

PROTOCOL	
TITLE:	Letermovir for cytomegalovirus prophylaxis in patients with hematological malignancies treated with alemtuzumab
STUDY NUMBER:	OSU-19289
IND NUMBER:	147864
TEST PRODUCTS:	NA
COMMERCIAL PRODUCTS:	Letermovir
INDICATION:	Hematologic malignancies treated with alemtuzumab
INVESTIGATOR:	John C. Reneau, MD, PhD 320 West 10 th Avenue A350A Starling Loving Hall Telephone: 614-688-7942 Fax: 614-293-7526 E-mail: john.reneau@osumc.edu
Statistician	Ying Huang, MSc 320 West 10th Avenue Telephone: 614-688-7591 Fax: 614-293-7526 Email: ying.huang@osumc.edu
SUPPORT PROVIDED BY:	The Ohio State University Merck

1

2

CONFIDENTIAL

3 This is an Ohio State University document that contains confidential information. It is intended
4 solely for the recipient clinical investigator(s) and must not be disclosed to any other party. This
5 material may be used only for evaluating or conducting clinical investigations; any other
6 proposed use requires written consent from Ohio State University.

7

8

9 TABLE OF CONTENTS

10 Trial Summary.....	5
11 1 Background and Rationale.....	7
12 1.1 Mature T-cell Lymphomas.....	7
13 1.1.1 Peripheral T-cell Lymphoma	7
14 1.1.2 Cutaneous T-cell Lymphoma	7
15 1.1.3 T-cell Prolymphocytic Leukemia	7
16 1.2 Alemtuzumab.....	8
17 1.3 Cytomegalovirus	8
18 1.4 Letermovir.....	10
19 2 Objectives and Endpoints	11
20 2.1 Objectives.....	11
21 2.1.1 Primary Objective	11
22 2.1.2 Secondary Objectives.....	11
23 2.1.3 Exploratory Objectives.....	11
24 2.2 Endpoints.....	11
25 2.2.1 Primary Endpoint	11
26 2.2.2 Secondary Endpoints.....	11
27 2.2.3 Exploratory Endpoints.....	11
28 3 Patients and Methods	11
29 3.1 Inclusion Criteria	11
30 3.2 Exclusion Criteria.....	13
31 3.3 Screening Procedures	15
32 4 Treatment Plan	15
33 4.1 Premedication Administration	15
34 4.2 Agent Administration.....	15
35 4.3 Rationale for Dose Selection.....	15
36 4.4 Concomitant Medications and Supportive Care	16
37 5 Toxicities, Dose Delays, and Dose Modifications	17
38 5.1 Dose Delays and Modifications	17
39 5.2 Protocol Therapy Discontinuation	17
40 6 Study Evaluations	18
41 6.1 Calendar of Events	18

42	6.2	Biospecimen Studies and Procedures.....	19
43	6.3	Source and Timing of Biospecimen Collections	19
44	6.4	Storage of Biospecimens	19
45	7	Criteria for Disease Evaluation.....	19
46	8	Letermovir Information	19
47	8.1	Letermovir Description and Mechanism of Action	19
48	8.2	Clinical Pharmacology	20
49	8.3	Pharmacokinetics and Drug Metabolism.....	20
50	8.4	Preparation, Storage, and Administration: Oral Formulation	33
51	8.5	Preparation, Storage, and Administration: Intravenous formulation	34
52	8.6	Non Clinical Toxicology.....	36
53	8.6.1	Carcinogenesis, Mutagenesis, Impairment of Fertility	36
54	8.6.2	Animal Toxicology and Pharmacology	36
55	8.7	Clinical Studies	36
56	8.8	Adverse Events.....	41
57	9	Regulatory and Reporting Requirements	43
58	9.1	Adverse Events (AEs).....	43
59	9.2	Serious Adverse Events (SAEs).....	44
60	9.3	Noncompliance	44
61	9.4	Serious Noncompliance	45
62	9.5	Reporting to the OSU IRB.....	45
63	9.6	Reporting to the sponsor.....	45
64	9.7	Reporting to the FDA	45
65	9.8	Timeframe for Reporting Required Events	46
66	9.9	Overdose	47
67	9.10	Pregnancies.....	47
68	9.11	Data and safety monitoring	47
69	9.11.1	Data Submission.....	48
70	9.11.2	Auditing.....	48
71	9.12	Ethical Considerations	48
72	9.13	Retention of records.....	48
73	10	Statistical Methods	48
74	10.1	Study Design and Sample Size Justification	48
75	10.2	Analysis of Primary Objective	49
76	10.3	Analysis of Secondary Objectives	49

77	10.4	Analysis of Exploratory Objectives	50
78	11	References.....	50
79	12	Appendices	54
80	12.1	CMV Disease Definitions Working Group of the Cytomegalovirus Drug Development	
81		Forum54	
82	12.2	Eastern Cooperative Oncology Group Performance Status Scale.....	56
83	12.3	Child-Pugh Classification of liver disease.....	57
84			
85			

TRIAL SUMMARY

TITLE	Letermovir for cytomegalovirus prophylaxis in patients with hematological malignancies treated with alemtuzumab
PHASE	II
OBJECTIVES	<p><u>Primary Objective</u></p> <p>1. To estimate the rate of CMV reactivation in patients treated with letermovir at 3 months after completion of alemtuzumab therapy.</p> <p><u>Secondary Objectives</u></p> <p>1. To evaluate the tolerability of letermovir in combination with alemtuzumab.</p> <p>2. To evaluate the efficacy of letermovir for the prevention of clinically significant CMV disease.</p> <p>4. To estimate the overall survival of patients in the study population</p>
STUDY DESIGN	Single center, single arm, non-randomized
KEY ELIGIBILITY CRITERIA	<p><u>Inclusion Criteria</u></p> <p>1. Confirmed diagnosis of any lymphoid malignancy including, but not limited to, T- or B-PLL, CLL, PTCL, CTCL, Sézary syndrome, or LGLL.</p> <p>2. Intent to treat with alemtuzumab (monotherapy or in combination with chemotherapy).</p> <p>3. Confirmed seropositivity for CMV IgG</p> <p>4. Confirmed lack of active CMV infection as evidenced by CMV DNA PCR \leq 200 IU/mL and no clinical evidence of CMV disease within 14 days of first letermovir dose.</p> <p>5. Age \geq 18 years old</p> <p>6. Able to provide informed consent</p> <p>7. Life expectancy $>$ 4 months</p> <p>8. ECOG performance status \leq 3</p> <p>9. Highly unlikely to become pregnant or impregnate a partner (post-menopausal, sterile, abstinence, or adequate contraceptive method)</p> <p><u>Exclusion Criteria</u></p> <p>1. History of confirmed CMV disease within 1 year of study entry.</p> <p>2. History of prior allogeneic hematopoietic stem cell transplant within 6 months of enrollment. Allogeneic transplant more than 6 months prior to enrollment is allowed as long as the subject is off immunosuppression without active GVHD.</p> <p>3. End stage renal disease with creatinine clearance $<$ 10 mL/min</p> <p>4. Severe hepatic impairment defined as Child-Pugh class C OR AST or ALT $>$ 5 x ULN OR serum total bilirubin $>$ 2.5 x ULN.</p> <p>5. Both moderate hepatic insufficiency AND moderate renal insufficiency defined as Child Pugh Class B AND creatinine clearance less than 50 mL/min</p> <p>6. Cytopenias are NOT an exclusion criteria</p> <p>7. Received antiviral medications with activity against CMV or contraindicated medication within specified windows (see Section 3.2 for details)</p> <p>8. Received cidofovir, CMV hyper-immune globulin, or an investigational anti CMV agent within 30 days.</p>

	<p>9. Infection or underlying disease necessitating ongoing use of prohibited medications (Section 4.4).</p> <p>10. Suspected or known hypersensitivity to active or inactive ingredients of letermovir formulations</p> <p>11. Active HIV, hepatitis B, or hepatitis C infection (see section 3.2 for exceptions)</p> <p>12. Pregnant, breastfeeding, or expecting to conceive.</p> <p>13. Expecting to donate eggs or sperm</p> <p>14. Current or recent participation in a study with an unapproved investigational compound.</p> <p>15. Previous participation in a study using letermovir.</p> <p>16. Any condition which might interfere with subjects participation as judged by investigator.</p>
STATISTICS	<p>The primary objective of this single center, single arm phase II study is to determine the efficacy of letermovir prophylaxis in PLL, CLL, PTCL or CTCL patients treated with alemtuzumab. The efficacy will be measured through the CMV reactivation rate during letermovir prophylaxis (3 months after completion of alemtuzumab therapy). All eligible patients who receive any letermovir will be included in the tolerability analysis, and all patients who receive $\geq 90\%$ of planned letermovir doses are evaluable for the efficacy analysis.</p> <p>Fleming's two-stage design will be used with the following parameters:</p> <ul style="list-style-type: none"> • Null hypothesis: CMV reactivation rate of 30% or higher is not acceptable (70% safety rate) • Alternative hypothesis: CMV reactivation rate of 10% or less is acceptable (90% safety rate) <p>With a one-sided type I error rate of 5% and 85% power, Fleming's two-stage design allows a first-stage analysis after the first 14 patients are enrolled and evaluated:</p> <ul style="list-style-type: none"> • If ≥ 4 CMV reactivations, trial will terminate due to futility • If 0 CMV reactivations, trial will terminate due to efficacy • If 1-3 CMV reactivations, trial will accrue an additional 14 patients. <ul style="list-style-type: none"> ◦ If at least 24 of 28 enrolled patients are CMV free, we will conclude the regimen effective <p>To account for the possibility that some patients will not be evaluable, we will allow a 5% over-accrual for a total target enrollment of 30.</p>
TOTAL NUMBER OF SUBJECTS	14 to 30 depending upon results of interim analysis.
ESTIMATED ENROLLMENT PERIOD	Stage 1: 10 months from first patient enrolled Stage 2: 20 months from first patient enrolled
ESTIMATED STUDY DURATION	Stage 1: 17 months from first patient enrolled Stage 2: 27 months from first patient enrolled

88 **1 BACKGROUND AND RATIONALE**

89 **1.1 Mature T-cell Lymphomas**

90 Approximately 10-15% of non-Hodgkin lymphomas (NHL) are derived from mature (i.e. post-
91 thymic) T lymphocytes [1]. The heterogeneity of these lymphomas and poor understanding of
92 their pathogenesis continue to impede their classification and the development of novel
93 therapeutic strategies.

94 **1.1.1 Peripheral T-cell Lymphoma**

95 The most common subtype of peripheral T-cell lymphoma (PTCL) lacks any distinguishing
96 characteristics and is designated by the World Health Organization as "PTCL, not otherwise
97 specified (PTCL, NOS)" [1, 2]. While the development of combination immunochemotherapy
98 (e.g. "R-CHOP") has led to significant survival benefits in B-cell NHL, the PTCLs are associated
99 with inferior responses to therapy and overall survival [3]. In fact, the vast majority of PTCL
100 patients will ultimately succumb to their disease, most within a few years of diagnosis [1, 2, 4].
101 Novel therapeutic strategies are needed if improved outcomes are to be achieved. The
102 observation that PTCL incidence rates are increasing faster than almost any other subgroup of
103 NHL further heightens this sense of urgency [5, 6].

104 **1.1.2 Cutaneous T-cell Lymphoma**

105 Primary cutaneous T-cell lymphoma (CTCL), of which the two most common forms are mycosis
106 fungoides (MF) and Sézary syndrome (SS), predominantly involves the skin. Most CTCL
107 patients present with limited-stage disease that is confined to the skin (i.e. patches or plaques)
108 and are managed with topical therapies. In contrast, patients with advanced-stage disease with
109 significant blood, nodal or visceral organ involvement are managed with systemic therapies [7].
110 A variety of single agent or combination chemotherapy regimens are utilized, as there is no
111 standard of care for these patients. Therefore, the National Comprehensive Cancer Network
112 (NCCN) guidelines endorse these agents or participation in a clinical trial as first-line therapy in
113 these patients. Median overall survival for patients with stage IV disease ranges from 1.4-3.8
114 years, depending upon the extent of blood, nodal or visceral organ involvement [8]. Five FDA
115 approved agents are currently available for CTCL patients failing at least one prior therapy,
116 including bexarotene, vorinostat, romidepsin, brentuximab vedotin (for CD30 positive disease),
117 and mogamulizumab. These agents are associated with overall response rates of 28-56% [9-15]
118 with generally short duration of response. Despite the use of these novel agents, the long term
119 outlook for most CTCL patients remains grim.

120 **1.1.3 T-cell Prolymphocytic Leukemia**

121 T-cell prolymphocytic leukemia (T-PLL) is a rare T-cell malignancy most often presenting in
122 adult males[16]. While most presentations of this disease are acute, a minority of patients will
123 not require treatment immediately. There is a limited response to conventional chemotherapy
124 with alkylating agents or anthracyclines, with a median overall survival (OS) of 7 months in
125 historical series [16, 17]. In the absence of a clinical trials, patients should be offered
126 alemtuzumab as front line therapy. Alemtuzumab has a high overall response rate >80% in the
127 front line setting [18] and 51-76% in the relapsed setting [19-22]. Even with high response rates,
128 relapse is common in the absence of consolidative therapy. Allogeneic hematopoietic stem cell

129 transplantation is frequently recommended as consolidation therapy with resulted prolongation
130 of overall survival and cure in a minority of cases [23-26]

131 **1.2 Alemtuzumab**

132 Alemtuzumab is a humanized IgG1 kappa monoclonal antibody directed against the CD52
133 antigen, which is mostly expressed by B- and T-lymphocytes. Clinical activity of alemtuzumab
134 has been evaluated in multiple lymphoid malignancies including peripheral T cell lymphoma
135 (PTCL), mycosis fungoides (MF), Sézary syndrome (SS), T-cell prolymphocytic leukemia (T-
136 PLL), and chronic lymphocytic leukemia (CLL)[27].

137 In the relapsed setting, alemtuzumab monotherapy results in 36% overall response rate (ORR)
138 with 21% complete response rate (CRR) in PTCL [28]. Patients with MF/SS have an ORR
139 ranging from 55% to 100% with an average ORR of 65% [29]. Patients with erythrodermic MF or
140 SS have significantly better responses (ORR 85-100%) even with lower doses of alemtuzumab
141 therapy[30, 31]. Alemtuzumab is considered standard front line therapy for symptomatic T-PLL
142 (NCCN guidelines) with ORR of 51-76% and CRR of 40-60% [21, 22]. Alemtuzumab has also
143 been used in combination with various chemotherapeutic agents in the front line and relapsed
144 setting in these diseases including CHOP (cyclophosphamide, doxorubicin, vincristine, and
145 prednisone), EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin),
146 and pentostatin [32-34]. Efficacy is improved with these combinations, but also results in
147 cumulative toxicities.

148 In general, therapy with alemtuzumab is well tolerated, but cytomegalovirus (CMV) reactivation
149 and other infectious complications remain a significant barrier to more widespread clinical use.
150 In clinical trials where data is available, reported rates of CMV reactivation average 30% (see
151 Table 1).

152 **1.3 Cytomegalovirus**

153 Infection with human cytomegalovirus (CMV) is relatively frequent in the human population with
154 a seroprevalence ranging from 45-100% [35]. Following initial exposure, the virus establishes a
155 lifelong latent infection that can periodically reactivate with shedding of infectious virus, although
156 this rarely results in a clinically significant infection in healthy individuals. In contrast,
157 reactivation is responsible for significant mortality and morbidity in immunocompromised
158 patients [35]. CMV replication involves the cleaving of concatameric genomic viral DNA and the
159 packaging of each genome into preformed viral capsids. This process is mediated by the CMV-
160 terminase complex (UL51, UL56, and UL89) [36].

161 Risk factors associated with CMV reactivation include seropositivity of the recipient while
162 undergoing therapy immunosuppressive therapy with autologous or allogeneic transplant or
163 drugs like high dose steroids or alemtuzumab. Clinical manifestations include interstitial
164 pneumonitis, encephalitis, retinitis, fevers, hepatitis, hemorrhagic cystitis and diarrhea [37].
165 Current management focuses on reduction in immunosuppression and initiation of antiviral
166 therapies including ganciclovir, cidofovir, foscarnet, and valganciclovir [37, 38]. Use of these
167 agents, while necessary, carries significant side effect profiles including marrow suppression
168 and nephrotoxicity. Furthermore, the development of antiviral resistance via mutations to CMV
169 UL97 or UL54 genes limits the available agents effective against CMV [38]. Antiviral drug
170 resistance should be suspected in patients who fail to improve (i.e., $>1 \log_{10}$ increase in CMV

171 DNA levels in blood or serum) after 2 weeks of appropriately dosed antiviral therapy [38].
 172 Although the incidence of drug resistant CMV remains low (0-8%)[39, 40], it can still pose
 173 significant challenges to treatment when it occurs. Therefore, novel therapies to reduce the risk
 174 of CMV reactivation are needed in order to avoid serious side effects of antiviral therapies and
 175 to avoid drug resistance to these agents.

176 A review of published studies using alemtuzumab in the target patient population for this trial is
 177 summarized in Table 1. This shows that the CMV reactivation rate in this patient population is
 178 ~30%.

179 **Table 1: Reported rates of CMV reactivation with alemtuzumab in target patient**
 180 **population**

Ref	Population	CMV Reactivation (n)	Total Patients (n)	Reactivation Rate	CMV Proph* Y/N	Chemo Combination Y/N	Front Line Therapy Y/N	Relapsed Therapy Y/N
[34]	PTCL, T-PLL, T-LGL, T-ALL, MF	9	24	38%	Y	Y	Y	Y
[41]	HTLV+ ATLL	29	29	100%	Y	N	Y	Y
[42]	PTCL	5	20	25%	N	Y	Y	N
[43]	PTCL	5	41	12%	N	Y	Y	N
[32]	PTCL	7	20	35%	N	Y	Y	N
[44]	PTCL	12	38	32%	N	Y	Y	Y
[33]	PTCL	16	31	52%	N	Y	Y	N
[45]	T-PLL	13	21	62%	N	Y	Y	N
[46]	PTCL, T-ALL	6	13	46%	N	Y	Y	Y
[47]	PTCL	8	15	53%	N	Y	Y	N
[48]	PTCL	8	24	33%	N	Y	N	Y
[49]	SS	3	5	60%	N	Y	N	Y
[30]	SS	3	14	21%	N	N	Y	Y
[50]	CTCL	10	39	26%	N	N	Y	Y
[51]	T-LGL	6	13	46%	N	N	Y	Y
[20]	CLL, PLL, CTCL, PTCL, T-LGL, MCL, HCL	15	78	19%	N	N	Y	Y
[52]	SS	2	5	40%	N	N	Y	Y
[21]	T-PLL	3	76	4%	N	N	Y	Y
[28]	PTCL	6	14	43%	N	N	N	Y
[53]	CLL, PLL	5	34	15%	N	N	N	Y
[54]	MF, SS	0	10	0%	N	N	N	Y
[55]	PTCL, CTCL	1	10	10%	N	N	N	Y
[56]	MF, SS	1	8	13%	N	N	N	Y
[57]	MF, SS	4	22	18%	N	N	N	Y
[58]	MF, SS	0	18	0%	N	N	N	Y

Ref	Population	CMV Reactivation (n)	Total Patients (n)	Reactivation Rate	CMV Prophy*	Chemo Combination	Front Line Therapy	Relapsed Therapy
[59]	SS	3	6	50%	N	N	N	Y
[60]	PTCL	10	20	50%	NR	Y	Y	N
[61]	PTCL	5	16	31%	NR	Y	N	Y
[62]	PTCL	1	10	10%	NR	Y	N	Y
[18]	T-PLL	2	9	22%	NR	N	Y	N
[22]	T-PLL	1	39	3%	NR	N	Y	Y
[19]	T-PLL	1	15	7%	NR	N	N	Y
[63]	SS	6	13	46%	NR	N	N	Y
[64]	SS	1	1	100%	NR	N	N	Y
[65]	SS	3	6	50%	NR	N	NR	NR
[66]	NHL, PTCL, AML, ALL, MDS, AA	66	180	37%	Variable	Y	Y	Y
TOTAL		276	937	29%				
<p>*CMV prophylaxis defined as planned routine use of: ganciclovir (any dose), valganciclovir (any dose), foscarnet (any dose), acyclovir (>3200 mg by mouth per day or >25 mg/kg IV per day), valacyclovir (>3000 mg by mouth per day), or famciclovir (>1500 mg by mouth daily).</p> <p>Abbreviations: AA = aplastic anemia, ALL = T-cell acute lymphoblastic leukemia, AML = acute myeloid leukemia, ATLL = adult T-cell leukemia/lymphoma, CLL = chronic lymphocytic leukemia, CMV = cytomegalovirus, CTCL = cutaneous T-cell lymphoma, HCL = hairy cell leukemia, HTLV = human T-lymphotropic virus, MCL = mantle cell lymphoma, MDS = myelodysplastic syndrome, MF = mycosis fungoides, N = no, NHL = non-Hodgkin lymphoma, NR = not reported, PLL = prolymphocytic leukemia, Prophy = prophylaxis, PTCL = peripheral T cell lymphoma, SS = Sézary syndrome, T-LGL = T-cell large granular lymphocytic leukemia, Y = yes</p>								

181 1.4 Letermovir

182 Letermovir is a highly potent anti-CMV agent recently FDA approved for anti-CMV prophylaxis
 183 post-transplant based on the results of a recent randomized phase 3 trial [67]. Letermovir
 184 inhibits CMV replication by binding components of the terminase complex resulting in impaired
 185 cleavage and packaging of viral DNA into capsids [68, 69].

186 In the trial leading to FDA approval, 565 CMV seropositive patients without detectable CMV
 187 DNA at baseline undergoing allogeneic hematopoietic stem cell transplantation were
 188 randomized to receive letermovir prophylaxis or placebo through week 14 after transplantation.
 189 Patients treated with letermovir experienced a statistically significant decrease in clinically
 190 significant CMV infection compared to placebo (37.5% vs 60.6%, P<0.001). Additionally, the
 191 frequency and severity of adverse events were statistically similar between the two groups
 192 overall. Patients in the letermovir group may have experienced slightly higher rates of nausea
 193 and vomiting, peripheral edema, and atrial fibrillation. Importantly, the use of letermovir
 194 prophylaxis was associated with a trend toward lower all-cause mortality compared to placebo
 195 in this trial and this was confirmed in a post hoc analysis of survival [70].

196 Based on these data and the high rate of CMV reactivation following alemtuzumab therapy, we
197 propose the following phase 2 clinical trial of letermovir prophylaxis in patients with hematologic
198 malignancies receiving alemtuzumab.

199 **2 OBJECTIVES AND ENDPOINTS**

200 **2.1 Objectives**

201 **2.1.1 Primary Objective**

202 1. To estimate the rate of CMV reactivation in patients treated with letermovir at 3 months
203 after completion of alemtuzumab therapy.

204 **2.1.2 Secondary Objectives**

205 1. To evaluate the tolerability of letermovir in combination with alemtuzumab
206 2. To evaluate the efficacy of letermovir for the prevention of clinically significant CMV
207 disease
208 3. To estimate the overall survival of patients in the study population

209 **2.1.3 Exploratory Objectives**

210 1. To evaluate mechanisms of antiviral resistance in letermovir prophylaxis failures.

211 **2.2 Endpoints**

212 **2.2.1 Primary Endpoint**

213 1. CMV reactivation as defined in section 10.2.

214 **2.2.2 Secondary Endpoints**

215 1. Adverse events (AEs) using NCI Common Terminology Criteria for Adverse Events
216 (CTCAE) version 5.
217 2. Development of CMV disease per the Disease Definitions Working Group of the
218 Cytomegalovirus Drug Development Forum [71] (Appendix 12.1)
219 3. Overall survival as defined in section 10.3

220 **2.2.3 Exploratory Endpoints**

221 1. Genotyping to evaluate mutations in CMV terminase complex genes (UL51, UL56,
222 UL89) [72-79]

223 **3 PATIENTS AND METHODS**

224 **3.1 Inclusion Criteria**

225 1. Confirmed diagnosis of any lymphoid malignancy including, but not limited to, T-cell or
226 B-cell prolymphocytic leukemia, chronic lymphocytic leukemia, peripheral T-cell
227 lymphoma, cutaneous T-cell lymphoma, Sézary syndrome, or large granular lymphocytic
228 leukemia.

229 2. Intent to treat with alemtuzumab. Monotherapy or combination with chemotherapy is
230 allowed.

231 3. Confirmed seropositivity for CMV IgG (≥ 0.7 U/mL) within 1 year of first letermovir dose.

232 4. Confirmed lack of active CMV infection as evidenced by CMV DNA PCR ≤ 200 IU/mL
233 and no clinical evidence of CMV disease within 14 days of first letermovir dose.

234 5. Age ≥ 18 years old

235 6. Able to provide informed consent.

236 7. Life expectancy >4 months

237 8. Eastern Cooperative Oncology Group (ECOG) performance status ≤ 3 (Appendix 12.2)

238 9. Highly unlikely to become pregnant or impregnate a partner by meeting at least one of
239 the following:

240 a. A female subject who is not of reproductive potential is eligible without requiring
241 the use of contraception. A female subject who is not of reproductive potential is
242 defined as one who:

243 i. has reached natural menopause (defined as 6 months of spontaneous
244 amenorrhea with serum follicle-stimulating hormone [FSH] levels in the
245 postmenopausal range as determined by the local laboratory, or 12
246 months of spontaneous amenorrhea)

247 OR

248 ii. is 6 weeks post-surgical bilateral oophorectomy with or without
249 hysterectomy

250 OR

251 iii. has undergone bilateral tubal ligation. Spontaneous amenorrhea does not
252 include cases for which there is an underlying disease that causes
253 amenorrhea (e.g., anorexia nervosa).

254 b. A male subject who is not of reproductive potential is eligible without requiring the
255 use of contraception. A male subject who is not of reproductive potential is
256 defined as one whom has undergone a successful defined as:

257 i. microscopic documentation of azoospermia

258 OR

259 ii. a vasectomy more than 2 years ago with no resultant pregnancy despite
260 sexual activity post-vasectomy

261 c. A male or female subject who is of reproductive potential agrees to true
262 abstinence or to use (or have their partner use) an acceptable method of birth
263 control starting from the time of consent through 90 days after the last dose of
264 study therapy. True abstinence is defined as abstinence in line with the preferred
265 and usual lifestyle of the subject. Periodic abstinence (e.g., abstinence only on
266 certain calendar days, abstinence only during ovulation period, use of
267 symptothermal method, use of post-ovulation methods) and withdrawal are not
268 acceptable methods of contraception. Acceptable methods of birth control are:

269 i. intrauterine device (IUD), diaphragm with spermicide, contraceptive
270 sponge, condom, and vasectomy OR use of appropriate double barrier

273 3.2 Exclusion Criteria

274 1. History of confirmed CMV disease within 1 year of study entry.

275 2. History of prior allogeneic hematopoietic stem cell transplant within 6 months of trial

276 enrollment. Subjects who have undergone allogeneic transplant more than 6 months

277 prior to enrollment are eligible as long as the subject is off immunosuppression without

278 active GVHD.

279 3. End stage renal disease with creatinine clearance < 10 mL/min as defined by Cockcroft-

280 Gault equation using serum creatinine within 7 days of enrollment

a. Creatinine clearance (males) = $\frac{(\text{Weight in kg})(140-\text{age})}{(72)(\text{creatinine in mg/dL})}$

b. Creatinine clearance (females) = $\frac{(\text{Weight in kg})(140-\text{age})}{(72)(\text{creatinine in mg/dL})} * 0.85$

283 4. Severe hepatic impairment defined as:

284 a. Child-Pugh class C (see appendix 12.2) within 7 days of enrollment

285 b. Serum aspartate aminotransferase (AST) or alanine aminotransferase (ALT) > 5

286 times the upper limit of normal (ULN) or serum total bilirubin > 2.5 x ULN.

287 **Note:** Subjects who meet this exclusion criterion may, at the discretion of the
288 investigator, have one repeat testing done. If the repeat value does not meet this
289 criterion, they may continue in the screening process. Only the specific out of
290 range value should be repeated (not the entire panel).

291 5. Both moderate hepatic insufficiency AND moderate renal insufficiency:

292 a. Moderate hepatic insufficiency is defined as Child Pugh Class B (see Appendix
293 12.2)

294 b. Moderate renal insufficiency is defined as a creatinine clearance less than 50
295 mL/min, as calculated by the Cockcroft-Gault equation (as above)

296 6. Cytopenias are NOT an exclusion criteria in this trial as cytopenias are common in this
297 patient population and letermovir has no known adverse effects on blood counts.
298 Patients will be treated per institutional standard of care with as needed transfusions and
299 growth factor support.

300 7. Received any of the following drugs within 7 days of enrollment or plans to receive any
301 of the following during the study:

302 a. ganciclovir

303 b. valganciclovir

304 c. foscarnet

305 d. acyclovir (at doses > 3200 mg PO per day or > 25 mg/kg IV per day)

306 e. valacyclovir (at doses > 3000 mg PO per day)

307 f. famciclovir (at doses > 1500 mg PO per day)

308 g. Cyclosporine A

349 **3.3 Screening Procedures**

350 Patients may be screened for study entry when the determination has been made by the
351 treating physician that they need therapy with alemtuzumab. Application to receive
352 alemtuzumab for compassionate use would be started by the treating physician team, as per
353 standard of care, while patient is being screened for trial. Application for compassionate use of
354 alemtuzumab can be accessed here: <https://www.campathproviderportal.com>.

355 **4 TREATMENT PLAN**

356 **4.1 Premedication Administration**

357 No premedication is necessary for letermovir.

358 **4.2 Agent Administration**

359 Letermovir will be administered at 480 mg by mouth daily starting up to two weeks after the first
360 administration of alemtuzumab. Treatment will continue for 3 months after the last dose of
361 alemtuzumab is given.

362 If for any reason, the subject is unable to take the oral formulation of letermovir for an extended
363 period of time, the intravenous (IV) formulation of letermovir may be used. Simultaneous use of
364 IV and oral study therapy is not allowed. The IV formulation should be switched to oral study
365 therapy (i.e., at the next planned dose) as soon as such subjects are able to swallow and/or the
366 condition necessitating the use of the IV formulation resolve.

367 Study therapy with letermovir may begin as early as the first day of alemtuzumab infusion to no
368 later than 14 days after the first alemtuzumab infusion, once the subject is determined to be
369 negative for active CMV infection as outlined in the inclusion criteria. Letermovir should continue
370 through 90 days after the final planned alemtuzumab infusion.

371 Study therapy should be administered at the same time each day. Tablets are to be swallowed
372 whole (i.e., no crushing or chewing the tablet is allowed). Study therapy may be administered
373 with or without food.

374 If a subject misses a dose, the missed dose should be given as soon as possible during the
375 same day. If more than 18 hours have gone by after the regular dosing time, then the missed
376 dose should be skipped and the normal dosing schedule should be resumed. The next dose
377 should not be doubled in order to "make up" what has been missed.

378 Study therapy can be administered with or without food. Subjects must avoid consumption of
379 grapefruit, Seville oranges or their respective juices, and other quinine-containing drinks or food
380 during the trial from 2 weeks prior to study drug administration until 72 hours after the final
381 administration of study drug.

382 **4.3 Rationale for Dose Selection**

383 Please refer to the letermovir package insert for further details of preclinical data and study
384 results in humans.

385 Letermovir belongs to a new class of anti-CMV agents which have a different mechanism of
386 action compared to currently available drugs for the treatment of CMV infection. By inhibiting the
387 viral terminase complex, the drug plays a key role in cleavage and packaging of genomic virus
388 DNA into provirions.

389 Letermovir is anticipated to be efficacious based on both the *in vitro* potency of letermovir as
390 well as its *in vivo* efficacy for CMV prophylaxis in a Phase III trial in allogeneic hematopoietic
391 stem cell transplantation (HSCT) recipients [67]. In this trial, 565 CMV seropositive patients
392 without detectable CMV DNA at baseline undergoing allogeneic HSCT were randomized to
393 receive letermovir prophylaxis (480 mg daily or 240 mg daily or patients concomitantly receiving
394 CsA) or placebo through week 14 after transplantation. Patients treated with letermovir
395 experienced a statistically significant decrease in clinically significant CMV infection compared
396 to placebo (37.5% vs 60.6%, P<0.001). Additionally, the frequency and severity of adverse
397 events were statistically similar between the two groups overall. Patients in the letermovir group
398 may have experienced slightly higher rates of nausea and vomiting, peripheral edema, and
399 atrial fibrillation.

400 Based on all available safety data, letermovir efficacy in the Phase II and III studies, and the
401 exposure-response data, this study will use a dose of 480 mg daily. Patients who have had
402 allogeneic transplant within 6 months prior to trial enrollment and patients receiving cyclosporine
403 A (CsA) are excluded; phase I studies have demonstrated that co-administration of letermovir
404 with CsA increases letermovir exposure ~3 fold. Patients who have undergone allogeneic
405 transplant more than 6 months prior to enrollment are eligible as long as the subject is off
406 immunosuppression without active GVHD.

407 **4.4 Concomitant Medications and Supportive Care**

408 **Allowed Medications/Therapies**

409 The following medications/therapies are **allowed** in this study:

- 410 • Standard antimicrobial prophylaxis (e.g., levofloxacin for bacteria, fluconazole/
411 voriconazole/posaconazole for fungi)
- 412 • Acyclovir, valacyclovir, or famciclovir for prophylaxis of herpes simplex virus (HSV) or
413 varicella zoster virus (VZV) infections at doses no greater than prohibited doses of these
414 medications (see below)

415 **Prohibited Medications/Therapies**

416 The following medications/therapies are **prohibited** in this study:

417 ***Antiviral drugs or therapies for prevention/treatment of CMV, including but not limited to:***

- 418 • ganciclovir
- 419 • valganciclovir
- 420 • foscarnet
- 421 • cidofovir
- 422 • acyclovir (at doses > 3200 mg PO per day or > 25 mg/kg IV per day)

423 • valacyclovir (at doses > 3000 mg PO per day)
424 • famciclovir (at doses > 1500 mg PO per day)
425 • CMV hyper-immune globulin
426 • any investigational CMV antiviral agent/biologic therapy
427 • CMV vaccine

428 *Investigational Agents*

429 Investigational agents are not permitted with the following exceptions: (1) Investigational
430 chemotherapy regimens involving approved agents and (2) investigational antimicrobial
431 regimens involving approved antibacterial/antifungal/antiviral agents.

432 *Other Agents:*

433 • Cyclosporine A
434 • Pimozide
435 • Ergot alkaloids (ergotamine and dihydroergotamine)
436 • Atorvastatin at doses greater than 20 mg daily (see Table 5)

437 **Medications/Treatments to be Administered with Caution**

438 Preclinical studies suggest MK-8228 acts as a weak to moderate inhibitor of cytochrome
439 (CYP)3A4, CYP2C8, CYP2B6 and the transporters OATP1B1 and OATP1B3. It is therefore
440 possible that MK-8228 may increase the exposure of co-administered drugs whose primary
441 route of clearance involves these enzymes or transporters. Please see Table 5 (section 8.3)
442 for a list of potentially clinically significant drug interactions.

443 **5 TOXICITIES, DOSE DELAYS, AND DOSE MODIFICATIONS**

444 The NCI Common Terminology Criteria for Adverse Events (CTCAE) v5 will be used to grade
445 adverse events.

446 Subjects enrolled in this study will be evaluated clinically and with standard laboratory tests
447 before and at regular intervals during their participation in this study as specified in Study
448 Calendar & Evaluations.

449 Subjects will be evaluated for adverse events (all grades), serious adverse events, and adverse
450 events requiring study drug interruption or discontinuation as specified in Study Calendar &
451 Evaluations (section 6).

452 **5.1 Dose Delays and Modifications**

453 Dose modifications are not allowed on trial.

454 **5.2 Protocol Therapy Discontinuation**

455 Subjects may withdraw consent at any time for any reason or be dropped from the trial at the
456 discretion of the investigator should any untoward effect occur. In addition, a subject may be

457 withdrawn by the investigator or the Sponsor if enrollment into the trial is inappropriate, the trial
458 plan is violated, or for administrative and/or other safety reasons.

459 A subject must be discontinued from the trial for any of the following reasons:

460 • CMV reactivation as defined in section 10.2 at any time during the study period, study
461 therapy will be discontinued and the subject may be treated according to the local
462 standard of care (outside the context of the study). In this setting, any of the prohibited
463 anti-CMV medications (outlined in section 4.4) may be used.

464 • The subject becomes pregnant during the study

465 • The subject's investigator feels it is in the best interest of the subject to discontinue.

466 A subject may be discontinued from therapy for any of the following reasons:

467 • Any AE/SAE assessed by the physician investigator as possibly or probably related to
468 study therapy. Investigator may continue the subject in the trial if it is deemed to be in the
469 best interest of the subject to stay on study therapy.

470 • Failure to comply with the dosing, evaluations, or other requirements of the trial.

471 • The subject has a medical condition or personal circumstance which, in the opinion of the
472 investigator and/or Sponsor, places the subject at unnecessary risk through continued
473 participation in the trial or does not allow the subject to adhere to the requirements of the
474 protocol.

475 **6 STUDY EVALUATIONS**

476 **6.1 Calendar of Events**

Cycle = 28 days	Screen (-28 days)	On Treatment ¹	At CMV reactivation ²	AE follow up ³
REQUIRED ASSESSMENTS				
Review of eligibility criteria, informed consent	X			
Medical history	X			
ECOG PS ⁴	X			
Physical exam, vital signs ⁵	X	X	X	X
AEs, concomitant medications	X	X	X	X
Drug diary		X	X	
Assessment of contraception method ⁶	X			
CMV disease assessment ⁷			X	X
LABORATORY ASSESSMENTS				
Complete blood cell count with differential (CBC)	X	X	X	X
Comprehensive metabolic profile (CMP) ⁸	X	X	X	X
Prothrombin time (INR)	X			
Urine pregnancy test in WOCBP	X	X	X	X
HIV, hepatitis B, and hepatitis C screen ⁹	X			

CMV IgG ¹⁰	X			
CMV viral load ¹¹ (at least every other week, weekly preferred)	X	X	X	X
CORRELATIVE STUDIES (SPECIMEN COLLECTION)				
CMV Genotyping			X	
<ol style="list-style-type: none"> 1. On study visits will occur every 28 days (+/- 7 days). Treatment with letermovir should be continued for 90 after the last dose of alemtuzumab. 2. CMV reactivation defined as CMV DNA by real time polymerase chain reaction >500 IU/mL 3. AE follow up to occur 30 days (+/- 7 days) from last dose of letermovir therapy. If patients have any ongoing toxicity related to letermovir, investigator should continue to monitor and provide appropriate supportive care. If patient has active CMV infection or reactivation, investigator should continue to monitor and provide appropriate treatment including antiviral therapy. 4. See Appendix 12.2 5. Vital signs include height, weight, blood pressure, heart rate, respiratory rate, temperature 6. See section 3.1 for acceptable methods of contraception 7. CMV disease assessment is a focused history and physical exam guided by known manifestations of CMV disease (see Appendix 12.1). CMV disease assessment is to be performed if reactivation occurs as defined in Section 10.2. 8. CMP should include at least the following: sodium, potassium, chloride, creatinine, glucose, calcium, phosphorus, total bilirubin, AST, ALT, alkaline phosphatase, albumin. 9. Screening to be completed with: HIV antibody, hepatitis B surface antibody, hepatitis B surface antigen, hepatitis B core antibody, hepatitis C antibody. If hepatitis B surface antigen or core antibody is positive, hepatitis B viral load quantification with PCR should be ordered; if hepatitis C antibody is positive, viral load quantification by PCR should be ordered. 10. CMV IgG seropositivity may be confirmed up to 1 year prior to starting letermovir. 11. CMV viral load testing by PCR will be completed <u>at least every other week</u> while on therapy with letermovir. Weekly monitoring is preferred but can be reduced to every 2 weeks at the investigator's discretion. Window for screening is within 2 weeks of first dose of letermovir. 				

477 6.2 Biospecimen Studies and Procedures

478 The correlative studies will include genotyping to evaluate mutations in CMV terminase complex
 479 genes (UL51, UL56, UL89) through Viracor.

480 6.3 Source and Timing of Biospecimen Collections

481 Peripheral blood of approximately 10 ml in EDTA (lavender top) tube will be inverted to mix anti-
 482 coagulant and then kept at room temperature until transport to the OSU Leukemia Tissue Bank
 483 (LTB). Plasma and PBMCs will be separated and cryopreserved by standard methods. Samples
 484 will be labeled with the study time point, collection date and protocol number as well as study
 485 participant number. Frozen plasma samples would be batch analyzed after the completion of
 486 the study for CMV genotyping studies.

487 6.4 Storage of Biospecimens

488 Samples will be stored in OSU LTB.

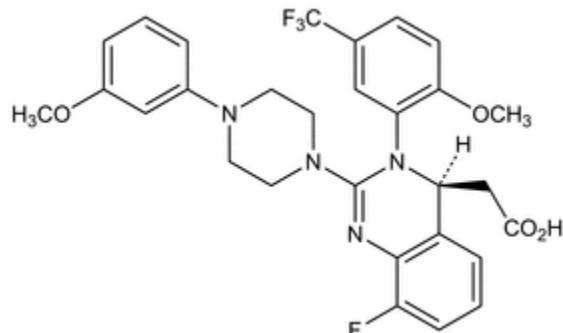
489 7 CRITERIA FOR DISEASE EVALUATION

490 CMV reactivation is defined in section 10.2. CMV disease will be defined as in Disease
 491 Definitions Working Group of the Cytomegalovirus Drug Development Forum [71] (Appendix
 492 12.1).

493 8 LETERMOVIR INFORMATION

494 8.1 Letermovir Description and Mechanism of Action

495 Letermovir inhibits the CMV DNA terminase complex (pUL51, pUL56, and pUL89) which is
 496 required for viral DNA processing and packaging. Biochemical characterization and electron


497 microscopy demonstrated that letermovir affects the production of proper unit length genomes
498 and interferes with virion maturation. Genotypic characterization of virus resistant to letermovir
499 confirmed that letermovir targets the terminase complex.

500 The median EC50 value of letermovir against a collection of clinical CMV isolates in a cell-
501 culture model of infection was 2.1 nM (range = 0.7 nM to 6.1 nM, n = 74). There was no
502 significant difference in EC50 value by CMV gB genotype (gB1=29; gB2=27; gB3=11; and
503 gB4=3). No antagonism of the antiviral activity was seen when letermovir was combined with
504 CMV DNA polymerase inhibitors (cidofovir, foscarnet, or ganciclovir).

505 **8.2 Clinical Pharmacology**

506 Letermovir has a molecular formula of C₂₉H₂₈F₄N₄O₄ and a molecular weight of 572.55. The
507 chemical name for letermovir is (4S)-2-[8-Fluoro-2-[4-(3-methoxyphenyl)piperazin-1-yl]-3-[2-
508 methoxy-5-(trifluoromethyl)phenyl]-3,4-dihydroquinazolin-4-yl] acetic acid. Letermovir is very
509 slightly soluble in water.

510 The chemical structure of letermovir is:

511

512

513 **8.3 Pharmacokinetics and Drug Metabolism**

514 The pharmacokinetic properties of letermovir are displayed in Table 2.

515 Table 2: Absorption, Distribution, Metabolism, Elimination (ADME), and Pharmacokinetic
516 Properties of letermovir

Pharmacokinetics in HSCT Recipients	
Treatment Regimen	Steady-state median (90% prediction interval) AUC (ng•hr/mL) of letermovir
480 mg oral once daily, no cyclosporine	34,400 (16,900, 73,700)
480 mg IV once daily, no cyclosporine	100,000 (65,300, 148,000)
240 mg oral once daily, with cyclosporine	60,800 (28,700, 122,000)
240 mg IV once daily, with cyclosporine	70,300 (46,200, 106,000)
Pharmacokinetics in Healthy Subjects	

Treatment Regimen	Steady-state geometric mean AUC and Cmax of letermovir
480 mg oral once daily	Cmax: 13,000 ng/mL AUC: 71,500 ng•hr/mL
Dose proportionality	Greater than proportional following single and multiple oral or IV doses of letermovir 240 mg and 480 mg
Accumulation ratio [†]	Cmax: 1.03 AUC: 1.22
Time to steady-state	9-10 days
Absorption	
Bioavailability	Healthy subjects administered letermovir without cyclosporine: 94% at an oral dose range of 240 mg to 480 mg HSCT recipients administered letermovir without cyclosporine: 35% with 480 mg oral once daily HSCT recipients administered letermovir with cyclosporine: 85% with 240 mg oral once daily
Median Tmax (hr)	45 min to 2.25 hr
Effect of food (relative to fasting) [‡]	AUC: 99.63% [84.27% - 117.80%] Cmax: 129.82% [104.35% - 161.50%]
Distribution	
Mean steady-state volume of distribution	45.5 L following IV administration in HSCT recipients
% <i>In vitro</i> bound to human plasma proteins	99% across the concentration range of 0.2 to 50 mg/L
<i>In vitro</i> blood-to plasma ratio	0.56 across the concentration range of 0.1 to 10 mg/L
Metabolism	
<i>In vitro</i> metabolism	UGT1A1/1A3 (minor)
Drug-related component in plasma	97% unchanged parent No major metabolites detected in plasma
Elimination	
Route of elimination	Hepatic uptake (OATP1B1/3)
Mean terminal t _{1/2} (hr)	12 hrs after dosing of letermovir 480 mg IV once daily
% of dose excreted in feces [§]	93%

% of dose excreted in urine [§]	<2%
% of unchanged drug excreted in feces [§]	70%

* Values were obtained in studies of healthy subjects unless otherwise indicated.
† Based on geometric mean data.
‡ Values refer to geometric mean ratio [fed/fasted] percentage and 90% confidence interval back transformed from linear mixed-effects model performed on natural log-transformed values. The meal administered was a standard high fat and high calorie meal (33 grams protein, 65 grams carbohydrates, 58 grams fat; 920 total calories).
§ Single oral administration of radiolabeled letermovir in mass balance study.

517

518 **Specific Populations**

519 ***Pediatric Population***

520 The pharmacokinetics of letermovir in patients less than 18 years of age have not been
521 evaluated.

522 ***Age, Gender, Race, and Weight***

523 Age (18 to 78 years), gender, race (White vs. non-White), and body weight (up to 100 kg) did
524 not have a clinically significant effect on the pharmacokinetics of letermovir.

525 ***Renal Impairment***

526 Letermovir AUC was approximately 1.9-and 1.4-fold higher in subjects with moderate (eGFR
527 greater than or equal to 30 to 59 mL/min/1.73m²) and severe (eGFR less than 30
528 mL/min/1.73m²) renal impairment, respectively, compared to healthy subjects.

529 Hydroxypropyl betadex present in the intravenous letermovir formulation is mainly eliminated by
530 glomerular filtration. Decreased elimination of hydroxypropyl betadex has been reported in the
531 literature in patients with severe renal impairment.

532 ***Hepatic Impairment***

533 Letermovir AUC was approximately 1.6-and 3.8-fold higher in subjects with moderate (Child-
534 Pugh Class B [CP-B], score of 7-9) and severe (Child-Pugh Class C [CP-C], score of 10-15)
535 hepatic impairment, respectively, compared to healthy subjects.

536 ***Drug Interaction Studies***

537 Drug interaction studies were performed in healthy subjects with letermovir and drugs likely to
538 be co-administered or drugs commonly used as probes for pharmacokinetic interactions (see

539 Table **3** and

540 Table 4).

541 *In vitro* results indicate that letermovir is a substrate of drug metabolizing enzymes CYP3A,
542 CYP2D6, UGT1A1, and UGT1A3, and transporters OATP1B1/3 and P-gp. Oxidative
543 metabolism is considered to be a minor elimination pathway based on *in vivo* human data.
544 Inhibitors of OATP1B1/3 may result in increases in letermovir plasma concentrations. Changes
545 in letermovir plasma concentrations due to inhibition of P-gp or UGTs are not anticipated to be
546 clinically relevant.

547 Based on *in vitro* studies, the metabolism of letermovir is not mediated by CYP1A2, CYP2A6,
548 CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP4A11, UGT1A4, UGT1A6,
549 UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, or UGT2B17. The
550 transport of letermovir is not mediated by OATP2B1, OCT1, OAT1, BCRP, or MRP2 *in vitro*.

551 Letermovir is a time-dependent inhibitor and inducer of CYP3A *in vitro*. Co-administration of
552 letermovir with midazolam resulted in increased exposure of midazolam, indicating that the net
553 effect of letermovir on CYP3A is moderate inhibition (see

554 Table 4). Based on these results, co-administration of letermovir with CYP3A substrates may
555 increase the plasma concentrations of the CYP3A substrates (see

556 Table 4). Letermovir is a reversible inhibitor of CYP2C8 *in vitro*. When co-administered with
557 letermovir, plasma concentrations of CYP2C8 substrates are predicted to be increased (see

558 Table 4). Co-administration of letermovir reduced the exposure of voriconazole, most likely due
559 to the induction of voriconazole elimination pathways, CYP2C9 and CYP2C19. Co-
560 administration of letermovir with CYP2C9 and CYP2C19 substrates may decrease the plasma
561 concentrations of the CYP2C9 and CYP2C19 substrates (see Table 5). Letermovir is an inducer
562 of CYP2B6 *in vitro*; the clinical relevance is unknown.

563 Letermovir inhibited efflux transporters P-gp, breast cancer resistance protein (BCRP), bile salt
564 export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), OAT3, and hepatic
565 uptake transporter OATP1B1/3 *in vitro*. Co-administration of letermovir with substrates of
566 OATP1B1/3 transporters (e.g. atorvastatin, a known substrate of CYP3A, OATP1B1/3, and
567 potentially BCRP) may result in a clinically relevant increase in plasma concentrations of
568 OATP1B1/3 substrates (see Table 5). There were no clinically relevant changes in plasma
569 concentrations of digoxin, a P-gp substrate, or acyclovir, an OAT3 substrate, following co-
570 administration with letermovir in clinical studies (see

571 Table 4). The effect of letermovir on BCRP, BSEP, and MRP2 substrates was not evaluated in
572 clinical studies; the clinical relevance is unknown.

573 Based on *in vitro* results letermovir is not an inhibitor of CYP1A2, CYP2A6, CYP2C9, CYP2C19,
574 CYP2D6, CYP2E1, UGT1A4, UGT1A6, UGT1A9, or UGT2B7 and is not an inducer of CYP1A2.
575 Letermovir is not an inhibitor of MRP2, OATP2B1, BSEP, OCT1, OCT2, or OAT1 *in vitro*.

576

577 **Table 3: Drug Interactions: Changes in Pharmacokinetics of Letermovir in the Presence**
 578 **of Co-administered Drug**

Co-administered Drug	Regimen of Co-administered Drug	Letermovir Regimen	Geometric Mean Ratio [90% CI] of Letermovir PK with/without Co-administered Drug (No Effect=1.00)		
			AUC	Cmax	C24hr*
Immunosuppressants					
cyclosporine	200 mg single dose PO	240 mg once daily PO	2.11 (1.97, 2.26)	1.48 (1.33, 1.65)	2.06 (1.81, 2.35)
mycophenolate mofetil	1 g single dose PO	480 mg once daily PO	1.18 (1.04, 1.32)	1.11 (0.93, 1.34)	1.39 (1.12, 1.74)
tacrolimus	5 mg single dose PO	80 mg twice daily PO	1.02 (0.97, 1.07)	0.92 (0.84, 1.00)	1.02 (0.93, 1.12)

Abbreviations: PO= oral
 * C12hr for tacrolimus

579

580

581 **Table 4: Drug Interactions: Changes in Pharmacokinetics for Co-administered Drug in the**
 582 **Presence of Letermovir**

Co-administered Drug	Regimen of Co-administered Drug	Letermovir Regimen	Geometric Mean Ratio [90% CI] of Co-administered Drug PK with/without Letermovir (No Effect=1.00)		
			AUC	Cmax	C24hr*
CYP3A Substrates					
midazolam	1 mg single dose IV	240 mg once daily PO	1.47 (1.37, 1.58)	1.05 (0.94, 1.17)	2.74 (2.16, 3.49)
midazolam	2 mg single dose PO	240 mg once daily PO	2.25 (2.04, 2.49)	1.72 (1.54, 1.92)	Not available
P-gp Substrates					
digoxin	0.5 mg single dose PO	240 mg twice daily PO	0.88 (0.80, 0.96)	0.75 (0.63, 0.89)	0.90 (0.84, 0.96)
Immunosuppressants					
cyclosporine	50 mg single dose PO	240 mg once daily PO	1.66 (1.51, 1.82)	1.08 (0.97, 1.19)	2.19 (1.80, 2.66)
mycophenolate mofetil	1 g single dose PO	480 mg once daily PO	1.08 (0.97, 1.20)	0.96 (0.82, 1.12)	1.04 (0.86, 1.27)
tacrolimus	5 mg single dose PO	480 mg once daily PO	2.42 (2.04, 2.88)	1.57 (1.32, 1.86)	2.53 (2.12, 3.03)
sirolimus	2 mg single dose PO	480 mg once daily PO	3.40 (3.01, 3.85)	2.76 (2.48, 3.06)	3.15 (2.80, 3.55)
Antifungals and Antivirals					
acyclovir	400 mg single dose PO	480 mg once daily PO	1.02 (0.87, 1.2)	0.82 (0.71, 0.93)	1.13 (0.94, 1.36)
posaconazole	300 mg single dose PO	480 mg once daily PO	0.98 (0.82, 1.17)	1.11 (0.95, 1.29)	1.10 (0.94, 1.30)
voriconazole	200 mg twice daily PO	480 mg once daily PO	0.56 (0.51, 0.62)	0.61 (0.53, 0.71)	0.49 (0.42, 0.57)
HMG-CoA Reductase Inhibitors					
atorvastatin	20 mg single dose PO	480 mg once daily PO	3.29 (2.84, 3.82)	2.17 (1.76, 2.67)	3.62 (2.87, 4.55)
Oral Contraceptives					
ethinyl estradiol (EE) /levonorgestrel (LNG)	0.03 mg EE single dose PO	480 mg once daily PO	1.42 (1.32, 1.52)	0.89 (0.83, 0.96)	1.57 (1.45, 1.70)
	0.15 mg LNG single dose PO		1.36 (1.30, 1.43)	0.95 (0.86, 1.04)	1.38 (1.32, 1.46)
Abbreviations: PO=oral * C12hr reported for voriconazole.					

584 **Table 5: Potentially Significant Drug Interactions: Alteration in Dose May Be**
 585 **Recommended Based on Results from Drug Interaction Studies or Predicted**
 586 **Interactions* (Information in the Table Applies to Co-administration of Letermovir and the**
 587 **Concomitant Drug without Cyclosporine, Unless Otherwise Indicated)**

Concomitant Drug Class and/or Clearance Pathway: Drug Name	Effect on Concentration [†]	Clinical Comments
Anti-arrhythmic agents		
amiodarone	↑ amiodarone	Close clinical monitoring for adverse events related to amiodarone is recommended during co-administration. Frequently monitor amiodarone concentrations when amiodarone is co-administered with letermovir.
Anticoagulants		
warfarin	↓ warfarin	When letermovir is co-administered with warfarin, frequently monitor International Normalized Ratio (INR) [§] .
Anticonvulsants		
phenytoin	↓ phenytoin	When letermovir is co-administered with phenytoin, frequently monitor phenytoin concentrations [§] .
Antidiabetic agents		
Examples: glyburide, repaglinide, rosiglitazone	↑ glyburide ↑ repaglinide ↑ rosiglitazone	When letermovir is co-administered with glyburide, repaglinide, or rosiglitazone, frequently monitor glucose concentrations [§] . When letermovir is co-administered with cyclosporine, use of repaglinide is not recommended.
Antifungals		
voriconazole [‡]	↓ voriconazole	If concomitant administration of voriconazole is necessary, closely monitor for reduced effectiveness of voriconazole [§] .
Antimycobacterial		
rifampin	↓ letermovir	Co-administration of letermovir and rifampin is not recommended.
Antipsychotics		

pimozide	↑ pimozide	Co-administration is contraindicated due to risk of QT prolongation and torsades de pointes
Ergot alkaloids		
ergotamine, dihydroergotamine	↑ ergotamine, dihydroergotamine	Co-administration is contraindicated due to risk of ergotism
HMG-CoA Reductase Inhibitors		
atorvastatin [‡]	↑ atorvastatin	When letermovir is co-administered with atorvastatin, do not exceed an atorvastatin dosage of 20 mg daily [§] . Closely monitor patients for myopathy and rhabdomyolysis. When letermovir is co-administered with cyclosporine, use of atorvastatin is not recommended.
pitavastatin, simvastatin	↑ HMG-CoA reductase inhibitors	Co-administration of letermovir and pitavastatin or simvastatin is not recommended. When letermovir is co-administered with cyclosporine, use of either pitavastatin or simvastatin is contraindicated due to significantly increased pitavastatin or simvastatin concentrations and risk of myopathy or rhabdomyolysis
fluvastatin, lovastatin, pravastatin, rosuvastatin	↑ HMG-CoA reductase inhibitors	When letermovir is co-administered with these statins, a statin dosage reduction may be necessary [§] . Closely monitor patients for myopathy and rhabdomyolysis. When letermovir is co-administered with cyclosporine, use of lovastatin is not recommended. When letermovir is co-administered with cyclosporine, refer to the statin prescribing information for specific statin dosing recommendations.
Immunosuppressants		
cyclosporine [‡]	↑ cyclosporine ↑ letermovir	Decrease the dosage of letermovir to 240 mg once daily Frequently monitor cyclosporine whole blood concentrations during treatment and after discontinuation of letermovir and adjust the dose of cyclosporine accordingly [§] .

sirolimus [‡]	↑ sirolimus	When letermovir is co-administered with sirolimus, frequently monitor sirolimus whole blood concentrations during treatment and after discontinuation of letermovir and adjust the dose of sirolimus accordingly [§] . When letermovir is co-administered with cyclosporine and sirolimus, refer to the sirolimus prescribing information for specific sirolimus dosing recommendations [§] .
tacrolimus [‡]	↑ tacrolimus	Frequently monitor tacrolimus whole blood concentrations during treatment and after discontinuation of letermovir and adjust the dose of tacrolimus accordingly [§] .
Proton pump inhibitors		
omeprazole	↓omeprazole	Clinical monitoring and dose adjustment may be needed.
pantoprazole	↓ pantoprazole	Clinical monitoring and dose adjustment may be needed.
CYP3A Substrates		
Examples: alfentanil, fentanyl, midazolam, and quinidine	↑ CYP3A substrate	When letermovir is co-administered with a CYP3A substrate, refer to the prescribing information for dosing of the CYP3A substrate with a moderate CYP3A inhibitor [§] . When letermovir is co-administered with cyclosporine, the combined effect on CYP3A substrates may be similar to a strong CYP3A inhibitor. Refer to the prescribing information for dosing of the CYP3A substrate with a strong CYP3A inhibitor [§] . CYP3A substrates pimozide and ergot alkaloids are contraindicated
<p>* This table is not all inclusive. † ↓ =decrease, ↑=increase ‡ These interactions have been studied [see Package Insert: <i>Clinical Pharmacology (12.3)</i>]. § Refer to the respective prescribing information.</p>		

588

589 **8.4 Preparation, Storage, and Administration: Oral Formulation**

590 Letermovir tablets are supplied in two formulations:

591 • Letermovir 240 mg tablet: yellow oval tablet with “591” on one side and Merck logo on the
 592 other side.

593 • Letermovir 480 mg tablet: pink oval, bi-convex tablet with “595” on one side and Merck
 594 logo on the other side.

595 Letermovir tablets contain either 240 mg or 480 mg of letermovir and the following inactive
596 ingredients: colloidal silicon dioxide, croscarmellose sodium, magnesium stearate,
597 microcrystalline cellulose, povidone 25, and film-coated with a coating material containing the
598 following inactive ingredients: hypromellose 2910, iron oxide red (only for 480 mg tablets), iron
599 oxide yellow, lactose monohydrate, titanium dioxide, and triacetin, Carnauba wax is added as a
600 polishing agent.

601 Tablets should be swallowed whole with or without food.

602 Store letermovir tablets in the original package until use.

603 Store letermovir tablets at 20°C to 25°C (68°F to 77°F); excursions permitted to 15°C to 30°C
604 (59°F to 86°F)

605 **8.5 Preparation, Storage, and Administration: Intravenous formulation**

606 Letermovir injection is supplied in 30 mL single-dose vials containing either 240 mg/12 mL per
607 vial (20 mg/mL) or 480 mg/24 mL per vial (20 mg/mL). The preparation and administration
608 instructions are the same for either dose.

609 Letermovir vials are for single use only. Discard any unused portion.

610 Preparation and Administration Instructions

- 611 • Letermovir must be diluted prior to intravenous (IV) use.
- 612 • Inspect vial contents for discoloration and particulate matter prior to dilution. Letermovir
613 injection is a clear colorless solution. Do not use the vial if the solution is discolored or
614 contains visible particles.
- 615 • Do not shake letermovir vial.
- 616 • Add one single-dose vial of letermovir injection into a 250 mL pre-filled IV bag containing
617 either 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP and mix bag
618 gently. Do not shake. Only 0.9% Sodium Chloride and 5% Dextrose are chemically and
619 physically compatible with letermovir injection.
- 620 • Use compatible IV bags and infusion set materials. Letermovir injection is compatible with
621 the following IV bags and infusion set materials. Letermovir injection is not recommended
622 with any IV bags or infusion set materials not listed below (note that letermovir injection is
623 not recommended for use with polyurethane-containing IV administration set tubing).

624 IV Bags Materials:

625 Polyvinyl chloride (PVC), ethylene vinyl acetate (EVA) and polyolefin (polypropylene and
626 polyethylene)

627 Infusion Sets Materials:

628 PVC, polyethylene (PE), polybutadiene (PBD), silicone rubber (SR), styrene–butadiene
629 copolymer (SBC), styrene-butadiene-styrene copolymer (SBS), polystyrene (PS)

630 Plasticizers:

631 Diethylhexyl phthalate (DEHP), tris (2-ethylhexyl) trimellitate (TOTM), benzyl butyl
632 phthalate (BBP)

633 Catheters:

634 Radiopaque polyurethane

- 635 • Once diluted, the solution of letermovir is clear, and ranges from colorless to yellow.
636 Variations of color within this range do not affect the quality of the product. Parenteral
637 drug products should be inspected visually for particulate matter and discoloration prior to
638 administration, whenever solution and container permit. Discard if discoloration or visible
639 particles are observed.
- 640 • The diluted solution is stable for up to 24 hours at room temperature or up to 48 hours
641 under refrigeration at 2°C to 8°C (36°F to 46°F) (this time includes storage of the diluted
642 solution in the intravenous bag through the duration of infusion).
- 643 • Administer the entire contents of the intravenous bag by intravenous infusion via a
644 peripheral catheter or central venous line at a constant rate over 1 hour. Do not
645 administer as an IV bolus injection.

646 Compatible Drug Products:

647 The physical compatibility of letermovir injection with selected injectable drug products was
648 evaluated in two commonly available diluents. Letermovir should not be co-administered
649 through the same intravenous line (or cannula) with other drug products and diluent
650 combinations except those listed below. Refer to the respective prescribing information of the
651 co-administered drug(s) to confirm compatibility of simultaneous co-administration.

652 *List of Compatible Drug Products when letermovir and Drug Products are Prepared in 0.9%
653 Sodium Chloride Injection, USP:*

654 Ampicillin sodium, ampicillin sodium/sulbactam sodium, anti-thymocyte globulin,
655 caspofungin, daptomycin, fentanyl citrate, fluconazole, furosemide, human insulin,
656 magnesium sulfate, methotrexate, micafungin.

657 *List of Compatible Drug Products when letermovir and Drug Products are Prepared in 5%
658 Dextrose Injection, USP:*

659 Amphotericin B (lipid complex)*, anidulafungin, cefazolin sodium, ceftaroline, ceftriaxone
660 sodium, doripenem, famotidine, folic acid, ganciclovir sodium, hydrocortisone sodium
661 succinate, morphine sulfate, norepinephrine bitartrate, pantoprazole sodium, potassium
662 chloride, potassium phosphate, tacrolimus, telavancin, tigecycline.

663 *Amphotericin B (lipid complex) is compatible with letermovir. However, Amphotericin B
664 (liposomal) is incompatible (see below)

665 Incompatible Drug Products

666 Letermovir injection is physically incompatible with amiodarone hydrochloride, amphotericin B
667 (liposomal), aztreonam, cefepime hydrochloride, ciprofloxacin, cyclosporine, diltiazem
668 hydrochloride, filgrastim, gentamicin sulfate, levofloxacin, linezolid, lorazepam, midazolam HCl,
669 mycophenolate mofetil hydrochloride, ondansetron, palonosetron.

670 **Storage**

671 Store letermovir injection vials at 20°C to 25°C (68°F to 77°F); excursions permitted to 15°C to
672 30°C (59°F to 86°F).

673 Store in the original carton to protect from exposure to light.

674 **8.6 Non Clinical Toxicology**

675 **8.6.1 Carcinogenesis, Mutagenesis, Impairment of Fertility**

676 **Carcinogenesis and Mutagenesis**

677 Letermovir was not genotoxic in *in vitro* or *in vivo* assays, including microbial mutagenesis
678 assays, chromosomal aberration in Chinese hamster ovary cells, and in an *in vivo* mouse
679 micronucleus study.

680 Carcinogenicity studies with letermovir have not been conducted.

681 **Impairment of Fertility**

682 In a fertility and early embryonic development study in rats, no effects of letermovir on female
683 fertility were observed at letermovir exposures (AUC) approximately 5 times higher than human
684 exposure at the RHD.

685 In male rat fertility studies, decreased fertility associated with irreversible testicular toxicity was
686 observed at

687 ≥180 mg/kg/day (greater than or equal to 3 times the human exposure at the RHD). No fertility
688 or testicular effects were observed at dose levels resulting in letermovir exposures (AUC) similar
689 to human exposure at the RHD [see Nonclinical Toxicology (13.2)].

690 **8.6.2 Animal Toxicology and Pharmacology**

691 Testicular toxicity in rats observed at ≥180 mg/kg/day (greater than or equal to 3 times the
692 human exposure at the RHD) was characterized by decreased testis weight, bilateral
693 seminiferous tubular degeneration, decreased sperm count and motility, and resultant
694 decreased male fertility. Male reproductive system toxicities were not observed in either a
695 monkey testicular toxicity study up to 240 mg/kg/day (approximately 2 times higher than human
696 exposure at the RHD), or a general toxicology study in mice up to 250 mg/kg/day
697 (approximately 3 times higher than human exposure at the RHD).

698 **8.7 Clinical Studies**

699 To evaluate letermovir prophylaxis as a preventive strategy for CMV infection or disease in
700 transplant recipients at high risk for CMV reactivation, the efficacy of letermovir was assessed in
701 a multicenter, double-blind, placebo-controlled Phase 3 Trial (P001, NCT02137772) in adult
702 CMV-seropositive recipients [R+] of an allogeneic hematopoietic stem cell transplant (HSCT).
703 Subjects were randomized (2:1) to receive either letermovir at a dose of 480 mg once daily
704 adjusted to 240 mg when co-administered with cyclosporine, or placebo. Randomization was
705 stratified by investigational site and risk level for CMV reactivation at the time of study entry.
706 Study drug was initiated after HSCT (at any time from Day 0 to Day 28 post-transplant) and
707 continued through Week 14 post-transplant. Study drug was administered either orally or

708 intravenously; the dose of letermovir was the same regardless of the route of administration.
709 Subjects received CMV DNA monitoring weekly until post-transplant Week 14 and then bi-
710 weekly until post- transplant Week 24, with initiation of standard-of-care CMV pre-emptive
711 therapy if CMV viremia was considered clinically significant. Subjects had continued follow-up
712 through Week 48 post-transplant.

713 Among the 565 treated subjects, 70 subjects were found to have CMV viremia prior to study
714 drug initiation and were therefore excluded from the efficacy analyses. The efficacy population
715 consisted of 325 subjects who received letermovir (including 91 subjects who received at least
716 one IV dose) and 170 who received placebo (including 41 subjects who received at least one IV
717 dose). The IV formulation of letermovir was used at investigators' discretion in subjects who
718 were unable to take oral therapy (e.g., unable to tolerate oral intake). The median time to
719 starting study drug was 8 days after transplantation. Thirty-four percent (34%) of subjects were
720 engrafted at baseline. The median age was 55 years (range: 18 to 76 years); 57% were male;
721 84% were White; 9% were Asian; 2% were Black or African American; and 7% were Hispanic or
722 Latino.

723 At baseline, 30% of all subjects had one or more of the following factors associated with
724 increased risk for CMV reactivation (high risk stratum): Human Leukocyte Antigen (HLA)-related
725 donor with at least one mismatch at one of the following three HLA-gene loci: HLA-A, -B or -DR;
726 haploidentical donor; unrelated donor with at least one mismatch at one of the following four
727 HLA-gene loci: HLA-A, -B, -C and -DRB1; use of umbilical cord blood as stem cell source; use
728 of ex vivo T-cell-depleted grafts; Grade 2 or greater Graft- Versus-Host Disease (GVHD)
729 requiring systemic corticosteroids. The remaining 70% of subjects did not meet any of these
730 high risk stratum criteria and were therefore included in the low risk stratum. Additionally, 48%
731 of subjects received a myeloablative regimen, 51% were receiving cyclosporine, and 43% were
732 receiving tacrolimus. The most common primary reasons for transplant were acute myeloid
733 leukemia (38%), myelodysplastic syndrome (16%), and lymphoma (12%).

734 *Clinically Significant CMV Infection*

735 The primary efficacy endpoint of Trial P001 was the incidence of clinically significant CMV
736 infection through Week 24 post-transplant (prophylaxis failure). Clinically significant CMV
737 infection was defined as the occurrence of either CMV end-organ disease, or initiation of anti-
738 CMV pre-emptive therapy (PET) based on documented CMV viremia (using the Roche
739 COBAS® AmpliPrep/COBAS TaqMan® assay, LLoQ is 137 IU/mL, which is approximately 150
740 copies/mL) and the clinical condition of the subject. The protocol-

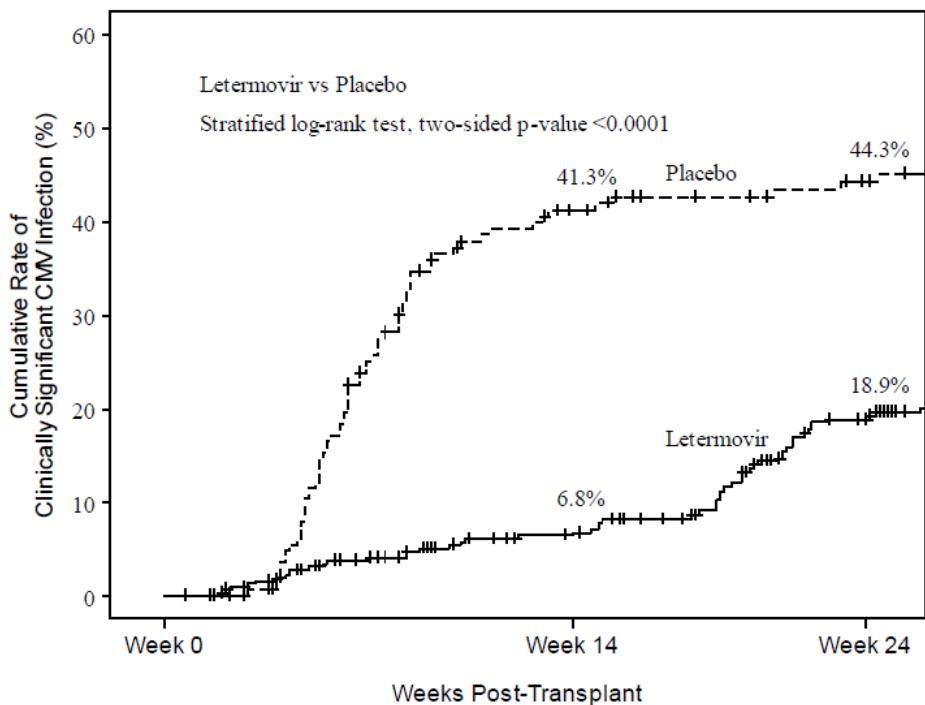
741 specified guidance for CMV DNA thresholds for the initiation of PET during the treatment period
742 was \geq 150 copies/mL or $>$ 300 copies/mL for subjects in the high and low risk strata,
743 respectively. From Week 14 through Week 24, the threshold was >300 copies/mL for both high
744 and low risk strata subjects. The Non- Completer=Failure (NC=F) approach was used, where
745 subjects who discontinued from the trial prior to Week 24 post-transplant or had a missing
746 outcome at Week 24 post-transplant were counted as failures.

747 Efficacy results from Trial P001 are shown in .

748 **Table 6.**

749 **Table 6: Trial P001 Efficacy Results in HSCT Recipients (NC=F Approach, FAS**
 750 **Population) Through Week 24**

Parameter	Letermovir (N=325)	Placebo (N=170)
Proportion of subjects who failed prophylaxis	38%	61%
Reasons for failures*		
Clinically significant CMV infection by Week 24 [†]	18%	42%
Initiation of PET based on documented CMV viremia	16%	40%
CMV end-organ disease	2%	2%
Discontinued from study before Week 24 [‡]	17%	16%
Missing outcome in Week 24 visit window	3%	3%
Stratum-adjusted treatment difference (Letermovir-Placebo)[§]		
Difference (95% CI)	-23.5 (-32.5, -14.6) [¶]	


* The categories of failure are mutually exclusive and based on the hierarchy of categories in the order listed.
 † Through Week 14, 8% of subjects in the letermovir group and 39% of subjects in the placebo group experienced clinically significant CMV infection.
 ‡ Reasons for discontinuation included adverse event, death, lost to follow-up, physician decision, and withdrawal by subject.
 § 95% CI and p-value for the treatment differences in percent response were calculated using stratum-adjusted Mantel-Haenszel method with the difference weighted by the harmonic mean of sample size per arm for each stratum (high or low risk).
 ¶ p-value <0.0001.
 Note: FAS=Full analysis set; FAS includes randomized subjects who received at least one dose of study medication, and excludes subjects with detectable CMV DNA at baseline. Approach to handling missing values: Non-Completer=Failure (NC=F) approach. With NC=F approach, failure was defined as all subjects who developed clinically significant CMV infection or prematurely discontinued from the study or had a missing outcome through Week 24 post-transplant visit window.

751
 752 Efficacy results were consistent across high and low risk strata for CMV reactivation. The time
 753 to clinically significant CMV infection is shown in

754 Figure 1.

755

756 **Figure 1: P001: Kaplan-Meier Plot of Time to Onset of Clinically Significant CMV Infection**
757 **Through Week 24 Post-Transplant in HSCT Recipients (FAS Population)**

Number of Subjects at Risk

	Week 0	Week 14	Week 24
— Letermovir	325	270	212
-- Placebo	170	85	70

758 759 Post-hoc analysis demonstrated that among letermovir-treated subjects, inclusion in the high
760 761 risk stratum for CMV reactivation at baseline, occurrence of GVHD, and steroid use at any time
762 763 after randomization may be associated with the development of clinically significant CMV
764 765 infection between Week 14 and Week 24 post-transplant.

766 **Mortality**

767 768 The Kaplan-Meier event rate for all-cause mortality in the letermovir vs. placebo groups was
769 770 12% vs. 17% at Week 24 post-transplant, and 24% vs. 28% at Week 48 post-transplant.

771 **8.8 Adverse Events**

772 773 Adult CMV-seropositive Recipients [R+] of an Allogeneic HSCT

774 775 The safety of letermovir was evaluated in one Phase 3 randomized, double-blind, placebo-
776 777 controlled trial (P001) in which 565 subjects were randomized and treated with letermovir
778 779 (N=373) or placebo (N=192) through Week 14 post-transplant. Adverse events were those
780 781 reported while subjects were on study medication or within two weeks of study medication
782 783 completion/discontinuation. The mean time for reporting adverse events and laboratory
784 785 abnormalities was approximately 22% longer in the letermovir arm compared to the placebo
786 787 arm.

775 Cardiac Adverse Events:

776 The cardiac adverse event rate (regardless of investigator-assessed causality) was higher in
777 subjects receiving letermovir (13%) compared to subjects receiving placebo (6%). The most
778 common cardiac adverse events were tachycardia (reported in 4% of letermovir subjects and in
779 2% of placebo subjects) and atrial fibrillation (reported in 3% of letermovir subjects and in 1% of
780 placebo subjects). Among those subjects who experienced one or more cardiac adverse events,
781 85% of letermovir and 92% of placebo subjects had events reported as mild or moderate in
782 severity.

783 Common Adverse Events

784 The rate of adverse events occurring in at least 10% of subjects in the letermovir group and at a
785 frequency at least 2% greater than placebo are outlined in Table 7.

786 **Table 7: Trial P001 All Grade Adverse Events Reported in \geq 10% of Letermovir-Treated
787 HSCT Recipients at a Frequency at least 2% Greater than Placebo**

Adverse Events	Letermovir (N=373)	Placebo (N=192)
nausea	27%	23%
diarrhea	26%	24%
vomiting	19%	14%
peripheral edema	14%	9%
cough	14%	10%
headache	14%	9%
fatigue	13%	11%
abdominal pain	12%	9%

788

789 Overall, similar proportions of subjects in each group discontinued study medication due to an
790 adverse event (13% of letermovir subjects vs. 12% of placebo subjects). The most frequently
791 reported adverse event that led to study drug discontinuation was nausea, occurring in 2% of
792 letermovir subjects and 1% of placebo subjects. Hypersensitivity reaction, with associated
793 moderate dyspnea, occurred in one subject following the first infusion of IV letermovir after
794 switching from oral letermovir, leading to treatment discontinuation.

795 Laboratory Abnormalities

796 Selected laboratory abnormalities reported during treatment or within 2 weeks of stopping
797 treatment are presented in Table 8.

798 **Table 8: Trial P001 Selected Laboratory Abnormalities**

	Letermovir N=373	Placebo N=192
Absolute neutrophil count (cells/ μ L)		
< 500	19%	19%

500 – < 750	4%	7%
750 – < 1000	8%	9%
Hemoglobin (g/dL)		
< 6.5	2%	1%
6.5 – < 8.0	14%	15%
8.0 – < 9.5	41%	43%
Platelets (cells/ μ L)		
< 25000	27%	21%
25000 – < 50000	17%	18%
50000 – < 100000	20%	30%
Serum creatinine (mg/dL)		
> 2.5	2%	3%
> 1.5 – 2.5	17%	20%

799

800 The median time to engraftment (defined as absolute neutrophil count \geq 500/mm³ on 3
801 consecutive days after transplantation) was 19 days in the letermovir group and 18 days in the
802 placebo group.

803 **9 REGULATORY AND REPORTING REQUIREMENTS**

804 **9.1 Adverse Events (AEs)**

805 Definition: any unfavorable medical occurrence in a human subject including any abnormal sign,
806 symptom, or disease.

807 For the purposes if this study, “Adverse Event” or “AE” shall mean any untoward medical
808 occurrence in a Study subject who is administered the Study Drug (letermovir) regardless
809 of whether or not a causal relationship with the Study Drug exists. By way of example and
810 without limitation, an AE can be any unfavorable and unintended sign (for example, an
811 abnormal laboratory finding), symptom, or disease temporally associated with the use of
812 the Study Drug.

813 Grading: the descriptions and grading scales found in the revised NCI Common Terminology
814 Criteria for Adverse Events (CTCAE) version 5.0 will be utilized for all toxicity reporting. A copy
815 of the CTCAE version 5.0 can be downloaded from the CTEP website.

816 Attribution (relatedness), Expectedness, and Seriousness: the definitions for the terms listed
817 that should be used are those provided by the Department of Health and Human Services’
818 Office for Human Research Protections (OHRP). A copy of this guidance can be found on
819 OHRP’s website:

820 <http://www.hhs.gov/ohrp/policy/advevntguid.html>

821 Unanticipated Problems Definition:

- 822 • unexpected (in terms of nature, severity, or frequency) given (a) the research procedures
823 that are described in the protocol-related documents, such as the IRB- approved
824 research protocol and informed consent document; and (b) the characteristics of the
825 subject population being studied;
- 826 • related or possibly related to participation in the research ("possibly related" means there
827 is a reasonable possibility that the incident, experience, or outcome may have been
828 caused by the procedures involved in the research);
- 829 • Suggests that the research places subjects or others at a greater risk of harm (including
830 physical, psychological, economic, or social harm) than was previously known or
831 recognized.

832 **9.2 Serious Adverse Events (SAEs)**

833 **"Serious Adverse Event"** or **"SAE"** shall mean any untoward medical occurrence in a Study
834 subject who is administered the Study Drug (letermovir) which meets one or more of the
835 seriousness criteria outlined below.

836 An adverse event should be classified as a serious adverse event if the following seriousness
837 criteria are met:

- 838 • It results in death (i.e., the adverse event actually causes or leads to death)
- 839 • It is life threatening (i.e., the adverse event, in the view of the investigator, places the
840 subject at immediate risk of death. It does not include an adverse event that, had it
841 occurred in a more severe form, might have caused death.).
- 842 • It requires or prolongs inpatient hospitalization.
- 843 • It results in persistent or significant disability/incapacity (i.e., the adverse event results in
844 substantial disruption of the subject's ability to conduct normal life functions).
- 845 • It results in a congenital anomaly/birth defect in a neonate/infant born to a mother
846 exposed to the IMP.
- 847 • It is considered a significant medical event by the investigator based on medical
848 judgment (e.g., may jeopardize the subject or may require medical/surgical intervention to
849 prevent one of the outcomes listed above).

850 **"Suspected Unexpected Serious Adverse Reaction"** or **"SUSAR"** shall mean any Serious
851 Adverse Event, the nature, severity or frequency of which is not consistent with information in
852 the most current Summary of Product Characteristics (SPC) or Package Insert.

853 **9.3 Noncompliance**

854 Definition: failure to follow any applicable regulation or institutional policies that govern human
855 subjects research or failure to follow the determinations of the IRB. Noncompliance may occur
856 due to lack of knowledge or due to deliberate choice to ignore regulations, institutional policies,
857 or determinations of the IRB.

858 **9.4 Serious Noncompliance**

859 Definition: noncompliance that materially increases risks, that results in substantial harm to
860 subjects or others, or that materially compromises the rights or welfare of participants.

861 **9.5 Reporting to the OSU IRB**

862 The OSU PI is required to promptly notify the IRB of the following events:

- 863 • Any unanticipated problems involving risks to participants or others which occur at OSU,
864 or that impacts participants or the conduct of the study.
- 865 • Noncompliance with federal regulations or the requirements or determinations of the IRB.
- 866 • Receipt of new information that may impact the willingness of participants to participate
867 or continue participation in the research study.

868 These events must be reported to the IRB within the time frames outlined in the IRB policy.

869 **9.6 Reporting to the sponsor**

870 Principal investigator shall forward to Merck's Global Pharmacovigilance ("Merck GPV") group,
871 any SAE or SUSAR, including, but not limited to, all initial and follow up information involving
872 any study subject in the study. Notification shall be in the form of a completed CIOMS
873 I/MedWatch (or other mutually agreed upon format) within two (2) business days of but not
874 longer than three (3) calendar days of receipt of this information. This information shall be
875 transmitted to Merck GPV using the contact information provided below or such other modified
876 contact information as provided by Merck in writing. All information shall be transmitted in the
877 English language and contain the reporter's name and the study subject identifier code. SUSAR
878 information will be reported unblinded if the study drug has been blinded in the study.
879 Randomization codes for all other SAEs will be provided to Merck GPV at end of study if the
880 Study Drug has been blinded in the study.

881 SAE reports and any other relevant safety information are to be forwarded to Merck GPV
882 facsimile number: 215-661-6229.

883 **9.7 Reporting to the FDA**

884 The conduct of the study will comply with all FDA safety reporting requirements. **PLEASE**
885 **NOTE THAT REPORTING REQUIREMENTS FOR THE FDA DIFFER FROM REPORTING**
886 **REQUIREMENTS FOR THE IRB.** It is the responsibility of the investigator to report any
887 unanticipated problem to the FDA as follows:

- 888 • Report any unexpected fatal or life-threatening adverse experiences associated with use
889 of the drug (i.e., there is a reasonable possibility that the experience may have been
890 caused by the drug) by telephone or fax no later than 7 calendar days after initial receipt
891 of the information. A life-threatening adverse experience is defined as any adverse drug
892 experience that places the subject (in the view of the investigator) at immediate risk of
893 death from the reaction as it occurred, i.e., it does not include a reaction that, had it
894 occurred in a more severe form, might have caused death.

895 • Report any serious, unexpected adverse experiences, as well as results from animal
896 studies that suggest significant clinical risk within 15 calendar days after initial receipt of
897 this information. A serious adverse drug experience is defined as any adverse drug
898 experience occurring at any dose that results in any of the following outcomes:
899 ○ Death
900 ○ A life-threatening adverse drug experience
901 ○ Inpatient hospitalization or prolongation of existing hospitalization
902 ○ A persistent or significant disability/incapacity (i.e., a substantial disruption of a
903 person's ability to conduct normal life functions)
904 ○ A congenital anomaly/birth defect
905 ○ Any other experience which, based upon appropriate medical judgment, may
906 jeopardize the subject and may require medical or surgical intervention to
907 prevent one of the outcomes listed above

908 An unexpected adverse drug experience is defined as any adverse drug experience, the
909 specificity or severity of which is not consistent with the current investigator brochure (or risk
910 information, if an IB is not required or available).

911 All MedWatch forms will be sent by the investigator or investigator's team to the FDA (refer to
912 the FDA website to obtain the current address and fax number for the Center for Drug
913 Evaluation and Research Division of Oncology Drug Products).

914 **9.8 Timeframe for Reporting Required Events**

915 Reportable adverse events will be tracked for 30 days following the last day of study treatment.

Deaths	
Any reportable death while on study or within 30 days of study	Immediately, within 24 hours, to PI and the IRB
Any reportable death while off study	Immediately, within 24 hours, to PI and the IRB
Adverse Events/Unanticipated Problems	
Any reportable adverse events as described in Sections 9.1 and 9.2 (other than death) and 9.9	Immediately, within 24 hours to PI and within required time frame to the IRB (per local policy) and within 7 or 15 calendar days to the FDA
All adverse events regardless of grade and attribution should be submitted cumulatively	Include in DSM report
Noncompliance and Serious Noncompliance	

All noncompliance and serious noncompliance as described in Sections 9.3 and 9.4	Immediately, within 24 hours, to PI and within required time frame to the IRB (per local policy)
--	--

916

917 **9.9 Overdose**

918 In this trial, an overdose is any dose higher than two times the dose specified in section 4.

919 If an adverse event(s) is associated with ("results from") the overdose of Sponsor's product, the
920 adverse event(s) is reported as a serious adverse event, even if no other seriousness criteria
921 are met. If a dose of Sponsor's product meeting the protocol definition of overdose is taken
922 without any associated clinical symptoms or abnormal laboratory results, the overdose is
923 reported as a non-serious Event of Clinical Interest (ECI), using the terminology "accidental or
924 intentional overdose without adverse effect." All reports of overdose with and without an adverse
925 event must be reported within 24 hours to the Sponsor either by electronic media or paper.

926 There is no specific antidote for overdose with letermovir. In case of overdose, it is
927 recommended that the patient be monitored for adverse reactions and appropriate symptomatic
928 treatment be instituted.

929

930 It is unknown whether dialysis will result in meaningful removal of letermovir from systemic
931 circulation.

932 **9.10 Pregnancies**

933 Pregnancies and suspected pregnancies (including a positive pregnancy test regardless of age
934 or disease state) of a woman occurring while on study or within 28 days of her last dose of study
935 drug are considered immediately reportable events. Protocol therapy is to be discontinued
936 immediately. The pregnancy, suspected pregnancy, or positive pregnancy test must be reported
937 within 24 hours.

938 All subjects who become pregnant must be followed to the completion/termination of the
939 pregnancy. Pregnancy outcomes of spontaneous abortion, missed abortion, benign hydatidiform
940 mole, blighted ovum, fetal death, intrauterine death, miscarriage and stillbirth must be reported
941 as serious events (Important Medical Events). CRFs will be used to report pregnancies and
942 pregnancy outcomes.

943 **9.11 Data and safety monitoring**

944 The data and safety monitoring plan will involve the continuous evaluation of safety, data quality
945 and data timeliness. Investigators will conduct continuous review of data and patient safety at
946 the regular protocol review meeting at least monthly. The PI of the trial will review toxicities and
947 responses of the trial where applicable and determine if the risk/benefit ratio of the trial changes.
948 Frequency and severity of adverse events will be reviewed by the PI and compared to what is
949 known about the agent/device from other sources; including published literature, scientific
950 meetings and discussions with sponsors, to determine if the trial should be terminated before
951 completion. Serious adverse events and responses will also be reviewed by the OSUCCC Data

952 and Safety Monitoring Committee (DSMC). The PI will also submit a progress report that will be
953 reviewed by the committee per the DSMC plan. All reportable Serious Adverse Events (SAE)
954 will be reported to the IRB of record as per the policies of the IRB.

955 **9.11.1 Data Submission**

956 The study will be managed per OSU Clinical Trial Office. Data will be directly entered into the
957 OSU OnCore database.

958 **9.11.2 Auditing**

959 As the study sponsor, The Ohio State University Comprehensive Cancer Center (OSUCCC) will
960 audit the trial per OSU policies. Audits will be performed by the OSUCCC Clinical Research
961 Audit Team.

962 **9.12 Ethical Considerations**

963 The study will be conducted in accordance with ethical principles founded in the Declaration of
964 Helsinki. Investigators and study staff will undergo training on Good Clinical Practice (GCP)
965 through the Collaborative Institutional Training Initiative (CITI). GCP training sets the standard
966 for the design, conduct, recording, and reporting of studies involving human subjects, ensuring
967 that study subjects rights, safety, and well-being are protected. The IRB will review all
968 appropriate study documentation in order to safeguard the rights, safety and wellbeing of the
969 patients. The study will only be conducted at sites where IRB approval has been obtained. The
970 protocol, informed consent form, written information given to the patients (including pill diaries),
971 safety updates, annual progress reports, and any revisions to these documents will be provided
972 to the IRB by the investigator, as allowable by local regulations. The principal investigator will
973 ensure that the study will be conducted according to the protocol and all applicable regulations.
974 The protection of each subject's rights and welfare will be maintained.

975 **9.13 Retention of records**

976 FDA regulations (21 CFR § 312.62[c]) and the ICH Guideline for GCP (see Section 4.9 of the
977 guideline) require that records and documents pertaining to the conduct of clinical trials and the
978 distribution of investigational drug, patient records, consent forms, laboratory test results, and
979 medication inventory records, must be retained for 2 years after the last marketing application
980 approval in an ICH region or after at least 2 years have elapsed since formal discontinuation of
981 clinical development of the investigational product. All state and local laws for retention of
982 records also apply.

983 For studies conducted outside the United States under a U.S. IND, the Principal Investigator
984 must comply with the record retention requirements set forth in the FDA IND regulations and the
985 relevant national and local health authorities, whichever is longer.

986 **10 STATISTICAL METHODS**

987 **10.1 Study Design and Sample Size Justification**

988 The primary objective of this single center, single arm phase II study is to determine the efficacy
989 of letermovir prophylaxis in PLL, CLL, PTCL or CTCL patients treated with alemtuzumab. The
990 efficacy will be measured through the CMV reactivation rate during letermovir prophylaxis (3

991 months after completion of alemtuzumab therapy). All eligible patients who receive any
992 letermovir will be included in the safety analysis, and all patients who receive $\geq 90\%$ of planned
993 letermovir doses are evaluable for the efficacy analysis.

994 Fleming's two-stage design[80] will be followed to conduct the study. Previous trials reported
995 CMV reactivation rate of 30% in a similar patient population, and our own institutional data
996 revealed a similar pattern. Based on these data, we determined that a CMV reactivation rate of
997 30% or higher is not acceptable, which leads to our null hypothesis of a 70% safety rate. In a
998 pivotal phase 3 trial, letermovir prophylaxis resulted in a clinically significant 23.1% absolute
999 reduction (61.6% relative risk reduction) in CMV infection rate compared with placebo in
1000 recipients of allogeneic hematopoietic stem cell transplantation without evidence of hematologic
1001 toxicity [67]. Therefore, we hypothesized that letermovir prophylaxis will reduce the CMV by
1002 20% in our patient population to a 10% reactivation rate, which translates to an alternative
1003 hypothesis of 90% safety rate.

1004 With a one-sided type I error rate of 5% and 85% power, Fleming's two-stage design allows a
1005 first-stage analysis after the first 14 patients are enrolled and evaluated. If 4 or more patients
1006 have CMV reactivation during letermovir prophylaxis period, the regimen will be considered
1007 ineffectacious, and the study will be terminated early due to futility. On the other hand, if none of
1008 the 14 patients experiences CMV reactivation, letermovir will be declared effective in preventing
1009 CMV reactivation, and the study will be ended early with rejection of the null hypothesis as the
1010 final conclusion. If CMV infection is observed in between 1 to 3 patients among the first 14, then
1011 the study will continue to accrue to a total of 28 patients. By the end of the study, if at least 24
1012 out of the 28 patients are CMV free, we will conclude the regimen effective to warrant further
1013 investigation.

1014 To account for the possibility that some patients might not be evaluable, we will allow a 5%
1015 over-accrual for a total target enrollment of 30 patients. With an anticipated accrual rate of 1.5
1016 patients a month, the study is expected to complete enrolling for the first stage in 10 months.
1017 With another 7 months for the primary endpoint evaluation, the first stage will finish in about 17
1018 months. If the second stage were to continue, the whole study can last as long as 27 months.

1019 **10.2 Analysis of Primary Objective**

1020 1. For efficacy analysis, the CMV reactivation rate will be defined as the proportion of
1021 patients who experience CMV reactivation (CMV DNA by real time polymerase chain
1022 reaction >500 IU/mL) during prophylaxis period among all patients who receive $\geq 90\%$ of
1023 planned letermovir doses. The rate will be provided with 95% binomial confidence
1024 interval.

1025 **10.3 Analysis of Secondary Objectives**

1026 1. All eligible patients who receive any letermovir prophylaxis will be included in the
1027 tolerability analysis. Adverse event data will be described and graded per the NCI
1028 CTCAE v5.0 guidelines. The maximum grade for each type of toxicity will be recorded
1029 for each patient, and frequency tables will be reviewed to determine toxicity patterns,
1030 especially for grade 3 or above adverse events. To assess tolerability, we also capture
1031 the proportion of patients who require dose reduction as well as those who go off
1032 treatment due to adverse events.

1033 2. Clinically significant CMV reactivation be determined per the Disease Definitions
1034 Working Group of the Cytomegalovirus Drug Development Forum [71] (Appendix 12.1).
1035 3. OS of patients treated with alemtuzumab after letermovir prophylaxis will be calculated
1036 from trial enrollment to the occurrence of (death due to any cause), censoring event-free
1037 patients at time of last follow-up. OS will be estimated with the method of Kaplan-Meier
1038 (KM), where KM curves will be drawn to aid with visualization and estimates provided
1039 with 95% confidence intervals.

1040 **10.4 Analysis of Exploratory Objectives**

1041 CMV DNA Sequence Analysis to be performed only in subjects with CMV reactivation.
1042 Resistance to letermovir will be monitored by retrospective genotypic analysis of the CMV
1043 terminase gene UL56 in CMV DNA extracts from selected plasma samples collected at the time
1044 of diagnosed CMV reactivation. Samples will be analyzed by standard population sequencing
1045 technology through an established contract laboratory with validated protocols in place. If no
1046 mutations are noted in UL56, then genotype testing will reflex to UL51 and UL89 (less frequent
1047 resistance mutations have been reported in these genes).

1048 **11 REFERENCES**

1049

1. Foss, F.M., et al., *Peripheral T-cell lymphoma*. Blood, 2011. **117**(25): p. 6756-6767.
2. Vose, J., et al., *International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes*. J Clin Oncol, 2008. **26**(25): p. 4124-30.
3. Morgensztern, D., et al., *Lack of survival improvement in patients with peripheral T-cell lymphoma: a Surveillance, Epidemiology, and End Results analysis*. Leuk Lymphoma, 2011. **52**(2): p. 194-204.
4. Weisenburger, D.D., et al., *Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project*. Blood, 2011. **117**(12): p. 3402-8.
5. Abouyabis, A.N., et al., *Incidence and outcomes of the peripheral T-cell lymphoma subtypes in the United States*. Leuk Lymphoma, 2008. **49**(11): p. 2099-107.
6. Morton, L.M., et al., *Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001*. Blood, 2006. **107**(1): p. 265-76.
7. Hristov, A.C., T. Tejasvi, and R.A. Wilcox, *Mycosis fungoides and Sezary syndrome: 2019 update on diagnosis, risk-stratification, and management*. Am J Hematol, 2019. **94**(9): p. 1027-1041.
8. Agar, N.S., et al., *Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal*. J Clin Oncol, 2010. **28**(31): p. 4730-9.
9. Duvic, M., et al., *Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results*. J Clin Oncol, 2001. **19**(9): p. 2456-71.
10. Olsen, E.A., et al., *Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma*. J Clin Oncol, 2007. **25**(21): p. 3109-15.
11. Mann, B.S., et al., *Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma*. Clin Cancer Res, 2007. **13**(8): p. 2318-22.

1078 12. Whittaker, S.J., et al., *Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma*. J Clin Oncol, 2010. **28**(29): p. 4485-91.

1079 13. Piekorz, R.L., et al., *Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients With Cutaneous T-Cell Lymphoma*. Journal of Clinical Oncology, 2009. **27**(32): p. 5410-5417.

1080 14. Prince, H.M., et al., *Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial*. Lancet, 2017. **390**(10094): p. 555-566.

1081 15. Kim, Y.H., et al., *Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial*. Lancet Oncol, 2018. **19**(9): p. 1192-1204.

1082 16. Matutes, E., et al., *Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia*. Blood, 1991. **78**(12): p. 3269-74.

1083 17. Sud, A. and C. Dearden, *T-cell Prolymphocytic Leukemia*. Hematol Oncol Clin North Am, 2017. **31**(2): p. 273-283.

1084 18. Dearden, C.E., et al., *Alemtuzumab therapy in T-cell prolymphocytic leukemia: comparing efficacy in a series treated intravenously and a study piloting the subcutaneous route*. Blood, 2011. **118**(22): p. 5799-802.

1085 19. Pawson, R., et al., *Treatment of T-cell prolymphocytic leukemia with human CD52 antibody*. J Clin Oncol, 1997. **15**(7): p. 2667-72.

1086 20. Ferrajoli, A., et al., *Phase II study of alemtuzumab in chronic lymphoproliferative disorders*. Cancer, 2003. **98**(4): p. 773-8.

1087 21. Keating, M.J., et al., *Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed*. J Clin Oncol, 2002. **20**(1): p. 205-13.

1088 22. Dearden, C.E., et al., *High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H*. Blood, 2001. **98**(6): p. 1721-6.

1089 23. Krishnan, B., et al., *Stem cell transplantation after alemtuzumab in T-cell prolymphocytic leukaemia results in longer survival than after alemtuzumab alone: a multicentre retrospective study*. Br J Haematol, 2010. **149**(6): p. 907-10.

1090 24. Wiktor-Jedrzejczak, W., et al., *Hematopoietic stem cell transplantation in T-prolymphocytic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation and the Royal Marsden Consortium*. Leukemia, 2012. **26**(5): p. 972-6.

1091 25. Guillaume, T., et al., *Allogeneic hematopoietic stem cell transplantation for T-prolymphocytic leukemia: a report from the French society for stem cell transplantation (SFHM-TC)*. Eur J Haematol, 2015. **94**(3): p. 265-9.

1092 26. Kalaycio, M.E., et al., *Allogeneic hematopoietic cell transplant for prolymphocytic leukemia*. Biol Blood Marrow Transplant, 2010. **16**(4): p. 543-7.

1093 27. Poggio, T., J. Duyster, and A. Illert, *Current Immunotherapeutic Approaches in T Cell Non-Hodgkin Lymphomas*. Cancers, 2018. **10**(9): p. 339.

1094 28. Enblad, G., et al., *A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas*. Blood, 2004. **103**(8): p. 2920-4.

1095 29. Stewart, J.R., et al., *Alemtuzumab is an effective third-line treatment versus single-agent gemcitabine or pralatrexate for refractory Sezary syndrome: a systematic review*. Eur J Dermatol, 2018. **28**(6): p. 764-774.

1096 30. Bernengo, M.G., et al., *Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients*. Haematologica, 2007. **92**(6): p. 784-94.

1129 31. Watanabe, R., et al., *Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission*. JAMA Dermatol, 2014. **150**(7): p. 776-9.

1130 32. Kluin-Nelemans, H.C., et al., *Intensified alemtuzumab-CHOP therapy for peripheral T-cell lymphoma*. Ann Oncol, 2011. **22**(7): p. 1595-600.

1131 33. Roswarski, J., et al., *Phase 1/2 study of alemtuzumab with dose-adjusted EPOCH in untreated aggressive T and NK cell lymphomas*. Leuk Lymphoma, 2019. **60**(8): p. 2062-2066.

1132 34. Ravandi, F., et al., *Phase II study of alemtuzumab in combination with pentostatin in patients with T-cell neoplasms*. J Clin Oncol, 2009. **27**(32): p. 5425-30.

1133 35. Cannon, M.J., D.S. Schmid, and T.B. Hyde, *Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection*. Rev Med Virol, 2010. **20**(4): p. 202-13.

1134 36. Borst, E.M., et al., *The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89*. J Virol, 2013. **87**(3): p. 1720-32.

1135 37. Boeckh, M., et al., *Cytomegalovirus in hematopoietic stem cell transplant recipients: Current status, known challenges, and future strategies*. Biol Blood Marrow Transplant, 2003. **9**(9): p. 543-58.

1136 38. El Chaer, F., D.P. Shah, and R.F. Chemaly, *How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients*. Blood, 2016. **128**(23): p. 2624-2636.

1137 39. Allice, T., et al., *Valganciclovir as pre-emptive therapy for cytomegalovirus infection post-allogenic stem cell transplantation: implications for the emergence of drug-resistant cytomegalovirus*. J Antimicrob Chemother, 2009. **63**(3): p. 600-8.

1138 40. Hantz, S., et al., *Drug-resistant cytomegalovirus in transplant recipients: a French cohort study*. J Antimicrob Chemother, 2010. **65**(12): p. 2628-40.

1139 41. Sharma, K., et al., *Phase II Study of Alemtuzumab (CAMPATH-1) in Patients with HTLV-1-Associated Adult T-cell Leukemia/lymphoma*. Clin Cancer Res, 2017. **23**(1): p. 35-42.

1140 42. Kim, J.G., et al., *Alemtuzumab plus CHOP as front-line chemotherapy for patients with peripheral T-cell lymphomas: a phase II study*. Cancer Chemother Pharmacol, 2007. **60**(1): p. 129-34.

1141 43. Binder, C., et al., *CHO(E)P-14 followed by alemtuzumab consolidation in untreated peripheral T cell lymphomas: final analysis of a prospective phase II trial*. Ann Hematol, 2013. **92**(11): p. 1521-8.

1142 44. Weidmann, E., et al., *A phase II study of alemtuzumab, fludarabine, cyclophosphamide, and doxorubicin (Campath-FCD) in peripheral T-cell lymphomas*. Leuk Lymphoma, 2010. **51**(3): p. 447-55.

1143 45. Hopfinger, G., et al., *Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia*. Cancer, 2013. **119**(12): p. 2258-67.

1144 46. Kuan, J.W., et al., *The Outcome of HyperCVAD Combined with Alemtuzumab for the Treatment of Aggressive T-Cell and NK-Cell Neoplasms*. Indian J Hematol Blood Transfus, 2011. **27**(3): p. 136-45.

1145 47. Intragumtornchai, T., et al., *Alemtuzumab in Combination with CHOP and ESHAP as First-Line Treatment in Peripheral T-Cell Lymphoma*. Blood, 2006. **108**(11): p. 4740-4740.

1146 48. Kim, S.J., et al., *Dose modification of alemtuzumab in combination with dexamethasone, cytarabine, and cisplatin in patients with relapsed or refractory peripheral T-cell lymphoma: analysis of efficacy and toxicity*. Invest New Drugs, 2012. **30**(1): p. 368-75.

1179 49. Rupoli, S., et al., *Alemtuzumab in Combination with Interferon- α or Gemcitabine in*
1180 *Aggressive and Advanced Cutaneous T-Cell Lymphomas: Report of Preliminary Results.*
1181 *Blood*, 2008. **112**(11): p. 5000-5000.

1182 50. de Masson, A., et al., *Long-term efficacy and safety of alemtuzumab in advanced*
1183 *primary cutaneous T-cell lymphomas*. *Br J Dermatol*, 2014. **170**(3): p. 720-4.

1184 51. Dumitriu, B., et al., *Alemtuzumab in T-cell large granular lymphocytic leukaemia: interim*
1185 *results from a single-arm, open-label, phase 2 study*. *Lancet Haematol*, 2016. **3**(1): p.
1186 e22-9.

1187 52. Alinari, L., et al., *Subcutaneous alemtuzumab for Sezary Syndrome in the very elderly*.
1188 *Leuk Res*, 2008. **32**(8): p. 1299-303.

1189 53. Nguyen, D.D., et al., *Cytomegalovirus viremia during Campath-1H therapy for relapsed*
1190 *and refractory chronic lymphocytic leukemia and prolymphocytic leukemia*. *Clin*
1191 *Lymphoma*, 2002. **3**(2): p. 105-10.

1192 54. Querfeld, C., et al., *Alemtuzumab for relapsed and refractory erythrodermic cutaneous*
1193 *T-cell lymphoma: a single institution experience from the Robert H. Lurie*
1194 *Comprehensive Cancer Center*. *Leuk Lymphoma*, 2009. **50**(12): p. 1969-76.

1195 55. Zinzani, P.L., et al., *Preliminary observations of a phase II study of reduced-dose*
1196 *alemtuzumab treatment in patients with pretreated T-cell lymphoma*. *Haematologica*,
1197 2005. **90**(5): p. 702-3.

1198 56. Kennedy, G.A., et al., *Treatment of patients with advanced mycosis fungoides and*
1199 *Sezary syndrome with alemtuzumab*. *Eur J Haematol*, 2003. **71**(4): p. 250-6.

1200 57. Lundin, J., et al., *Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in*
1201 *patients with advanced mycosis fungoides/Sezary syndrome*. *Blood*, 2003. **101**(11): p.
1202 4267-72.

1203 58. Clark, R.A., et al., *Skin effector memory T cells do not recirculate and provide immune*
1204 *protection in alemtuzumab-treated CTCL patients*. *Sci Transl Med*, 2012. **4**(117): p.
1205 117ra7.

1206 59. Novelli, S., et al., *Alemtuzumab treatment for Sezary syndrome: A single-center*
1207 *experience*. *J Dermatolog Treat*, 2016. **27**(2): p. 179-81.

1208 60. Buckstein, R., et al., *Alemtuzumab and CHOP Chemotherapy for the Treatment of*
1209 *Aggressive Histology Peripheral T Cell Lymphomas: A Multi-Center Phase I Study*. *Clin*
1210 *Lymphoma Myeloma Leuk*, 2016. **16**(1): p. 18-28 e4.

1211 61. Kim, S.J., et al., *Alemtuzumab and DHAP (A-DHAP) is effective for relapsed peripheral*
1212 *T-cell lymphoma, unspecified: interim results of a phase II prospective study*. *Ann Oncol*,
1213 2009. **20**(2): p. 390-2.

1214 62. Wulf, G.G., et al., *Reduced intensity conditioning and allogeneic stem cell*
1215 *transplantation after salvage therapy integrating alemtuzumab for patients with relapsed*
1216 *peripheral T-cell non-Hodgkin's lymphoma*. *Bone Marrow Transplant*, 2005. **36**(3): p.
1217 271-3.

1218 63. Beltran-Garate, B., et al., *Alemtuzumab in Patients with Advanced Mycosis Fungoides*
1219 *and Sezary Syndrome*. *Blood*, 2007. **110**(11): p. 3425-3425.

1220 64. Oliveira, A., et al., *Sezary syndrome presenting with leonine facies and treated with low-*
1221 *dose subcutaneous alemtuzumab*. *Dermatol Online J*, 2011. **17**(11): p. 6.

1222 65. Fernandes, I.C., et al., *Can the level of CD52 expression on Sezary cells be used to*
1223 *predict the response of Sezary syndrome to alemtuzumab?* *J Am Acad Dermatol*, 2012.
1224 **67**(5): p. 1083-5.

1225 66. Kim, S.J., et al., *Non-bacterial infections in Asian patients treated with alemtuzumab: a*
1226 *retrospective study of the Asian Lymphoma Study Group*. *Leuk Lymphoma*, 2012. **53**(8):
1227 p. 1515-24.

1228 67. Marty, F.M., et al., *Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell*
1229 *Transplantation*. *N Engl J Med*, 2017. **377**(25): p. 2433-2444.

1230 68. Goldner, T., et al., *The novel anticytomegalovirus compound AIC246 (Letermovir)*
1231 *inhibits human cytomegalovirus replication through a specific antiviral mechanism that*
1232 *involves the viral terminase*. J Virol, 2011. **85**(20): p. 10884-93.

1233 69. Lischka, P., et al., *In vitro and in vivo activities of the novel anticytomegalovirus*
1234 *compound AIC246*. Antimicrob Agents Chemother, 2010. **54**(3): p. 1290-7.

1235 70. Ljungman, P., et al., *A Mortality Analysis of Letermovir Prophylaxis for Cytomegalovirus*
1236 *(CMV) in CMV-Seropositive Recipients of Allogeneic Hematopoietic-Cell*
1237 *Transplantation*. Clin Infect Dis, 2019.

1238 71. Ljungman, P., et al., *Definitions of Cytomegalovirus Infection and Disease in Transplant*
1239 *Patients for Use in Clinical Trials: Table 1*. Clinical Infectious Diseases, 2017. **64**(1): p.
1240 87-91.

1241 72. Chou, S., *A third component of the human cytomegalovirus terminase complex is*
1242 *involved in letermovir resistance*. Antiviral Res, 2017. **148**: p. 1-4.

1243 73. Lischka, P., D. Michel, and H. Zimmermann, *Characterization of Cytomegalovirus*
1244 *Breakthrough Events in a Phase 2 Prophylaxis Trial of Letermovir (AIC246, MK 8228)*. J
1245 Infect Dis, 2016. **213**(1): p. 23-30.

1246 74. Chou, S., L.E. Satterwhite, and R.J. Ercolani, *New Locus of Drug Resistance in the*
1247 *Human Cytomegalovirus UL56 Gene Revealed by In Vitro Exposure to Letermovir and*
1248 *Ganciclovir*. Antimicrob Agents Chemother, 2018. **62**(9).

1249 75. Chou, S., *Rapid In Vitro Evolution of Human Cytomegalovirus UL56 Mutations That*
1250 *Confer Letermovir Resistance*. Antimicrob Agents Chemother, 2015. **59**(10): p. 6588-93.

1251 76. Goldner, T., et al., *Geno- and phenotypic characterization of human cytomegalovirus*
1252 *mutants selected in vitro after letermovir (AIC246) exposure*. Antimicrob Agents
1253 Chemother, 2014. **58**(1): p. 610-3.

1254 77. Chou, S., *Comparison of Cytomegalovirus Terminase Gene Mutations Selected after*
1255 *Exposure to Three Distinct Inhibitor Compounds*. Antimicrob Agents Chemother, 2017.
1256 **61**(11).

1257 78. Lischka, P., et al., *Impact of glycoprotein B genotype and naturally occurring ORF UL56*
1258 *polymorphisms upon susceptibility of clinical human cytomegalovirus isolates to*
1259 *letermovir*. Antiviral Res, 2016. **132**: p. 204-9.

1260 79. Goldner, T., H. Zimmermann, and P. Lischka, *Phenotypic characterization of two*
1261 *naturally occurring human Cytomegalovirus sequence polymorphisms located in a*
1262 *distinct region of ORF UL56 known to be involved in in vitro resistance to letermovir*.
1263 Antiviral Res, 2015. **116**: p. 48-50.

1264 80. Fleming, T.R., *One-sample multiple testing procedure for phase II clinical trials*.
1265 Biometrics, 1982. **38**(1): p. 143-51.

1266

1267 **12 APPENDICES**

1268 **12.1 CMV Disease Definitions Working Group of the Cytomegalovirus Drug**
1269 **Development Forum**

CMV Disease	Diagnostic criteria	Notes
Pneumonia	Clinical symptoms and/or signs of pneumonia such as new infiltrates on imaging, hypoxia, tachypnea, and/or dyspnea AND	<ul style="list-style-type: none">PCR may be too sensitive, so detection of CMV by PCR alone is insufficient for the diagnosis of CMV pneumonia.

	CMV documented in BAL or lung tissue by virus isolation, rapid culture, histopathology, IHC, or DNA hybridization techniques	<ul style="list-style-type: none"> Detection of fungal co-pathogens like Aspergillus spp. + "halo" sign (radiology) indicates fungal, rather than CMV pneumonia. Superinfection or coinfection with other pathogens may occur and should be noted when present.
GI	Upper and/or lower gastrointestinal (GI) symptoms AND macroscopic mucosal lesions AND CMV documented in tissue by histopathology, virus isolation, rapid culture, IHC, or DNA hybridization techniques.	<ul style="list-style-type: none"> PCR may be too sensitive, so detection of CMV by PCR alone is insufficient for the diagnosis of CMV GI disease Studies should give information regarding the presence or absence of GI GVHD in HSCT recipients.
Hepatitis	Abnormal liver function tests AND CMV documented in tissue by histopathology, IHC, virus isolation, rapid culture, or DNA hybridization techniques AND Absence of other documented cause of hepatitis, including DILI	<ul style="list-style-type: none"> Studies should give information regarding the presence or absence of hepatic GVHD in HSCT recipients.
CNS	CNS symptoms AND Detection of CMV in CNS tissue by virus isolation, rapid culture, IHC, in situ hybridization, or (preferably) quantitative PCR.	<ul style="list-style-type: none"> Probable disease requires CNS symptoms plus detection of CMV in CSF without visible contamination of blood plus abnormal imaging results or evidence of encephalitis on electroencephalography.
Retinitis	Typical ophthalmological signs judged by an ophthalmologist experienced with the diagnosis of CMV retinitis OR CMV documented in vitreous fluid by NAT (for example PCR)	
Nephritis	Renal dysfunction AND Detection of CMV by virus isolation, rapid culture, IHS, or in situ hybridization in a kidney biopsy specimen AND Identification of histologic features of CMV infection	<ul style="list-style-type: none"> The detection of CMV in urine by PCR or culture is not sufficient for the diagnosis of CMV nephritis as asymptomatic viral shedding in urine is common.

Cystitis	<p>Signs/symptoms of cystitis</p> <p>AND</p> <p>Detection of CMV by virus isolation, rapid culture, IHC, or in situ hybridization in a bladder biopsy specimen</p> <p>AND</p> <p>Histologic features of CMV infection.</p>	<ul style="list-style-type: none"> The detection of CMV in urine by PCR or culture is not sufficient for the diagnosis of CMV cystitis as asymptomatic viral shedding in urine is common.
Myocarditis	<p>Signs/symptoms of myocarditis</p> <p>AND</p> <p>Detection of CMV by virus isolation, rapid culture, IHC, or in situ hybridization in a myocardial biopsy specimen</p> <p>AND</p> <p>Histologic features of CMV infection.</p>	
Pancreatitis	<p>Signs/symptoms of myocarditis</p> <p>AND</p> <p>Detection of CMV by virus isolation, rapid culture, IHC, or in situ hybridization in a pancreatic biopsy specimen</p> <p>AND</p> <p>Histologic features of CMV infection.</p>	
Other	<p>Presence of compatible symptoms in other organs</p> <p>AND</p> <p>Detection of CMV by virus isolation, rapid culture, IHC, or in situ hybridization in a biopsy specimen</p>	
Reference [71]. BAL = bronchoalveolar lavage; CMV = cytomegalovirus; CNS = central nervous system; DILI = drug induced liver injury; GI = gastrointestinal; GVHD = graft versus host disease; HSCT = hematopoietic stem cell transplant; IHC = immunohistochemistry; NAT = nucleic acid testing; PCR = polymerase chain reaction		

1270

12.2 Eastern Cooperative Oncology Group Performance Status Scale

ECOG	Description
0	Asymptomatic (Fully active, able to carry on all predisease activities without restriction)
1	Symptomatic but completely ambulatory (Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature. For example, light housework, office work)
2	Symptomatic, <50% in bed during the day (Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about more than 50% of waking hours)
3	Symptomatic, >50% in bed, but not bedbound (Capable of only limited self-care, confined to bed or chair 50% or more of waking hours)
4	Bedbound (Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair)

5	Death
---	-------

1272

1273 12.3 Child-Pugh Classification of liver disease

Signs or symptom	Scoring by Anomaly		
	1 point	2 points	3 points
Hepatic encephalopathy ¹	Absent	Grade 1 or 2	Grade 3 or 4
Ascites	Absent	Mild	Moderate
Bilirubin (μmol/L)	< 2 mg/dL	2 – 3 mg/dL	> 3 mg/dL
Albumin (g/dL)	> 3.5 g/dL	2.8 – 3.5 g/dL	< 2.8 g/dL
Prothrombin time (INR)	< 1.7	1.7 – 2.3	> 2.3

¹Hepatic encephalopathy grading:
Grade 1: Altered mood/confusion
Grade 2: Inappropriate behavior, impending stupor, somnolence
Grade 3: Markedly confused, stuporous but arousable
Grade 4: Comatose/unresponsive

1274

Child-Pugh Score interpretation	
5-6 points	Child-Pugh Stage A (mild hepatic insufficiency)
	Child-Pugh Stage B (moderate hepatic insufficiency*)
	Child-Pugh Stage C (severe hepatic insufficiency)
*If hypoalbuminemia is the only abnormality noted, the subject will need to have a score of ≥ 7 to qualify for moderate hepatic insufficiency for this study	

1275