

1
2
3
4
5
6
7
8
9
10

11

12 Clozapine OpTimal Timing for Optimal moNitoring 13 and Side effects (COTTONS)

14
15

(November 2024)

16 **PROTOCOL TITLE** 'Clozapine OpTimal Timing for Optimal moNitoring'

17

Protocol ID	COTTONS
Short title	Clozapine OpTimal Timing for Optimal moNitoring and Side effects
EudraCT number	<i>n.a.</i>
Version	2.0
Date	22 November 24
Coordinating investigator	A. Abdul Roda, MSc E-mail: a.abdulroda@amsterdamumc.nl Phone: +31(0)617789903
Co-investigators	<p>Participating sites:</p> <p>GGZ NHN, Alkmaar</p> <ul style="list-style-type: none"> - L. Kaya, MD - M. Musters, MD <p>Noordwest ziekenhuisgroep, Alkmaar</p> <ul style="list-style-type: none"> - F. Ph. Mulder, PharmD - E. ten Boekel, PhD - Dr. S. Simsek, MD, PhD - R. Fijn, PharmD, PhD <p>Albert Schweizer ziekenhuis, Dordrecht</p> <p>M.M. Beex-Oosterhuis, PharmD, PhD</p> <p>University Medical Center Groningen, Groningen</p> <p>prof. D.J. Touw, PharmD, PhD</p>
Principal investigator(s) (in Dutch: hoofdonderzoeker/ uitvoerder)	<p>Noordwest ziekenhuisgroep, Alkmaar</p> <p>P.C.D. Bank, PharmD, PhD</p> <p>Email: pcd.bank@nwz.nl</p> <p>Phone: 088 085 5110</p> <p>GGZ Noord-Holland-Noord</p> <p>S.R.T. Veerman, MD, PhD</p> <p>Email: s.veerman@ggz-nhn.nl</p> <p>Amsterdam UMC, locatie AMC</p> <p>Prof. R.A.A. Mathôt, PharmD, PhD</p>

Email: r.mathot@amsterdamumc.nl

Phone: 020 566 3327

Sponsor (in Dutch: verrichter/opdrachtgever)	GGZ NHN
Subsidising party	N.A.
Independent expert (s)	N.A.
Laboratory sites	<u>NWZ Alkmaar</u> Juliana van Stolberglaan 13, 1814 HB Alkmaar 072 548 4444
Pharmacy	N/A

18 PROTOCOL SIGNATURE SHEET
19

Name	Signature	Date
Sponsor: GGZ NHN S.R.T. Veerman, MD, PhD psychiatrist GGZ NHN board member Dutch Clozapine Collaboration Group		18-11-2024
Principal Investigator: P.C.D. Bank, PharmD, PhD hospital pharmacist & clinical pharmacologist, co-chair clinical pharmaceutical laboratory, North West Clinics Member Dutch Clozapine Collaboration Group Prof. R.A.A. Mathôt, PharmD, PhD hospital pharmacist & clinical pharmacologist, Amsterdam UMC, location AMC		18-11-2024

20

21 **TABLE OF CONTENTS**

22	24	INTRODUCTION AND RATIONALE	8OBJECTIVES
23	25		13STUDY DESIGN
	26		14STUDY POPULATION
	27		15Population (base)
	28		15Inclusion criteria
	29		15Exclusion criteria
	30		15Sample size calculation
	31		15TREATMENT OF SUBJECTS
	32		16INVESTIGATIONAL PRODUCT
	33		16NON-INVESTIGATIONAL PRODUCT
	34		16METHODS
	35		17Study parameters/endpoints
	36		17Main study parameter/endpoint
	37		17Secondary study parameters/endpoints
	38		17Other study parameters
	39	18Randomisation, blinding and treatment allocation	
	40		18Study procedures
	41		18Withdrawal of individual subjects
	42		18Specific criteria for withdrawal (if applicable)
	43	18Replacement of individual subjects after withdrawal	
	44		18Follow-up of subjects withdrawn from treatment
	45		18Premature termination of the study
	46		18SAFETY REPORTING
	47		19STATISTICAL ANALYSIS
	48		20Primary study parameter(s)
	49		20Secondary study parameter(s)
	50		22Other study parameters
	51		23Interim analysis (if applicable)
	52		23ETHICAL CONSIDERATIONS
	53		24Regulation statement
	54		24Recruitment and consent
	55	24Objection by minors or incapacitated subjects (if applicable)	
	56		24Benefits and risks assessment, group relatedness
	57		24Compensation for injury
	58		24Incentives (if applicable)
	59	24ADMINISTRATIVE ASPECTS, MONITORING AND PUBLICATION	
	60		25Handling and storage of data and documents
	61		25Monitoring and Quality Assurance
	62		26Amendments

63	26Annual progress report
64	26Temporary halt and (prematurely) end of study report
65	26Public disclosure and publication policy
66	26STRUCTURED RISK ANALYSIS
67	26TIME SCHEDULE
68	26REFERENCES
69	
70	27

71 LIST OF ABBREVIATIONS AND RELEVANT DEFINITIONS

72	ABR	General Assessment and Registration form (ABR form), the application form that is required for submission to the accredited Ethics Committee; in Dutch: <i>Algemeen Beoordelings- en Registratieformulier (ABR-formulier)</i>
	AUC	Area Under the Curve
	CI	Clearance
	Cmax	Maximum Concentration
	CV	Coefficient of Variation
	EHR	Electronic Health Record
	GCP	Good Clinical Practice
	GDPR	General Data Protection Regulation; in Dutch: <i>Algemene Verordening Gegevensbescherming (AVG)</i>
	IC	Informed Consent
	ICC	Class Correlation Coefficient
	IIV	Interindividual Variability (synonyms are interpatient of between-patient variability)
	IOV	Interoccasion Variability (synonyms are intrapatient of within-patient variability)
	Ke	The elimination rate constant, is the fraction of a drug that is eliminated from the body over a set unit of time
	MIPD	Model-Informed Precision Dosing
	NONMEM	Nonlinear Mixed-Effects Modelling
	PANSS	Positive and Negative Syndrome Scale
	PD	Pharmacodynamics
	PE	Prediction Error
	PK	Pharmacokinetics
	PopPK	Population pharmacokinetics
	RMSE	Root Mean Square Error
	SPC	Summary of Product Characteristics; in Dutch: <i>officiële productinformatie IB1-tekst</i>
	Sponsor	The sponsor is the party that commissions the organisation or performance of the research, for example a pharmaceutical company, academic hospital, scientific organisation or investigator. A party that provides funding for a study but does not commission it is not regarded as the sponsor, but referred to as a subsidising party.
	Steady state	Equilibrium where drug intake equals elimination, maintaining constant average concentration (= approx. 4-5x the half-life).
	T _{1/2}	Half-life, time it takes for the concentration to be halved
	TDM	Therapeutic Drug Monitoring
	Therapeutic window	Range of plasma drug concentrations spanning the minimum concentration for clinical efficacy and toxicity
	T _{max}	Time to Maximum concentration
	Trough	Lowest concentration of a drug in the bloodstream, usually just before intake of the next dose
	UAVG	Dutch Act on Implementation of the General Data Protection Regulation; in Dutch: <i>Uitvoeringswet AVG</i>
	V _d	Distribution of volume
	WMO	Medical Research Involving Human Subjects Act; in Dutch: <i>Wet Medisch-wetenschappelijk Onderzoek met Mensen</i>

73 **SUMMARY**

74

75 **Rationale:**

76 Therapeutic drug monitoring (TDM) is essential for clozapine and can enhance therapeutic
77 outcomes and minimize side effects. As of yet, research on (nor)clozapine concentrations
78 and their association to metabolic side effects is limited and inconclusive. Unfortunately, not
79 enough is known about individual risk factors for developing metabolic side effects to
80 personalize clozapine treatment. It would be desirable to have another way to predict which
81 clozapine users are at increased risk of developing severe side effects. Current guidelines
82 are based on limited evidence, potentially resulting in inconsistent or suboptimal monitoring
83 and management.

84

85 **Objective:**

86 The primary objective is to evaluate the correlation between (nor)clozapine kinetics and
87 serum level HbA1c. Secondary objectives include validating an existing population
88 pharmacokinetic model, assessing the validity of the current 12-hour post-intake sampling
89 practice, determining the optimal sampling window for once-daily clozapine TDM and
90 assessing the correlation of other metabolic and multiple laboratory parameters and
91 influence of demographic and clinical parameters on the pharmacokinetics and -dynamics of
92 clozapine and nortriptyline.

93

94 **Study design:**

95 This is a non-interventional single-center cohort study involving prospective data collection
96 for the primary (pharmacodynamic) analysis. This will be supplemented with retrospective
97 population pharmacokinetic analyses. Using pharmacokinetic/pharmacodynamic modelling
98 and statistical analysis will be used to evaluate the relation to side effects as well as optimize
99 the sampling time for clozapine. Demographic, clinical and laboratory data are collected
100 routinely based on current standard practice.

101

102 **Study population:**

103 The study includes patients (18-70 years) diagnosed with treatment-resistant schizophrenia
104 or schizoaffective disorder who are on a registered, stable dose of clozapine. Participants
105 must have a known smoking status and have their times of intake and sampling registered.
106 To ensure comparability of (nor)clozapine concentrations, pregnant women will be excluded
107 as well as plasma levels affected by acute inflammation/infection/intoxication and/or
108 cessation or dose change of interacting co-medication or tobacco containing products seven
109 days prior to sampling. Clinical parameters such as baseline severity of illness, duration of
110 illness and duration of clozapine treatment will be assessed to describe the study population.

111

112 **Main study parameter/endpoint:**

113 The main study parameter is to evaluate the correlation between (nor)clozapine kinetics and
114 serum level HbA1c. The correlation between (nor)clozapine concentrations and ratio and
115 HbA1c will be assessed using a PK-PD turn over model.

116

117 **Nature and extent of the burden and risks associated with participation, benefit and
118 group relatedness.**

119 Not applicable for this retrospective non-interventional study.

120

INTRODUCTION AND RATIONALE**Background clozapine**

Clozapine has proven to be superior to other antipsychotics in treatment of refractory schizophrenia. Therapeutic drug monitoring (TDM) is strongly recommended for clozapine, a relatively well-studied compound among antipsychotics. As clozapine levels show large inter- and intraindividual variation, TDM helps to increase efficacy and reduce prevalence of side effects and toxicity (1-4). A systematic review and meta-analysis has shown a higher risk of non-response in the treatment of refractory schizophrenia or schizoaffective disorder when plasma levels are below the threshold of 350 to 400 µg/l. Other publications have shown that increased plasma levels (> 750 µg/L) are associated with anticholinergic side effects and the occurrence of seizures (4). Clozapine is known to cause more serious metabolic side effects than other antipsychotics (5). Up to 80% of the patients are overweight and 45 to 58% have metabolic syndrome, while hyperglycemia and hypertension are often undertreated. Cardiometabolic disorders are therefore the most common cause of premature death in schizophrenia. Clozapine-induced agranulocytosis (CIA) is much rarer, occurring in 0.4% of clozapine users and the risk of death is 10% (6). Nevertheless, fear of CIA is often a reason not to choose clozapine. Norclozapine, clozapine's main metabolite, may contribute to some extent to the therapeutic effect and side effects of clozapine. Though, its precise role is yet inconclusive (7-10). Due to its unknown clinical relevance, many laboratories do not measure norclozapine. It is likely that norclozapine, due to its stronger effect as an inverse agonist on the serotonin 5-HT2C receptor, causes weight gain and metabolic abnormalities, which are associated with a lower quality of life and somatic comorbidities such as diabetes mellitus type II, cardiovascular diseases and higher mortality (7). This is further supported by other small studies where norclozapine caused insulin resistance in animals(11), an association between norclozapine levels and elevated triglycerides, elevated cholesterol, and weight gain (12) was found or with a higher waist circumference and higher HbA1c (8). Studies with either CYP1A2 induction through smoking (8) or inhibition through fluvoxamine (13) show norclozapine concentrations to be associated with waist circumference, HbA1c, and body mass index (BMI) (8) or a lower weight and metabolic parameters (insulin, glucose and triglycerides) (8, 13, 14). Finally, two studies contradict this association as a clozapine/norclozapine ratio > 2 appears to be most beneficial regarding cardiometabolic outcomes according to Polciartek et al. (15), whereas Lu et al. could not confirm this at a ratio of 3.7 (14). Regarding the level of granulocytes, only one study has shown a higher norclozapine concentration to be more beneficial than a higher clozapine concentration after long-term use of clozapine (16). As of yet, research on (nor)clozapine concentrations and their association to metabolic side effects is limited and inconclusive. For both patients and healthcare providers, blood tests and fear of side effects are the main reasons to postpone or even abandon clozapine treatment (17). Unfortunately, not enough is known about individual risk factors for developing metabolic side effects to truly personalize clozapine treatment. It would be desirable to have another way to predict which clozapine users are at increased risk of developing severe side effects. Because of this, current guidelines differ in their advice regarding metabolic screening.

Therapeutic drug monitoring of clozapine

Based on the information mentioned above, the recommended window for therapeutic drug monitoring for clozapine is 350-700 µg/L for both once- and twice-daily dosing. Some patients respond well on lower or higher levels; the latter is acceptable as long as higher levels are tolerable. The therapeutic window is based on trough concentrations (i.e., approximately 12 hours after the evening dose) from studies using a divided dosing regimen(18, 19). Similar to twice-daily dosing, current practice for once-daily dosing of clozapine advises a sample to be collected at least 12 hours after intake or within a window of 10-14 hours after intake. It is however unknown if the concentration-effect relations of once- and twice-daily dosing are similar. Additionally, clinical laboratories do not have a

175 uniform general practice regarding sampling times, resulting in variability in preferred
176 sampling times and windows (1, 3, 4, 20).
177 As of yet, while often used in daily practice, there is no conclusive evidence as to the
178 adequacy and suitability of this sampling time for once-daily dosing. Clozapine's
179 pharmacokinetic properties further question this suitability. It has a biphasic elimination with a
180 mean elimination half-life of 12-16 hours (3). The range is 6-26 hours, which after a single
181 dosage of 75 mg was reported to be 7.9 hours that increased to 14.2 hours after reaching
182 steady state (after one week) (21). Theoretically, a mean half-life of 12 hours and sampling
183 time of 12 hours could lead to inadequate and inconsistent samples. This might be suitable
184 for twice-daily dosing, where a 12-hour sample would be a trough, but this might not be the
185 case for once-daily dosing. With once-daily dosing concentrations at 12 hours after ingestion
186 may be adequate (within the therapeutic window) but subtherapeutic after 24 hours.
187 Furthermore, smoking influences the metabolism such that a shorter half-life is reported (21).
188

189 **Pharmacokinetics of clozapine in relation to dosing**

190 One way to understand the pharmacokinetic variability of such compounds and provide
191 individualised treatment strategies is by using population pharmacokinetics (popPK) models.
192 These serve as useful tools within the framework of the model-informed precision dosing
193 (MIPD). A previous study determined the comparability of once- and twice-daily dosing
194 based on popPK analyses as well as the effect of once-daily dosing on clozapine and
195 norclozapine concentrations (22). Their simulations show a 30% higher 12 hr-post dose
196 concentration with once-daily (400 mg) dosing versus twice-daily (2x 200mg) dosing and a
197 30% lower trough (24 hr-post dose) when dosed once-daily compared to twice-daily. A
198 higher once-daily dosage, 700 mg, shows 12 hr-post dose concentrations to lie above the
199 upper limit and a trough (24 hr-post dose concentration) to be within the therapeutic window
200 but almost half the 12 hr-post dose concentration (788 µg/L vs 425 µg/L). This suggests the
201 current sampling time of 12 hr-post dose to be inadequate for once-daily dosing. This is
202 further supported by Procyshyn et al. as well as Zwaag et al. who noted simulated 12 hr-post
203 dose concentrations to be 23% higher after a single evening dose versus twice-daily dosing
204 (23, 24). Neither of these two studies included norclozapine in their assessment. This in
205 contrast to the study by Kitagawa et al. where no significant differences were found in
206 estimated peak and trough samples of clozapine and norclozapine dosed once- versus
207 twice-daily (400 mg/day) (25). The Dutch Clozapine Working group recommends increasing
208 the lower limit of clozapine's therapeutic range by 23% for 12-hr post evening dose samples
209 in patients with once-daily dosing based on the study by Zwaag et al (4, 23).

210 For a valid interpretation of the clozapine/norclozapine ratio, the clozapine dosage regimen,
211 and blood sampling interval are important. Sources of large variability in pharmacokinetics of
212 clozapine that affect CYP1A2 metabolism are smoking behaviour (polycyclic aromatic
213 hydrocarbons in cigarette smoke induce CYP1A2), caffeine consumption (CYP1A2
214 substrate), and estrogen and progesterone levels (inhibit CYP1A2). Excessive smoking is
215 correlated with reduced plasma levels of both CLO and NCLO. Coffee consumption is
216 correlated with increased CLO and NCLO plasma levels and negatively correlated with the
217 CLO/NCLO plasma level ratio. In premenopausal women CLO levels are higher compared to
218 postmenopausal women (26). Pharmacokinetic drug-drug interactions are caused by the
219 inhibition or induction of CYPs. Fluvoxamine increases the CLO/NCLO ratio through inhibition
220 of the CYP1A2 enzyme. The demethylation of CLO to NCLO is reduced, resulting in an
221 increase of the CLO plasma level and decrease of the NCLO plasma level (26).
222 Pro-inflammatory cytokines interleukin (IL)-6 and IL-1 inhibit CYP1A2, which can be detected
223 indirectly using the biomarker C-Reactive Protein (CRP). Furthermore, CLO is highly bound
224 to the acute phase protein alpha-1-acid glycoprotein (AGP) and less to serum albumin (95%
225 of CLO binds to AGP). During inflammation, concentrations of AGP increase, resulting in a
226 decreased CLO unbound fraction. Pharmacogenetics of the also affects pharmacokinetics of
227 clozapine. For example, asian ancestry is associated with lower CYP1A2 activity compared
228 to other ethnic groups. Additionaly, genetics may also account for variability in response tot

229 clozapine. It is reported that transcriptional activity of the M1 receptor gene is correlated with
230 anticholinergic burden (26).

231 Finally, CLO clearance is affected by age, sex, ethnicity, and smoking status. Higher age
232 results in a reduction in CLO clearance for both male and female smokers and non-smokers
233 of all ethnicities. Females have decreased CLO clearance compared to males. Patients of
234 Afro-Caribbean ethnicity have increased CLO clearance, whereas patients of Asian ethnicity
235 have decreased CLO clearance compared to their White counterparts. Additionally, smokers
236 have increased CLO clearance compared to non-smokers (26).

237 In addition to the CLO/NCLO ratio additional biomarkers to predict the CYP1A2 activity could
238 be useful in clinical practice. Pu et al have reported that in rats the ratio of the concentrations
239 of the amino acids phenylalanine and tyrosine in serum is highly correlated with the
240 expression of the CYP1A2 gene and the activity of the CYP1A2 enzyme. This biomarker
241 could be useful in prediction of the clearance of clozapine by this enzyme (27).

242 **Pharmacokinetic modelling**

243 Population PK models may be used to determine the sampling time or window that yields the
244 most precise estimation of pharmacokinetic parameters through simulations and optimization
245 techniques. Since several models have been developed for clozapine, a careful selection
246 based on suitability is applied. In this case, a valid popPK model should be developed
247 including Dutch patients, once-daily dosing regimen, trough samples of both clozapine and
248 norclozapine (up until 24 hours after ingestion) and include sufficient information during the
249 elimination phase. Geers et al. describes a popPK model for clozapine based on Dutch
250 patients. However, this model only included samples of patients who are dosed twice-daily,
251 fewer samples were taken between 8-24 hours after intake (and thus during the elimination
252 phase) and their model was based on two-time point sampling strategies for AUC (28).
253 Perera et al. studied optimal sampling points through modeling, but did so for twice-daily
254 dosing regimen based on AUC based monitoring as well and concluded three-time point
255 strategies. They also concluded that trough concentrations show an excellent correlation to
256 exposure (29). Geers et al. concluded the same for twice-daily dosing regimen (AUC0-12)
257 (28). Shang et al. used population PK/PD modeling to study the relationship between
258 exposure of clozapine (AUC) and the Positive and Negative Syndrome Scale (PANSS) (30).
259 They found the AUC to be a better predictor as PANSS score showed little relationship with
260 trough concentrations of clozapine. However they mention that this is probably due to the
261 slow onset of antischizophrenic effect after reaching steady state. Furthermore they only
262 included Chinese patients with a twice-daily dosing regimen. In addition none of these
263 models included norclozapine. The recent model by Beex et al. is based on Dutch patients,
264 trough samples of both clozapine and norclozapine as well as once- and twice-daily dosing
265 regimen (22). They mention model misspecification in the absorption phase. This might be
266 due to the occurrence of a first-pass effect and could have been described if more samples
267 had been taken during the absorption phase. However, this should not be relevant to this
268 study which focuses on sampling times during the elimination phase. Therefore this model is
269 most suitable to be used to study and find the optimal sampling time or window. Its suitability
270 will be further examined by performance of an external validation.

271 **Pharmacokinetics/pharmacodynamics and metabolic side effects**

272 Metabolic side effects of clozapine comprise weight gain, dyslipidemia and hyperglycemia,
273 which can result in a metabolic syndrome, associated with an increased risk for type 2
274 diabetes mellitus and cardiovascular disease (5). NCZ is hypothesised due to its stronger
275 action as an inverse agonist on the serotonin 5-HT2C receptor to cause weight gain and
276 metabolic changes, which are associated with a lower quality of life, somatic comorbidity,
277 and a higher mortality (7).

278 In a small low-quality meta-analysis (n=120) a positive correlation was found between
279 clozapine concentrations and elevated triglycerides, heart rate, and overall combined
280 adverse drug reaction (12). Furthermore, a positive correlation was found between
281 norclozapine plasma levels and triglycerides, cholesterol, and weight gain. In short, at
282

284 present there is too little evidence to identify the role of the clozapine/norclozapine plasma
285 level ratio in the minimisation of clozapine side effects. In addition, the correlation of
286 CLO(&CNLO) concentration with metabolic markers might be affected by cortisol and
287 genetics of the glucocorticoid receptor (31). Finally, other genetic markers known to
288 modulate the basic risk of metabolic syndrome might play a role in this correlation between
289 the correlation of the CLO(&CNLO) concentration and the increase in metabolic markers
290 (32).

291
292 **Personalised clozapine treatment**
293 Since clozapine is mostly given to patients with treatment-resistant schizophrenia, a clear
294 defined sample time is required in order to interpret their plasma concentrations and optimize
295 their treatment through TDM. Inadequate interpretation may lead to suboptimal treatment
296 efficacy or increased risk of adverse effects. Furthermore the relation of adverse effects,
297 especially metabolic and granulocyte, to (nor)clozapine concentration has yet to be
298 researched well in order to improve screening and optimize treatment. Based on earlier
299 studies it is suggested that current sample times may fit a twice-daily dosing schedule and
300 not a once-daily dosing schedule. Thus in this study the difference between the
301 (nor)clozapine concentrations at 12-hours post intake and the concentration at other time
302 points within the 10-14 hours sampling window will be evaluated for once-daily dosed
303 clozapine. To this end, the model by Beex et al. will be validated with independent data.
304 Through predicted concentrations, we aim to contribute novel insights into the optimal timing
305 of sample collection as well as insight into the development of metabolic and granulocyte
306 side effects, addressing the existing knowledge gap and enhancing the precision of
307 therapeutic drug monitoring in this population.
308 This research will not only provide more knowledge about risk factors for developing general
309 side effects of clozapine, metabolic side effects, constipation, and chronic neutropenia, but
310 will also improve metabolic screening in clozapine users through better implementation of
311 metabolic screening.

312
313
314

315 **OBJECTIVES**316 **Primary Objective:**

317 ● To evaluate the correlation of (nor)clozapine kinetics and serum level HbA1c

318

319 **Secondary Objectives:**

320 ● To validate an existing population model with independent data.

321 ● To study the validity of current practice (12-hr post intake) sampling times within a

322 window of 4 hours (10-14 hours post intake) for TDM of once daily dosed clozapine

323 ● To identify the optimal sampling time or window for TDM of clozapine based on

324 predicted concentration-time profiles up until 24-hours post intake.

325

326 ● To investigate the influence of the following covariates on the pharmacokinetics of

327 clozapine, the metabolite norclozapine (and CZ/NCZ ratio):

328 ○ age

329 ○ estradiol (indirectly through demographic data [premenopausal or

330 postmenopausal female / male]),

331 ○ comedication with fluvoxamine (dosage) and other medication

332 ○ ethnicity (Asian ancestry is associated with lower CYP1A2 activity compared

333 to other ethnic groups).

334 ○ pharmacogenetics of the metabolic enzymes *CYP2C19* and *CYP3A4*

335 ○ smoking behaviour (yes/no and amount)

336 ○ inflammation markers (C-reactive protein (CRP) and Erythrocyte

337 Sedimentation (BSE))

338 ○ phenylalanine and tyrosine (a higher ratio of phenylalanine/tyrosine is

339 associated with a higher CYP1A2 activity) (27).

340

341 ● To evaluate the correlation of (nor)clozapine concentrations and/or ratio on:

342 ○ Other metabolic parameters such as: fasting glucose, insulin, HOMA-IR,

343 triglycerides, HDL, LDL, total cholesterol, BMI, abdominal circumference,

344 blood pressure and heart rate.

345 ○ Absolute neutrophil count (ANC) and total white cell count (TWC).

346 ○ General side effects of clozapine using the Glasgow Antipsychotic Side-effect

347 Scale for Clozapine (GASS-C) (33).

348 ○ Defecation frequency per week and consistency using the Bristol Stool Form

349 Scale (BSFS).

350 ○ Positive and Negative Syndrome Scale (PANSS-6), regarding severity of

351 schizophrenia

352

353 ● To evaluate the effect of cortisol concentration and genetics of known relevant loci

354 related on the correlation of (nor)clozapine concentrations and/or ratio on the

355 metabolic markers (31,32)

356

357

358

359

360 **STUDY DESIGN**

361 This is a (non-interventional) single-center cohort study. (Out)patient data will be collected
362 from the mental healthcare organization GGZ-NHN and the laboratory of NorthWest clinics.
363 For all endpoints a baseline value is required. The inclusion period will start 01-12-2024 and
364 will last until 01-12-2025. For each patient two years of follow-up will be collected (until a
365 maximum of 01-12-2027). For the secondary endpoint pertaining to the sample times
366 retrospective data will be collected from 01-02-2024 up to 01-02-2025. Remnant material will
367 be collected in the period during the follow-up period after obtaining informed consent
368
369

370 **STUDY POPULATION**
371**Population (base)**

372 The population includes adult patients (age between 18 and 70) with treatment resistant
373 schizophrenia or schizoaffective disorder, treated with oral, once or twice-daily clozapine.
374 Data will be collected from mental healthcare organization GGZ-NHN. All the patients have
375 been treated with clozapine as part of standard care, as well as sampled routinely as part of
376 standard care.

377

Inclusion criteria

378 In order to be eligible to participate in this study, a subject must meet all of the following
379 criteria and provide informed consent. These criteria are partially based on covariates used
380 the model by Beex et al., as it will be used in this study (22):

- 382 • Standard treatment of a stable, oral dose of clozapine for at least one week (at steady
383 state).
- 384 • Age between 18-70 years.
- 385 • Registered time of intake as well as sampling time and dosage.
- 386 • Registered smoking status (yes/no).
- 387 • At least two samples in the elimination phase of clozapine with both clozapine and
388 norclozapine measured.
- 389 • Measurement of the white cell count at least every three months or more often.
- 390 • Routine metabolic screening performed at moment of inclusion
- 391 • Subjects should be able to understand the study information and procedures and give
392 informed consent or when incapacitated subjects are not reliably able to give
393 informed consent their legal representatives should give informed consent under the
394 condition that these subjects are willing to participate.

395

396

Exclusion criteria

397 A potential subject or specific samples that meet any of the following criteria will be excluded
398 from this study:

- 400 • Pregnancy.
- 401 • Malignancy or treatment with immunosuppressive medication.
- 402 • Samples where cessation, start or dose change of interacting co-medication (such as
403 valproic acid, gemfibrozil, fluvoxamine, omeprazole and cyclic oral contraceptives [21
404 on, 7 days off]) or changes in use of tobacco containing products occurred within
405 seven days prior to blood sampling (21, 28, 34, 35).
- 406 • Acute inflammation, infection or samples shortly after intoxication. In case this
407 information is unknown, it may be derived by large unexpected change in levels
408 compared to previous or target levels.
- 409 • Not sampled at Starlet (blood collection site) or sampled by dried blood spot
- 410 • Unknown status of smoking (including vaping).
- 411 • Unknown time of intake of clozapine.
- 412 • Unknown time of blood sampling.
- 413 • If informed consent is not obtained by the patient or by a legal representative in a
414 mentally incapacitated patient, i.e. a legally incompetent adult.

415

416

Sample size calculation

417 No calculation was performed since the effect of clozapine on the increase of metabolic
418 markers is unknown. A rule of thumb with pharmacokinetic studies is an amount of 30
419 patients, however with the combination of pharmacokinetics and pharmacodynamics the
420 variability in the endpoint will increase. Based on a previous PK/PD study which studied the
421 relationship of the drug adalimumab with the PASI-score, a population of approximately 60
422 patients was sufficient for establishing a correlation with the pharmacokinetics of adalimumab
423

424 and the clinical response measured by the PASI (36). For the secondary endpoint
425 investigating the effect a minimum of 30 patients with 90-120 samples is likely sufficient.
426
427

428 **TREATMENT OF SUBJECTS**

429 This chapter is not applicable as this is a non-interventional study.
430

431 **INVESTIGATIONAL PRODUCT**

432 This chapter is not applicable as this is a non-interventional, retrospective study that involves
433 standard care.
434

435 **NON-INVESTIGATIONAL PRODUCT**

436 This chapter is not applicable as this is a non-interventional, retrospective study that involves
437 standard care.
438

439 **METHODS**440 **Study parameters/endpoints**441 **Main study parameter/endpoint**

442 Correlation between serum level HbA1c and (nor)clozapine concentrations and ratio
443 will be assessed using a PK-PD turn over model.

444

445 **Secondary study parameters/endpoints**

446 • The predictive performance of the model by Beex et al. (22) for our population will be
447 assessed through calculations of the prediction error for each observation as well as
448 the root mean square error to measure the overall prediction accuracy.

449

450 In order to study the main study point, the model by Beex et al. will have to be validated for
451 our population first. However, since this is not the primary objective, it is noted as a
452 secondary objective that will be performed before researching the primary endpoint. The
453 cutoff value for the mean and median values of prediction errors is also based on clinical
454 practice as well as the study by Veerman et al. (37) and thus set at 20%.

455

456 • Percentage difference in clozapine and norclozapine median concentrations
457 predicted 10, 11, 13 and 14-hour post intake (based on clinical samples) compared to
458 median concentrations at current reference sampling time of 12-hour post intake.

459

460 Based on the study of Veerman et al. an increase of 100 µg/L is regarded as clinically
461 relevant (37). However, measurement errors may also impact the differences between
462 concentrations and are expressed in a percentage. Therefore, clinically relevant differences
463 will be expressed as a percentage as well. The increase of 100 µg/L is set off against the
464 therapeutic window of 350-700 µg/L up to the alert level of 1000 µg/L. As the midpoint of this
465 range would be 525 µg/L, 100 µg/L would correspond with a difference of 20%. This
466 difference is defined as clinically relevant for this study, according to which concentrations
467 would no longer be deemed similar and thus corresponding to the same time window or an
468 adequate sampling time or window.

469

470 • Percentage difference in clozapine and norclozapine concentrations based on
471 different sampling times across entire concentration-time profiles to identify optimal
472 sampling time or window within current therapeutic window of 350-700 µg/L.

473

474 To identify the optimal sampling time or window, expected concentration-time profiles will be
475 constructed on basis of individual PK parameters obtained by Bayesian analysis. In these
476 profiles sampling times during which the concentration will be within the therapeutic window
477 of 350-700 µg/L will be identified. These graphical 'reference ranges' could point to an
478 optimal sampling time or window. In order for a sampling time window to be found,
479 concentrations within that window would have to be deemed similar. As a percentage
480 difference of 20% between concentrations will be regarded as clinically relevant,
481 concentrations within the same window are allowed a difference up to 20%. As such, a new
482 sampling time or window might be found instead of the current window of 10 to 14 hours post
483 intake.

484

485 • Effect of covariates on the pharmacokinetics of clozapine, the metabolite
486 norclozapine (and CZ/NCZ ratio). Covariates to be studied include: age, estradiol,
487 comedication (e.g. fluvoxamine), ethnicity, pharmacogenetics, smoking behaviour,
488 inflammation markers, phenylalanine and tyrosine.

489

490 • Correlation between other metabolic parameters (such as fasting glucose, insulin,
491 HOMA-IR, triglycerides, HDL, LDL, total cholesterol, BMI, abdominal circumference,
492 blood pressure and heart rate), ANC and TWC, GASS-C, BSFS and PANSS-6

493 regarding severity of schizophrenia and the (nor)clozapine concentrations and ratio
494 will be assessed using a PK-PD turn over model.

495

496 ● The effect of cortisol concentration and genetics on the correlation of (nor)clozapine
497 concentrations and/or ratio on the metabolic markers

498

499

500 **Other study parameters**

501 Demographics

502 - Sex (male/female).
503 - Age (year).
504 - Estradiol indirectly (premenopausal/postmenopausal female / male).
505 - Ethnicity (Caucasian/African-Caribbean/Asian/other).

506

507 Clinical parameters

508 - Indication for clozapine use (diagnosis treatment resistant schizophrenia or schizoaffective
509 disorder).
510 - Duration of illness.
511 - Duration of clozapine treatment.
512 - Dosage scheme.
513 - Baseline PANSS-6, regarding severity of schizophrenia

514

515 Other parameters

516 - Tobacco smoking behaviour (yes/no, including amount (prospectively)) and vaping
517 (yes/no).
518 - Interacting co-medication such as strong CYP3A4-inductors (gemfibrozil, apalutamide,
519 carbamazepine, efavirenz, enzalutamide, phenobarbital, phenytoin, St. John's wort,
520 lumacaftor, mitotane, nevirapine, primidone, rifabutin, rifampicin) or level increasing drugs
521 such as fluvoxamine, fluoxetine or sertraline, CYP1A2 inhibitors such as ciprofloxacin, or
522 inductors such as omeprazole, oral contraceptives and valproic acid).
523 - Gemfibrozil and valproic acid use, as both inhibit renal clearance of norclozapine (38).
524 - Patient specific target level if this falls outside of the therapeutic window of 350-700 µg/L, in
525 order to be able to identify these levels as expected normal target levels instead of toxic or
526 caused by (in)adherence, interactions or infection.
527 - Reason for blood collection if available (routine or otherwise: possible toxicity, infection,
528 CRP and BSE if recently measured and known, change in dosage or co-medication).

529

530

531 **Randomisation, blinding and treatment allocation**

532 *Not applicable*

533 **Study procedures**

534 *Not applicable, patients will not undergo any (additional) procedures for research
535 purposes. All samples will be taken as part of standard care for treatment purposes.*

536 **Withdrawal of individual subjects**

537 *Not applicable*

538 **Specific criteria for withdrawal (if applicable)**

539 *Not applicable*

540 **Replacement of individual subjects after withdrawal**

541 *Not applicable*

542 **Follow-up of subjects withdrawn from treatment**

543 *Not applicable*

544 **Premature termination of the study**

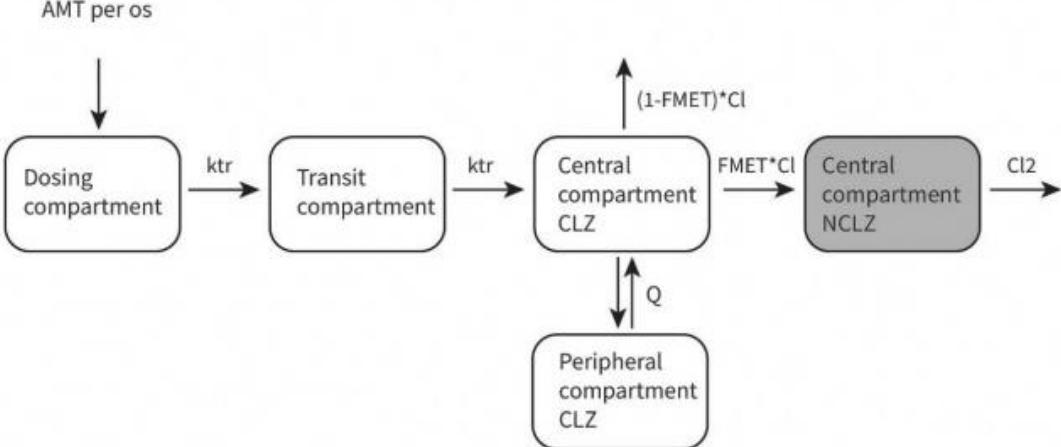
545 *Not applicable*

546

547 **SAFETY REPORTING**

548 This chapter is not applicable as this is a non-interventional, retrospective study that involves
549 standard care.

550


551 **STATISTICAL ANALYSIS**552 **Primary study parameter(s)**

553 PK analyses will be performed using nonlinear-mixed-effects modelling (NONMEM) software
 554 (version 7.4.2, ICON Development Solution, Gaithersburg, MD, USA). Software like R
 555 (www.rproject.org), Pirana and Xpose (version 4.3.2, Niclas Jonsson and Mats Karlsson,
 556 Uppsala, Sweden) will be used for graphical display and evaluation of the models (including
 557 goodness of fit plots).

558 Previously Beex et al., while studying the comparability of pharmacokinetics of clozapine and
 559 norclozapine with once- and twice-daily dosing, developed a population PK model using
 560 NONMEM (13). Furthermore, their popPK model has incorporated patient-specific covariate
 561 smoking to further refine pharmacokinetic parameter estimates and improve the accuracy of
 562 dosing. Their base model describes clozapine by a two-compartment model with a transit
 563 compartment describing the delay in absorption and linear elimination consisting of combined
 564 excretion and formation of the metabolite norclozapine. This model was extended with a one-
 565 compartment model for norclozapine with first-order elimination (Figure 2, excerpt from their
 566 study).

567

568

Figure 2. Schematic representation of the structural model.

AMT = amount, Cl = clearance of clozapine, Cl2 = clearance of norclozapine, CLZ = clozapine, FMET = fraction metabolised, ktr = transit compartment rate constant, NCLZ = norclozapine,

Q = intercompartmental clearance

571

572

573 Their final model tested for several covariates: total body weight, BMI, age, sex, AGP
 574 concentrations, albumin concentrations, CRP, and smoking status. Only smoking had a
 575 significant effect on clozapine clearance (not on norclozapine clearance). Based on this
 576 model, clearance of clozapine is 55% higher in smokers than in non-smokers. Table 2 is an
 577 excerpt of the overview of parameter estimates of both base and final model.

578

Table 2. Overview of parameter estimates of base model, final model and SIR. SIR was run on 2000 samples and 1000 resamples. CI = confidence interval, CLZ = clozapine, CI/F = apparent clearance of clozapine, CI/F' = apparent clearance of norclozapine, FMET = fraction of clozapine metabolised into norclozapine, Ktr = transit rate constant, Q = intercompartmental clearance, OFV = objection function value, NCLZ = norclozapine, RSE = relative standard error, SIR = sampling importance resampling, V_{central} / F = apparent central volume of distribution of clozapine, V_{peripheral} / F = apparent peripheral volume of distribution of clozapine, V / F' = apparent volume of distribution of norclozapine. FIX = fixed value

Parameter	Base model (RSE %)	Final model (RSE %)	SIR (95% CI)
CI/F CLZ (L/h)	30.8 (7.4%)	22.2 (14.8%)	22.2 (18.0 – 28.0)
Smoking on CI/F	-	1.55 (16.4%)	1.55 (1.20 – 1.96)
V _{central} / F CLZ (L)	328 (11.4%)	328 (11.3%)	328 (257 – 422)
V _{peripheral} / F CLZ (L)	285 (17.1%)	286 (17.0%)	286 (199 – 394)
Q (L/h)	86.0 (22.3%)	86.0 (21.9%)	86.0 (60.1 – 130.1)
Ktr (h ⁻¹)	1.23 (10.0%)	1.23 (10.0%)	1.23 (0.99 – 1.52)
CI/F' NCLZ (L/h)	36.1 (8.0%)	36.1 (8.0%)	36.1 (31.3 – 41.7)
V/F' NCLZ (L)	746 (72.0%)	751 (72.2%)	751 (418 – 1796)
FMET	0.66 FIX	0.66 FIX	0.66 FIX
Interindividual variability (%)			
IIV CI/F CLZ	49.7 (8.6%)	45.1 (10.0%)	43.0 (36.7 – 53.4)
IIV V _{central} / F	63.7 (10.9%)	63.5 (12.4%)	58.2 (44.4 – 72.9)
IIV V _{peripheral} / F CLZ	72.8 (28.9%)	72.7 (29.0%)	62.8 (46.8 – 84.6)
IIV Ktr	69.6 (16.6%)	69.6 (16.5%)	50.0 (42.1 – 59.4)
IIV CI/F' NCLZ	53.3 (8.6%)	53.3 (8.9%)	65.1 (29.7 – 104.3)
Proportional error CLZ (%)	13.2 (9.1%)	13.2 (9.1%)	13.2 (12.0 - 14.7)
Proportional error NCLZ (%)	18.3 (8.3%)	18.3 (8.2%)	18.2 (16.7 – 20.0)
OFV (-2 LL)	7610.26	7602.50 (-7.76)	

579
580

581 Subsequently, their developed final population PK model will be used to predict
582 concentration-time profiles for clozapine and norclozapine under various dosages and
583 sampling schedules on basis of individual PK parameters obtained by Bayesian analysis.
584 Collected data will be inserted into R as well as relevant patient-specific demographic,
585 clinical and laboratory data. A new database suitable for PK analyses of clozapine will be
586 constructed in NONMEM. In order to do this the clozapine dose, measured concentration
587 data along with time of intake and sampling time will be taken into account. Subsequently,
588 PK profiles will be predicted. The reference window to be targeted will be 350-700 µg/L for
589 clozapine. Deviation from this window will be allowed for patients who, according to their
590 psychiatrist or nurse specialist or other practitioner, have a higher or lower target level than
591 the defined therapeutic window with good therapeutic effect. This will only be allowed based
592 on the psychiatrist/nurse specialist/practitioner's information and help identify these levels as
593 expected normal target levels instead of toxic or caused by inadherence, interactions or
594 infection.

595

596 The first step before researching the primary endpoint, is the performance of an external
597 validation (see secondary study parameter(s) below). Afterwards, the current study
598 population will be studied in order to research the primary endpoint. To analyse this, the
599 concentration-time data will be used to develop PK/PD turn-over models to estimate the
600 parameters (Kin, Kout, Emax and EC50) linking the pharmacokinetics of clozapine and
601 norclozapine to HbA1c serum levels. Once the structural PK/PD model is developed, the
602 between subject variability and residual unexplained variability of the estimated
603 pharmacokinetic parameters will be assessed.

604
 605 A univariate covariate analysis will be performed to check for associations between the
 606 patient-related factors on parameters of the PD model using a χ^2 test-statistic. Covariates
 607 with a significant association in the univariate analysis will be included in the multivariate
 608 analysis. Covariates that remain significant in the multivariate analysis will be included in the
 609 final pharmacodynamic model. This final model will be validated using visual predictive check
 610 (VPC's) and using a bootstrap procedure the robustness of the model will be tested. The
 611 latter two procedures will be performed using Piraña and Pearl speaks NONMEM (PsN)
 612 software.

613
 614 **Secondary study parameter(s)**

615
 616 For the external validation of the model, predicted profiles will be compared to the observed
 617 data of our population (which is regarded as an external data set). Prediction error (PE) for
 618 each predicted concentration (PE_i) was defined through the following equation:
 619

620
$$PE_i = \frac{(Observed_i - Predicted_i)}{Observed_i} \times 100$$

621
 622 where $Observed_i$ and $Predicted_i$ represent the i th observed and predicted concentrations,
 623 respectively. The root mean square error (RMSE) prediction error was also calculated using
 624 the following equation:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (Observed_i - Predicted_i)^2}$$

625
 626 where n represents the total number of concentrations. A population PK model was regarded
 627 as valid for our clinical settings when both the mean and median values of PE were less than
 628 20%. As stated earlier, the external validation of the model by Beex et al. will be performed
 629 before researching our primary goal.
 630

631 Based on the predicted concentration-time profile for all participants, the percentage
 632 difference in predicted clozapine and norclozapine concentrations between different
 633 sampling times will be calculated. The 12-h time point will be set as reference and compared
 634 to concentrations predicted (or measured if available) at 10, 11, 13 and 14 hours-post intake
 635 concentrations. Plasma concentrations taken at steady state should be comparable to others
 636 within an acceptable time window. As stated earlier, concentrations are regarded as
 637 comparable if the total percentage difference does not exceed 20%. This includes expected
 638 bias and imprecision in measurement and interoccassion and interindividual variability. This
 639 difference is defined as clinically relevant for this study, according to which concentrations
 640 would no longer be deemed similar and thus corresponding to the same time window or an
 641 adequate sampling time or window.

642 Statistical significance will be tested through generalized linear mixed models for proportions,
 643 in which the proportion of clinically relevant differences per time point versus $t=12$ will be
 644 compared. For descriptive statistics, continuous outcomes are presented as medians and
 645 ranges between minimum and maximum values with corresponding confidence intervals,
 646 when applicable. Categorical outcomes are reported as numbers and proportions ($n (%)$).
 647 Two tailed p-values of < 0.05 based on χ^2 with one degree of freedom were considered
 648 statistically significant.
 649

650 Based on the clinical patient data, predicted concentration-time profiles, averaged for each
 651 subject, will be portrayed for different oral dosages. The (new) optimal sampling window will
 652 be based on the time window during which the difference in measured clozapine and

653 norclozapine concentrations in the predicted profile is smaller than 20% as well as within the
654 defined therapeutic window of 350-700 µg/L for clozapine. If needed, deviation from this
655 window will be allowed for patients with different target levels as described before. This will
656 be only be allowed based on the psychiatrist/nurse specialist/practitioner's information. If a
657 window cannot be found, then sampling times will be noted during which clozapine
658 concentrations fall within the defined therapeutic window. The student's t-test for paired data
659 was used to analyse differences in median serum concentrations across sampling times.
660

661 Aside from the metabolic parameters mentioned in the primary endpoint, correlation with
662 other metabolic parameters (such as fasting glucose, insulin, HOMA-IR, triglycerides, HDL,
663 LDL, total cholesterol, BMI, abdominal circumference, blood pressure and heart rate), ANC,
664 TWC, GASS-C and BSFS with the concentrations will be studied. The concentration-time
665 data will be used to develop PK/PD turn-over models to estimate the parameters (Kin, Kout,
666 Emax and EC50) linking the pharmacokinetics of clozapine and norclozapine to these
667 parameters. Once the structural PK/PD model is developed, the between subject variability
668 and residual unexplained variability of the estimated pharmacokinetic parameters will be
669 assessed. A univariate covariate analysis will be performed to check for associations
670 between the patient-related factors on parameters of the PD model using a χ^2 test-statistic.
671 Covariates with a significant association in the univariate analysis will be included in the
672 multivariate analysis. Covariates that remain significant in the multivariate analysis will be
673 included in the final pharmacodynamic model. This final model will be validated using visual
674 predictive check (VPC's) and using a bootstrap procedure the robustness of the model will
675 be tested. The latter two procedures will be performed using Piraña and Pearl speaks
676 NONMEM (PsN) software.
677

678 Using an univariate analysis in NONMEM the association of patient-related factors on the
679 pharmacokinetic parameters of clozapine will be tested using a χ^2 test-statistic. The
680 covariates that will be included in the univariate analysis include age, gender,
681 premenopausal/postmenopausal female/male, ethnicity, weight, height, CRP, BSE, smoking
682 behaviour, comedication with fluvoxamine (dosage) and genotypes. Covariates with a
683 significant association in the univariate analysis will be included in the multivariate analysis.
684 Covariates that remain significant in the multivariate analysis will be included in the final
685 pharmacokinetic model. This final model will be validated using visual predictive check
686 (VPC's) and using a bootstrap procedure the robustness of the model will be tested. The
687 latter two procedures will be performed using Piraña and Pearl speaks NONMEM (PsN)
688 software. The final pharmacokinetic model will then be used to create concentration-time
689 curves for each individual participating in the PK/PD study.
690

691 **Other study parameters**

692
693 Baseline characteristics will be depicted by means of summary statistics: mean \pm SD for
694 normally distributed continuous variables and median \pm interquartile range for non-normally
695 distributed continuous variables. Proportions will be calculated for categorical variables.
696

697 **Interim analysis (if applicable)**

698 *Not applicable.*

699 **ETHICAL CONSIDERATIONS**

700 This is an observational cohort study in which the data will be collected retrospectively. The
701 subjects included in this study will not undergo any additional procedures. After gaining
702 permission by the Advisory Committee on Local Feasibility of the GGZ-NHN, all subjects will
703 be asked informed consent before participation. Informed consent will be asked in
704 accordance with the General Data Protection Regulation (GDPR). Their Electronic Health
705 Record (EHR) will be viewed by the treating psychiatrist, physician, nurse specialist, or other
706 doctor/practitioner. Data collected by the practitioner will be used for the dataset.
707 Additionally, information such as plasma levels is collected through Labosys reports for
708 which informed consent is given according to standard procedure for blood collection.
709 Remnant material from laboratory procedures performed as part of routine clinical care will
710 be collected and stored.

711

712 **Regulation statement**

713 This research will be conducted in accordance with Good clinical practice (GCP) and GDPR.

714

715 **Recruitment and consent**

716 This study will be submitted to the local review committee of the GGZ-NHN. Letter and
717 informed consent are attached as separate documents.

718

719 **Objection by minors or incapacitated subjects (if applicable)**

720 *Not applicable.*

721 **Benefits and risks assessment, group relatedness**

722 *Not applicable.*

723 **Compensation for injury**

724 *Not applicable.*

725 **Incentives (if applicable)**

726 *Not applicable.*

727

728

729

ADMINISTRATIVE ASPECTS, MONITORING AND PUBLICATION**Handling and storage of data and documents**

730
731
732
733 Data regarding sex, age, plasma levels of both clozapine and nortclozapine, time of intake
734 and sampling time will be collected through reports from Labosys (Alkmaar). This data is
735 sourced from the blood collection site, where requesting psychiatrists, physicians, nurse
736 specialists, or other doctors/practitioners are required to fill in this information. All specified
737 laboratory parameters (see above) from both GGZ-NHN and other sources of requests for
738 laboratory diagnostic procedures (i.e. general practitioner, specialist internal medicine) within
739 the period of follow-up will be used for analysis. Time of intake will be collected from the
740 patients before the sampling time at the collection site (Starlet) according to standard
741 practice. Due to new ISO regulations, there are upcoming changes in standard practice for
742 blood collection at the main site. These changes will require requesting doctors to fill in more
743 information at every blood collection request such as: smoking (yes/no), dosage, reason for
744 blood collection (routine or otherwise: possible toxicity, infection, change in dosage). Once
745 these changes have followed through, this data can also be collected through Labosys. Co-
746 medication will be retrieved through the patient's public pharmacy.

747
748 Before implementation of these changes, information on smoking, dosage and reason for
749 blood collection will be collected through the treating psychiatrist/nurse specialist/practitioner
750 who has access to the patient's electronic health record if needed. Other information to be
751 gathered by the treating psychiatrist/nurse specialist/practitioner includes: weight and BMI ,
752 ethnicity, diagnosis (of schizophrenia or other psychiatric disorder), pregnancy, interacting
753 co-medication (including newly started, stopped medication and changes in dosages within a
754 week of sampling time). Data regarding metabolic parameters such as fasting glucose,
755 serum level HbA1c, triglycerides, HDL, LDL, total cholesterol, abdominal circumference, BMI
756 and blood pressure and heart rate will be collected through reports through Nexus and
757 mConsole (Alkmaar), as well as the absolute neutrophil count (ANC) and the outcomes of
758 the Bristol Stool Form Scale (BSS) assessment, the Glasgow Antipsychotic Side-effect Scale
759 for Clozapine (GASS-C) questionnaire and the Positive and Negative Syndrome Scale
760 (PANSS-6) questionnaire will be collected through Nexus and mConsole (Alkmaar). Clinical
761 data needed from the dedicated includers (co-investigators, with an affiliation to the GGZ-
762 NHN) will be collected through a simple case report form. This information will be collected at
763 the moment of inclusion and at the end of the study (retrospectively) in case any changes
764 occur during the study period. Biologic material collected as part of laboratory investigation
765 as part of routine clinical care after obtaining informed consent will be stored at the
766 laboratories of the North West Clinics until all laboratory procedures pertaining the
767 investigation are completed (metabolic enzymes, the genes CYP2C19 and CYP3A4 and
768 genes related to metabolic markers).

769
770 Missing data (unless described in the inclusion or exclusion criteria) will be allowed. Native
771 speakers, if available, will be asked to deduct a patient's ethnicity based on their name in
772 case the ethnicity is unknown before regarding this as missing data. If data, such as BMI or
773 CRP, are not reported in the patient's medical file the event will be recorded as 'missing data'
774 or as not occurred.

775
776 During the study period, data collected from the psychiatrist/nurse
777 specialist/practitioner/dedicated includer will be linked to data collected from Labosys
778 according to date of birth and name. Patient data will be encoded. The key will be
779 safeguarded by the coordinating investigator and principal investigators. Furthermore
780 collected data will be stored for 15 years.

781
782 The results, discussion and conclusion of the study will be reported and shared in an
783 abstract, manuscript and registration presentation in accordance to the principles of the

784 ICMJE guidelines. Information concerning this study's processes and data is confidential and
785 its rights belong to GGZ-NHN, NWZ Alkmaar and Amsterdam UMC.

786

787

788 **Monitoring and Quality Assurance**

789 *Not applicable*

790 **Amendments**

791 *Not applicable*

792 **Annual progress report**

793 *Not applicable*

794 **Temporary halt and (prematurely) end of study report**

795 *Not applicable*

796 **Public disclosure and publication policy**

797 *Not applicable*

798

799 **STRUCTURED RISK ANALYSIS**

800 *Not applicable*

801

802

803 REFERENCES

804

805 1. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus
806 Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017.
807 *Pharmacopsychiatry*. 2018;51(1-02):9-62.

808 2. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, et al. AGNP
809 Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011.
810 *Pharmacopsychiatry*. 2011;44(6):195-235.

811 3. Schoretsanitis G, Kane JM, Correll CU, Marder SR, Citrome L, Newcomer JW, et al. Blood
812 Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the
813 American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of
814 the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. *J Clin Psychiatry*.
815 2020;81(3).

816 4. Schulte PJF BB, Bogers J, Cohen D, van Dijk D. . Guideline for the use of clozapine;
817 explanatory supplement accompanying a guideline. <http://www.clozapinepluswerkgroep.nl/wp-content/uploads/2013/07/Guideline-for-the-useof-Clozapine-2013.pdf>. [updated Updated 2013.
818 Accessed February 2nd, 2024].

819

820 5. Yuen JWY, Kim DD, Procyshyn RM, Panenka WJ, Honer WG, Barr AM. A Focused Review of
821 the Metabolic Side-Effects of Clozapine. *Front Endocrinol (Lausanne)*. 2021;12:609240.

822 6. Li XH, Zhong XM, Lu L, Zheng W, Wang SB, Rao WW, et al. The prevalence of
823 agranulocytosis and related death in clozapine-treated patients: a comprehensive meta-analysis of
824 observational studies. *Psychol Med*. 2020;50(4):583-94.

825 7. Costa-Dookhan KA, Agarwal SM, Chintoh A, Tran VN, Stogios N, Ebdrup BH, et al. The
826 clozapine to norclozapine ratio: a narrative review of the clinical utility to minimize metabolic risk and
827 enhance clozapine efficacy. *Expert Opin Drug Saf*. 2020;19(1):43-57.

828 8. Jessurun NT, Derijks HJ, van Marum RJ, Jongkind A, Giraud EL, van Puijenbroek EP,
829 Grootens KP. Body weight gain in clozapine-treated patients: Is norclozapine the culprit? *Br J Clin
830 Pharmacol*. 2022;88(2):853-7.

831 9. Park R, Kim S, Kim E. Relationship of Change in Plasma Clozapine/N-desmethylclozapine
832 Ratio with Cognitive Performance in Patients with Schizophrenia. *Psychiatry Investig*.
833 2020;17(11):1158-65.

834 10. Schoretsanitis G, Kane JM, Ruan CJ, Spina E, Hiemke C, de Leon J. A comprehensive review
835 of the clinical utility of and a combined analysis of the clozapine/norclozapine ratio in therapeutic drug
836 monitoring for adult patients. *Expert Rev Clin Pharmacol*. 2019;12(7):603-21.

837 11. Yuen JWY, Wu C, Wang CK, Kim DD, Procyshyn RM, Honer WG, Barr AM. A comparison of
838 the effects of clozapine and its metabolite norclozapine on metabolic dysregulation in rodent models.
839 *Neuropharmacology*. 2020;175:107717.

840 12. Tan MSA, Honarparvar F, Falconer JR, Parekh HS, Pandey P, Siskind DJ. A systematic
841 review and meta-analysis of the association between clozapine and norclozapine serum levels and
842 peripheral adverse drug reactions. *Psychopharmacology (Berl)*. 2021;238(3):615-37.

843 13. Lu ML, Lane HY, Lin SK, Chen KP, Chang WH. Adjunctive fluvoxamine inhibits clozapine-
844 related weight gain and metabolic disturbances. *J Clin Psychiatry*. 2004;65(6):766-71.

845 14. Lu ML, Chen TT, Kuo PH, Hsu CC, Chen CH. Effects of adjunctive fluvoxamine on metabolic
846 parameters and psychopathology in clozapine-treated patients with schizophrenia: A 12-week,
847 randomized, double-blind, placebo-controlled study. *Schizophr Res*. 2018;193:126-33.

848 15. Polciartek C, Nielsen J. The clinical potentials of adjunctive fluvoxamine to clozapine
849 treatment: a systematic review. *Psychopharmacology (Berl)*. 2016;233(5):741-50.

850 16. Willcocks IR, Legge SE, Nalmpanti M, Mazzeo L, King A, Jansen J, et al. Clozapine
851 Metabolism is Associated With Absolute Neutrophil Count in Individuals With Treatment-Resistant
852 Schizophrenia. *Front Pharmacol*. 2021;12:658734.

853 17. Okhuijsen-Pfeifer C, Cohen D, Bogers J, de Vos CMH, Huijsman EAH, Kahn RS, Luykx JJ.
854 Differences between physicians' and nurse practitioners' viewpoints on reasons for clozapine
855 underprescription. *Brain Behav*. 2019;9(7):e01318.

856 18. Spina E, Avenoso A, Facciola G, Scordo MG, Ancione M, Madia AG, et al. Relationship
857 between plasma concentrations of clozapine and norclozapine and therapeutic response in patients
858 with schizophrenia resistant to conventional neuroleptics. *Psychopharmacology (Berl)*.
859 2000;148(1):83-9.

860 19. Kronig MH, Munne RA, Szymanski S, Safferman AZ, Pollack S, Cooper T, et al. Plasma
861 clozapine levels and clinical response for treatment-refractory schizophrenic patients. *Am J Psychiatry*.
862 1995;152(2):179-82.

863 20. Jakobsen MI, Larsen JR, Svensson CK, Johansen SS, Linnet K, Nielsen J, Fink-Jensen A.
864 The significance of sampling time in therapeutic drug monitoring of clozapine. *Acta Psychiatr Scand.*
865 2017;135(2):159-69.

866 21. Mylan. Summary of Product Characteristics - UK Clozaril 25 mg tablets [updated 12-05-
867 2020].

868 22. Beex-Oosterhuis MM, Lau C, Verloop S, Grootens KP, Faber G, Gool vAR, et al. The impact
869 of once-daily dosing on the pharmacokinetics of clozapine and norclozapine. Unpublished, PhD thesis.
870 2023.

871 23. VanderZwaag C, McGee M, McEvoy JP, Freudenreich O, Wilson WH, Cooper TB. Response
872 of patients with treatment-refractory schizophrenia to clozapine within three serum level ranges. *Am J*
873 *Psychiatry*. 1996;153(12):1579-84.

874 24. Procyshyn RM, Vila-Rodriguez F, Honer WG, Barr AM. Clozapine administered once versus
875 twice daily: does it make a difference? *Med Hypotheses*. 2014;82(2):225-8.

876 25. Kitagawa K, So R, Nomura N, Tsukahara M, Misawa F, Kodama M, et al. Clozapine Once-
877 Daily Versus Divided Dosing Regimen: A Cross-sectional Study in Japan. *J Clin Psychopharmacol*.
878 2022;42(2):163-8.

879 26. Moscou TV, SRT. Clozapine/norclozapine plasma level ratio and cognitive functioning in
880 patients with schizophrenia spectrum disorders: a systematic review. *Therapeutic Advances in*
881 *Psychopharmacology*. 2024: Accepted.

882 27. Pu X, Gao Y, Li R, Li W, Tian Y, Zhang Z, Xu F. Biomarker Discovery for Cytochrome P450
883 1A2 Activity Assessment in Rats, Based on Metabolomics. *Metabolites*. 2019;9(4).

884 28. Geers LM, Cohen D, Wehkamp LM, van Wattum HJ, Kosterink JGW, Loonen AJM, Touw DJ.
885 Population pharmacokinetic model and limited sampling strategy for clozapine using plasma and dried
886 blood spot samples. *Ther Adv Psychopharmacol*. 2022;12:20451253211065857.

887 29. Perera V, Bies RR, Mo G, Dolton MJ, Carr VJ, McLachlan AJ, et al. Optimal sampling of
888 antipsychotic medicines: a pharmacometric approach for clinical practice. *Br J Clin Pharmacol*.
889 2014;78(4):800-14.

890 30. Shang DW, Li LJ, Wang XP, Wen YG, Ren YP, Guo W, et al. Population
891 pharmacokinetic/pharmacodynamic model of clozapine for characterizing the relationship between
892 accumulated exposure and PANSS scores in patients with schizophrenia. *Ther Drug Monit*.
893 2014;36(3):378-86.

894 31. Wester VL, Koper JW, van den Akker EL, Franco OH, Stolk RP, van Rossum EF.
895 Glucocorticoid receptor haplotype and metabolic syndrome: the Lifelines cohort study. *Eur J*
896 *Endocrinol*. 2016;175(6):645-51.

897 32. van Walree ES, Jansen IE, Bell NY, Savage JE, de Leeuw C, Nieuwdorp M, et al.
898 Disentangling Genetic Risks for Metabolic Syndrome. *Diabetes*. 2022;71(11):2447-57.

899 33. Hynes C, Keating D, McWilliams S, Madigan K, Kinsella A, Maidment I, et al. Glasgow
900 Antipsychotic Side-effects Scale for Clozapine - Development and validation of a clozapine-specific
901 side-effects scale. *Schizophr Res*. 2015;168(1-2):505-13.

902 34. Reeves S, Bertrand J, Obee SJ, Hunter S, Howard R, Flanagan RJ. A population
903 pharmacokinetic model to guide clozapine dose selection, based on age, sex, ethnicity, body weight
904 and smoking status. *Br J Clin Pharmacol*. 2024;90(1):135-45.

905 35. Barclay J, McCollum B, Schoretsanitis G, de Leon J. Gemfibrozil May Decrease Norclozapine
906 Elimination: A Case Report. *J Clin Psychopharmacol*. 2019;39(4):405-7.

907 36. van Huizen A, Bank P, van der Kraaij G, Musters A, Busard C, Menting S, et al. Quantifying
908 the Effect of Methotrexate on Adalimumab Response in Psoriasis by Pharmacokinetic-
909 Pharmacodynamic Modeling. *J Invest Dermatol*. 2024;144(4):794-801.e6.

910 37. Veerman SRT, Moscou T, Bogers J, Cohen D, Schulte PFJ. Clozapine and COVID-19
911 Vaccination: Effects on blood levels and leukocytes. An observational cohort study. *Acta Psychiatr*
912 *Scand*. 2022;146(2):168-78.

913 38. van Weringh G, van Koolwijk L, de Haan L, Touw DJ, de Koning MB. Paralytic ileus in a
914 patient on clozapine therapy showing an inverted clozapine/norclozapine ratio after switching valproic
915 acid to carbamazepine: a case report. *Ther Adv Psychopharmacol*. 2024;14:20451253241255487.

916