

Electronic Signature Page

Document title: Statistical Analysis Plan (version 2.0)

Sign-off status: **FINAL**

Digitally signed by:

This signoff page has been automatically generated to capture the digital signatures of authorized signatories. Each record has been time-stamped and verified as authentic by certified software, providing evidence that the signed document has not been altered or tampered with post-signature.

STATISTICAL ANALYSIS PLAN

PROTOCOL AFM13-203

A Phase 2, Open-Label, Multi-Center Study of Innate Cell Engager AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Subjects with Recurrent or Refractory Hodgkin Lymphoma and CD30-Positive Peripheral T-Cell Lymphoma (LuminICE-203)

Protocol code: AFM13-203

SAP Version: Final 2.0

SAP Date: 20-SEP-2024

Author: [REDACTED]

CONFIDENTIAL

Page 1 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

DOCUMENT HISTORY

VERSION HISTORY

Version #	Version Date
1	11-SEP-2023
2	20-SEP-2024

REVISION HISTORY

CONFIDENTIAL

Page 2 of 26

Page 2 of 26

CONFIDENTIAL

Page 3 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

APPROVAL SIGNATURES

STUDY TITLE: A Phase 2, Open-Label, Multi-Center Study of Innate Cell Engager AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Subjects with Recurrent or Refractory Hodgkin Lymphoma and CD30-Positive Peripheral T-Cell Lymphoma (LuminICE-203)

PROTOCOL NUMBER: AFM13-203

SAP Final 2.0, 20-SEP-2024

PSI

Signature: Date:

Signature: Date:

Signature: Date:

Signature: Date:

Affimed GmbH

Signature: Date:

Signature: Date:

CONFIDENTIAL

Page 4 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

TABLE OF CONTENTS

LIST OF ABBREVIATIONS	6
1. INTRODUCTION	8
2. STUDY OBJECTIVES	8
2.1 Primary Objectives	8
2.2 Secondary Objectives.....	8
2.3 Exploratory Objectives	8
3. STUDY DESCRIPTION	8
4. SAMPLE SIZE AND POWER CALCULATION	8
5. ANALYSIS ENDPOINTS	9
5.1 Primary Endpoint and Estimand.....	9
5.2 Secondary Endpoints	9
5.3 Exploratory Endpoints	10
6. ANALYSIS POPULATIONS	10
7. ANALYTICAL PLAN AND STATISTICAL METHODS	11
7.1 General Conventions and Statistical Considerations	11
7.2 Definition of Baseline, Study Visits, and Visit Windows	12
7.3 Handling of Missing Data.....	12
7.4 Protocol Deviations.....	12
7.5 Participant Disposition.....	13
7.6 Participant Characteristics	13
7.6.1 <i>Baseline and Demographic Characteristics</i>	13
7.6.2 <i>Medical History and Current Medical Conditions</i>	13
7.6.3 <i>Prior and Concomitant Medication</i>	14
7.7 Efficacy Endpoints and Analysis.....	14
7.7.1 <i>Analysis of Primary Efficacy Endpoint</i>	14
7.7.2 <i>Analysis of Secondary Efficacy Endpoints</i>	16
7.7.3 <i>Analysis of Exploratory Endpoints</i>	19
7.7.4 <i>Sensitivity Analysis</i>	19
7.8 Safety Endpoints and Analysis.....	20
7.8.1 <i>Exposure to Study Treatment</i>	20
7.8.2 <i>Adverse Events</i>	21
7.8.3 <i>Laboratory Data</i>	22
7.8.4 <i>ECG, Vital Signs, Physical Examination and ECOG Status</i>	22
7.8.5 <i>Cytokines</i>	22
7.9 Other Endpoints and Analysis.....	23
7.9.1 <i>Subgroup Analysis</i>	23
8. INTERIM ANALYSIS	23
8.1 Risk-Benefit Analysis of Safety Run In Period	23
8.2 Interim Analysis After 1 st Stage of Simon's Design Part.....	24
8.3 Primary Analysis.....	25
9. FINAL ANALYSIS	25
10. INDEPENDENT SAFETY REVIEW COMMITTEE (SRC).....	25
11. DEVIATIONS FROM ANALYSIS AS DESCRIBED IN THE PROTOCOL	25
12. PROGRAMMING SPECIFICATIONS	26
13. REFERENCES	26

LIST OF ABBREVIATIONS

ADA	Anti-drug antibody
AE	Adverse event
AESI	Adverse events of special interest
ASTCT	American Society for Transplantation and Cellular Therapy
ATC	Anatomical Therapeutic Chemical (classification system)
CI	Confidence interval
CR	Complete response/remission
CRR	Complete response rate
CRS	Cytokine release syndrome
CTCAE	Common Terminology Criteria for Adverse Events
CV	Coefficient of variation
DCR	Disease control rate
DOOR	Duration of response
ECOG	Eastern Cooperative Oncology Group
eCRF	Electronic Case Report Form
EORTC	European Organisation for Research and Treatment of Cancer
FAS	Full analysis set
HL	Hodgkin lymphoma
IA	Interim analysis
ICANS	Immune effector cell-associated neurotoxicity syndrome
IL-2	Interleukin-2
IRC	Independent Radiology Committee
ITT	Intention-to-treat
LTEAE	Lymphodepletion-TEAEs
MAGIC	Mount Sinai Acute GvHD International Consortium
Max	Maximum
MedDRA	Medical Dictionary of Regulatory Activities
mFAS	Modified full analysis set
Min	Minimum
MRD	Measurable residual disease
NCI	National Cancer Institute
NK	Natural killer
oFAS	Overall full analysis set
ORR	Objective response rate
OS	Overall survival
PET-CT	Positron emission tomography-computed tomography
PFS	Progression-free survival
PK	Pharmacokinetic(s)
PPS	Per-protocol set
PR	Partial response
PRR	Partial responses rate
PRO	Patient-reported outcome
PT	Preferred term
PTCL	Peripheral T-cell lymphoma
QoL	Quality of Life
R/R	Refractory/relapsed

CONFIDENTIAL

Page 6 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

SAE	Serious adverse event
SAS	Safety analysis set
SAP	Statistical Analysis Plan
SD	Standard deviation
SOC	System organ class
SRC	Safety Review Committee
SRI	Safety run-in set
TEAE	Treatment emergent adverse event
TFL	Tables, figures, listings
TLS	Tumor lysis syndrome
WHO	World Health Organization

1. INTRODUCTION

This Statistical Analysis Plan (SAP) covers the statistical analysis and reporting for the AFM13-203 Clinical Study. The SAP is based on the Study Protocol version 3.0, dated 03-JUL-2024, and electronic Case Report Form (eCRF) dated 12-SEP-2024.

The study design, assessments, and variables to be analyzed are described in detail in the study protocol. Protocol Section 9 provides the instruction for the statistical analyses. Statistical methods will be implemented accordingly.

The SAP will be finalized before the first participant is enrolled to the study, if possible. It will be finalized before any analysis of the study data.

2. STUDY OBJECTIVES

2.1 PRIMARY OBJECTIVES

The primary objective of this study is to assess the antitumor activity of acimtamig in combination with AlloNK® in participants with refractory/relapsed (R/R) classical Hodgkin lymphoma (HL) and CD30-positive peripheral T-cell lymphomas (PTCLs) by objective response rate (ORR).

2.2 SECONDARY OBJECTIVES

The secondary objectives are the following:

- To assess efficacy of acimtamig in combination with AlloNK®
- To assess the incidence of post-treatment transplant
- To assess the safety and tolerability of acimtamig in combination with AlloNK®
- To assess the immunogenicity of acimtamig in combination with AlloNK®

2.3 EXPLORATORY OBJECTIVES

A large rectangular area of the page is completely blacked out, indicating that the content of the Exploratory Objectives section has been redacted.

3. STUDY DESCRIPTION

The study design and study treatments can be found in the study protocol.

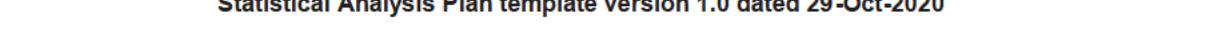
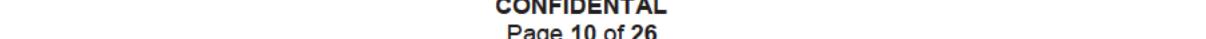
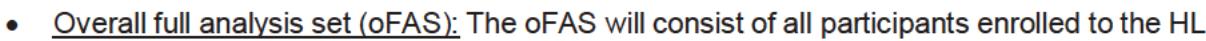
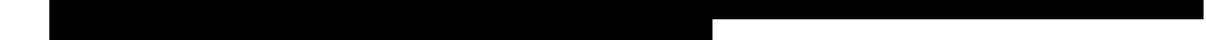
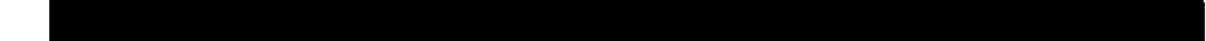
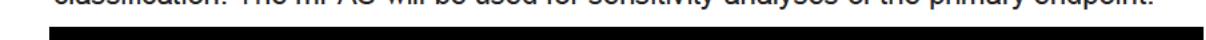
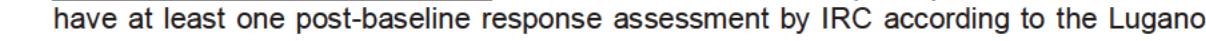
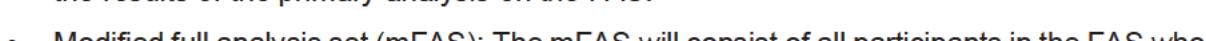
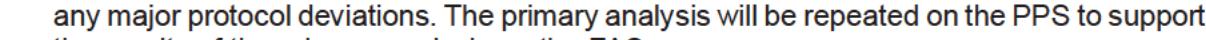
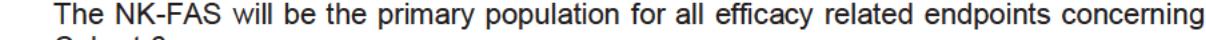
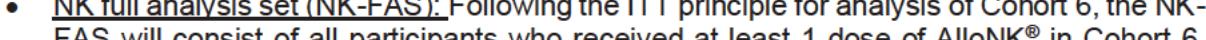
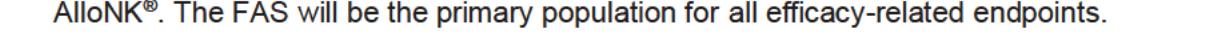
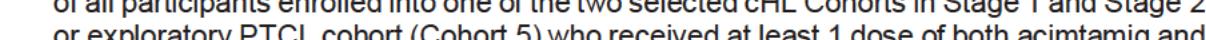
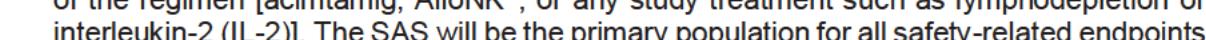
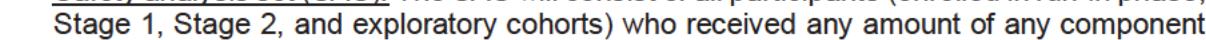
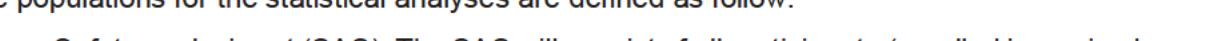
4. SAMPLE SIZE AND POWER CALCULATION

Details about the sample size and power calculations can be found in the study protocol (Section 9.2).

5. ANALYSIS ENDPOINTS

5.1 PRIMARY ENDPOINT AND ESTIMAND

Entity	Percentage
Mississippi	91.1%
Alabama	88.7%
Arkansas	87.5%
West Virginia	86.8%
North Dakota	85.4%
South Dakota	85.3%
Montana	84.9%
Wyoming	84.7%
Nebraska	84.4%
Illinois	83.9%
Michigan	83.7%
Missouri	83.5%
Indiana	83.3%
Ohio	83.1%
Virginia	82.9%
Washington	82.7%
Tennessee	82.5%
Georgia	82.3%
Arizona	82.1%
North Carolina	81.9%
South Carolina	81.7%
Wisconsin	81.5%
Massachusetts	81.3%
Louisiana	81.1%
Michigan	80.9%
Connecticut	80.7%
Alaska	80.5%
Pennsylvania	80.3%
Missouri	80.1%
Alabama	79.9%
Mississippi	79.7%
Arkansas	79.5%
West Virginia	79.3%
North Dakota	79.1%
South Dakota	78.9%
Montana	78.7%
Wyoming	78.5%
Nebraska	78.3%
Illinois	78.1%
Michigan	77.9%
Missouri	77.7%
Indiana	77.5%
Ohio	77.3%
Virginia	77.1%
Tennessee	76.9%
Georgia	76.7%
Arizona	76.5%
North Carolina	76.3%
South Carolina	76.1%
Wisconsin	75.9%
Massachusetts	75.7%
Louisiana	75.5%
Alaska	75.3%
Pennsylvania	75.1%
Michigan	74.9%
Mississippi	74.7%
Arkansas	74.5%
West Virginia	74.3%
North Dakota	74.1%
South Dakota	73.9%
Montana	73.7%
Wyoming	73.5%
Nebraska	73.3%
Illinois	73.1%
Michigan	72.9%
Missouri	72.7%
Indiana	72.5%
Ohio	72.3%
Virginia	72.1%
Tennessee	71.9%
Georgia	71.7%
Arizona	71.5%
North Carolina	71.3%
South Carolina	71.1%
Wisconsin	70.9%
Massachusetts	70.7%
Louisiana	70.5%
Alaska	70.3%
Pennsylvania	70.1%
Michigan	69.9%
Mississippi	69.7%
Arkansas	69.5%
West Virginia	69.3%
North Dakota	69.1%
South Dakota	68.9%
Montana	68.7%
Wyoming	68.5%
Nebraska	68.3%
Illinois	68.1%
Michigan	67.9%
Missouri	67.7%
Indiana	67.5%
Ohio	67.3%
Virginia	67.1%
Tennessee	66.9%
Georgia	66.7%
Arizona	66.5%
North Carolina	66.3%
South Carolina	66.1%
Wisconsin	65.9%
Massachusetts	65.7%
Louisiana	65.5%
Alaska	65.3%
Pennsylvania	65.1%
Michigan	64.9%
Mississippi	64.7%
Arkansas	64.5%
West Virginia	64.3%
North Dakota	64.1%
South Dakota	63.9%
Montana	63.7%
Wyoming	63.5%
Nebraska	63.3%
Illinois	63.1%
Michigan	62.9%
Missouri	62.7%
Indiana	62.5%
Ohio	62.3%
Virginia	62.1%
Tennessee	61.9%
Georgia	61.7%
Arizona	61.5%
North Carolina	61.3%
South Carolina	61.1%
Wisconsin	60.9%
Massachusetts	60.7%
Louisiana	60.5%
Alaska	60.3%
Pennsylvania	60.1%
Michigan	59.9%
Mississippi	59.7%
Arkansas	59.5%
West Virginia	59.3%
North Dakota	59.1%
South Dakota	58.9%
Montana	58.7%
Wyoming	58.5%
Nebraska	58.3%
Illinois	58.1%
Michigan	57.9%
Missouri	57.7%
Indiana	57.5%
Ohio	57.3%
Virginia	57.1%
Tennessee	56.9%
Georgia	56.7%
Arizona	56.5%
North Carolina	56.3%
South Carolina	56.1%
Wisconsin	55.9%
Massachusetts	55.7%
Louisiana	55.5%
Alaska	55.3%
Pennsylvania	55.1%
Michigan	54.9%
Mississippi	54.7%
Arkansas	54.5%
West Virginia	54.3%
North Dakota	54.1%
South Dakota	53.9%
Montana	53.7%
Wyoming	53.5%
Nebraska	53.3%
Illinois	53.1%
Michigan	52.9%
Missouri	52.7%
Indiana	52.5%
Ohio	52.3%
Virginia	52.1%
Tennessee	51.9%
Georgia	51.7%
Arizona	51.5%
North Carolina	51.3%
South Carolina	51.1%
Wisconsin	50.9%
Massachusetts	50.7%
Louisiana	50.5%
Alaska	50.3%
Pennsylvania	50.1%
Michigan	49.9%
Mississippi	49.7%
Arkansas	49.5%
West Virginia	49.3%
North Dakota	49.1%
South Dakota	48.9%
Montana	48.7%
Wyoming	48.5%
Nebraska	48.3%
Illinois	48.1%
Michigan	47.9%
Missouri	47.7%
Indiana	47.5%
Ohio	47.3%
Virginia	47.1%
Tennessee	46.9%
Georgia	46.7%
Arizona	46.5%
North Carolina	46.3%
South Carolina	46.1%
Wisconsin	45.9%
Massachusetts	45.7%
Louisiana	45.5%
Alaska	45.3%
Pennsylvania	45.1%
Michigan	44.9%
Mississippi	44.7%
Arkansas	44.5%
West Virginia	44.3%
North Dakota	44.1%
South Dakota	43.9%
Montana	43.7%
Wyoming	43.5%
Nebraska	43.3%
Illinois	43.1%
Michigan	42.9%
Missouri	42.7%
Indiana	42.5%
Ohio	42.3%
Virginia	42.1%
Tennessee	41.9%
Georgia	41.7%
Arizona	41.5%
North Carolina	41.3%
South Carolina	41.1%
Wisconsin	40.9%
Massachusetts	40.7%
Louisiana	40.5%
Alaska	40.3%
Pennsylvania	40.1%
Michigan	39.9%
Mississippi	39.7%
Arkansas	39.5%
West Virginia	39.3%
North Dakota	39.1%
South Dakota	38.9%
Montana	38.7%
Wyoming	38.5%
Nebraska	38.3%
Illinois	38.1%
Michigan	37.9%
Missouri	37.7%
Indiana	37.5%
Ohio	37.3%
Virginia	37.1%
Tennessee	36.9%
Georgia	36.7%
Arizona	36.5%
North Carolina	36.3%
South Carolina	36.1%
Wisconsin	35.9%
Massachusetts	35.7%
Louisiana	35.5%
Alaska	35.3%
Pennsylvania	35.1%
Michigan	34.9%
Mississippi	34.7%
Arkansas	34.5%
West Virginia	34.3%
North Dakota	34.1%
South Dakota	33.9%
Montana	33.7%
Wyoming	33.5%
Nebraska	33.3%
Illinois	33.1%
Michigan	32.9%
Missouri	32.7%
Indiana	32.5%
Ohio	32.3%
Virginia	32.1%
Tennessee	31.9%
Georgia	31.7%
Arizona	31.5%
North Carolina	31.3%
South Carolina	31.1%
Wisconsin	30.9%
Massachusetts	30.7%
Louisiana	30.5%
Alaska	30.3%
Pennsylvania	30.1%
Michigan	29.9%
Mississippi	29.7%
Arkansas	29.5%
West Virginia	29.3%
North Dakota	29.1%
South Dakota	28.9%
Montana	28.7%
Wyoming	28.5%
Nebraska	28.3%
Illinois	28.1%
Michigan	27.9%
Missouri	27.7%
Indiana	27.5%
Ohio	27.3%
Virginia	27.1%
Tennessee	26.9%
Georgia	26.7%
Arizona	26.5%
North Carolina	26.3%
South Carolina	26.1%
Wisconsin	25.9%
Massachusetts	25.7%
Louisiana	25.5%
Alaska	25.3%
Pennsylvania	25.1%
Michigan	24.9%
Mississippi	24.7%
Arkansas	24.5%
West Virginia	24.3%
North Dakota	24.1%
South Dakota	23.9%
Montana	23.7%
Wyoming	23.5%
Nebraska	23.3%
Illinois	23.1%
Michigan	22.9%
Missouri	22.7%
Indiana	22.5%
Ohio	22.3%
Virginia	22.1%
Tennessee	21.9%
Georgia	21.7%
Arizona	21.5%
North Carolina	21.3%
South Carolina	21.1%
Wisconsin	20.9%
Massachusetts	20.7%
Louisiana	20.5%
Alaska	20.3%
Pennsylvania	20.1%
Michigan	19.9%
Mississippi	19.7%
Arkansas	19.5%
West Virginia	19.3%
North Dakota	19.1%
South Dakota	18.9%
Montana	18.7%
Wyoming	18.5%
Nebraska	18.3%
Illinois	18.1%
Michigan	17.9%
Missouri	17.7%
Indiana	17.5%
Ohio	17.3%
Virginia	17.1%
Tennessee	16.9%
Georgia	16.7%
Arizona	16.5%
North Carolina	16.3%
South Carolina	16.1%
Wisconsin	15.9%
Massachusetts	15.7%
Louisiana	15.5%
Alaska	15.3%
Pennsylvania	15.1%
Michigan	14.9%
Mississippi	14.7%
Arkansas	14.5%
West Virginia	14.3%
North Dakota	14.1%
South Dakota	13.9%
Montana	13.7%
Wyoming	13.5%
Nebraska	13.3%
Illinois	13.1%
Michigan	12.9%
Missouri	12.7%
Indiana	12.5%
Ohio	12.3%
Virginia	12.1%
Tennessee	11.9%
Georgia	11.7%
Arizona	11.5%
North Carolina	11.3%
South Carolina	11.1%
Wisconsin	10.9%
Massachusetts	10.7%
Louisiana	10.5%
Alaska	10.3%
Pennsylvania	10.1%
Michigan	9.9%
Mississippi	9.7%
Arkansas	9.5%
West Virginia	9.3%
North Dakota	9.1%
South Dakota	8.9%
Montana	8.7%
Wyoming	8.5%
Nebraska	8.3%
Illinois	8.1%
Michigan	7.9%
Missouri	7.7%
Indiana	7.5%
Ohio	7.3%
Virginia	7.1%
Tennessee	6.9%
Georgia	6.7%
Arizona	6.5%
North Carolina	6.3%
South Carolina	6.1%
Wisconsin	5.9%
Massachusetts	5.7%
Louisiana	5.5%
Alaska	5.3%
Pennsylvania	5.1%
Michigan	4.9%
Mississippi	4.7%
Arkansas	4.5%
West Virginia	4.3%
North Dakota	4.1%
South Dakota	3.9%
Montana	3.7%
Wyoming	3.5%
Nebraska	3.3%
Illinois	3.1%
Michigan	2.9%
Missouri	2.7%
Indiana	2.5%
Ohio	2.3%
Virginia	2.1%
Tennessee	1.9%
Georgia	1.7%
Arizona	1.5%
North Carolina	1.3%
South Carolina	1.1%
Wisconsin	0.9%
Massachusetts	0.7%
Louisiana	0.5%
Alaska	0.3%
Pennsylvania	0.1%
Michigan	0%

















5.2 SECONDARY ENDPOINTS

Secondary endpoints are:

- Duration of response (DOR) reported by the Investigator and IRC
- Complete response rate (CRR) reported by the Investigator and IRC
- ORR reported by the Investigator based on PET-CT as assessed by the Lugano classification
- Incidence of participants receiving subsequent transplant
- Frequency of participants with study-drug related treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs) (evaluated using the National Cancer Institute [NCI] Common Terminology Criteria for Adverse Events [CTCAE] v5.0 and American Society for Transplantation and Cellular Therapy [ASTCT] grading for TEAEs related to cytokine release syndrome [CRS] and immune effector cell-associated neurotoxicity syndrome [ICANS])
- Frequency of participants developing anti-drug antibodies (ADAs) against acimtamig or AlloNK®
- Progression-free survival (PFS) by IRC

- Overall survival (OS)

5.3 EXPLORATORY ENDPOINTS

6. ANALYSIS POPULATIONS

The populations for the statistical analyses are defined as follow:

- Safety analysis set (SAS): The SAS will consist of all participants (enrolled in run-in phase, Stage 1, Stage 2, and exploratory cohorts) who received any amount of any component of the regimen [acimtamig, AlloNK®, or any study treatment such as lymphodepletion or interleukin-2 (IL-2)]. The SAS will be the primary population for all safety-related endpoints.
- Full analysis set (FAS): Following the intention-to-treat (ITT) principle, the FAS will consist of all participants enrolled into one of the two selected cHL Cohorts in Stage 1 and Stage 2 or exploratory PTCL cohort (Cohort 5) who received at least 1 dose of both acimtamig and AlloNK®. The FAS will be the primary population for all efficacy-related endpoints.
- NK full analysis set (NK-FAS): Following the ITT principle for analysis of Cohort 6, the NK-FAS will consist of all participants who received at least 1 dose of AlloNK® in Cohort 6. The NK-FAS will be the primary population for all efficacy related endpoints concerning Cohort 6.
- Per protocol set (PPS): The PPS will consist of all participants in FAS who did not have any major protocol deviations. The primary analysis will be repeated on the PPS to support the results of the primary analysis on the FAS.
- Modified full analysis set (mFAS): The mFAS will consist of all participants in the FAS who have at least one post-baseline response assessment by IRC according to the Lugano classification. The mFAS will be used for sensitivity analyses of the primary endpoint.
-
- Overall full analysis set (oFAS): The oFAS will consist of all participants enrolled to the HL

CONFIDENTIAL

Page 10 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

cohorts of the study except for Cohort 6 (in run-in phase, Stage 1, and Stage 2) who received at least 1 dose of both acimtamig and AlloNK®. The oFAS will be used for sensitivity analyses of the primary endpoint. The exploratory cohorts are not included in oFAS because the results would be identical with those from the FAS analyses.

- Safety run-in set (SRI): The SRI consists of all participants of the 4 safety run-in cohorts who received at least 66% of the acimtamig and AlloNK® combination during Cycle 1. The SRI will be used for the analysis of run-in phase data.
- Acimtamig PK set: The acimtamig PK set consists of all participants (except those from Cohort 6) who have received at least 1 dose of acimtamig and have at least 1 post dose acimtamig PK measurement.
- AlloNK PK set: The AlloNK PK set consists of all participants who have received at least 1 dose of AlloNK® drug and have at least 1 post dose AlloNK® PK measurement.

Participants who were screened and signed the informed consent but did not receive any treatment will be listed, including the reason for screen failure and any SAE that is related to a study procedure. These participants will not be part of any summary table except for summarizing disposition.

7. ANALYTICAL PLAN AND STATISTICAL METHODS

7.1 GENERAL CONVENTIONS AND STATISTICAL CONSIDERATIONS

Continuous variables will be summarized with the following statistics: number of non-missing observations, number of missing observations, mean, standard deviation (SD), median, 1st quartile, 3rd quartile, minimum (min), and maximum (max). Moreover, geometric mean, coefficient of variation (CV), and geometric CV will be calculated for certain PK parameters.

Categorical variables will be summarized using frequency table with counts for all categories including missing, and percentages for all non-missing category, calculated with the total number of non-missing values as denominator.

Percentages for categorical data summaries will be displayed with 1 decimal point (e.g. 51.4%), except for 100% which will be presented with no decimals (i.e. 100%). Unless otherwise specified, percentages for baseline summaries will be based on the total number of participants in the analysis set, percentages for post-baseline summaries will be based on the total number of participants with non-missing values.

Use of decimal places in descriptive statistics:

- Min, Max: same as the actual data
- Mean, Median, Q1, Q3: actual data + 1 decimal
- SD: actual data + 2 decimals

A maximum of 3 significant digits will be displayed.

Analysis will be presented by cohort. Moreover, all HL cohorts (except Cohort 6) pooled will be analyzed (2 pooled cohorts for FAS, 4 pooled cohorts for oFAS and SAS).

Those subjects who initially consented under protocol v3.0 and later versions, and thus will not receive IL-2 after the AlloNK treatment, will be analyzed separately, but only a limited set of analyses (Disposition, PK, AE Overview, Exposure) will be created for this.

The PET-CT response assessed by IRC used for efficacy endpoints by IRC following the Lugano classification is identified in the data as from the Oncologist.

For all efficacy analyses using local investigator PET-CT response assessments, the Overall response assessment (integrating all radiographic and non-radiographic data) as captured in the eCRF following the Lugano classification will be used.

7.2 DEFINITION OF BASELINE, STUDY VISITS, AND VISIT WINDOWS

The baseline value is the last value observed/measured before the first administration of any study treatment, i.e., acimtamig, AlloNK® or any study treatment such as lymphodepletion.

Study Day 1 is the day of first administration of any acimtamig or AlloNK®; study days before Study Day 1 are calculated as [date - date of 1st acimtamig administration], study days after Study Day 1 are calculated as [date - date of 1st acimtamig administration + 1].

All by-visit summaries will be created using the visits as recorded in the eCRF. No reassignment of visits will be done.

7.3 HANDLING OF MISSING DATA

A large rectangular area of the page is completely blacked out, indicating that the content has been redacted. There are four small, thin black vertical lines on the left side of the redacted area, which appear to be part of the original document's layout.

7.4 PROTOCOL DEVIATIONS

Protocol deviations will be classified as major or minor; the classification will be done manually during the medical review as described in Protocol Deviation Management Plan. In general, major protocol deviations are those with likely impact on the efficacy or safety of the study treatment.

Major and minor protocol deviations will be summarized by number of protocol deviations and number and percentage of participants with at least 1 protocol deviation; protocol deviations by type (e.g., violation of eligibility criterion) will also be summarized.

The protocol deviations will be presented in FAS.

A listing of all protocol deviations, along with their grade as major or minor, will be provided for all participants.

7.5 PARTICIPANT DISPOSITION

The disposition summaries of participants will include:

- Number of participants screened, number and percentage of screening failures with reasons for screening failure; percentages will be calculated from all screened participants.

For all enrolled participants, the following will be presented for each cohort, and moreover separately in each cohort for participants who received and who did not receive IL-2 (percentages will be calculated from all enrolled participants in each cohort / from all participants who received and who did not receive IL-2 in each cohort):

- Number and percentage of participants enrolled, overall and by site
- Number and percentage of participants in the analysis sets
- Number and percentage of participants discontinued treatment (with reason for treatment discontinuation)

For all participants in FAS, the following will be presented (percentages will be calculated from all participants in FAS):

- Number and percentage of participants continued and not continued into follow-up period
- Reason for end of study for participants, with number and percentage of participants
- Number and percentage of participants in each treatment cycle

Inclusion and exclusion criteria violations and enrollment will be presented for all screened participants in data listings. The disposition listing will be created for all enrolled participants.

7.6 PARTICIPANT CHARACTERISTICS

7.6.1 BASELINE AND DEMOGRAPHIC CHARACTERISTICS

The following characteristics will be summarized by treatment arms in FAS:

- Demography: age at screening, sex, ethnicity, race
- Vital signs: height, weight, temperature, respiratory rate, heart rate, systolic and diastolic blood pressure, overall vital signs assessment,
- Physical examination result
- Childbearing potential

Listings of demography and baseline characteristics data will be created.

7.6.2 MEDICAL HISTORY AND CURRENT MEDICAL CONDITIONS

The following will be summarized in FAS, and also listed:

- The lymphoma history:
 - Subtype, time since initial cytological/histological diagnosis until screening
 - Stage and B-symptoms presence at initial diagnosis and at screening

- For HL cohorts: Classical HL-specific prognostic factors (erythrocyte sedimentation rate, lymph node involvement, Extranodal disease sites) at initial diagnosis and at screening, International Prognostic Score for HL at initial diagnosis, soluble CD30 result at screening
- For PTCL cohort: Non-Hodgkin Lymphoma-specific prognostic factors (extranodal disease sites) at initial diagnosis and at screening, International Prognostic Index at initial diagnosis, local CD30 result (%) and soluble CD30 result
- Medical history other than lymphoma
- Prior anti-cancer therapies and surgeries (number of prior therapies, therapeutic agents, prior stem cell transplant, PD1 Inhibitor therapy, Brentuximab Vedotin (BV) therapy, Car-T therapy and radiotherapy, best response to the last line prior to the study start)

Prior anti-cancer therapies will be coded by World Health Organization (WHO) Anatomical, Therapeutic, and Chemical (ATC) terms, summarized and listed.

Medical history will be coded utilizing corresponding Medical Dictionary for Regulatory Activities (MedDRA; version 26 or later), summarized by System Organ Classes (SOCs) and Preferred Terms (PTs) and listed.

7.6.3 PRIOR AND CONCOMITANT MEDICATION

Medication will be coded by World Health Organization (WHO) Anatomical, Therapeutic, and Chemical (ATC) terms (version March 2023 or later). All prior (ended before the first day of any study treatment, including lymphodepletion) and concomitant (started on or after the first day of study treatment or ongoing on that day) medications will be summarized by ATC level 2 term and PT for FAS. Where start and end dates are partially available, imputation will be done as outlined in Section 7.3. If start and end dates are completely missing or classifications cannot be conclusively made based on the available information, such treatments will be classified as concomitant medications.

Prior and concomitant medications will be also presented in data listings.

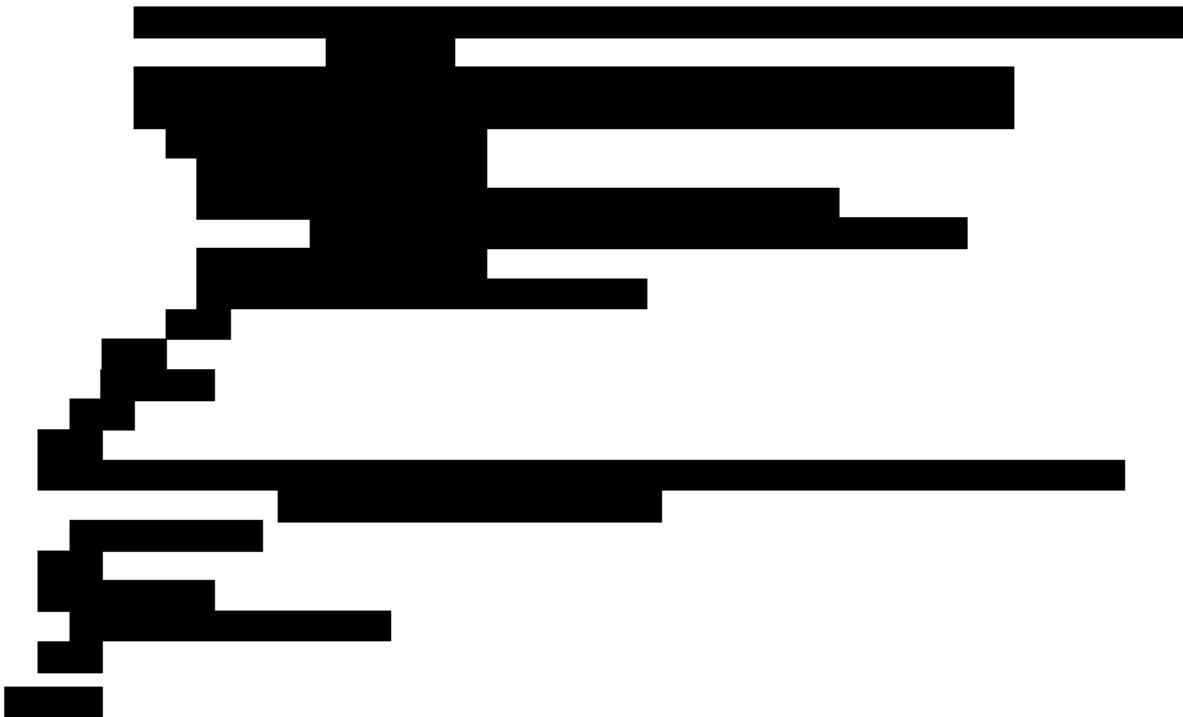
7.7 EFFICACY ENDPOINTS AND ANALYSIS

The endpoints by IRC assessments will be derived using only responses provided by IRC regardless of Investigator responses. Similarly, endpoints by Investigator assessments will be derived using only responses provided by Investigator regardless of IRC responses. All cohorts will be analyzed independently.

All the efficacy endpoints values and original variables used for their evaluation will be listed; the subgroups (as defined in Section 7.9.1) will be included in the primary endpoint listing.

7.7.1 ANALYSIS OF PRIMARY EFFICACY ENDPOINT

7.7.1.1 ENDPOINT DESCRIPTION


The primary endpoint is based on the ORR, calculated as the proportion of participants with having a best response of CR or PR as assessed by IRC according to the Lugano classification. A participant will be assumed as a responder if he/she achieves complete or partial response at any postbaseline visit; otherwise, he/she will be a non-responder. Participants with missing post-baseline response will be classified as non-responders.

CONFIDENTIAL

Page 14 of 26

7.7.1.2 PRIMARY ANALYSIS

The image consists of a series of horizontal black bars of varying lengths and positions, set against a white background. The bars are thick and appear to be composed of multiple horizontal lines. They are arranged in a stepped or staircase pattern, with some bars extending beyond the edges of the frame. The overall effect is abstract and geometric.

In addition, the CRR and Partial Responses Rate (PRR) will be provided, calculated as the proportion of participants with the best result being CR or with the best result being PR, respectively; for the calculation of CI for PRR, the participants with CR are assumed to be non-responders.

The number and percentage of participants with objective response, CR and PR at each treatment cycle will be presented. The swimmer plot, showing the response by Lugano classification for each participant by time in trial, will be plotted.

The primary endpoint analysis will be based on the FAS.

7.7.1.3 PRIMARY ANALYSIS FOR COHORT 6

The ORR for Cohort 6 will be analyzed in a similar way as described in Section 7.7.1.2 but on the NK-FAS, with exact binomial CI used and no p-value calculated. Furthermore, participants who do not develop a response (at least PR) after cycle 1 (i.e., after the first assessment) will be counted as treatment failures.

The CRR and PRR will be provided, calculated as described in Section 7.7.1.2. In addition, shift table from response assessed at the end of cycle 1 to later cycles will be presented, including counts and percentages.

7.7.2 ANALYSIS OF SECONDARY EFFICACY ENDPOINTS

Secondary endpoints will be analyzed in FAS. For Cohort 6 the NK-FAS will be used instead, but for this cohort only ORR by Investigator will be presented in a summary table and the remaining secondary endpoints will only be listed.

7.7.2.1 DURATION OF RESPONSE

DOR by Investigator and DOR by IRC will be analyzed for the participants who achieved PR or

CR only. The DOR is defined as time from first assessment of PR or CR to the first assessment of progressive disease or death.

Participants who started a new anti-lymphoma therapy prior to a documented progressive disease will be censored at the last disease assessment prior to initiation of new anti-lymphoma therapy. Participants who discontinued the study before the first assessment of progressive disease or death will be censored at their last disease assessment. The censoring rules are summarized in Table 1.

DOE will be summarized by descriptive statistics including median DOE, first and third quartile and Kaplan - Meier estimates at 3, 6, 9, 12, etc. months with respective 95% CIs. The Kaplan - Meier curve will be plotted.

A 10x10 grid of black rectangles on a white background, representing a sparse matrix. The rectangles are distributed across the grid, with a higher density in the center and some sparse rows and columns.

[REDACTED]	[REDACTED]	[REDACTED]	[REDACTED]
	[REDACTED]	[REDACTED]	
[REDACTED]	[REDACTED]	[REDACTED]	
	[REDACTED]	[REDACTED]	[REDACTED]

7.7.2.2 ORR BY INVESTIGATOR

The ORR by investigator will be analyzed in the same way as the primary endpoint. The only exception is that exact binomial CI will be used, and no p-value will be calculated.

The swimmer plot showing the response reported for each participant by time in trial will be plotted.

7.7.2.3 CRR BY INVESTIGATOR AND BY IRC

Both the CRR (proportion of participants with the best post-baseline assessment being CR; participants without assessment are assumed to be non-responders) by Investigator and by IRC will be analyzed in a similar way as the primary endpoint, i.e., the CRR will be presented as percentage in the whole population, including the 95% CI; exact binomial CI will be used instead of the Koyama and Chen interval because no futility conclusion will be done for this endpoint during the interim analysis (IA).

7.7.2.4 ORR, CRR AND PRR BY INVESTIGATOR FOR COHORT 6

The ORR, CRR and PRR by investigator will be analyzed in the same way as described in Section 7.7.1.3, including the shift table.

7.7.2.5 PFS BY IRC

PFS is the time from the first treatment of acimtamig or AlloNK® received until the first progression disease assessed by IRC or death.

Participants who started a new anti-lymphoma therapy prior to a documented progressive disease will be censored at the last disease assessment prior to initiation of new anti-lymphoma therapy. Participants who discontinued the study before the first assessment of progressive disease or death will be censored at their last disease assessment. The censoring rules are summarized in Table 1.

[REDACTED]

PFS will be summarized by Kaplan-Meier estimates in the analogous way as DOR. The Kaplan – Meier curve will be plotted.

7.7.2.6 OVERALL SURVIVAL

OS is the time from the first treatment of acimtamig or AlloNK® received until the death. Participants with no death recorded will be censored at the last available contact date. The censoring rules are summarized in Table 1.

OS will be summarized by Kaplan-Meier estimates in the analogous way as DOR. The Kaplan – Meier curve will be plotted.

7.7.2.7 INCIDENCE OF PARTICIPANTS RECEIVING SUBSEQUENT TRANSPLANT

The incidence of participants receiving subsequent transplant will be assessed and summarized by percentage rate and 95% CI. The number of participants who miss the information about the subsequent transplant will be reported but these participants will not be included in the percentage calculation.

7.7.2.8 IMMUNOGENICITY PARAMETERS

Immunogenicity parameters, including frequency of participants developing ADAs against acimtamig or AlloNK®, will be analyzed by cohort and visits. It will be summarized by descriptive statistics and listed for both acimtamig and AlloNK®.

7.7.3 ANALYSIS OF EXPLORATORY ENDPOINTS

7.7.4 SENSITIVITY ANALYSIS

The primary endpoint will be analyzed in PPS, mFAS, and oFAS as sensitivity analyses; for oFAS,

the analysis will be repeated for participants who received and who did not receive IL-2.

7.8 SAFETY ENDPOINTS AND ANALYSIS

The following secondary safety endpoint will be analyzed:

- Frequency of participants with study-drug related TEAEs and SAEs (evaluated using NCI CTCAE v5.0 and ASTCT grading for TEAEs related to CRS and ICANS)

Moreover, exposure to study treatment, other AE summaries and laboratory parameters will be analyzed for safety.

All safety analyses will be done in SAS.

7.8.1 EXPOSURE TO STUDY TREATMENT

The duration of the study treatment will be summarized in weeks.

Moreover, the following characteristics of the treatment exposure will be summarized by descriptive statistics and listed for all study treatments separately; it will be summarized for each treatment cycle and over the entire study period:

- Number of participants who received at least 1 dose of the treatment
- Number of doses administered for a participant
- Cumulative dose amount received by a participant
- Dose intensity (mg/weeks)
- Treatment compliance of a participant measured as the percentage of the actual received cumulative dose amounts throughout the period compared to the planned doses

The characteristics above will be summarized for each cohort separately, and for acimtamig and AlloNK® also separately for participants who received and who did not receive IL-2 in each cohort. Also, for all the study treatments, the number of and percentage of the administration, its delays, dose adjustments, reasons for adjustments and actual dose will be presented by cycle and treatment day. Analysis of exposure as described above will be repeated using the FAS.

CONFIDENTIAL

Page 20 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

The summaries for exposure to study treatment will be presented for acimtamig, AlloNK® and lymphodepletion. Exposure for IL-2 will be listed only.

7.8.2 ADVERSE EVENTS

TEAEs are those events with onset at/or after the first administration of any study drug of the regimen (acimtamig, AlloNK® or any study treatment such as lymphodepletion or IL-2) until 30 days after last administration of any study drug.

Lymphodepletion-TEAEs (LTEAEs) are the TEAEs with onset at/or after the date of the first lymphodepletion and before the first administration of acimtamig or AlloNK®.

The acimtamig/AlloNK®-TEAEs (ATEAEs) are the TEAEs with onset at/or after the first administration of acimtamig or AlloNK®.

TEAEs and SAEs will be coded using MedDRA, version 26 or later, and graded using NCI CTCAE v5.0 (including neurotoxicities that are not considered ICANS) except for CRS and ICANS, which will be graded according to the ASTCT grading, tumor lysis syndrome (TLS) will be graded according to the Cairo-Bishop TLS grading system and acute GVHD will be grading according to the Mount Sinai Acute GvHD International Consortium (MAGIC) criteria.

Changes in the severity of one and the same AE will be collected as separate records in the eCRF, but they will be linked. As it is only a change of grading in one and the same AE, such an AE will be counted only once in AE tables, using the highest grade reported. If such an AE is recorded as both serious and non-serious, it will be counted as serious AE in the tables. If such an AE is recorded as both related (possibly, probably, definitely related) and not-related, it will be counted as related AE in the tables.

The number and percentage of participants with an AE and the number of AEs will be summarized for the following TEAEs:

- TEAE, serious TEAE, LTEAE, serious LTEAE, ATEAE, serious ATEAE
- AE of special interest (AESI)
- TEAE of severity grade 3, 4 or 5 for CTCAE 5.0, ASTCT, ASTCT ICANS, MAGIC, Cairo-Bishop grading
- TEAE and serious TEAE related to acimtamig, to AlloNK® and to acimtamig or AlloNK®; an AE is considered a study drug related if it is possibly, probably or definitely related according to eCRF
- TEAE of CTCAE Grade 3, 4 or 5 related to acimtamig, to AlloNK® and to acimtamig or AlloNK®
- TEAE leading to acimtamig interruption, to AlloNK® interruption, to permanent discontinuation of acimtamig, to permanent discontinuation of AlloNK®
- Fatal TEAE, fatal TEAE related to acimtamig, fatal TEAE related to AlloNK®
- TEAE of preferred term “Infusion-Related Reactions”

The summary described above will be repeated for participants who received and who did not receive IL-2 in each cohort.

The incidence of following TEAEs will be tabulated by system organ class (SOC) and preferred term (PT):

CONFIDENTIAL

Page 21 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

- TEAE, LTEAE, ATEAE
- TEAE by SOC, PT and severity grade (CTCAE 5.0, ASTCT, ASTCT ICANS, MAGIC, Cairo-Bishop grading)
- TEAE leading to acimtamig discontinuation, TEAE leading to AlloNK® discontinuation
- TEAE related to acimtamig, TEAE related to AlloNK®, TEAE related to acimtamig or AlloNK®
- Serious TEAE, serious TEAE related to acimtamig, serious TEAE related to AlloNK®, serious TEAE related to acimtamig or AlloNK®
- Fatal TEAE, fatal TEAE related to acimtamig, fatal TEAE related to AlloNK®, fatal TEAE related to acimtamig or AlloNK®
- TEAE with CTCAE Grade ≥ 3 , TEAE with CTCAE Grade ≥ 3 related to acimtamig, TEAE with CTCAE Grade ≥ 3 related to AlloNK®, TEAE with CTCAE Grade ≥ 3 related to acimtamig or AlloNK®
- Non-serious TEAE

Deaths during the treatment phase until 30 days after the last dose and the corresponding reasons will be summarized.

The not treatment-emergent AEs will be only listed.

7.8.3 LABORATORY DATA

Safety laboratory results for hematology, chemistry and coagulation will be graded by NCI CTCAE v5.0. If no grading exists, values will be classified into low/normal/high based on laboratory normal ranges.

If a lab value is reported using a nonnumeric qualifier e.g., less than (<) a certain value, or greater than (>) a certain value, the given numeric value will be used in the analyses, ignoring the nonnumeric qualifier.

Descriptive statistics summarizing laboratory results for hematology, chemistry and coagulation will be presented for all study visits. The change from baseline to each post-baseline and the CTCAE grades will also be summarized.

All laboratory values will be listed. A separate listing for abnormal lab values (Grade 3 and higher, and low/high values) will be presented for hematology, chemistry, and coagulation. Urinalysis results will be listed only.

7.8.4 ECG, VITAL SIGNS, PHYSICAL EXAMINATION AND ECOG STATUS

ECG, vital signs, physical examination and Eastern Cooperative Oncology Group (ECOG) status will be summarized by descriptive statistics at each visit, including change from baseline for continuous variables; ECOG status will be analyzed as categorical variable.

All values will also be listed.

CONFIDENTIAL

Page 22 of 26

Statistical Analysis Plan template version 1.0 dated 29-Oct-2020

7.9 OTHER ENDPOINTS AND ANALYSIS

7.9.1 SUBGROUP ANALYSIS

Subgroup analyses will be performed to better characterize specific sub-populations. It will be performed in the two selected cohorts with R/R classical HL. The FAS will be used for efficacy and SAS for safety endpoints.

The following subgroup analyses are planned:

A large rectangular area of the page is completely blacked out, indicating the redaction of sensitive information.

For those pre-specified subgroups, the ORR (primary endpoint), CRR, duration of response, PFS (all assessed by IRC), overall survival and AE (summary table) analyses will be repeated.

Each subgroup must contain at least 10 participants per category per cohort to perform a subgroup analysis. If a subgroup analysis is not conducted due to this restriction, data listings of the primary endpoint showing the data for this subgroup will be provided.

8. INTERIM ANALYSIS

8.1 RISK-BENEFIT ANALYSIS OF SAFETY RUN IN PERIOD

A large rectangular area of the page is completely blacked out, indicating the redaction of sensitive information. Below this, there are several smaller, vertically aligned rectangular redaction boxes.

8.2 INTERIM ANALYSIS AFTER 1ST STAGE OF SIMON'S DESIGN PART

[REDACTED]

[REDACTED]

8.3 PRIMARY ANALYSIS

[REDACTED]

9. Final Analysis

[REDACTED]

[REDACTED]

10. Independent Safety Review Committee (SRC)

An independent SRC will be established prior to the enrollment of the first participant. The independent SRC will be responsible for reviewing at regular intervals the safety data of all participants throughout the conduct of the study. Detailed recruitment status and interim safety reports will be provided to the SRC on a regular basis. Further details regarding the constitution of the SRC and its specific roles and responsibilities and timing of reviews will be provided in the SRC charter.

11. DEVIATIONS FROM ANALYSIS AS DESCRIBED IN THE PROTOCOL

The analysis populations mFAS and oFAS were added for sensitivity analysis of the primary endpoint.

12. PROGRAMMING SPECIFICATIONS

All outputs will be produced using SAS version 9.4 or a later version.

The margins should be at least 1.50 inches for the binding edge and 1.0 inches for all others.

In the top left portion of each table/listing, the *protocol number* will be presented. On the next line, a *table/listing number* followed by the *title* of the table/listing and *population* information will be displayed. Horizontal lines will appear after the column heading of the table/listing. *Footnotes* will be put under the main body of text at the bottom of the page. The source listing number will be displayed for all tables. The *SAS program name* will appear on the bottom left corner of each table/listing in a string, followed by the database lock date, and the *page number* will appear on the bottom right corner of each table/listing. The *date and time of creation* of the table/listing will appear on the bottom left corner under to the SAS program name line.

Courier New 8-point bold font will be used for all tables and listings. Usually, a landscape layout is suggested for both tables and listings, but it is not mandatory. Any date information in the listing will use the date9. format, for example, 07MAY2002.

The list of tables, listings, and figures, and shells for unique tables are provided in a separate Mock-Up tables, figures, and listings (TFLs) document.

13. REFERENCES

Koyama T, Chen H. Proper inference from Simon's two-stage designs. Stat Med. 2008;27(16):3145-3154. Doi:10.1002/sim.3123.