

Official Title of the Study

Strategic Daytime Napping Enhances Agility and Lowers Perceived Exertion but Does Not Improve Fatigue Resistance in Adolescent Soccer Players

ClinicalTrials.gov Identifier
NCT: Not yet assigned

Document Type
Study Protocol and Ethics Approval (in Turkish)

This document corresponds to the ClinicalTrials.gov registration record for this study

Document Date
10 May 2025

Strategic Daytime Napping Enhances Agility and Lowers Perceived Exertion but Does Not Improve Fatigue Resistance in Adolescent Soccer Players

DETAILED TRIAL PROTOCOL

1. Structured Abstract

Background and rationale: Strategic daytime napping (25 min, 45 min) may acutely influence anaerobic performance in team sports via sleepiness-recovery dynamics.

Objectives and hypotheses: Primary objective is to test whether nap conditions improve pro-agility performance. Hypothesis: N25 and/or N45 outperform N0 on pro-agility time. Secondary objectives examine effects on RSA, RPE, Hooper wellness, and VAS alertness/sleep quality. Exploratory objective assesses associations of PSQI and POMS with outcomes.

Design: Quasi-experimental, repeated-measures crossover with 3 conditions (N0, N25, N45), 48-h washout, afternoon sessions, testing 60 min post-awakening.

Participants and setting: Sixteen competitive male soccer players (U17–U19), isolated dark rooms at $\approx 22^{\circ}\text{C}$; standardized field/lab conditions.

Interventions: N0, 25-min, 45-min nap opportunities; sleep–wake verification by Visual Analogue Scale; prohibition of visual/stimulating activities; standardized warm-up monitored by Polar H10.

Primary/secondary outcomes: Primary: Pro Agility Test time. Secondary: RSA (6 \times 30 m, 20-s recovery), RPE, Hooper Index, VAS. Exploratory: correlations with PSQI/POMS.

Sample size: G*Power 3.1.9.7 for RM-ANOVA ($\alpha=0.05$, $1-\beta=0.80$, $f=0.30–0.40$) indicated ≥ 12 ; $n=16$ recruited.

Randomization and blinding: Within-subject random order of conditions; automated timing to reduce measurement bias; assessor blinding not implemented.

Statistical analysis (summary): RM-ANOVA with Bonferroni adjustments; assumption checks (Levene, Mauchly, Greenhouse–Geisser); effect sizes (η^2 , Cohen’s dz , 95% CI); Pearson correlations.

2. Objectives and Testable Hypotheses

Primary objective: Determine whether agility, perceived exertion and fatigue resistance differs between N0, N25, and N45 conditions.

Primary hypothesis: N25 and/or N45 conditions gives better results than N0.

Secondary objectives: Assess condition effects on Pro Agility time, RSA metrics (best/mean time, fatigue index), RPE, Hooper Index, and VAS alertness/sleep quality.

Exploratory objectives: Examine associations between PSQI/POMS and performance/subjective outcomes.

3. Study Design

- **Design:** Quasi-experimental, repeated-measures crossover.
- **Conditions:** N0 (no nap), N25 (25 min), N45 (45 min).
- **Order:** Randomized within participant.
- **Washout:** 48 h between sessions [1].
- **Timing:** Nap starts at 14:00; testing begins 60 min post-awakening [2,3].
- **Testing flow:** Warm-up → Pro Agility → 3-min rest → RSA; RPE after each sprint.

4. Setting and Infrastructure

- **Sleep environment:** Isolated, ventilated, dark rooms with blackout curtains; ambient temperature $\approx 22^{\circ}\text{C}$ [4].
- **Sleep monitoring:** Visual Analogue Scale for sleep–wake verification [5,6].
- **Physiological monitoring:** Polar H10 for heart rate during warm-up [7].

5. Participants

5.1 Inclusion Criteria

- Competitive male players from Yeni Malatyaspor U17 or U19 squads.
- Healthy, no recent illness or injury.
- No habitual daytime napping.

5.2 Exclusion Criteria

- Active infection.
- Diagnosed hyperactivity or sleep disorder.
- Experiencing sleep problems on protocol days.
- Non-adherence to instructions, inability to complete sessions, or cooperation issues.

5.3 Sampling and Screening

- End-of-season volunteer recruitment from U17–U19 squads.
- Pre-screening by trained staff; verification with training logs.

5.4 Informed Consent

- Written consent from all participants; for those under 18, parental/legal guardian consent obtained.
- Ethics approval: Inonu University Non-Interventional Clinical Research Ethics Committee (Approval No: 2024/5635; Date: 05/03/2024); study conducted in accordance with the Declaration of Helsinki.

6. Interventions

- **Conditions:** N0, N25, N45.
- **Nap procedure:** 10-min room adaptation at 13:50 [8]; nap opportunity at 14:00; preferred lying position allowed.
- **Verification:** Sleep onset, duration, and awakening verified via Visual Analogue Scale; wakefulness confirmed in N0 [5,6].
- **Pre-session standards:** Avoid strenuous training for 24 h; avoid alcohol for 24 h and caffeine for 6 h; verbal compliance check at arrival [9–11].
- **Prohibited activities:** No phone use, video games, or visually stimulating tasks during all conditions [12,13].
- **Warm-up standardization:** Light jogging plus a 3-min mobility sequence; heart rate monitored with Polar H10 [7].
- **Testing order:** Pro Agility → 3-min rest → RSA; RPE recorded after each sprint.

7. Outcomes and Assessment Schedule

7.1 Primary Outcome

- **Pro Agility Test time (20-yard shuttle, total 18.28 m):** Provided agility outcomes [14].

7.2 Secondary Outcomes

- **RSA (6×30 m, 20-s recovery):** Best/mean time and fatigue index [15–17].
- **RPE (Borg 6–20):** Recorded after each sprint; session mean used for analysis [18].
- **Hooper Index:** Fatigue, stress, muscle soreness (1–7), sleep quality (1–7) [19].
- **VAS (sleep quality and alertness):** 0–10 cm and 0–100 mm scales [8].

7.3 Exploratory Outcomes

- **Correlations of PSQI and POMS with performance and subjective measures (Pearson r) [20–23].**

7.4 Schedule of Assessments (Timeline)

Time point	Screening	T0 (Baseline)	Intervention	T1 (60 min post-awakening)
Eligibility and consent	X			
MEQ/PSQI/POMS		X		
Nap (N0/N25/N45)			X	
Pro Agility				X
RSA + RPE				X

Time point	Screening	T0 (Baseline)	Intervention	T1 (60 min post-awakening)
Hooper				X
VAS				X

8. Sample Size and Justification

- **Software and model:** G*Power 3.1.9.7; repeated-measures ANOVA (within-subjects, 3 conditions) [24].
- **Parameters:** $\alpha=0.05$, $1-\beta=0.80$; expected effect size $f=0.30-0.40$ based on prior literature [9,25,26].
- **Result:** Minimum ≥ 12 ; **n=16** recruited to accommodate variability and potential attrition.
- **Note:** Crossover design increases power by using each participant as own control [10].

9. Randomization, Allocation Concealment, and Blinding

- **Randomization:** Within-subject random assignment of condition order.
- **Allocation concealment:** Condition order not disclosed to participants until session day; administered by study staff.
- **Blinding:** Participant blinding is infeasible; automated timing reduces measurement bias; assessor blinding not implemented.
- **Unblinding:** Not applicable.

10. Study Workflow and Procedures

1. **Screening and baseline:** Eligibility, informed consent, demographics and anthropometry (SECA stadiometer; Toledo 2096 PP scale; $\text{BMI}=\text{kg}/\text{m}^2$ [27]). MEQ, PSQI, POMS administered once at baseline [20–22,28].
2. **Pre-session standards:** 24 h no heavy training; 24 h no alcohol; 6 h no caffeine; verbal verification at arrival [9,11,29].
3. **Nap session:** 13:50 adaptation; 14:00 N0/N25/N45; dark quiet room $\approx 22^\circ\text{C}$; subjective verification [5,6]; prohibition of visual/stimulating activities [12,13].
4. **Warm-up:** Light jog plus 3-min mobility; heart rate monitored with Polar H10 for standardization [7].
5. **Performance tests:** 60 min post-awakening [2,3], Pro Agility \rightarrow 3-min rest \rightarrow RSA (6×30 m, 20-s intervals [15–17]); RPE after each sprint [18].
6. **Post-session:** Hooper and VAS forms [8,19].

11. Data Collection Instruments and Quality Assurance

- **Devices:** SECA® stadiometer; Toledo 2096 PP scale; 16x Polar H10.
- **Validity/reliability:** MEQ, PSQI, POMS are validated instruments [20–22,28]; SmarTracks offers high temporal resolution; literature supports actigraphy-based sleep–wake verification with Fitbit [5,6].
- **Staff training:** Test administrators trained before data collection; measurement repeatability monitored.

12. Data Management

- **Coding and de-identification:** Participant IDs (e.g., P001–P016); personal data stored separately and encrypted.
- **Entry and verification:** Electronic CRFs; double checks and random source data verification.
- **Missing data:** Multiple imputation may be applied when appropriate; sensitivity analyses reported.
- **Access and retention:** Restricted to authorized researchers; retention per regulations.

13. Statistical Analysis Plan

- **Software:** SPSS v29.
- **Descriptives:** Mean \pm SD, min–max.
- **Assumption checks:** Normality (skewness/kurtosis within ± 1.5), homogeneity (Levene), sphericity (Mauchly; Greenhouse–Geisser corrections if violated).
- **Primary analysis:** RM-ANOVA across N0–N25–N45; Bonferroni where appropriate.
- **Effect sizes:** η^2 (small <0.06 ; medium $0.06–<0.14$; large ≥ 0.14) and Cohen’s dz for pairwise comparisons; 95% CIs [10,30].
- **Secondary analyses:** RM-ANOVA for RSA metrics, RPE, Hooper, and VAS with appropriate corrections.
- **Exploratory analyses:** Pearson correlations between PSQI/POMS and outcome variables [23].
- **Missing data and sensitivity:** Pre-specified sensitivity checks reported.
- **Pre-specified subgroups:** None; all participants classified as intermediate chronotype (MEQ) [20,28].

14. Safety Monitoring and Adverse Event Management

- **Risk profile:** Low-risk procedures involving brief naps and field-based anaerobic tests.
- **Adverse events:** Monitor for syncope, dizziness, musculoskeletal issues; medical evaluation as needed.

- **Reporting:** Serious adverse events reported within 24 h to the ethics committee per institutional policies.

15. Ethical Considerations

- **Ethics approval:** Inonu University Non-Interventional Clinical Research Ethics Committee; Approval No: 2024/5635; Date: 05/03/2024.
- **Participant rights:** Voluntary participation, right to withdraw at any time, confidentiality and data protection per applicable law.
- **Conflicts of interest and funding:** The authors declare no conflicts of interest.

16. Dissemination and Data Sharing Policy

- **Reporting:** Results will be reported in a peer-reviewed journal with a CONSORT flow diagram will be provided in the final report.
- **Data/code sharing:** De-identified data and analysis code to be shared per journal policies and institutional regulations.

17. Timeline and Gantt Plan

- **Preparation (Months 0–1):** Ethics approval, device calibration, staff training, pilot tests.
- **Data collection (Months 2–3):** Three sessions per participant, 48-h washout.
- **Analysis (Months 3–4):** Data cleaning, statistical analyses, sensitivity checks.
- **Reporting (Months 4–5):** Manuscript and supplementary materials.

18. Budget and Resources (optional)

- **Equipment:** SECA stadiometer, Toledo scale, Polar H10.
- **Consumables and personnel:** Forms, printing, staff time.

19. References

1. Ammar, A. *et al.* The effect of a daytime 60-min nap opportunity on postural control in highly active individuals. *Biol Sport* 38, 683–691 (2021).
2. Ammar, A. *et al.* Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review. *British Journal of Nutrition* 120, 1201–1216 (2018).
3. Botonis, P. G., Koutouvakis, N. & Toubekis, A. G. The impact of daytime napping on athletic performance – A narrative review. *Scand J Med Sci Sports* 31, 2164–2177 (2021).
4. Romyn, G. *et al.* Daytime naps can be used to supplement night-time sleep in athletes. *Chronobiol Int* 35, 865–868 (2018).
5. Migueles, J. H. *et al.* Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. *Sports Medicine* 47, 1821–1845 (2017).
6. Lee, J.-M., Byun, W., Keill, A., Dinkel, D. & Seo, Y. Comparison of Wearable Trackers' Ability to Estimate Sleep. *Int J Environ Res Public Health* 15, 1265 (2018).

7. Li, M. & Kim, Y. Design of a Wireless Sensor System with the Algorithms of Heart Rate and Agility Index for Athlete Evaluation. *Sensors* 17, 2373 (2017).
8. Souabni, M. *et al.* Napping and heart rate variability in elite athletes. *Biol Sport* 41, 213–221 (2024).
9. Romdhani, M. *et al.* The effect of post-lunch napping on mood, reaction time, and antioxidant defense during repeated sprint exercise. *Biol Sport* 38, 629–638 (2021).
10. Cohen, J. *Statistical Power Analysis for the Behavioral Sciences*. (Routledge, 1988).
11. Reichert, C. F., Deboer, T. & Landolt, H. Adenosine, caffeine, and sleep–wake regulation: state of the science and perspectives. *J Sleep Res* 31, (2022).
12. Kaida, K., Takahashi, M. & Otsuka, Y. A Short Nap and Natural Bright Light Exposure Improve Positive Mood Status. *Ind Health* 45, 301–308 (2007).
13. Stowe, S. R., LeBourgeois, M. K. & Diniz Behn, C. Modeling the Effects of Napping and Non-napping Patterns of Light Exposure on the Human Circadian Oscillator. *J Biol Rhythms* 38, 492–509 (2023).
14. Göral, K., Hadi, G. & Kaplan, T. Investigation of Futsal Players' Answers to Different Agility Tests According to Their Positions. *Spor ve Performans Araştırmaları Dergisi* 14, 115–126 (2023).
15. Wragg, C. B., Maxwell, N. S. & Doust, J. H. Evaluation of the reliability and validity of a soccer-specific field test of repeated sprint ability. *Eur J Appl Physiol* 83, 77–83 (2000).
16. Dawson, B. Repeated-Sprint Ability: Where Are We? *Int J Sports Physiol Perform* 7, 285–289 (2012).
17. Schimpchen, J., Skorski, S., Nopp, S. & Meyer, T. Are “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. *J Sports Sci* 34, 519–526 (2016).
18. Vitale, J. A. & Weydahl, A. Chronotype, Physical Activity, and Sport Performance: A Systematic Review. *Sports Medicine* 47, 1859–1868 (2017).
19. Hsouna, H. *et al.* Effect of different nap opportunity durations on short-term maximal performance, attention, feelings, muscle soreness, fatigue, stress and sleep. *Physiol Behav* 211, 112673 (2019).
20. Núñez, P., Perillan, C., Arguelles, J. & Diaz, E. Comparison of sleep and chronotype between senior and undergraduate university students. *Chronobiol Int* 36, 1626–1637 (2019).
21. Selvi, Y., Gulec, M., Aydin, A. & Besiroglu, L. Psychometric evaluation of the Turkish language version of the Profile of Mood States (POMS). *Journal of Mood Disorders* 1, 152 (2011).
22. Petrowski, K., Albani, C., Zenger, M., Brähler, E. & Schmalbach, B. Revised Short Screening Version of the Profile of Mood States (POMS) From the German General Population. *Front Psychol* 12, (2021).
23. Bakdash, J. Z. & Marusich, L. R. Repeated Measures Correlation. *Front Psychol* 8, (2017).

24. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behav Res Methods* 39, 175–191 (2007).
25. Romdhani, M. *et al.* Improved Physical Performance and Decreased Muscular and Oxidative Damage With Postlunch Napping After Partial Sleep Deprivation in Athletes. *Int J Sports Physiol Perform* 15, 874–883 (2020).
26. Souabni, M., Hammouda, O., Souabni, M. J., Romdhani, M. & Driss, T. 40-min nap opportunity attenuates heart rate and perceived exertion and improves physical specific abilities in elite basketball players. *Research in Sports Medicine* 31, 859–872 (2023).
27. Sales, M. *et al.* Vertical Jump Is Strongly Associated to Running-Based Anaerobic Sprint Test in Teenage Futsal Male Athletes. *Sports* 6, 129 (2018).
28. Özdalyan, F., Tütüncü, Ö., Gümüş, H. & Açıkgöz, O. Reliability and Validity of the Turkish Version of the Morningness – Eveningness Questionnaire. *Neurological Sciences and Neurophysiology* 38, 50–59 (2021).
29. Hudson, A. N., Van Dongen, H. P. A. & Honn, K. A. Sleep deprivation, vigilant attention, and brain function: a review. *Neuropsychopharmacology* 45, 21–30 (2020).
30. Richardson, J. T. Eta squared and partial eta squared as measures of effect size in educational research. *Educ Res Rev* 6, 135–147 (2011).

**T.C.
İNÖNÜ ÜNİVERSİTESİ
BİLİMSEL ARAŞTIRMA VE YAYIN ETİĞİ KURULU
(Sağlık Bilimleri Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu)**

Oturum Tarihi	Oturum Sayısı	Karar Sayısı
05.03.2024	05	2024/5635
Çalışma Adı	Futbolcularda Stratejik Şekerlemenin Bazı Anaerobik Performanslara Etkisi: Kronotip Açısından Değerlendirme	
Araştırmacılar	Doç. Dr. Özgür EKEN (Yürüttüçü) Yüksek lisans Öğrencisi Mertkan ÖNCÜ (Yardımcı Araştırmacı)	

Başvurunuz; üniversitemiz Bilimsel Araştırma ve Yayın Etiği Yönergesi açısından uygun olup-olmadığı hususundaki başvurusuna ilişkin raportör raporu görüşüldü. Çalışma Bilimsel Araştırma ve Yayın Etiği Yönergesi açısından değerlendirildiğinde çalışmanın etik açıdan uygun olduğunu; oy birliği ile karar verilmiştir.

26.05.2025
ASLİ GÖRÜŞÜ
Gamze UZKAYA
Etik Kurul
Sekreteri

Prof. Dr. Tayfun GÜLDÜR
Etik Kurul Başkanı

Prof. Dr. Nigar VARDI Etik Kurul Başkan Yrd.	KATILDI	Prof. Dr. Sermin TİMUR TAŞHAN Etik Kurul Üyesi	KATILDI
Prof. Dr. Dinçer ÖZGÖR Etik Kurul Üyesi	KATILDI	Prof. Dr. Serap PARLAR KILIÇ Etik Kurul Üyesi	KATILDI
Prof. Dr. Ahmet KOÇ Etik Kurul Üyesi	KATILDI		