

COVER PAGE
SOLVING RIDDLES THROUGH SEQUENCING (SIRIUS)

Long title: Testing the diagnostic supremacy of sequencing-only approaches in hematologic malignancies: an observational trial

Submission ID: MLL_002

Sponsor of the trial: Prof. Dr. Dr. Torsten Haferlach, Munich Leukemia Laboratory (MLL)

—
MLL Münchener Leukämielabor GmbH

Address: MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 MUNICH (GERMANY)

Document Date (Date of initial Submission): 15TH OF September 2021 (09—15—2021)

NCT Number: NCT ID not yet assigned

Submitting investigator: Torsten Haferlach, MD PhD

Contact Email: torsten.haferlach@mll.com

1 **Testing the diagnostic supremacy of sequencing-only approaches**
2 **in hematologic malignancies: an observational trial**

3

4 **Running Title: SOLVING RIDDLES THROUGH SEQUENCING (SIRIUS)**

5

6 **Principal Investigator (PI):** Prof. Dr. med. Dr. phil. Torsten Haferlach (TH)

7 Correspondence: torsten.haferlach@mll.com

8

9 **Co-Investigator(s):** Prof. Dr. med. Wolfgang Kern (WK), Adam Wahida (AW)

10

11 **GCP Statement:** This trial will be performed in compliance with the good clinical practice
12 directive from the European Union (2005/28/EC)

13

14 **Funding:**

15 (1) MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, GERMANY

16 **SUMMARY**

17 During the last decades hematologists have excelled at improving and refining the
18 classification, diagnosis, and thus ultimately the therapeutic decision-making process for their
19 patients. This continuous evolution proceeded in parallel to seminal discoveries in basic science
20 such as FISH, PCR and NGS. So far, the current WHO classification serves as reference to
21 diagnostic decision making and is largely based on 5 diagnostic pillars: cytomorphology of
22 peripheral blood and/or bone marrow smears, histology and immunohistochemistry of bone
23 marrow trephine biopsies or lymph nodes, immunophenotyping, chromosome banding analysis
24 supplemented by FISH analysis, molecular genetics including PCR and targeted panel
25 sequencing via NGS. This leads to a swift diagnosis in 90 % of all cases. The leftover 10 %
26 remain a challenge for hematopathologists and clinicians alike and are resolved through
27 interdisciplinary teams in the context of specialized boards. With the advent of high throughput
28 sequencing (mainly WGS and WTS) the possibility of a comprehensive and detailed portrait
29 of the genetic alterations – specifically in challenging cases – has become a realistic alternative
30 to classical methods. In SIRIUS we will prospectively challenge this hypothesis to address the
31 question of how often a better or final diagnosis can be delivered by WGS and/or WTS and if
32 unclear cases can be efficiently resolved.

33

34 **Type of Research:** observational study, diagnostic study, hematology, leukemia, next
35 generation sequencing

36

37 **Intervention:** none

38 **APPROVAL**

39 This study will be conducted with the utmost respect for individual patients in accordance with
40 the requirements of this diagnostic trial protocol and especially in accordance with the
41 following:

42 • Good clinical practice directive (European Union) (2005/28/EC)

43 • The ethical principles in accordance with the Declaration of Helsinki

44 • International Conference on Harmonization (ICH) E6 Good Clinical Practice:
45 consolidated guideline

46 • Guidelines for Good Clinical Practice (*Deutsche Forschungsgemeinschaft DFG*)

47 • Standards and guidelines for the interpretation of sequence variants (PMID: 25741868)

48 • All applicable laws and regulations, including, without limitation, data privacy laws,
49 clinical trial disclosure laws, and regulations.

50 **I. INTRODUCTION**

51 1. Background and Rationale

52 Treatment of hematological diseases relies on a single cardinal prerequisite: correct
53 classification within the broad specter of malignant diseases arising from the hematopoietic
54 system. With the ever-expanding availability of distinct yet complementary diagnostic tools,
55 our understanding of the landscape of hematological diseases steadily increases. As such, the
56 current consensus classification as summarized through the WHO classification (2017)
57 represents a compass guiding diagnostic algorithms to the correct diagnosis. Today, the gold
58 standard of routine diagnostic process relies on five methodological pillars: cytomorphology,
59 histology, chromosomal cytogenetics, immunophenotyping, and molecular genetic testing.
60 This leads to a treatment enabling diagnosis in the vast majority of cases. However,
61 approximately 10 % of cases remain unresolved from a diagnostic point of view and hence do
62 not lead to a satisfactory diagnosis according to current WHO standards (2017). We intend to
63 solve this issue to provide illuminating diagnostic guidance for the best possible patient's care.

64 2. Objectives

65 To address this problem, we hypothesize that novel high throughput sequencing methods, e.g.,
66 whole genome and/or whole transcriptome sequencing are able – by virtue of painting a more
67 delicate genetic portrait of a tumor sample – to provide a more accurate diagnosis.
68 To this end we generated a reference collection of 5,500 samples with the full spectrum of
69 hematological malignancies, for which we performed whole-genome sequencing as well as
70 whole-transcriptome sequencing. Moreover, gold standard diagnoses according to WHO
71 classification with all needed techniques, all performed in MLL, clinical data and therapy
72 response data are fully available for these cases. The main advantage of this reference

73 collection consists of the unambiguity of each diagnosis, providing a reference framework for
74 any further classification and diagnosis especially in difficult cases.

75 Therefore, SIRIUS will compare the diagnostic superiority of WGS or WTS to the combined
76 approach with gold standard results and by matching the obtained results to the nearest “digital
77 sibling” within our reference cohort of more than 5,500 WGS and WTS (both in 93% of cases).

78 To this end, we will use an inhouse developed matching algorithm, which is able to match
79 genomic or transcriptomic profiles to a group of similar cases and gold standard results from
80 timepoint of this study. Current workflows intended to generate WTS/WGS data from patient
81 samples – all while fulfilling state of the art accreditation (ISO 15189) – require up to 5 – 7
82 days. This is largely comparable to classical methods but holds the promise to replace error
83 prone and arduous iterations in the methodological work up. The objective is to test whether
84 WTS and/or WGS based approaches can surpass classical methods regarding diagnostic
85 precision and routine reliability. Here we will test this hypothesis in a prospective real-world
86 setting under diagnostically difficult circumstances.

87 **II. STUDY DESIGN**

88 1. Type of Study

89 SIRIUS is conducted as a monocentric prospective case-control study. The study population
90 consists of carefully chosen patients with potential hematological malignancy, for which
91 current diagnostic methods were not sufficient to provide clear-cut diagnosis and definitive
92 clinical guidance. SIRIUS is entirely a non-interventional study without therapeutic
93 consequences for direct patient care. Data will be used as research study and micro-cost
94 analysis will be provided.

95 2. Duration of Study

96 SIRIUS will be conducted for a total number of 110 patients with inconclusive diagnosis by
97 gold standard techniques for a total of up to nine months after the first enrollment. Patients to
98 qualify for study will be selected by referring center and PI before material is send to MLL.

99 3. Quality Control

100 Due to the heterogeneity in quality of blood and bone marrow samples arriving at MLL,
101 SIRIUS is preceded by a rigorous quality assessment of every patient history, data already
102 available and sample source and quality to be potentially included in the present study. The
103 minimal requirements are listed in III.

104 4. Primary Study Endpoints

105 Overall, the efficacy and supremacy of WGS/WTS analysis will be subjected to current
106 standard procedures. The primary endpoint will be assessed as follows: unclear cases will be
107 subjected to three diagnostic algorithms:

108 (1) Inhouse at referring site by histopathological diagnosis in the context of a hematological
109 tumor board according to current standards (“best practice”)

110 (2) Current gold-standard diagnostic workup as performed routinely by the MLL,
111 consisting of

112 a. Cytomorphological diagnosis
113 b. Immunophenotypic diagnosis
114 c. Chromosomal banding analysis
115 d. Molecular testing
116 e. NGS based Targeted panel sequencing

117 (3) WGS and WTS sequencing plus matching to nearest digital sibling in 5,5k cohort

118 The results of (2) and (3) arms will be first compared to the result obtained in (1) since this is
119 the therapy guiding approach *in domo*. Clinical follow-up observations will be made to assess
120 the success of this first diagnosis.

121 Next results from (2) and (3) will be compared against each other to obtain an assessment of
122 replaceability of current gold-standard methods to either WGS or WTS and WGS/WTS
123 combined. If both approaches do not yield a similar conclusion, specific data from (2) will be
124 added to results in (3) until a definitive assessment can be made.

125 5. Secondary Study Endpoints

126 • Turn-over time until potential therapy guiding diagnosis
127 • Cost-effectiveness until timepoint of diagnosis and therapy
128 • Compare WES to WGS data in SIRIUS cohort
129 • Identify number of potential actionable targets for which a therapy has been approved
130 but identification was missed in (1) and (2)
131 • Identify putative disease stage in comparison to (2) and clinical history

132

133

134 **III. SUBJECT SELECTION AND WITHDRAWAL**

135

136 1. Number Of Subjects

137 SIRIUS intends to enroll a total number of 110 cases provided by approximately 50 certified
138 hematological centers.

139

140 2. Gender, Age

141 Patients' samples from both sexes will be used (male and female). Only samples from adult
142 patients (18 years or older) will be used.

143

144 3. Inclusion Criteria

- 145 • Patients having been investigated with a suspected hematological disorder and:
 - 146 ○ Having unclear diagnosis after internal routine diagnosis
 - 147 ○ Unusual clinical course
 - 148 ○ Unusual r/r status or non-responder
 - 149 ○ Multiple parallel hematological conditions
 - 150 ○ Difficult/rare therapy associated/secondary neoplasms
- 151 • Current diagnostic work-up is not satisfactory in terms of (1) accuracy (2) clinical
152 behavior
- 153 • Only samples of patients min. 18 years of age will be used
- 154 • Material with a minimum of 20% tumor content in bone-marrow or peripheral blood
155 sample
- 156 • Samples must suffice quality attributes control which are denoted in (4.)
- 157 • Patient's informed consent

158 4. Exclusion Criteria

159 • Sample is not fit for state-of-the-art diagnosis, fails initial quality control. For quality
160 insurance we will exclude samples with wrong anticoagulant sent. Samples with
161 damage due to meteorological reasons (freeze-thaw damage or elevated temperature)
162 will be excluded.

163 • Samples with too scarce material jeopardizing routine gold-standard diagnosis will be
164 excluded (tumor content < 20 %).

165

166 5. Location

167 SIRIUS will be conducted as monocentric trial at the MLL.

168 **IV. STATISTICAL PLAN**

169

170 To determine the statistical significance within the endpoint analysis we will assess both
171 quantitative as well as qualitative variables. Quantitative variables will be described with the
172 number of non-missing values, mean, standard deviation, median, and minimum/maximum
173 values. Qualitative variables will be expressed as a number and percentage of patients with
174 each qualitative characteristic. The missing values are not intended to be included in the
175 calculation of percentages. Sensitivity and specificity will be assessed specific to each method,
176 with respect to internal gold standard diagnostic work-up.

177

178 **V. RISKS AND BENEFITS**

179 *Potential Direct Benefits to Subject*

180 Conducting SIRIUS will not bear any risks for patients enrolled in the study. Normal State-of-
181 the-art diagnosis is provided for each sample and prioritization of sample material in favor
182 current diagnostic material and reporting is performed to prevent jeopardization of gold
183 standard diagnosis.

184

185 **VI. DATA HANDLING AND RECORD**

186 Data management documents will be generated under the responsibility of the Sponsor. A
187 management plan will be issued before data collection begins and will describe all functions,
188 processes, and specifications for data collection, cleaning, and validation. The data
189 management documents will describe analysis methods and individuals who are authorized to
190 enter the data, decisions about ownership of data, source data storage, the origin and destination
191 of the data and who will always get access to the data. Data Management Responsibilities are

192 primarily handled by co-investigator Wolfgang Kern (WK). Per request of external researchers,
193 the Sponsor will provide these investigators with additional data relating to the trial, duly
194 anonymized and protected in accordance with applicable requirements.

195

196 **VII. STUDY MONITORING, AUDITING, AND INSPECTION**

197 The Investigator will make all the trial-related source data and records available at any time to
198 quality assurance auditor(s) mandated by the Sponsor, or to domestic/foreign regulatory
199 inspectors or representatives who may audit/inspect the trial. The main purposes of an audit or
200 inspection are to assess compliance with the trial protocol and the principles of ICH-GCP
201 including the Declaration of Helsinki and all other relevant regulations.

202

203 **VIII. FINANCIAL CONSIDERATIONS**

204 The MLL is the main sponsor of this trial. Reagents for gold standard investigations will be
205 provided by MLL. Reagents for sequencing will be provided for by Illumina®, Inc. San Diego,
206 CA. All Data generated are fully owned by MLL. MLL will share aggregated and anonymized
207 data with Illumina®, i.e., without revealing patient sensitive data such as germline mutations.

208

209 **IX. CONFLICT OF INTEREST**

210 Prof. Dr. phil. Dr. med. Torsten Haferlach and Prof. Dr. med. Wolfgang Kern are part owners
211 of the MLL Munich Leukemia Laboratory.

212

213 **PUBLICATION PLAN**

214 The results obtained from SIRIUS will analyzed according to the guidelines of Good scientific
215 Practice of the German Science funding agency (DFG). Results that will be interesting for the

216 scientific community will be submitted and subsequently published in peer-reviewed academic
217 journals, according to the appropriate scope and audience.

218 At the end of the trial, one or more manuscripts for joint publication may be prepared in
219 collaboration between the Investigator(s) and financial sponsors. The PI reserves the right to
220 be last author(s) in all publications related to this trial. In the event of any disagreement in the
221 content of any publication, both the Investigator's and the Sponsor's opinion will be fairly and
222 sufficiently weighed and represented in the publication.

223

224 **X. ARCHIVING**

225 The PI is fully responsible for maintaining all the records (protocol and protocol amendments,
226 relevant correspondence, and all other supporting documentation), which enable the conduct
227 of the trial at the site to be fully understood, in compliance with ICH-GCP.

228 The study site should plan on retaining such documents for 10 years after study completion.
229 These documents should be retained for a longer period if required by the applicable regulatory
230 requirements or the hospital, institution, or private practice in which the study is being
231 conducted. Patient identification codes (patient names and corresponding study numbers) will
232 be retained for this same period.

233 **Trial Master File**

234 The Sponsor will archive the Trial Master File in accordance with ICH-GCP and applicable
235 regulatory requirements.