

**Prospective Randomized comparison Of prosthetic Valve Effective
orifice area: One-year analysis of two bovine PERIcardial valves
(PROVE-PERI trial)**

NCT 03796442

Trial Protocol v 1.4

Updated Dec 28, 2018

Statistical Analysis Plan

1. Inclusion criteria

- ① Patients who are scheduled to undergo AVR
- ② Over 19 years of age
- ③ Patients who are planned to receive a bioprosthetic valve for aortic valve substitute
- ④ Patients who or whose legal representative fill out a written consent form before the start of the clinical trial and patients who can comply with the clinical trial requirements

2. Exclusion criteria

- ① Patients with concomitant mitral or tricuspid valve operation
- ② Patients with severe left ventricular dysfunction (ejection fraction < 0.30)
- ③ Patients with infective endocarditis
- ④ Patients with a medical history such as a malignant disease that might limit the possibility of mid-term follow-up
- ⑤ Patients who refused study enrollment

3. Sample size calculation

The study is designed to have 80% power to detect 1-year AVMPG of $12.6 \pm 4.3 \text{ mmHg}$ for the study prosthesis [1] and $11.9 \pm 4.3 \text{ mmHg}$ for the control prosthesis, [2] with a 1-sided type I error of 2.5% and a noninferiority margin of 3mmHg. The noninferiority margin was determined by the values of 15mmHg for AVMPG of clinically significant aortic stenosis [3] and 12mmHg for AVMPG of the control prosthesis. Fifty-six patients in each group were needed to complete the study cohort. Allowing for a 20% dropout rate during the 1-year follow-up, we determined that the recruitment of 70 patients in each group was necessary.

- (1) Level of significance (α) = 0.025
- (2) Type II error (β) = 0.20, power of the test = 80%
- (3) Drop out rate = 20%
- (4) One-tailed test

H_0 (null hypothesis): $\mu_1 - \mu_2 \geq \delta$

H_1 (alternative hypothesis): $\mu_1 - \mu_2 < \delta$

(μ_1 : mean AVMPG of the study group on 1 – year echocardiographic follow – up ,
 μ_2 : mean AVMPG of the control group on 1 – year echocardiographic follow – up
 δ : noninferiority margin)

The calculation was performed using PASS Software(Power Analysis and sample size software: <http://www.ncss.com>), and the calculated formula is as follows.

$$n = \frac{(Z_\alpha + Z_\beta)^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2) - \delta}^2$$

μ_1 = mean AVMPG of the study group on 1 – year echocardiographic follow – up

μ_2 = mean AVMPG of the control group on 1 – year echocardiographic follow – up

σ_1 = standard deviation of AVMPG of the study group on 1 – year echocardiographic follow – up

σ_2 = standard deviation of AVMPG of the control group on 1 – year echocardiographic follow – up

δ : noninferiority margin

※ Primary clinical endpoint

mean pressure gradient across the aortic valve (AVMPG) on 1-year echocardiographic follow-up

※ Secondary clinical endpoint

the effective orifice area (EOA) on 1-year echocardiographic follow-up

operative mortality, operative morbidities

1-year clinical outcomes (all-cause mortality, cardiac death and major adverse events)

The primary endpoint of the PROVE-PERI trial is AVMPG on 1-year echocardiographic follow-up. The secondary endpoints are the EOA on 1-year echocardiographic follow-up and 1-year clinical outcomes including all-cause mortality, cardiac death and MAEs.

The study is designed to have 80% power to detect 1-year AVMPG of 12.6 ± 4.3 mmHg for the study prosthesis [2] and 11.9 ± 4.3 mmHg for the control prosthesis, [4-6] with a 1-sided type I error of 2.5% and a noninferiority margin of 3mmHg. The noninferiority margin is determined by the values of 15mmHg for AVMPG of clinically significant aortic stenosis [7] and 12mmHg for AVMPG of the control prosthesis. Fifty-six patients in each group are needed to complete the study cohort. Allowing for a 20% dropout rate during the 1-year follow-up, we determine that the recruitment of 70 patients in

each group was necessary.

Statistical analyses will be performed using SPSS software (version 25.0; IBM, Armonk, NY) and SAS software (version 9.3; SAS Institute, Cary, NC). Data will be expressed as the mean \pm standard deviation, median with IQRs or proportions. Comparisons between the 2 groups will be made using the chi-square test and Fisher's exact test for categorical variables and Student's t-test or the Mann-Whitney test for continuous variables, as appropriate. The null hypothesis is that the AvaluTM is inferior to the CEPME based on the AVMPG at 1-year echocardiographic follow-up, with a non-inferiority margin of 3mmHg. The result for the primary endpoint is presented with 97.5% one-sided confidence interval for mean difference between groups. The non-inferiority test will be performed using a t-test which compares mean difference between groups with the non-inferiority margin under the one-sided significance level of 0.025. For analysis of 1-year clinical outcomes including all-cause mortality, cardiac death, and MAEs, events will be counted at postoperative 1 year, and comparisons between the 2 groups will be made using the chi-square test and Fisher's exact test. A P value of $< .050$ will be considered statistically significant. All outcomes will be compared with an intention-to-treat base. Per-protocol and as-treated analyses will be added for hemodynamic outcomes.

References

1. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. *Eur Heart J.* 2017;38:2739-2791.
2. Klautz RJM, Kappetein AP, Lange R, Dagenais F, Labrousse L, Bapat V, et al. Safety, effectiveness and haemodynamic performance of a new stented aortic valve bioprosthesis. *Eur J Cardiothorac Surg.* 2017;52:425-431.
3. D Rennie. How to report randomized controlled trials. The CONSORT statement. *JAMA.* 1996;276:649.
4. Fiegl K, Deutsch MA, Rondak IC, Lange R, Guenzinger R. Matched Comparison of Two Different Biological Prostheses for Complete Supra-annular Aortic Valve Replacement. *Thorac Cardiovasc Surg.*

2015;63:459-66.

5. Wendt D, Thielmann M, Plicht B, Aßmann J, Price V, Neuhäuser M, et al. The new St Jude Trifecta versus Carpentier-Edwards Perimount Magna and Magna Ease aortic bioprostheses: is there a hemodynamic superiority? *J Thorac Cardiovasc Surg*. 2014;147:1553-60.
6. Wyss TR, Bigler M, Stalder M, Englberger L, Aymard T, Kadner A, et al. Absence of prosthesis-patient mismatch with the new generation of Edwards stented aortic bioprostheses. *Interact Cardiovasc Thorac Surg*. 2010;10:884-7.
7. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. *Eur J Echocardiogr*. 2009;10:1-25.