Population**

552 The target population will include subjects with uncontrolled T2D with HbA1c $\geq 9\%-15\%$,
553 treated with oral anti-diabetic agents and low dose basal insulin (TDD ≤ 50 units/d), in whose
554 treatment intensification is recommended. Subjects should have been on oral anti-diabetic
555 agents or basal insulin for at least 90 days (with stable doses of insulin, 10% of dose
556 fluctuations are acceptable). These subjects need intensification of therapy, and should start
557 basal insulin and progressively step-up to basal-bolus insulin per national guidelines. However,
558 these patients may benefit more from a simpler regimen consisting of a single daily injection,
559 with lower risk of hypoglycaemia and less weight gain, which could improve treatment
560 adherence. IDegLira is an attractive therapeutic option for these patients for its potency,
561 flexibility, and potential lower risk of hypoglycaemia and weight gain.

562
563 **Visit Procedures**

564 Figure 2 and Table 1 provides a description of procedures to be performed at each visit
565 during the study period. Visits will be distributed as follows: initial/screening visit/CGM baseline
566 insertion, (visit 1), 2 weeks of screening/run-in period, randomization visit (visit 2), 26-week
567 treatment period (visits 4-18), and a follow-up safety visit after the end the 26- weeks treatment
568 period (visit 19). Subjects will have contact with the study team via clinic visits or phone
569 contacts for a total of 9 clinic visits and 9 telephone contacts. If subjects cannot participate in a
570 scheduled visit (+/- 3 days), the investigators will arrange for an urgent (as soon as possible)
571 visit. During follow-up, we will collect the following data (as described in Table 1): glycemic
572 data, hypoglycemia events, drug compliance, protocol adherence, body measurements, and
573 adverse events.

574
575 **Definitions:**

576 • CGM Hypoglycemia: CGM glucose levels < 70 , < 54 , ≤ 40 mg/dl, with a duration at least
577 15 minutes by CGM. The end of the event will be when glucose is ≥ 70 mg/dl for 15
578 minutes. A prolonged hypoglycemic event will be defined as CGM levels < 54 mg/dl for
579 120 minutes or more".⁵²

580 • We will only analyze CGM data collected after the first 24 hours from insertion. Patients
581 should have worn the CGM for at least > 4 days.

582 • Documented symptomatic hypoglycemia, defined as an event with typical symptoms of

hypoglycemia confirmed by SMBG or CGM (< 70 mg/dL and < 54 mg/dL) that occurs at any time of the day

- Incidence of asymptomatic hypoglycemia, defined as no typical symptoms reported by the subject but detected by SMBG or CGM (<70 mg/dL and < 54 mg/dL)
- Incidence of severe hypoglycemia, defined as severe cognitive impairment requiring assistance from another person
- Incidence of nocturnal symptomatic hypoglycemia, defined as an event with typical symptoms of hypoglycemia confirmed by SMBG or CGM < 70 mg/dL and < 54 mg/dL that occurs between 00:00 and 05:59 hrs
- Incidence of nocturnal asymptomatic hypoglycemia, defined as no typical symptoms reported by the subject but detected by SMBG or CGM (<70 mg/dL and < 54 mg/dL) between 00:00 and 05:59 hrs
- Confirmed hypoglycaemia includes: severe hypoglycemia and episodes with or without symptoms with biochemical confirmation of glucose < 54 mg/dL.
- Relative hypoglycemia includes: typical symptoms but with glucose > 70 mg/dL

Body measurements (Visits V1, V2, V6, V10, V12, V13, V15, V17)

Body weight: Body weight should be measured in kilogram or pound, without shoes and only wearing light clothing.

Height: Height (without shoes) should be measured in centimeters or inches and recorded without decimals.

Waist and hip circumference: The waist circumference is defined as the minimal abdominal circumference located midway between the lower rib margin and the iliac crest. The hip circumference is defined as the widest circumference around the buttocks. Three consecutive measurements of waist and hip circumference should be taken and recorded. Mean values will be used for result analysis. The waist and hip circumferences will be measured to the nearest 1.5 cm (0.2 inches) using a non-stretchable measuring tape.

The subject should be measured in a standing position with an empty bladder and wearing light clothing with accessible waist and hip. The tape should touch skin, but not compress soft tissue and twist in tape should be avoided. The subject should be asked to breathe normally and the measurement should be taken when the subject is breathing out gently.

Body Mass Index (BMI): BMI will be calculated by the formula $\frac{\text{Body weight (Kg)}}{\text{m}^2}$. Screening Visit: (visit 1, week -2)

Approximately 2 weeks prior to starting study medications, all potential study subjects will be

619 screened to check their eligibility. After providing the subjects with detailed information about the
620 trial, subjects will sign the informed consent form and will be assigned a patient identification
621 number.

622 During this visit, investigators will perform a comprehensive assessment, including:
623 present and past medical history (concomitant illness), diabetes history (onset, prior
624 complications, current and prior anti-diabetes medication's duration, allergies, or intolerances),
625 physical examination, height, weight, vital signs, laboratory assessment (HbA1c, chemistry,
626 pregnancy test for women of child-bearing potential (WOCBP), documentation of current
627 medications, and prior intolerances or allergies. Investigators will notify the primary care
628 physician that the subjects have consented to participate in the study. In WOCBP, the
629 contraceptive methods will be documented.

630
631 After review of all inclusion and exclusion criteria, including laboratory results, patients
632 who do not meet all the inclusion criteria at Visit 1 will be considered screen failures and will not
633 be randomized to participate in the study.

634
635 During this visit, the investigator will insert the CGM to obtain baseline information
636 (before drug exposure). During this visit, patients will receive training on CGM use and reinforce
637 SMBG diary collection. Trained personnel will proceed with sensor insertion. After that, the
638 sensor will be activated, the CGM session will be started.

639
640 Eligible patients will be trained on the use of the glucose meter to monitor their BG levels
641 (i.e. 8-point SMBG). Patients will be given diabetes diaries and associated training to record all
642 glucose levels, insulin doses, and episodes of hypoglycemia. Subcutaneous injections
643 administration technique will be reviewed prior to randomization to ensure good technique.
644 Reinforcement will be provided as needed during the follow-up visits.

645
646 Patients will be instructed in performing glucose testing at home before meals, with a
647 minimum of 2 out of the 4 pre-meal and/or bedtime glucose measurements per day. In addition,
648 patients must perform an 8-point SMBG for at least 1 day prior to week 0, 12, 26, as follows:

649
650
651 **Time-points for 8-point SMBG profile:**
652

653 The blood glucose levels should be measured and recorded in the diary (including date,
654 actual clock time and blood glucose value) at the following time points, always starting with

655 measurement before breakfast. Subjects will be instructed to collect the SMBG on a day where
656 the subject does not anticipate unusual strenuous exercise.

657 • Before breakfast
658 • 90 min after the start of breakfast
659 • Before lunch
660 • 90 min after the start of lunch
661 • Before dinner
662 • 90 min after the start of dinner
663 • At bedtime
664 • In the middle of the night at 3 or 4 am

665 Subject will also be instructed to check and record BG when hypoglycemia is suspected. Values
666 < 70 mg/dl should trigger an intervention, as described below (safety section).

667

668 Instructions for Run-In Period (2 weeks):

669 The main purpose of this period is to ensure that patients can comply with 8-point SMBG, pen
670 instructions and trial recommendations.

- 671 • Oral antidiabetic agents will be continued at same dose until randomization visit.
672 Metformin dose will be titrated up to 1000mg twice daily or to the maximum tolerated
673 dose, unless contraindicated, per investigator's discretion.
- 674 • Basal Insulin therapy [NPH, mixed insulin, or basal insulin (glargine U100, detemir)] at
675 TDD ≤50 units will continue at same insulin dosage until randomization. Insulin can be
676 initiated, or dose could be increased during run-in period in those subjects with severe
677 hyperglycemia (BG>300 mg/dL) and/or glucotoxicity per investigator's discretion, for
678 subject's safety reasons.
- 679 • Patients will be instructed in performing glucose testing at home before meals, with a
680 minimum of 2 out of the 4 pre-meal and/or bedtime glucose measurements per day.
- 681 • Patient not randomized in the trial will be considered screening failures, and no data will
682 be collected since these patients will not receive study medication.

683

684

685

686 Preparation for Visit 2 (Randomization visit)

- 687 • Patient will be instructed to complete the 8-point SMBG, and to titrate up metformin,
688 unless contraindicated.
- 689 • All patients will be instructed to provide daily glucose records. In addition, they will

690 perform an 8-point SMBG done prior to Visit 3 (as described above).

691 • Patients who complied with the 8-point glucose testing (up to 6 points) and fulfill the

692 eligibility criteria at Visit 2 will be randomized to participate in the study.

693 • Reminder to bring CGM sensor for collect and download.

694

695

696 **Randomization (Visit 2, Week 0)**

697 • Patients will be randomized to each treatment group

698 • Continue metformin therapy at same dose, unless contraindicated or for safety issues

699 • Discontinue other OADs and insulin formulation

700 • If BG > 400 mg/dl, patients will not be randomized, and considered screening failures.

701 • If BG > 300 mg/dl, investigator may order a confirmatory glucose test (at a different time)

702 before considering the subject screen failure.

703 • Subjects will receive detailed instruction on the use of the IDegLira pen or IDeg and

704 Aspart Pens and the titration algorithm.

705 • Patient will receive study medications. Subjects randomized to IDegLira will be

706 instructed to not exceed 50 dose steps and to notify investigators if needed.

707 • Dose of insulin will be adjusted as needed.

708

709 • Patients will be instructed in performing glucose testing at home before meals, with a

710 minimum of 2 out of the 4 pre-meal and bedtime glucose measurements per day.

711 • Patients will complete the DTSQ and TRIM-D questionnaires

712 • Investigator will collect CGM sensors

713

714

715 **Telephone Visits (weeks 1, 2, 3, 5, 6, 7, 10, 16, and 24)**

716 • Between each office visit, subjects will have a telephone visit with study personnel

717 • The purpose of these visits will be to monitor compliance with SMBG, CGM use, and

718 study medication. Also hypoglycaemia and hyperglycemia data, as well as AEs, will be

719 collected.

720 • Study diaries will be collected and reviewed for BG levels, episodes of hypoglycemia,

721 SQ injections self-administration.

722

723 **Follow-up Visits (visit 6-18)**

724 The following activities will occur during interim visits:

725 • Subjects will receive detailed instruction on the use of the insulin or IDegLira pens

726 • Study diaries will be collected and reviewed for BG levels, episodes of hypoglycemia,

727 insulin self-administration

728 • Dose of IDeglira or insulin will be adjusted as needed. Study medication will be
729 dispensed

730 • Subjects will be instructed in performing glucose testing at home before meals, with a
731 minimum of 2 out of the 4 pre-meal and bedtime glucose measurements per day.

732 • Drug compliance will be reviewed (see below "subject compliance" section)

733 • AE and hypoglycemia data will be collected, as well as concomitant medications.

734 • Laboratory blood work as indicated on page 12 (schedule of events during study
735 period)

736

737

738 **Visit 12 (12 weeks follow up)**

739 The following activities will occur during interim visits:

740 • Study diaries (8p-SMBG) will be collected and reviewed for BG levels, episodes of
741 hypoglycemia, insulin self-administration

742 • Dose compliance will be reviewed

743 • Dose of IDeglira or insulin will be adjusted as needed. Dispensing study medication.

744

745 • Body measurements, vital signs, BMI will be collected

746 • HbA1c, Fasting Glucose/CMP and pregnancy test (WOCP per PI discretion) will be
747 obtained

748 • CGM will be inserted

749 • Patients will complete the DTSQ and TRIM-D questionnaires

750 • AE and hypoglycemia data will be collected, as well as concomitant medications.

751 • Drug dispensing

752

753 **CGM visits (insertion on weeks -2, 12, 26 and collection on week 0, 14, 27)**

755 All enrolled participants will have a blinded/professional CGM study performed during
756 week -2, 12, and 26 weeks of follow-up.

757 During this visit, participants will receive training on CGM use and reinforce SMBG diary
758 collection. Trained personnel will proceed with sensor insertion, transmitter placement and
759 hook-up. After that, the transmitter will be activated, the CGM session will be started.

760 After 7 days, subjects will remove the sensor and return to the scheduled visit. Transmitter
761 will be connected to the computer for data downloading. CGM summary will be reviewed to
762 determine the quality.

763 Sensor will be stored following standard precautions. Onsite visits will be allowed for upload of
764 the study devices and face-to-face discussion about hypoglycemia and hyperglycemia

765 episodes, insulin doses, AE/SAE evaluation, and replacement of study medication, if required.
766 Trained personnel will input required clinical and demographic data into the sensor database
767 software. Subjects will complete an 8-point SMBG for 1 day (as shown in Table 1) prior to clinic
768 visit. Subjects will bring their glucose meter, CGM sensor (if applicable), BG diary, to each
769 onsite visit.

770 **Visit 17 (Week 26, end-of-study)**

- 771 • Diabetes Treatment Satisfaction Questionnaire Status (DTSQs) and TRIM-D survey
- 772 • Blood sampling as indicated on page 12- schedule of events during the study period,
773 including HbA1c assessment to determine efficacy of treatment
- 774 • Study diaries collected and reviewed for BG levels, episodes of hypoglycemia, insulin
775 self-administration

776

777 **Visit 18 (week 27, case sign-off)**

- 778 • This visit should occur at least one week after the last treatment visit
- 779 • Since degludec has a prolonged duration of action, this visit will serve to monitor for
780 adverse events.
- 781 • Sensor removal (after 7 days).

782 During each visit, participants will have their insulin dose titrated to achieve a fasting
783 glucose 70-100 mg/dL as detailed in the insulin titration algorithm. Once the fasting glucose 3-
784 day average is <100 mg/dL, insulin doses will be kept constant, unless the participant
785 experiences recurrent or severe hyperglycemia.

786
787
788
789
790

Assessments for Efficacy

791 The primary outcome of efficacy will be determined by change of HbA1c from baseline
792 after 26 weeks of treatment. HbA1c will be measured by the clinical laboratory of
793 Grady Memorial Hospital and Emory University, a NGSP-certified laboratory. Subjects will
794 complete an 8-point SMBG for at least 1 day before the CGM visits. We will also compare the
795 time in target range (70-180) as detected by CGM, allowing us to assess glycemic control for > 7
796 days with frequent testing (CGM and POC BG). We will compare the rate of "responders",
797 defined as patients HbA1c
798 <7.0% and no hypoglycemia at week 26.

799
800

Assessments for Safety

801 The safety endpoint of the study will be incidence of hypoglycaemia, as measured by the

802 current standard-of-care of POC monitoring. Subjects will complete an 8-point POC BG log
803 before weeks -1, 12, 26. In addition, we will perform blinded/professional CGM studies for 7
804 days, during week -1, 12, and 26. CGM will allow better detection of hypoglycemic events,
805 particularly asymptomatic and nocturnal hypoglycemia, usually not detected by POC monitoring.
806 It will also provide critical information on time in glycemic range and glycemic variability. We will
807 also compare differences in glycemic variability, by SD, %CV and MAGE. GV will be calculated
808 by mean daily standard deviation (SD) of glucose values in absolute terms, and as a percentage
809 of variance from the overall mean (%CV). These are measures of dispersion of glucose values
810 around a measure of central tendency, which represents the overall glucose excursion during
811 the study. We will also analyze GV by mean amplitude of glycemic excursion (MAGE), which
812 represents the average of all BG excursions (up or down), with a magnitude of > 1 standard
813 deviation of all BG measures⁴⁷.

814

815 **Potential Risks to the Subjects:**

816 **Hypoglycemia.** It is possible that following the proposed protocol, subjects receiving IDegLira
817 or Basal-bolus may develop hypoglycemia, as defined above.

818 **Gastrointestinal side effects**, including nausea and vomiting are more common in patients
819 treated with liraglutide compared to placebo. The frequency of nausea and vomiting is reported
820 in up to 5-15% patients receiving IDegLira. The number of adverse events will be collected at
821 each telephone contact or clinic visit. There have been few reported events of acute
822 pancreatitis. Subjects should be informed of the characteristic symptoms of acute pancreatitis:
823 persistent, severe abdominal pain. If pancreatitis is suspected, Degludec-liraglutide should be
824 discontinued. If the investigator suspects acute pancreatitis, all suspected drugs should be
825 discontinued until confirmatory test have been conducted and appropriate treatment should be
826 initiated. Subjects diagnosed with acute pancreatitis (as a minimum 2 of 3: characteristic
827 abdominal pain, amylase and/or lipase >3xUNR or characteristic findings on CT scan/ MRI
828 should be withdrawn from the study. In a cardiovascular outcomes trial (LEADER trial) 3.1% of
829 patients treated with liraglutide, versus 1.9% of placebo treated patients reported an acute
830 event of gallbladder disease, such as cholelithiasis or cholecystitis. The majority of events
831 required hospitalization or cholecystectomy. If cholelithiasis is suspected, gallbladder studies
832 and appropriate clinical follow-up will be indicated.

833

834 **Protection against Risks:**

835 We will follow safeguards to minimize the risk to our subjects: a) we will carefully monitor
836 response to medical treatment every 1-2 weeks by telephone contact and every 1-2 months

837 during clinic visits, b) women of reproductive age who are sexually active will undergo a urine
838 pregnancy tests prior to participation in the study and in-person visits as deemed by the
839 investigator, c) female subjects who are pregnant, breast-feeding, or not willing to use
840 appropriate contraception at time of enrollment will not be included in the study, d) patients with
841 significant comorbidities such as chronic kidney disease greater than stage III, liver cirrhosis,
842 gastroparesis, and pancreatic disorders will be excluded from the study. Hypoglycemia: Patients
843 will receive diabetes education and will be instructed on hypoglycemia sign/symptoms and
844 treatment. Patients will be asked to call the diabetes center and/or PCP in the event of
845 hypoglycemia. If a patient develops hypoglycemia, the dose of basal insulin will be reduced (see
846 treatment algorithm). Gastrointestinal side effects including nausea and vomiting may be
847 expected, more commonly in patients treated with liraglutide. In subjects with suspected acute
848 pancreatitis liraglutide and other potentially suspect medicinal products should be discontinued
849 until confirmatory tests have been conducted and appropriate treatment initiated.

850

851 **Other Assessments**

852 We will assess patient satisfaction by using the DTSQs at baseline and the DTSQc at the end-
853 of-study, as recommended by Health Psychology Research.

854 For treatment satisfaction, subjects' responses to questions 1, 7 and 8 of the DTSQc will be
855 used. A comparison of the score on the DTSQs from week 0 to week 24, as well as using the
856 score on the other questions of the DTSQc, which would overcome the ceiling limitation of using
857 the DTSQs by itself⁴⁹. The Diabetes Treatment Satisfaction Questionnaire Status (DTSQs) form
858 will be administered at weeks 0, 12 and the DTSQc will be administered at week 26. The
859 amplitude of the score on the DTSQc gives the degree of change in satisfaction, while the
860 direction (positive or negative) will provide guidance on the preference of one treatment regimen
861 over the other one.

862 For quality of life, we will use the "Treatment-related impact measures for diabetes" (TRIM-D)"
863 in order to determine the impact of the type of therapy on this outcome. Subjects will be given
864 the questionnaire at baseline, and weeks 12 and 26 to assess their quality of life and any
865 potential impact of the treatment regimen ⁵⁰.

866 **Subject Compliance**

867 Subject compliance will be assessed by monitoring of drug accountability. Subjects will be
868 encouraged at every visit to adhere to the study medications and follow-up schedule. Unused
869 trial medications will be compared with dispensed amount at each corresponding visit. If
870 discrepancies are noted, the subject will be asked.

871
872 **STATISTICAL CONSIDERATIONS:**
873 **Sample Size Calculation**
874 The primary outcome is the change in HbA1c from baseline after 26-weeks of treatment.
875 The primary hypothesis is that HbA1c change is similar between the IDegLira group and the
876 basal-bolus group. Given the data reported for the DUAL V study, we assume the HbA1c
877 change from baseline has a standard deviation bounded above by 0.85 (%). We assume the
878 margin of equivalence is 0.4 (%) and the true mean difference in the primary outcome is 0 (%).
879 Given 57 subjects per study group, based on a one-sided, two-sample t-tests, we would achieve
880 80% power to detect non-inferiority, with alpha (type-1 error) set as 0.05. Accounting for 20%
881 attrition rate of 20%, we need to recruit 75 subjects per group (150 in total).
882
883 **Statistical Methods**
884 This is a randomized, open-label study. We will first compare the primary outcome (i. e.
885 change in HbA1c from baseline to after 26 weeks of treatment) between the two study groups
886 using nonparametric and parametric two-sample tests, such as Wilcoxon tests and t-tests. A
887 logarithm transformation may be employed to make the data better conform to the normality
888 assumption. We will apply standard variable selection and model checking procedures to decide
889 the final model.
890 Secondary outcomes include various measurements (related to glycemic control, quality
891 of life, adverse effects, and etc.) collected at a single or multiple time points. For continuous
892 outcomes measured a single time point (i.e. non-longitudinal outcome), we shall analyze them
893 following the same strategy designed for the primary outcome. For discrete non-longitudinal
894 outcome, we will use Chi-square (or Fisher's Exact) tests to compare them between the two
895 study groups. This will be followed by logistic regression or Poisson (or Negative Binomial)
896 regression to assess other potential confounders. We will perform appropriate model selection
897 and diagnostic procedures to ensure adequate fit to the data. For outcomes measured at
898 multiple time points (i.e. longitudinal outcome), we will first conduct cross-sectional analyses as
899 planned for the non-longitudinal outcomes. Next we will perform repeated measures analyses
900 that account for with-subject correlations in the longitudinal outcomes. We will analyze
901 longitudinal continuous outcomes based on repeated measures ANOVA followed by repeated
902 measures linear regression, and we will analyze longitudinal discrete outcomes by using
903 repeated measures generalized linear model (GLM). If the assumption of missing completely at
904 random (MCAR) is reasonable, we shall handle missing data by excluding them from the cross-

905 sectional and the longitudinal data analyses. When MCAR assumption is questionable, we will
906 assume missing values are missing at random and deal with them by the standard multiple
907 imputation methods. We plan to conduct statistical analyses using SAS 9.4.

908

909 **Interim Analysis**

910

911 We plan to perform interim analysis on the primary safety endpoint every 6 months. The
912 trial will be stopped if there is evidence beyond a reasonable doubt of a difference in the rate of
913 death (two-sided alpha level, <0.01) between the treatment groups. In addition, the trial will be
914 stopped if the rate of severe hypoglycemic events (BG <40 mg/dl) in either group is > 40%.

915 **Explorative Statistical Analysis for Pharmacogenetics and Biomarkers**

916 N/A

917 **DATA HANDLING AND RECORD KEEPING:**

918 Data collection records with personal identifiers will be stored in locked file cabinets.
919 Sponsor site expects data to be entered in REDCap within 10 days of phone call or outpatient
920 visit. The study coordinators will enter data from each visit into data collection paper forms and
921 into an electronic database (REDCap) that meets HIPPA and confidentiality regulations,
922 provided by the Emory Research Information Technology Department. Baseline data will include
923 demographics/history form (subject's gender, date of birth, ethnicity, history of diabetes, and
924 treatment of diabetes and comorbid conditions, body weight, BMI. During follow-up visits, data
925 from SMBG, laboratory and/or CGM will be also collected. Data on adverse events will also be
926 collected and enter into the database. Presentation of the study results at regional or scientific
927 meetings or in publications will not identify subjects. Access to research and confidential
928 records will be limited to clinical investigators, research coordinators, and the IRB at Emory
929 University.

930

931 **ETHICS:**

932 **Informed Consent.**

933 After identification of eligible patients these individuals will be provided basic information
934 regarding the study and, if interested, a member of the research staff using inclusion/exclusion
935 criteria delineated elsewhere in the protocol will enroll patients. Informed consent will be
936 obtained before any trial related procedures including screening procedures. The consent form,
937 potential risks and benefits, and the rights of research participants will be explained to the
938 participant by the investigators or research coordinator. Individuals will be asked if they have
939 questions, and a member of the research staff will answer questions. The principal investigator

940 will also be available at all times to answer questions that participants may have during the
941 consent procedure or during the time a participant is enrolled in the study. The consent form
942 will be completed in accordance with the IRB guidelines of Emory University. A signed copy of
943 the consent form will be provided to the participant and a copy will be placed in the file that is
944 maintained for each participant in the study office.

945 Informed consent will follow the procedure of Emory University Institutional Review
946 Board. Every potential participant will be informed in writing and verbally with the important and
947 key points of the study. One of the investigators or research coordinators will obtain an
948 informed consent prior to inclusion of a patient into the study.

949 The study will be conducted in accordance with the Declaration of Helsinki and will be
950 conducted in accordance with the ICH GCP guidelines. The sponsor-investigator will comply
951 with all applicable regulatory and legal requirements, ICH GCP guidelines and the Declaration
952 of Helsinki in obtaining and documenting the informed consent.

953

954 **STUDY SCHEDULE:**

955 The study will be conducted at two sites: at 1) Emory University Hospital Midtown and
956 Grady Memorial Hospital in Atlanta, GA; and at 2) TBA. An additional site will be considered if
957 funds are available.

958 Based on our prior trials experience, we anticipate 3-4 potential candidates per week,
959 including the collaborating institutions, for a total recruitment period of approximately 12
960 months. Since the study requires a 6-month follow up period, we anticipate a study length of
961 18-24 months.

First subject in	2019 January
Screening	~300
Randomized	150
Last subject recruited	2020 June/July
Last subject in (completed)	2021 Nov/Dec
Data analysis	2021 DEC
Submission to congress or journal	ADA 2021, Major journal and/or Diabetes Care 2021

962

963 **Study DRUGS and materials:**

964 **Study medication(s) / devices(s)**

965 • Group 1: IDegLira pens will be supplied by the sponsor and given free of charge to the study
966 subjects. IDegLira is a FRC agent, including basal insulin degludec and GLP-1 agonist

967 liraglutide. The starting dose of IDegLira is at 16 dose steps (degludec 16 units/liraglutide
968 0.6 mg). The maximum allowed dose of IDegLira 50 dose steps provide 50 U of
969 degludec and 1.8mg of liraglutide.

970 • Group 2: Degludec U-100 and Aspart U-100 insulin pens will be supplied by the
971 sponsor and given free of charge to the study subjects.

972 • We will use a professional CGM device. The investigator will keep the sensor readers, and
973 will store the transmitters after the completion of each sensor study for up to 5 years- as
974 part of the study information.

975

976 **Packaging and Labelling of Study Medication(s)**

977 Trial products will be packed and labelled by Emory and Grady Investigational Drug Service.
978 Labelling will be in accordance with local law and study requirements.

979

980 **Storage and Drug Accountability of Study Medication(s)**

981 Emory and Grady Investigational Drug Service, is a full-service research pharmacy with
982 all required conditions for proper storage and dispensing of study medications. The investigator
983 will ensure the availability of proper storage conditions and record and evaluate the temperature.
984 There will be no trial medication(s) dispensed to any person not enrolled in the study. Any
985 unused medication(s) will be stored separately from used trial medication(s). Subject
986 compliance will be assessed by asking subjects to return all unused, partly used and unused
987 cartridges and vials of liraglutide and degludec insulin at each visit. Subjects will be instructed to
988 return all used, partially used or unused study products before each dispensing visit. Subjects
989 will be encouraged at every visit to adhere to the study medications and follow-up schedule. Any
990 partially used or unused study medications will be destroyed accordingly to local procedures.
991 After study completion, any surplus of study medications or supplies will be disposed as per local
992 regulations.

993

994 **Auxiliary Supply**

995 Investigator will provide the following supplies:

996 • Needles for insulin pens, IDegLira, Degludec and Aspart pens

997 **Randomization and Blinding**

998 This is an open label randomized controlled trial. Patients will be randomized
999 consecutively using a computer-generated randomization table provided by Dr. Limin Peng,
1000 Professor of Statistics at the Emory School of Public Health. Patient will be randomized based
1001 on HbA1c (HbA1c <10 or ≥10). The randomization table will be mailed to each institution where

1002 a member of the research team will be in charge of the randomization process and group
1003 assignment.

1004 **Breaking of Blinded Codes**

1005 N/A

1006

1007

1008 **CONCOMITANT ILLNESSES AND MEDICATIONS:**

1009 **Definitions:**

1010 Concomitant illness: any illness that is present at the start of the trial (*i.e. at the first visit*).

1011 Concomitant medication: any medication other than the trial product(s) that is taken during the
1012 trial, including the screening and run-in periods.

1013 Details of all concomitant illnesses and medication must be recorded at trial entry (*i.e. at the first*
1014 *visit*). Any changes in concomitant medication must be recorded at each visit. If the change
1015 influences the subject's eligibility to continue in the trial, the sponsor must be informed.

1016 The information collected for each concomitant medication includes, at a minimum, start date,
1017 stop date or continuing, and indication.

1018 For each concomitant illness, date of onset, date of resolution or continuing, at a minimum,
1019 should be recorded.

1020

1021 **ADVERSE EVENTS:**

1022 The investigator will be responsible for reporting of all adverse events including serious
1023 adverse events (SAE), serious adverse drug reactions (SADRs) to the competent authority and
1024 independent IRB boards based upon federal regulations and local/IRB policies. The investigator
1025 will report to the sponsor all S A R D s at the same time it's reported to the IRB or within 15
1026 days of the investigator becoming aware.

1027 The investigators will collect the following information at minimum for each of these events:

1028 1. Study name

1030 2. Patient identification (e.g. initials, sex, age)

1031 3. Diagnosis

1032 4. Drug

1033 5. Reporter identification (e.g. Name, or initials)

1034 1035 Also 6) Causality, and 7) Outcome might be reported, but this is not mandatory.

1036

1037

1038

1039

1040 **Definitions**

1041 **Adverse Event (AE):**

1042 An AE is any undesirable medical event occurring to a subject in a clinical trial, whether
1043 or not related to the trial product(s). This includes events reported from the first trial related
1044 activity after the subject has signed the informed consent and until post treatment follow-up
1045 period as defined in the protocol.

1046 **Adverse Reaction (AR)**

1047 An AR is an adverse event for which the causal relationship between the product and the
1048 adverse event is suspected.

1049 The following should not be recorded as AEs, if recorded as medical history/concomitant illness
1050 on the CRF at screening:

- 1051 • Pre-planned procedure, unless the condition for which the procedure was planned has
1052 worsened from the first trial related activity after the subject has signed the informed consent
- 1053 • Pre-existing conditions found as a result of screening procedures

1054
1055
1056 **Clinical Laboratory Adverse Event:**

1057 A clinical laboratory AE is any clinical laboratory abnormality regarded as clinically
1058 significant i.e. an abnormality that suggests a disease and/or organ toxicity and is of a severity,
1059 which requires active management, (i.e. change of dose, discontinuation of trial product, more
1060 frequent follow-up or diagnostic investigation).

1061

1062 **Serious Adverse Event (SAE):**

1063 A serious AE is an experience that at any dose results in any of the following:

- 1064 • Death
- 1065 • A life-threatening* experience
- 1066 • In-patient hospitalization or prolongation of existing hospitalization
- 1067 • A persistent or significant disability/incapacity
- 1068 • A congenital anomaly/birth defect
- 1069 • Important medical events that may not result in death, be life-threatening*, or require
1070 hospitalization may be considered an SAE when, based upon appropriate medical judgement,
1071 they may jeopardize the subject and may require medical or surgical intervention to prevent one
1072 of the outcomes listed in this definition
- 1073 • Suspicion of transmission of infectious agents

1074 *The term life-threatening in the definition of SAE refers to an event in which the subject was at
1075 risk of death at the time of the event. It does not refer to an event which hypothetically might
1076 have caused death if it was more severe.

1077

1078 **Serious Adverse Drug Reaction (SADR):**

1079 An adverse drug reaction is an adverse event (AE) for which a causal relationship to the
1080 trial product is at least possible i.e. causal relationship is conceivable and cannot be dismissed.
1081 Serious adverse reaction (SAR): Adverse event which fulfils both the criteria for a Serious
1082 Adverse Event and the criteria for an Adverse Reaction.

1083

1084

1085

1086 **Suspected Unexpected Serious Adverse Reaction (SUSAR):**

1087 An SAE which is unexpected and regarded as possibly or probably related to the
1088 trial/study product by the investigator.

1089

1090 **Medical Events of Special Interest (MESI):** A MESI is (1) a medication error (e.g. wrong drug
1091 administration or wrong route of administration) or (2) a suspected transmission of an infectious
1092 agent via the product

1093

1094 **Non-Serious Adverse Event:**

1095 A non-serious AE is any AE which does not fulfil the definition of an SAE.

1096

1097

1098 **Severity Assessment Definitions:**

1099 • Mild: Transient symptoms, no interference with the subject's daily activities

1100 • Moderate: Marked symptoms, moderate interference with the subject's daily activities

1101 • Severe: Considerable interference with the subject's daily activities, unacceptable

1102

1103

1104 **Relationship to study medication Assessment Definitions:**

1105 • Probable: Good reasons and sufficient documentation to assume a causal relationship

1106 • Possible: A causal relationship is conceivable and cannot be dismissed

1107 • Unlikely: The event is most likely related to an etiology other than the trial product

1108

1109

1110 **The US PI, will be used to evaluate all unexpected events and adverse reactions.**

1111

1112

1113 **Outcome Categories and Definitions:**

- 1114 • Recovered: Fully recovered or by medical or surgical treatment the condition has returned to
1115 the level observed at the first trial related activity after the subject signed the informed consent
- 1116 • Recovering: The condition is improving and the subject is expected to recover from the event.
1117 This term should only be used when the subject has completed the trial
- 1118 • Recovered with sequelae: As a result of the AE, the subject suffered persistent and
1119 significant disability/incapacity (e.g. became blind, deaf, paralyzed). Any AE recovered with
1120 sequelae should be rated as an SAE
- 1121 • Not recovered
- 1122 • Fatal
- 1123 • Unknown

1124

1125 **Collection, Recording and Reporting of Adverse Events**

1126 All events meeting the definition of an adverse event must be collected and reported
1127 from the first trial related activity after the subject has signed the informed consent and until the
1128 end of the posttreatment follow-up period as stated in the protocol.

1129

1130 **Follow-up of Adverse Events**

1131 During and following a subject's participation in a clinical trial, the investigator will provide
1132 adequate medical care to the study subject for any study-related adverse events, including
1133 clinically significant laboratory values related to the study, regardless of their insurance status.

1134 All adverse events classified as serious or severe or possibly/probably related to the trial
1135 product must be followed until the subject has recovered and all queries have been resolved.

1136 For cases of chronic conditions follow-up until the outcome category is "recovered" is not
1137 required, as these cases can be closed with an outcome of "recovering" or "not recovered".

1138 All other adverse events must be followed until the outcome of the event is "recovering" (for
1139 chronic conditions), or "recovered" or until the end of the post-treatment follow-up stated in the
1140 protocol, whichever comes first, and until all queries related to these AEs have been resolved.

1141

1142 **Pregnancy**

1143 Subjects will be instructed to notify the sponsor-investigator immediately if they become
1144 pregnant.

1145 The investigator will report to Novo Nordisk any pregnancy occurring during the trial
1146 period. Reporting of pregnancy by investigator should occur within the same timelines described

1147 above for reporting of Adverse Events.

1148 Pregnancy complications should be recorded as adverse event(s). If the infant has a
1149 congenital anomaly/birth defect this must be reported and followed up as a serious adverse
1150 event.

1151

1152 Precautions/Over-dosage

1153 We will follow safeguards to minimize the risk to our subjects: a) we will carefully monitor
1154 capillary blood glucose and reported symptoms. To minimize significant clinical events, we will
1155 exclude patients with history of significant liver, renal or cardiac failure in this study.

1156

1157 Hypoglycemia can occur during the treatment with insulin. Hypoglycemia will be treated
1158 accordingly to the best local practices, and insulin will be adjusted as per a predefined
1159 algorithm. Subjects will be instructed to not exceed the maximum dose of IDegLira of 50
1160 steps. Subjects will be instructed to maintain good hydration, and to report the presence of
1161 severe nausea, vomiting, or diarrhea. Insulin doses will be adjusted for hypoglycemic values.

1162

1163

1164 LIABILITY AND SUBJECT INSURANCE:

1165 No additional cost to patients or to the institution will be incurred for research purposes.
1166 Patients will not be billed for the laboratory work or any test that is being done only for study
1167 purposes. Novo Nordisk will provide IDegLira, Degludec and Aspart at no cost to
1168 participants. Patients will be responsible for the cost of their usual ongoing medical care,
1169 including procedures (glucose meter supplies) and/or non-study medications that your
1170 doctor requires as part of your usual medical care.

1171 During and following a subject's participation in a clinical trial, the investigator and
1172 institution will provide adequate medical care to the study subject for any study-related adverse
1173 events, including clinically significant laboratory values related to the study at patient own cost,
1174 regardless of their insurance status. Financial compensation for such things as lost wages,
1175 disability or discomfort due to an injury related to the study is not available.

1176 The sponsor-investigator will be responsible for the conduct of the study and that the
1177 sponsor-investigator agrees to defend, indemnify, and hold harmless Novo Nordisk, any of its
1178 parent companies, affiliates, or subsidiaries, and their respective officers, directors, employees,
1179 agents, representatives, distributors, salespersons, customers, licensees, and end-users from
1180 and against any claim, suit, demand, loss, damage, expense or liability imposed by any third
1181 party arising from or related to: (a) any breach of sponsor-investigator's obligations or

1182 representations; or (b) sponsor-investigator's negligent or grossly negligent use or willful misuse
1183 of the study drug, the results, or services derived therefrom. This indemnification shall not apply
1184 in the event and to the extent that a court of competent jurisdiction or a duly appointed arbiter
1185 determines that such losses or liability arose as a result of Novo Nordisk's gross negligence,
1186 intentional misconduct, or material breach of its responsibilities.

1187

1188 **PREMATURE TERMINATION OF STUDY:**

1189 The investigator may decide to stop prematurely the trial. In this case, the investigator
1190 will notify the subjects promptly and ensure appropriate follow up. The investigator will also
1191 notify the IRB and local regulatory authorities.

1192

1193 **PUBLICATION PLAN:**

1194 We anticipate completion of the study in Dec 2019. Data will be analyzed between
1195 October and December 2019. One abstract will be submitted to the 2020 American Diabetes
1196 Association meeting and manuscript(s) will be submitted during the first six months of 2020.
1197 The investigator will register the study with a publicly assessable database, such as
1198 clinicaltrials.gov.

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215 **REFERENCES:**

1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. *Lancet*. 1998;352(9131):837-853.
2. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. *Lancet*. 1998;352(9131):854-865.
3. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. *N Engl J Med*. 2008;359(15):1577-1589.
4. Kahn SE. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. *J Clin Endocrinol Metab*. 2001;86(9):4047-4058.
5. Ferrannini E. The stunned beta cell: a brief history. *Cell Metab*. 2010;11(5):349-352.
6. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2017 Executive Summary. *Endocr Pract*. 2017;23(2):207-238.
7. Umpierrez GE, Hellman R, Korytkowski MT, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. *J Clin Endocrinol Metab*. 2012;97(1):16-38.
8. American Diabetes A. 8. Pharmacologic Approaches to Glycemic Treatment. *Diabetes Care*. 2017;40(Suppl 1):S64-S74.
9. Garber AJ. Insulin intensification strategies in type 2 diabetes: when one injection is no longer sufficient. *Diabetes Obes Metab*. 2009;11 Suppl 5:14-18.
10. Garber AJ. The importance of titrating starting insulin regimens in patients with type 2 diabetes. *Diabetes Obes Metab*. 2009;11 Suppl 5:10-13.
11. Peyrot M, Barnett AH, Meneghini LF, Schumm-Draeger PM. Insulin adherence behaviours and barriers in the multinational Global Attitudes of Patients and Physicians in Insulin Therapy study. *Diabet Med*. 2012;29(5):682-689.
12. Peyrot M, Rubin RR, Khunti K. Addressing barriers to initiation of insulin in patients with type 2 diabetes. *Prim Care Diabetes*. 2010;4 Suppl 1:S11-18.
13. Rubin RR, Peyrot M, Kruger DF, Travis LB. Barriers to insulin injection therapy: patient and health care provider perspectives. *Diabetes Educ*. 2009;35(6):1014-1022.
14. Vijan S, Hayward RA, Ronis DL, Hofer TP. Brief report: the burden of diabetes therapy: implications for the design of effective patient-centered treatment regimens. *J Gen Intern Med*. 2005;20(5):479-482.
15. Josse RG, Woo V. Flexibly timed once-daily dosing with degludec: a new ultra-long-acting basal insulin. *Diabetes Obes Metab*. 2013;15(12):1077-1084.
16. Chico A, Vidal-Rios P, Subira M, Novials A. The continuous glucose monitoring system is useful for detecting unrecognized hypoglycemias in patients with type 1 and type 2 diabetes but is not better than frequent capillary glucose

1262 measurements for improving metabolic control. *Diabetes Care*. 2003;26(4):1153-1157.

1263

1264 17. Vigersky R, Srivastav M. Role of continuous glucose monitoring for type 2 in

1265 diabetes management and research. *J Diabetes Complications*. 2017;31(1):280-287.

1266

1267 18. Munshi MN, Segal AR, Suhl E, et al. Frequent hypoglycemia among elderly

1268 patients with poor glycemic control. *Arch Intern Med*. 2011;171(4):362-364.

1269

1270 19. Leinung M, Nardacci E, Patel N, Bettadahalli S, Paika K, Thompson S. Benefits

1271 of short-term professional continuous glucose monitoring in clinical practice.

1272 *Diabetes Technol Ther*. 2013;15(9):744-747.

1273

1274 20. Gehlaut RR, Dogbey GY, Schwartz FL, Marling CR, Shubrook JH. Hypoglycemia

1275 in Type 2 Diabetes--More Common Than You Think: A Continuous Glucose

1276 Monitoring Study. *J Diabetes Sci Technol*. 2015;9(5):999-1005.

1277

1278 21. Tibaldi J. Achieving glycemic goals with addition of incretin-based therapies to

1279 insulin in patients with type 2 diabetes mellitus. *Am J Med Sci*. 2014;347(6):491-501.

1280

1281 22. Vora J, Bain SC, Damci T, et al. Incretin-based therapy in combination with basal

1282 insulin: a promising tactic for the treatment of type 2 diabetes. *Diabetes Metab*.

1283 2013;39(1):6-15.

1284

1285 23. Ali MK, Bullard KM, Gregg EW. Achievement of goals in U.S. Diabetes Care, 1999-2010. *N Engl J Med*. 2013;369(3):287-288.

1286

1287 24. Palermo NE, Modzelewski KL, Farwell AP, et al. Open Access to Diabetes

1288 Center from the Emergency Department Reduces Hospitalizations in the

1289 Susequent Year. *Endocr Pract*. 2016;22(10):1161-1169.

1290

1291 25. Magee MF, Nassar CM, Mete M, White K, Youssef GA, Dubin JS. The Synergy

1292 to Enable Glycemic Control Following Emergency Department Discharge

1293 Program for Adults with Type 2 Diabetes: Step-Diabetes. *Endocr Pract*.

1294 2015;21(11):1227-1239.

1295

1296 26. Abdul-Ghani M, Mujahid O, Mujahid A, DeFronzo RA, Zirie M, Jayyousi A. Efficacy of Exenatide Plus Pioglitazone Versus Basal/Bolus Insulin in T2DM Patients With Very High HbA1c. *J Clin Endocrinol Metab*. 2017.

1297

1298 27. Umpierrez GE, Reyes D, Smiley D, et al. Hospital discharge algorithm based on admission HbA1c for the management of patients with type 2 diabetes. *Diabetes Care*. 2014;37(11):2934-2939.

1299

1300 28. Mauricio D, Meneghini L, Seufert J, et al. Glycaemic control and hypoglycaemia

1301 burden in patients with type 2 diabetes initiating basal insulin in Europe and the

1302 USA. *Diabetes Obes Metab*. 2017.

1303

1304 29. DeVries JH, Bain SC, Rodbard HW, et al. Sequential intensification of metformin

1305 treatment in type 2 diabetes with liraglutide followed by randomized addition of

1306 basal insulin prompted by A1C targets. *Diabetes Care*. 2012;35(7):1446-1454.

1307

1308 30. Rosenstock J, Fonseca VA, Gross JL, et al. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. *Diabetes Care*. 2014;37(8):2317-2325.

31. Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. *Diabetes Care*. 1997;20(9):1353-1356.

1309 32. Ryan EA, Imes S, Wallace C. Short-term intensive insulin therapy in newly
1310 diagnosed type 2 diabetes. *Diabetes Care*. 2004;27(5):1028-1032.

1311 33. Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy on beta-cell function
1312 and glycaemic control in patients with newly diagnosed type 2 diabetes: a
1313 multicentre randomised parallel-group trial. *Lancet*. 2008;371(9626):1753-1760.

1314 34. Diamant M, Nauck MA, Shaginian R, et al. Glucagon-like peptide 1 receptor
1315 agonist or bolus insulin with optimized basal insulin in type 2 diabetes. *Diabetes
1316 Care*. 2014;37(10):2763-2773.

1317 35. Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor
1318 agonist and basal insulin combination treatment for the management of type 2
1319 diabetes: a systematic review and meta-analysis. *Lancet*. 2014;384(9961):2228-
1320 2234.

1321 36. Retnakaran R, Kramer CK, Choi H, Swaminathan B, Zinman B. Liraglutide and
1322 the preservation of pancreatic beta-cell function in early type 2 diabetes: the
1323 LIBRA trial. *Diabetes Care*. 2014;37(12):3270-3278.

1324 37. Buse JB, Han J, Miller S, MacConell L, Pencek R, Wintle M. Addition of
1325 exenatide BID to insulin glargine: a post-hoc analysis of the effect on glycemia
1326 and weight across a range of insulin titration. *Curr Med Res Opin*.
1327 2014;30(7):1209-1218.

1328 38. Wilding JP, Rajeev SP, DeFronzo RA. Positioning SGLT2 Inhibitors/Incretin-
1329 Based Therapies in the Treatment Algorithm. *Diabetes Care*. 2016;39 Suppl
1330 2:S154-164.

1331 39. Owens DR, Monnier L, Barnett AH. Future challenges and therapeutic
1332 opportunities in type 2 diabetes: Changing the paradigm of current therapy.
1333 *Diabetes Obes Metab*. 2017.

1334 40. Owens DR, Monnier L, Bolli GB. Differential effects of GLP-1 receptor agonists
1335 on components of dysglycaemia in individuals with type 2 diabetes mellitus.
1336 *Diabetes Metab*. 2013;39(6):485-496.

1337 41. Investigators F-ST. Glucose Variability in a 26-Week Randomized Comparison of
1338 Mealtime Treatment With Rapid-Acting Insulin Versus GLP-1 Agonist in
1339 Participants With Type 2 Diabetes at High Cardiovascular Risk. *Diabetes Care*.
1340 2016;39(6):973-981.

1341 42. Mathieu C, Rodbard HW, Cariou B, et al. A comparison of adding liraglutide
1342 versus a single daily dose of insulin aspart to insulin degludec in subjects with
1343 type 2 diabetes (BEGIN: VICTOZA ADD-ON). *Diabetes Obes Metab*.
1344 2014;16(7):636-644.

1345 43. Freemantle N, Mamdani M, Vilsboll T, Kongso JH, Kvist K, Bain SC. IDegLira
1346 Versus Alternative Intensification Strategies in Patients with Type 2 Diabetes
1347 Inadequately Controlled on Basal Insulin Therapy. *Diabetes Ther*. 2015;6(4):573-
1348 591.

1349 44. Hughes E. IDegLira: Redefining insulin optimisation using a single injection in
1350 patients with type 2 diabetes. *Prim Care Diabetes*. 2016;10(3):202-209.

1351 45. Lingvay I, Perez Manghi F, Garcia-Hernandez P, et al. Effect of Insulin Glargine
1352 Up-titration vs Insulin Degludec/Liraglutide on Glycated Hemoglobin Levels in
1353 Patients With Uncontrolled Type 2 Diabetes: The DUAL V Randomized Clinical
1354 Trial. *JAMA*. 2016;315(9):898-907.

1355 46. A/S NN. Xultophy® demonstrates similar glucose control with reduced risk of

