

1
2 **Effects of vagus nerve cryoablation on glycemic control and weight loss in**
3 **obese patients with type 2 diabetes**

4
5 **NCT Number: NCT04276051**

6
7 **Protocol Date: February 22, 2021**

8
9
10
11 **Emory University School of Medicine**
12 **Department of Medicine, Endocrinology**

13
14 **Correspondence to:**

15
16 Alexandra Migdal, M.D.
17 Assistant Professor of Medicine
18 Emory University School of Medicine
19 Director, Diabetes and Endocrinology Section
20 Grady Health System
21 69 Jesse Hill Jr Dr.
22 Atlanta, Georgia 30303
23 USA

33 **I. BACKGROUND/RATIONALE AND PURPOSE:**

34 Obesity is a growing epidemic, currently affecting over 1/3 of the adult US population¹ and is a
35 well-established risk factor for the development of diabetes and cardiovascular disease.² Given
36 that the majority of patients with type 2 diabetes (T2D) are obese, weight loss is the cornerstone
37 of treatment, and has been shown to decrease risk of long term complications³, lead to
38 improvements in A1c and lipid levels^{4,5}, as well as decreased need for medications and
39 improvements in quality of life⁶. Unfortunately, lifestyle intervention is often ineffective at
40 achieving long-term sustainable, clinically significant weight loss⁷. Bariatric surgery is a
41 successful intervention, leading to 20-30% weight loss with remission of diabetes in 30-65% of
42 patients 1-5 years post surgery^{8,9}. However, this invasive procedure is associated with high rates
43 of short- and long-term complications, including need for reoperations, vitamin/mineral
44 deficiencies, anemia, and osteoporosis¹⁰⁻¹². It is clear that the current management options for
45 obese patients, including lifestyle changes, medications and surgery, are suboptimal and
46 innovative strategies are necessary to optimize diabetes control and weight management.

47

48 Energy balance and glycemic control are mediated largely by the gut-brain axis, specifically the
49 vagus nerve. The vagus nerve can stimulate or inhibit food intake depending on nutritional
50 status. Vagal nerve signaling is disrupted in the setting of obesity and thought to contribute to
51 overeating behaviors¹³. Vagus nerve blockade has the potential to be a highly efficacious,
52 minimally invasive intervention to address current obesity treatment limitations. Clinical studies
53 evaluating the efficacy of an implantable electric vagus nerve blockade device found that
54 subjects lost on average 8.8% of total body weight at 1 year; patients with T2D experienced
55 improved glycemic control, with an average A1c improvement of 1.0% at 12 months¹⁴.
56 Unfortunately, nearly 40% of subjects experienced side effects related to the device¹⁵. A recent
57 pilot study from our group at Emory University (see preliminary results) reported weight loss
58 efficacy of a minimally invasive CT guided cryoablation of the vagus nerve in obese, non-
59 diabetic subjects. Patients lost 5.6% of total body weight and 22.7% excess body weight at 6
60 months with no significant side effects¹⁶. We propose to evaluate the feasibility and efficacy of
61 this procedure through a randomized control trial in obese patients with T2D. We hypothesize
62 that those patients undergoing the cryoablation procedure will experience improvement in
63 glycemic control and enhanced weight loss at 6 months follow-up compared to the control group.

64

65 **Impact of weight loss on diabetes control and complications:** Over 12% of adults in the
66 United States are affected by type 2 diabetes (T2D), the majority (>90%) of whom are
67 overweight or obese. Weight loss, through lifestyle intervention, medications or bariatric
68 surgery, is recommended for all overweight/obese individuals with T2D. Patients who are able to
69 achieve >5% weight loss at 12 months experience improvement in HbA1c, total cholesterol,
70 LDL, HDL, triglycerides, systolic blood pressure and diastolic blood pressure⁷. Intensive
71 lifestyle interventions, glycemic control and weight loss have also been shown to decrease the
72 risk of development of chronic kidney disease¹⁷ and other microvascular diseases¹⁸.
73 Unfortunately, many studies have shown that long-term maintenance of weight loss is
74 tremendously difficult^{19,20}.

75

76 **Current weight management options: medication and bariatric surgery:** Weight loss
77 medication and bariatric surgery are approved when adequate weight loss is not achieved with
78 lifestyle interventions alone. Medications lead to clinically significant weight loss of >5% in
79 approximately 50% of patients for whom they are prescribed, while the other half have
80 suboptimal weight response²¹. Furthermore, weight loss effects are durable only while patients
81 take the medications, with regain after cessation of drug therapy²². Bariatric surgery has proven
82 superior efficacy over lifestyle interventions with regards to weight management, diabetes
83 remission and reduction of comorbidities^{8,23}. However, due to the invasive nature of surgery,
84 concerns about long-term complications, and limited patient access to accredited centers,
85 bariatric surgery is underutilized. Up to 5% of patients experience a surgical complication
86 following the procedure²⁴, and rates of vitamin and mineral deficiency can reach >60%²⁵. As
87 such, options for long-term effective weight loss are limited and alternative strategies are needed
88 to improve outcomes for obese patients.

89

90 **Gut-brain axis is an important regulator of diet induced obesity:** In a lean, healthy milieu,
91 intake of food triggers vagal nerve afferent neurons to relay information about gastric
92 distension²⁶ and satiety hormones to the hindbrain²⁷, which responds appropriately to decrease
93 food intake and stimulate the hedonic reward system²⁸. In the setting of chronic overeating and
94 obesity, the release of satiety-inducing neuropeptides is decreased, while orexigenic signaling
95 (hunger promoting) is preserved²⁹, which may contribute to further hyperphagia. This data has
96 been replicated in several animal models³⁰⁻³² and provides a compelling argument that aberrant
97 vagal nerve signaling promotes weight gain. Neuromodulation of the vagus nerve, therefore, is
98 an attractive therapeutic intervention for obesity management.

99

100 **Historical utilization of vagotomy:** The rationale behind the procedure is rooted in historical
101 surgical treatments of duodenal ulcer disease, namely the evolution of selective and highly
102 selective surgical vagotomies³³⁻³⁵. Although these procedures have been largely supplanted by
103 the medical management of Helicobacter Pylori, their safety and ancillary value for the
104 management of obesity – and even subsequent heart disease and diabetes – have long been
105 investigated.³⁶⁻⁴¹ of particular relevance to this proposal is the development and study of an
106 implanted vagal nerve stimulator for purposes of managing obesity, the Vbloc® device.
107 Investigators have shown that by modifying the afferent and efferent signaling pathways of the
108 distal vagal fibers, significant positive effects are manifested via weight loss, anthropometric
109 variables, cholesterol levels, blood glucose levels, quality of life, and blood pressure values.⁴²
110 Said another way, subdiaphragmatic vagotomies have a long history in humans without
111 associated cardiac or sympathetic complications.

112

113 **Vagus nerve blockade using an implantable device leads to weight loss and improvement in
114 glycemic control and blood pressure:** A small, prospective, open label trial evaluated the
115 efficacy of an implantable electric vagus blocking device (VBLOC) on glycemic control and
116 blood pressure in obese subjects with T2D. Patients were implanted with VBLOC and followed
117 prospectively for 12 months. Excess weight loss at 12 months was 25± 4%, with improvement in
118 HbA1c from 7.8% ±0.2% at baseline to 6.8%. Decreases were also seen in fasting plasma
119 glucose values and blood pressure¹⁴. Other studies using the same device for weight management
120 have reported pain at the VBLOC site in nearly 40% of subjects¹⁵ which may limit the

121 widespread applicability of this device despite promising efficacy data, and supports the notion
122 of cryovagotomy as an alternative approach.

123

124 **Efficacy of CT guided cryoablation of the vagus nerve for weight loss:** Pilot data from
125 investigators at Emory University has demonstrated the safety and feasibility of percutaneous CT
126 guided cryoablation of the posterior vagal trunk in patients with mild to moderate obesity (BMI
127 30-37 kg/m²). This small and uncontrolled study enrolled twenty subjects for a cryoablation of
128 the vagus nerve along the distal esophagus. This rapid, minimally invasive procedure was found
129 to be 100% technically successful. There were no procedure related complications or adverse
130 events during a 6 month follow up period. In an extension of this protocol, patients were brought
131 back after the 6 month study to be evaluated for gastroparesis. One subject was found to have
132 delayed gastric emptying on imaging but was asymptomatic clinically. It is unclear if this was
133 related to the study procedure since baseline gastric emptying studies were not performed.
134 Patients lost an average of 5.6% total body weight, with 22.7% excess BMI lost [delta BMI/
135 (initial BMI-25)] over the 6-month monitoring period. Participants reported decreases in appetite
136 following the procedure at all time points, with 15.8% reporting “somewhat less appetite”,
137 68.4% reporting “much less appetite”, and 10.5% reporting “very much less appetite.”¹⁶

138

139 **II. SIGNIFICANCE AND INNOVATION:**

140

141 Pilot data from investigators at Emory University has demonstrated the safety and feasibility of
142 percutaneous CT guided cryoablation of the posterior vagal trunk in patients with mild to
143 moderate obesity (BMI 30-40 kg/m²). This small and uncontrolled study enrolled ten subjects
144 for a cryoablation of the vagus nerve along the distal esophagus. This rapid, minimally invasive
145 procedure was found to be 100% technically successful. There were no procedure related
146 complications or adverse events during a 6 month follow up period. Patients lost an average of
147 5.6% total body weight, with 22.7% excess BMI lost [delta BMI/(initial BMI-25)] over the 3-
148 month monitoring period. Participants reported decreases in appetite following the procedure at
149 all time points, with 15.8% reporting “somewhat less appetite”, 68.4% reporting “much less
150 appetite”, and 10.5% reporting “very much less appetite.”⁴³

151

152 In addition to weight loss, we anticipate that the cryovagotomy procedure will result in
153 significant improvement in glycemic control and cardiovascular risk factors, which may result in
154 long-term benefit is reducing diabetic complications. We propose a prospective, randomized
155 controlled trial to determine if a minimally invasive cryoablation procedure of the vagus nerve
156 will lead to greater weight loss and improvements in glycemic control, metabolic profile, and
157 cardiovascular risk factors compared to lifestyle intervention in obese patients with T2D. Our
158 data will provide preliminary data to support application for an NIH grant to further investigate
159 manipulation of the gut-brain axis for management of type 2 diabetes and obesity.

160

161 **III. DESCRIPTION OF STUDY PROTOCOL**

162

A. SPECIFIC OBJECTIVES:

163 **Objective 1. To compare glycemic control of patients undergoing vagus nerve cryoablation**
164 **plus lifestyle intervention at 6 and 12 months compared to lifestyle intervention alone in**
165 **obese patients with T2D.** Patients with T2D, BMI 30-40 kg/m², A1c 7.5-10.5% on stable doses
166 of oral antidiabetic agents will be randomized to cryoablation plus lifestyle or lifestyle
167 intervention alone and will be followed prospectively for 12 months in a controlled randomized
168 trial. We will compare changes in A1c levels between groups at 3, 6 and 12-months of follow up.
169

170 **Objective 2. To determine changes in weight and anthropometric metrics among patients**
171 **receiving cryoablation plus lifestyle intervention versus lifestyle intervention only.** Changes
172 in body weight, BMI, waist circumference, and BIA measured at baseline, 3 and 6 months after
173 intervention will be assessed.

174
175 **Objective 3. To determine safety of the cryoablation of the vagus nerve.** We will monitor
176 rates of AEs and SAEs related to the procedure which develop during the duration of the trial.
177

178 **B. ENDPOINTS:**

179 The primary endpoint of the trial is difference in glycemic control, defined as A1c, fasting
180 glucose and insulin sensitivity (HOMA-IR), at 3, 6 and 12 months between the vagus nerve
181 cryoablation group and the lifestyle intervention monotherapy group.
182

183 The primary safety endpoint of the trial is occurrence of death and all procedure related
184 complications, such as bleeding, infection, pneumothorax, hemothorax, pulmonary injury,
185 complications of sedation, pain requiring hospital admission or treatment, dysphagia,
186 gastroparesis, nausea and vomiting, and gastrointestinal ulceration for the duration of the study.
187

188 Secondary outcomes include differences between treatment groups in any of the following
189 measures:

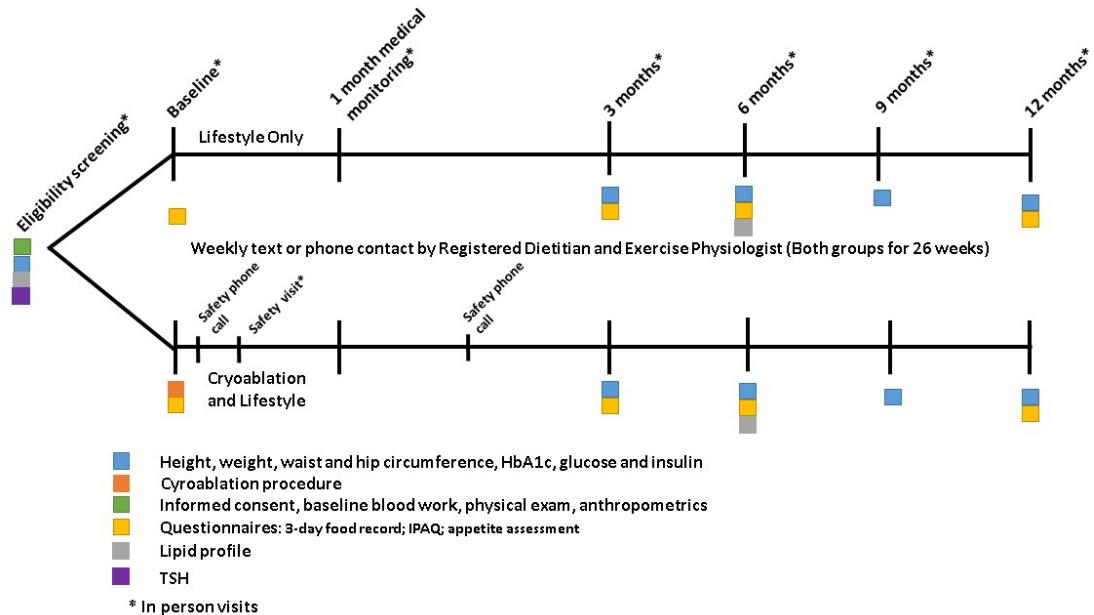
- 190 1. Body mass index (BMI), waist circumference, and waist-to-hip ratio at 3 and 6 months
191 compared to baseline
- 192 2. Lipids (total cholesterol, LDL, triglycerides) at 6 months compared to baseline
- 193 3. Systolic and diastolic blood pressure at 3 and 6 months compared to baseline
- 194 4. Daily caloric intake as measured by 3-day food recall compared to baseline at 3 and 6
195 months.
- 196 5. Changes in antihyperglycemic medication regimen compared to baseline at 3 and 6
197 months.
- 198 6. Appetite, hunger and satiety scoring by visual analog scale at baseline, 1 week, 1 month,
199 3 months and 6 months
- 200 7. Physical activity questionnaire (IPAQ) at baseline, 3 and 6 months
- 201 8. Fasting glucose and insulin levels at 3 and 6 months compared to baseline

202 203 **C. STUDY DESIGN:**

204 This is a randomized, controlled, unblinded clinical study in obese adult patients with T2D,
205 HbA1c 7.5-10.5%, BMI 30-40 kg/m² treated with non-insulin antidiabetic medications with

207 stable doses for at least 3 months.

208 Subjects will be pre-screened with the relevant questions from the Three Factor Food
209 Questionnaire by phone or in person to determine eligibility prior to consent. Following consent
210 and screening for trial eligibility, subjects will be randomized to treatment group. The primary
211 endpoint, glycemic control, will be assessed at 6 months post-procedure. Patients will be
212 recruited from the diabetes clinic at Grady Memorial Hospital and Emory University Clinics.
213


214 We will be screen up to 40 participants to be able to randomized 30 patients, they will be
215 enrolled in this pilot exploratory study. Patients will be randomly allocated to undergo either CT
216 guided cryoablation of the vagus nerve plus lifestyle intervention or lifestyle intervention alone.

217 **Group 1:** CT guided cryoablation of the vagus nerve plus lifestyle intervention (n=15).

218 **Group 2:** Lifestyle intervention by trained RD/CDE (n=15).

219 All subjects will have the procedure performed at Grady Memorial Hospital or Emory University
220 Hospital Midtown or Johns Creek by trained study personnel.
221

222 The study schema is shown below. Both groups will undergo screening for eligibility followed
223 by randomization. If the subject is not fasting at time of initial consent and screening, he/she will
224 be brought back for a subsequent visit with fasting blood work. Subjects must be randomized
225 within 4 weeks of the screening visit. If the randomization visit falls outside of the 4 week time
226 frame, the subject must undergo repeat screening procedures. In- person lifestyle counseling will
227 be provided at baseline visit for both groups. Those undergoing cryoablation will receive a phone
228 call 24 hour post-procedure to evaluate for any immediate complications, 1 week in person
229 follow up visit, as well as a safety call at 2 months. Subjects in both groups will have weekly
230 contact with RD and in person follow up visits at 4 weeks, 3 months, and 6 months. Blood work,
231 anthropometric data and questionnaires will be administered at baseline, 3 months, and 6 months.
232 Safety follow up appointments will be scheduled at 9 months and 12 months, though no further
233 lifestyle counseling will be provided after 6 months. Questioning regarding adverse events and
234 side effects will occur at all visits, as well as assessment of glycemic control. Anti-
235 hyperglycemic medications will be adjusted at visits under the direction of the endocrinologist,
236 or as needed for clinically significant hypo- or hyperglycemic events.

237
238

239 Blood work will be as follows: For all lab parameters, subject results must be within the
240 reference range unless otherwise specified by inclusion/exclusion criteria or if assessed by study
241 physician to be not clinically significant.

Lab test	Baseline	3 months	6 months	9 months	12 months
Complete metabolic panel	X	X	X	X	X
Pregnancy test	X	X	X	X	
HbA1c	X	X	X	X	X
Lipid panel	X		X		
Insulin level	X	X	X		X
TSH	X				

242
243

D. STUDY PROCEDURE:

244 **Cryoablation procedure (to be performed by Dr. Prologo or Dr. Dariushnia):** Subjects will
245 be NPO for 12 hours prior to the ablation procedure. Metformin and sulfonylureas will be held
246 the evening prior to the procedure. Subjects will present to the Interventional Radiology pre-
247 procedure holding area at 8:00 AM on the morning of the procedure and will have a peripheral
248 IV placed by nursing staff. Point of care blood glucose level will be checked; the procedure will
249 be deferred for BG >250 mg/dl until diabetes control can be better optimized. Low doses of
250 sedation will be used with IV versed and fentanyl. An Interventional Radiology nurse will
251 monitor the subject while sedation is being administered. Skin will be numbed using lidocaine.
252 The procedure will be done under CT guidance and involves a 4-5 mm scalpel incision followed
253 by percutaneous probe placement about the posterior gastroesophageal junction (the location of
254 the posterior vagal trunk). The probe will create a zone of decreased temperature (-20 to -40°C)
255 involving the posterior vagal nerve fibers/plexus. The cryoablation process will include a 3-

256 minute freeze, followed by a 1-minute thaw, and a second 3-minute freeze and 1 minute thaw.
257 After the procedure, a sterile dressing will be applied, and subjects will be monitored for 12
258 hours.

259

260 **Lifestyle Intervention:** All subjects will receive standardized dietary and exercise counseling
261 from a registered dietitian and exercise physiologist (Dr. Frediani). Participants will be counseled
262 to follow a low carbohydrate diet providing a moderate amount of carbohydrates per day (~100
263 g). Focus will be on increasing fruits and vegetables and decreasing refined sugars and processed
264 foods. Dietary counseling will include motivational interviewing, goal setting and nutrition
265 education.⁴⁴ Subjects will also be encouraged to slowly increase physical activity to at least 150
266 minutes weekly. The lifestyle intervention structure will include detailed counseling sessions at
267 baseline, 3 and 6 months. These sessions ideally will occur face-to-face, although telemedicine
268 visit (via zoom) will be permitted on case-by-case basis due to the COVID-19 pandemic. In
269 addition, there will be weekly phone calls or texts (participants' choice) providing a total of 26
270 points of contact recommended by the USPSTF (United States Preventive Services Task
271 Force).⁴⁵

272

273 **Surveys:** Subjects will complete a number of surveys as part of participation in the trial. at
274 baseline, 3 months, 6 months and 12 months. Three-day food records are a validated method of
275 assess food intake⁴⁶ and will be administered at baseline, 3 months, 6 months and 12
276 months. Subjects will also complete visual analogue scale ratings of appetite at baseline, 1 week,
277 1 month, 3 month, 6 month and 12 month.⁴⁷ The International Physical Activity Questionnaires
278 (IPAQ) is to provide a set of well-developed instruments that can be used internationally to
279 obtain comparable estimates of physical activity.⁴⁸ Subjects will also complete the relevant
280 questions from the Three Factor Eating questionnaire during pre-screening and must have an
281 average score ≥ 3 on questions 4, 8, 9, 13, and 14 to be eligible. The entire questionnaire will be
282 administered after subjects have been consented. The Three Factor Eating Questionnaire is a
283 self-assessment scale used in studies of eating behavior in overweight and normal individuals,
284 designed to assess cognitive restraint, disinhibition, and hunger.⁴⁹ Preliminary investigation of
285 this cryovagotomy procedure has identified subjects who score ≥ 3 on the aforementioned
286 questions to be those who respond best to the intervention.¹⁶

287

288 **Blinding.** The trial design is an unblinded, randomized control trial. By nature of the study
289 design, participants and study personnel must be aware of which arm participants are enrolled.

290

291 E. POTENTIAL RISKS AND BENEFITS:

292 **Risk to Human Subjects:** Specific to this procedure, a 20 subject pilot was recently completed
293 that demonstrated no procedure related complications or adverse events during 6 months of
294 follow up. During the 12 month extension, 1/20 patients was found to have a prolonged gastric
295 emptying time, though it is unclear if this was related to the study procedures as no baseline
296 measurements were performed and the subject was asymptomatic. The Visual-Ice Cryoablation
297 System is intended for cryoablative tissue destruction using a minimally invasive procedure. As
298 described in the Icesphere 1.5 Needle user manual on page 14, there are no known adverse
299 events related to the specific use of the cryoablation needles⁵⁰. The procedure is CT guided

300 which allows for real-time visualization of the process to ensure efficacy and avoid damage to
301 any adjacent tissue or structures. Percutaneous CT-guided cryoneurolysis is well established and
302 routinely performed clinically. Specifically, Dr. Prologo's group has conducted three other
303 independent studies of peripheral nerve cryoablation, with procedural methods and outcome
304 measures that parallel the methods described herein⁵¹⁻⁵³. **Perhaps more importantly though,**
305 **the device is routinely used in clinical practice for the ablation of nerves as part of**
306 **percutaneous procedures that are very similar to the percutaneous cryovagotomy proposed**
307 **for this study**, including cryoablation for treatment of trigeminal neuralgia in the setting of
308 cancer⁵⁴, celiac plexus cryoablation,⁵⁵ as well as obturator nerve cryoablation, genitofemoral
309 nerve cryoablation, cryoablation of medial branch nerves in the setting of facetogenic lumbar
310 spine pain, and cryoablation of the inferior alveolar nerve.
311

312 Regarding the mechanism of cryoneurolysis, the premise upon which nerve cryoablation
313 procedures have been founded is the induction of a specific, reversible nerve injury.⁵⁶⁻⁵⁸ Nerve
314 injury classifications are classically described and correlated with clinical course following
315 trauma (crush, stretch, laceration, etc.), the most widely cited of which are the Seddon and
316 Sunderland classifications.^{59,60} it has been shown that temperatures induced by cryoablation
317 devices correspond with Sunderland 2 injuries in peripheral nerves.^{56,57} This precise neural injury
318 results in several well described events that lead to favorable clinical outcomes – cessation of
319 conduction, induced Wallerian degeneration, and *predictable regeneration* of axons upon an
320 intact connective tissue scaffold.^{57,58,61} the translation of these events (beyond conduction
321 cessation) has been documented as nerve function recovery in animal studies and in humans⁶²⁻⁶⁵.
322 62-66

323 Please see below with more details on the identified potential risks of procedures performed
324 percutaneously in interventional radiology:

325 1. *Bleeding*: The risk of bleeding is estimated to be <2%, and is specifically localized to
326 the site of the skin incision (4-5 mm). The risk of any internal bleeding is negligible since
327 it is a CT guided procedure and direct visualization of the probe during the procedure
328 limits any inadvertent involvement of vascular structures. After the procedure, patients
329 will have a sterile bandage placed on the incision and will be monitored for 12 hours.

330 2. *Pneumothorax*: Estimated risk is <1%. We feel that the risk of pneumothorax is non-
331 significant given that this is a CT guided procedure, which will minimize any off target
332 risk. Should any complications arise, this will be visualized in real time on the CT scan
333 and immediate treatment will be provided.

334 3. *Sedation associated risks*: <0.5% risk. Conscious sedation using fentanyl and versed
335 will be used at standard procedural doses. Should any excess sedation occur, this will be
336 reversed immediately in the procedural suite.

337 4. *Off target ablation*: This refers to any inadvertent ablation of other nerves, estimated to
338 be <1.0% risk. This would be seen in real-time on CT guidance, and ablation could be
339 halted immediately to prevent complete nerve resection.

340 **Protection against risks:** Our strict inclusion and exclusion criteria for entry will help to
341 minimize risks. In addition, we will carefully monitor patients with a phone call 24 hours, and 2
342 months after the procedure, and a clinic visit at 1 week, 1 month, 3 months, 6 and 12 months.
343 Subjects will be monitored for specific procedure related complications or adverse events at each
344 visit. Subjects will also be provided with contact information for study personnel should any
345 events occur in between visits. Unscheduled events can be arranged to assess any urgent matters.
346 All AEs, regardless of whether or not they are related to the procedure and use of the device, will
347 be documented and reported to the IRB, DSMB, and FDA in a timeline as specified by the FDA
348 Code of Federal Regulations Title 21, section 812.150 reporting ([21CFR812.150\(b\)](#)). Outcomes
349 regarding hypo- and hyper- glycemia will also be collected and reported for safety monitoring.

350

351 Subjects with poorly controlled diabetes (A1c >10.5%) or a history of DKA will be excluded
352 from enrollment. Subjects will be educated on the potential for development of hypoglycemia.
353 Diabetic medications will be adjusted in event of hypoglycemia/hyperglycemia under the
354 direction of Dr. Alexandra Migdal (Endocrinologist). Self-monitoring of blood glucose (BG)
355 levels will be recommended twice daily and any time symptoms of hypo/hyperglycemia occur.
356 In the setting of hyperglycemia (average BG >250 mg/dl x 1 week), medication doses will be
357 adjusted. Subjects on metformin will have the dose titrated to a maximum of 2000 mg/d if
358 tolerated. Sulfonylureas can be titrated to maximal doses per manufacturer instruction. Subjects
359 may be prescribed rescue therapy with insulin in the event of significant hyperglycemia
360 unresponsive to titration of oral agents. In the setting of BG <100 mg/dl, sulfonylurea doses will
361 be decreased by 50% and discontinued if necessary. If BG <55 mg/dl, sulfonylureas will be
362 stopped. Metformin will be stopped if hypoglycemia persists.

363

364 **Technical success rate of the procedure and procedure related complications:**
365 Discontinuation of the trial will occur if 3 participants within the first 8 of 30 planned experience
366 significant adverse events (AEs) (Grade 3 procedure-related AE or procedure-related serious
367 AE) at any point during follow-up and if 4 participants experience significant AEs (Grade 3
368 procedure-related serious AE) at any time. The trial will be stopped at any point if a Grade 4 or
369 Grade 5 AE occurs until determination can be made regarding its potential relationship to study
370 involvement.

371

372 **Grading of AEs:**

373

Grade 1	Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention not indicated
Grade 2	Moderate; minimal, local or noninvasive intervention indicated; limiting age-appropriate instrumental ADL
Grade 3	Severe or medically significant but not immediately life-threatening; hospitalization or prolongation of hospitalization indicated; disabling; limiting self-care ADL
Grade 4	Life-threatening consequences; urgent intervention indicated
Grade 5	Death related to AE ⁶⁷

374

375 Specific clinical signs or symptoms that will qualify for the above criterial include (amongst
376 other potential Grade 3-5 AEs not listed here): constitutional symptoms (severe fatigue
377 interfering with ADLs, fever $> 40^{\circ}\text{C}$, prolonged and/or severe rigors), endocrine (uncontrolled
378 hyperglycemia, ketoacidosis), gastrointestinal (inadequate caloric intake requiring TPN or IV
379 fluids, diarrhea requiring IV fluids and/or manifesting as >7 stools/day, symptomatic abdominal
380 distention or bloating, severe abdominal pain requiring narcotics, ileus, severe nausea requiring
381 hospitalization, bowel obstruction or perforation), hemorrhage requiring intervention, infection
382 requiring antibiotics, or pain interfering with ADLs.

383
384 **Withdrawal Criteria:** The subject may withdraw at any time during the study by the primary
385 care provider or his/her own decision.

386
387 The subject may be withdrawn at the investigator's discretion due to a safety concern or for
388 contravention to the inclusion and/or exclusion criteria. Any subjects experiencing a Grade 3-5
389 AE as described will be withdrawn from the study. Reasons for study withdrawal will be tracked
390 and documented.

391
392 If a subject is withdrawn prior to completion of the 12 month study period, the subject will be
393 encouraged to keep follow up appointments with the study team for monitoring of adverse events
394 or until resolution of any adverse events related to the procedure.

395 **Data Safety Monitoring:** In addition, an independent data safety monitoring committee
396 (DSMC) will be established to serve as the primary data and safety monitoring group for the
397 trial. The DSMC will review unblinded interim safety data, evaluate whether the study should be
398 stopped or amended for safety or other reasons, and make such recommendations to the
399 investigators. In addition, the DSMC will provide input to the investigators concerning the study
400 protocol, statistical analysis plan, administrative conduct of the trial, and interpretation of the
401 final safety and efficacy data. The DSMC will meet every 6 months, and as needed in the event
402 of an unanticipated adverse device effect. At each meeting, the DSMC will review the incidence
403 of adverse events, severity of each, statistical considerations, and safety concerns (including
404 information on hypo- or hyper-glycemia)— as well as conduct of the trial and accrual goals.

405 **f. Potential benefits to the subject.** We believe that subjects receiving the interventional
406 treatment will benefit from modest weight loss and improvement in glycemic control. Subjects
407 who receive the lifestyle counseling are expected to achieve modest weight loss as well.
408 Furthermore, enrollment in clinical research studies and enhanced focus on glucose monitoring
409 has been shown to reduce complications associated with hyperglycemia.

410

411 **F. STUDY SUBJECT SELECTION:**

412 **Inclusion criteria:**

- 413 1. Males and females between the ages of 22-65
- 414 2. Diagnosis of T2DM for <10 years
- 415 3. HbA1c between $\geq 7.5\%$ and $\leq 10.5\%$
- 416 4. Treatment with non-insulin antidiabetic medications with stable doses for at least 3
417 months, with failed prior attempts at dietary interventions to optimize diabetes control
- 418 5. BMI 30-40 kg/m²

419 6. Willing to comply with study requirements
420 7. Documented negative pregnancy test in women of child bearing potential and use of an
421 effective birth control method
422 8. Average score of ≥ 3 on questions 4, 8, 9, 13, and14 from the Three Factor Eating
423 Questionnaire, to be assess prior to consent via phone screen or in person.

Exclusion criteria:

1. Diagnosis of type 1 diabetes or history of diabetic ketoacidosis
2. Use of insulin therapy
3. Significant kidney disease (eGFR < 60 ml/min/1.73m²)
4. Current drug or alcohol addiction
5. Thyroid disease unless underlying diagnosis is primary hypothyroidism on stable medications for >3 months with TSH in reference range at time of screening visit
6. Systemic steroid use within 30 days prior to randomization
7. Use of prescription or over the counter weight loss medications within 6 months prior to randomization
8. Weight gain/loss >5% over the past 6 months
9. Previous GI surgery or abnormal GI anatomy which may limit technical feasibility of the procedure
10. Recent diagnosis of cardiovascular disease requiring PCI or CABG within the past 6 months
11. Abnormal pathologies or conditions of the GI tract, including peptic ulcers, hiatal hernia, active gallbladder disease, pancreatitis, cirrhosis, inflammatory bowel disease, upper GI bleed within 6 months of randomization
12. Any condition or major illness that places the subject at undue risk by participating in the study
13. Psychiatric condition rendering the subject unable to understand the possible consequences of the study
14. Inability to provide informed consent
15. Female subjects who have been pregnant within 6 months or breast-feeding at time of enrollment into the study, or women who plan to become pregnant within the next 12 months
16. Diagnosis of anemia, RBC transfusion in the preceding 3 months or expectation to receive transfusion within the next 12 months, or hemoglobinopathies that would affect HbA1c reliability
17. Active or recent infection
18. Immunosuppression
19. History of coagulopathy or high risk for development of deep vein thrombosis (including congestive heart failure, those who are non-ambulatory, active leukemia/lymphoma, prior thrombotic events, family history of thrombosis)
20. History of blood pressure instability (systolic BP \leq 100 or \geq 160 mmHg)
21. History of autonomic dysfunction, including amyloidosis, Parkinson's disease, autoimmune disease, spinal cord injury

G. STATISTICAL CONSIDERATIONS:

464 The primary outcome is the difference in glycemic control (as measured by HbA1c) at 6 and 12
465 months between the vagus nerve cryoablation group and the lifestyle intervention group.
466 Summary statistics including mean, median, and standard deviations for the changes in HbA1c
467 at 3, 6, 9 and 12 months will be computed. We will then compare the changes at 6 months
468 between the two treatment groups by a nonparametric Wilcoxon test or a two-sample t-tests
469 (with appropriate data transformation if needed). We will conduct one-way ANOVA to estimate
470 the mean difference in glycemic parameters at 6 and 12 months month between the two
471 treatment groups. We may further adjust for some important confounders by using linear
472 regression models. We will also assess the glycemic control outcomes simultaneously across
473 different follow-up visits (i.e. 12, 24 weeks) through repeated measures ANOVA models, which
474 appropriately account for within-subject correlations in the measurements. In addition, we will
475 consider repeated measures linear regression model with visits incorporated as a continuous time
476 variable. We may include other covariates in the model when feasible.

477 The primary safety endpoint of the trial is the occurrence of death and all procedure related
478 complications, such as bleeding, infection, pneumothorax, hemothorax, pulmonary injury,
479 complications of sedation, pain requiring hospital admission or treatment, dysphagia,
480 gastroparesis, nausea and vomiting, and gastrointestinal ulceration for the duration of the study.
481 We will first use the Chi-square test (or Fisher's exact test) to compare the occurrence of this
482 primary safety endpoint between the two treatment groups. We will perform logistic regression
483 to evaluate the group difference while adjusting for other potential confounders such as age,
484 gender, and BMI. In addition, we will compare the number of procedure related complications
485 by using Poisson regression or Negative Binomial regression between the two treatment groups.
486 Standard model selection (e.g. forward, backward variable selection) and model checking
487 procedures (e.g. deviance residual plot and Hosmer- Lemeshow test) will be performed to ensure
488 the adequacy of the final models.

489
490 Secondary outcomes will be compared between the two treatment groups. For continuous
491 secondary outcomes, we will follow the plan proposed for primary outcome. For discrete
492 secondary outcomes, we will first conduct cross-sectional comparisons based on Chi-squared
493 tests or Fisher's exact test. If the discrete outcome is measured at multiple visits, we will fit
494 repeated measures generalized linear models to simultaneously assess the difference in the
495 longitudinal discrete outcome between the two treatment groups. Other covariates may be
496 included in the models if feasible.

497

498 **Sample Size Calculation and Power Analysis:**

499 This study is generating pilot data for utilization of this procedure in a novel patient population.
500 Given the 15 patients per group, taking into account 20% attrition rate, we would have 12
501 patients per group. In this case, we would have 80% power to detect a difference in glycemic
502 control outcome change that equals 1.2 times the standard deviation of the glycemic control
503 outcome change. The data generated from this study will provide useful relevant preliminary
504 data for planning larger randomized studies.

505

506

507

IV. DATA HANDLING AND RECORD KEEPING:

508 Data collection records with personal identifiers will be stored in locked file cabinets. Blood
509 samples drawn in conjunction with this study will not be labeled with information that could
510 directly identify study subjects. De-identified serum samples will be stored. We may use the
511 samples collected and stored in this study for future studies without a separate IRB consent for
512 the subjects. This will be explained to the study subjects at the time of consent. If we use the
513 samples in future studies, coded identifiers will be used. The informed consent will make it clear
514 that subjects can request their samples to be destroyed at any time. Presentation of the study
515 results at regional or scientific meetings or in publications will not identify subjects. Access to
516 research and confidential records will be limited to clinical investigators, research coordinators,
517 and the IRB at Emory University.
518

519 Study coordinators and/or investigators will collect baseline and follow up data, complete the
520 CRF (case report form) and enter data into RedCap (electronic database provided by the Emory
521 Research Information Technology Department). Baseline data will include demographics
522 (gender, age, ethnicity), duration of diabetes, comorbid conditions, medications, BMI, screening
523 labs, QOL assessment scores, appetite score, three-day food records analyzed using Nutrition
524 Database System for Research (NDSR) and physical activity questionnaire (IPAQ).⁴⁸ Follow up
525 data will include medications, BMI, body measurements, follow-up labs, QOL assessment
526 scores, appetite score, three-day food record, IPAQ, and adverse events.
527
528

529 **V. ETHICS:**

530 **A. INFORMED CONSENT**

531 After identification of eligible patients these individuals will be provided basic information
532 regarding the study and, if interested, a member of the research staff using inclusion/exclusion
533 criteria delineated elsewhere in the protocol will then screen patients. Informed consent will be
534 obtained before any trial related procedures including screening procedures. The consent form,
535 potential risks and benefits, and the rights of research participants will be explained to the
536 participant by the investigators or research coordinator. Individuals will be asked if they have
537 questions, and a member of the research staff will answer questions. The principal investigator
538 (PI) will also be available at all times to answer questions that participants may have during the
539 consent procedure or during the time a participant is enrolled in the study. The consent form will
540 be completed only by trained research personnel familiar with the study protocol procedures,
541 informed consent process, who have undergone CITI training in accordance with the IRB
542 guidelines of Emory University. A signed copy of the consent form will be provided to the
543 participant and a copy will be placed in the file that is maintained for each participant in the
544 study office. Adults who speak any of the following languages (English, Spanish) will be
545 approached for participation in the study.
546
547

548 **B. RECRUITMENT AND RANDOMIZATION**

549 Subjects will be recruited from the Diabetes Clinic at Grady Memorial Hospital and Emory
550 Healthcare clinics. Patients with diabetes will be identified electronically. Once a potential
551 candidate is identified, we will approach the primary clinician as well as the patient for consent.

552

553 Patients will be randomized consecutively using a computer-generated randomization table
554 provided by Dr. Limin Peng at the Emory School of Public Health.

555

556

557 **VI. LIABILITY AND SUBJECT INSURANCE:**

558 **A. FINANCIAL OBLIGATION**

559 No additional cost to patients or to the institution will be incurred for research purposes. Patients
560 will not be billed for the laboratory work or any test that is being done only for study purposes.
561 Patients will be responsible for the cost of their usual ongoing medical care, including
562 procedures and/or non-study medications that their doctor requires as part of their usual medical
563 care.

564

565 **B. PAYMENT FOR PARTICIPATION**

566 Participation in this study is voluntary. Patients will receive \$25 for the screening visit, \$75 for
567 the enrollment visit, \$30 for the 1 month, 3 month, 6 month, 9 month and 12 month visit to
568 compensate for time and effort. Total compensation will be two hundred and fifty dollars
569 (\$250.00).

570

571 **C. RESEARCH INJURIES**

572 If a patient is injured because of taking part in this study, Dr. Migdal and investigators at each
573 institution, along with the medical facilities will make medical care available. Emory University,
574 however, has not set aside any money to pay participants or to pay for their medical treatment.
575 The only exception is if it is proved that the injury or illness is directly caused by the negligence
576 of an Emory/Grady employee. "Negligence" is the failure to follow a standard duty of care.
577 Financial compensation for such things as lost wages, disability or discomfort due to an injury
578 related to the study is not available.

579

580

581 **VII. REFERENCES**

582

- 583 1. Ogden CL CM, Fryar CD, Flegal KM. . Prevalence of obesity among adults and youth:
584 United States, 2011–2014. NCHS data brief, no 219. *Hyattsville, MD: National Center
585 for Health Statistics 2015.*
- 586 2. Centers for Disease Control and Prevention. National Diabetes Statistics Report A, GA:
587 Centers for Disease Control and Prevention, US Department of Health and Human
588 Services; 2017.
- 589 3. Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J. Targeting weight loss
590 interventions to reduce cardiovascular complications of type 2 diabetes: a machine
591 learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD
592 trial. *Lancet Diabetes Endocrinol.* 2017;5(10):808-815.
- 593 4. Hamdy O, Mottalib A, Morsi A, et al. Long-term effect of intensive lifestyle intervention
594 on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-
595 year longitudinal study. *BMJ Open Diabetes Res Care.* 2017;5(1):e000259.

596 5. Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K. The evidence for the
597 effectiveness of medical nutrition therapy in diabetes management. *Diabetes Care*.
598 2002;25(3):608-613.

599 6. MacLeod J, Franz MJ, Handu D, et al. Academy of Nutrition and Dietetics Nutrition
600 Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Nutrition Intervention
601 Evidence Reviews and Recommendations. *J Acad Nutr Diet*. 2017;117(10):1637-1658.

602 7. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss
603 intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic
604 review and meta-analysis of randomized clinical trials. *J Acad Nutr Diet*.
605 2015;115(9):1447-1463.

606 8. Rubino F, Nathan DM, Eckel RH, et al. Metabolic Surgery in the Treatment Algorithm
607 for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. *Diabetes
608 Care*. 2016;39(6):861-877.

609 9. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric Surgery versus Intensive Medical
610 Therapy for Diabetes - 5-Year Outcomes. *N Engl J Med*. 2017;376(7):641-651.

611 10. Conason A, Teixeira J, Hsu CH, Puma L, Knafo D, Gelieber A. Substance use following
612 bariatric weight loss surgery. *JAMA Surg*. 2013;148(2):145-150.

613 11. Blackburn GL, Hutter MM, Harvey AM, et al. Expert panel on weight loss surgery:
614 executive report update. *Obesity (Silver Spring)*. 2009;17(5):842-862.

615 12. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the
616 perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery
617 patient--2013 update: cosponsored by American Association of Clinical
618 Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric
619 Surgery. *Obesity (Silver Spring)*. 2013;21 Suppl 1:S1-27.

620 13. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced
621 obesity. *J Physiol*. 2016;594(20):5791-5815.

622 14. Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and
623 elevated blood pressure in obese subjects with type 2 diabetes mellitus. *J Obes*.
624 2013;2013:245683.

625 15. Shikora SA, Wolfe BM, Apovian CM, et al. Sustained Weight Loss with Vagal Nerve
626 Blockade but Not with Sham: 18-Month Results of the ReCharge Trial. *J Obes*.
627 2015;2015:365604.

628 16. Prologo JD, Lin E, Horesh Bergquist S, et al. Percutaneous CT-Guided Cryovagotomy in
629 Patients with Class I or Class II Obesity: A Pilot Trial. *Obesity (Silver Spring)*.
630 2019;27(8):1255-1265.

631 17. Look ARG. Effect of a long-term behavioural weight loss intervention on nephropathy in
632 overweight or obese adults with type 2 diabetes: a secondary analysis of the Look
633 AHEAD randomised clinical trial. *Lancet Diabetes Endocrinol*. 2014;2(10):801-809.

634 18. Effect of intensive blood-glucose control with metformin on complications in overweight
635 patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS)
636 Group. *Lancet*. 1998;352(9131):854-865.

637 19. Look ARG, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle
638 intervention in type 2 diabetes. *N Engl J Med*. 2013;369(2):145-154.

639 20. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2
640 diabetes with lifestyle intervention or metformin. *N Engl J Med*. 2002;346(6):393-403.

641 21. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of
642 Obesity. *N Engl J Med.* 2017;376(3):254-266.

643 22. Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of
644 lorcaserin for weight management. *N Engl J Med.* 2010;363(3):245-256.

645 23. Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-
646 term remission of type 2 diabetes and with microvascular and macrovascular
647 complications. *JAMA.* 2014;311(22):2297-2304.

648 24. Ibrahim AM, Ghaferi AA, Thumma JR, Dimick JB. Variation in Outcomes at Bariatric
649 Surgery Centers of Excellence. *JAMA Surg.* 2017;152(7):629-636.

650 25. Caron M, Hould FS, Lescelleur O, et al. Long-term nutritional impact of sleeve
651 gastrectomy. *Surg Obes Relat Dis.* 2017;13(10):1664-1673.

652 26. Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake.
653 *Am J Physiol.* 1996;271(3 Pt 2):R766-769.

654 27. Ritter RC. Gastrointestinal mechanisms of satiation for food. *Physiol Behav.*
655 2004;81(2):249-273.

656 28. Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting:
657 mechanisms and significance. *Acta Physiol (Oxf).* 2011;201(3):313-321.

658 29. Browning KN, Travagli RA. Plasticity of vagal brainstem circuits in the control of
659 gastrointestinal function. *Auton Neurosci.* 2011;161(1-2):6-13.

660 30. de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent
661 neurons results in hyperphagia and obesity. *Mol Metab.* 2014;3(6):595-607.

662 31. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced
663 obesity leads to the development of leptin resistance in vagal afferent neurons. *Am J
664 Physiol Endocrinol Metab.* 2011;301(1):E187-195.

665 32. Kentish SJ, Page AJ. Plasticity of gastro-intestinal vagal afferent endings. *Physiol Behav.*
666 2014;136:170-178.

667 33. Lagoo J, Pappas TN, Perez A. A relic or still relevant: the narrowing role for vagotomy in
668 the treatment of peptic ulcer disease. *Am J Surg.* 2014;207(1):120-126.

669 34. Macintyre IM, Millar A, Smith AN, Small WP. Highly selective vagotomy 5-15 years on.
670 *Br J Surg.* 1990;77(1):65-69.

671 35. Palanivelu C, Jani K, Rajan PS, Kumar KS, Madhankumar MV, Kavalakat A.
672 Laparoscopic management of acid peptic disease. *Surg Laparosc Endosc Percutan Tech.*
673 2006;16(5):312-316.

674 36. Wu SC, Fang CW, Chen WT, Muo CH. Acid-reducing vagotomy is associated with
675 reduced risk of subsequent ischemic heart disease in complicated peptic ulcer: An Asian
676 population study. *Medicine (Baltimore).* 2016;95(50):e5651.

677 37. Wu SC, Chen WT, Fang CW, Muo CH, Sung FC, Hsu CY. Association of vagus nerve
678 severance and decreased risk of subsequent type 2 diabetes in peptic ulcer patients: An
679 Asian population cohort study. *Medicine (Baltimore).* 2016;95(49):e5489.

680 38. Shikora SA, Toouli J, Herrera MF, et al. Intermittent Vagal Nerve Block for
681 Improvements in Obesity, Cardiovascular Risk Factors, and Glycemic Control in Patients
682 with Type 2 Diabetes Mellitus: 2-Year Results of the VBLOC DM2 Study. *Obes Surg.*
683 2016;26(5):1021-1028.

684 39. Kral JG, Gortz L, Hermansson G, Wallin GS. Gastroplasty for obesity: long-term weight
685 loss improved by vagotomy. *World J Surg.* 1993;17(1):75-78; discussion 79.

686 40. Smith DK, Sarfeh J, Howard L. Truncal vagotomy in hypothalamic obesity. *Lancet*.
687 1983;1(8337):1330-1331.

688 41. Rashti F, Gupta E, Ebrahimi S, Shope TR, Koch TR, Gostout CJ. Development of
689 minimally invasive techniques for management of medically-complicated obesity. *World*
690 *J Gastroenterol*. 2014;20(37):13424-13445.

691 42. Apovian CM, Shah SN, Wolfe BM, et al. Two-Year Outcomes of Vagal Nerve Blocking
692 (vBloc) for the Treatment of Obesity in the ReCharge Trial. *Obes Surg*. 2017;27(1):169-
693 176.

694 43. Prologo J CS, Bergquist S, Corn D, Knight J, Matta H, Singh A, Lin E. Percutaneous CT
695 guided cryovagotomy for the management of mild-moderate obesity: a pilot trial.
696 *Presented at Society of Interventional Radiology Annual Scientific Meeting, March 18,*
697 *2018 Los Angeles, CA*. 2018.

698 44. Burgess E, Hassmen P, Welvaert M, Pumpa KL. Behavioural treatment strategies
699 improve adherence to lifestyle intervention programmes in adults with obesity: a
700 systematic review and meta-analysis. *Clinical obesity*. 2017;7(2):105-114.

701 45. LeBlanc EL, Patnode CD, Webber EM, Redmond N, Rushkin M, O'Connor EA. U.S.
702 Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence
703 Reviews. *Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent*
704 *Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for*
705 *the U.S. Preventive Services Task Force*. Rockville (MD): Agency for Healthcare
706 Research and Quality (US); 2018.

707 46. Yang YJ, Kim MK, Hwang SH, Ahn Y, Shim JE, Kim DH. Relative validities of 3-day
708 food records and the food frequency questionnaire. *Nutr Res Pract*. 2010;4(2):142-148.

709 47. Parker BA, Sturm K, MacIntosh CG, Feinle C, Horowitz M, Chapman IM. Relation
710 between food intake and visual analogue scale ratings of appetite and other sensations in
711 healthy older and young subjects. *Eur J Clin Nutr*. 2004;58(2):212-218.

712 48. Craig CL, Marshall AL, Sjostrom M, et al. International physical activity questionnaire:
713 12-country reliability and validity. *Medicine and science in sports and exercise*.
714 2003;35(8):1381-1395.

715 49. Karlsson J, Persson LO, Sjostrom L, Sullivan M. Psychometric properties and factor
716 structure of the Three-Factor Eating Questionnaire (TFEQ) in obese men and women.
717 Results from the Swedish Obese Subjects (SOS) study. *Int J Obes Relat Metab Disord*.
718 2000;24(12):1715-1725.

719 50. Visual ICE Cryoablation System User Manual. Galil Medical.
720 https://www.galilmedical.com/failes/7415/3876/1372/US_ENGLISH_Visual-
721 ICE User Manual MAN8060en-09.pdf. Accessed June 11.

722 51. David Prologo J, Snyder LL, Cherullo E, Passalacqua M, Pirasteh A, Corn D. Percutaneous CT-guided cryoablation of the dorsal penile nerve for treatment of
723 symptomatic premature ejaculation. *J Vasc Interv Radiol*. 2013;24(2):214-219.

725 52. Prologo JD, Lin RC, Williams R, Corn D. Percutaneous CT-guided cryoablation for the
726 treatment of refractory pudendal neuralgia. *Skeletal Radiol*. 2015;44(5):709-714.

727 53. Prologo JD, Gilliland CA, Miller M, et al. Percutaneous Image-Guided Cryoablation for
728 the Treatment of Phantom Limb Pain in Amputees: A Pilot Study. *J Vasc Interv Radiol*.
729 2017;28(1):24-34 e24.

730 54. Dar SA, Love Z, Prologo JD, Hsu DP. CT-guided cryoablation for palliation of
731 secondary trigeminal neuralgia from head and neck malignancy. *J Neurointerv Surg.*
732 2013;5(3):258-263.

733 55. Yarmohammadi H, Nakamoto DA, Azar N, Hayek SM, Haaga JR. Percutaneous
734 computed tomography guided cryoablation of the celiac plexus as an alternative
735 treatment for intractable pain caused by pancreatic cancer. *J Cancer Res Ther.*
736 2011;7(4):481-483.

737 56. Trescot AM. Cryoanalgesia in interventional pain management. *Pain Physician.*
738 2003;6(3):345-360.

739 57. Ilfeld BM, Preciado J, Trescot AM. Novel cryoneurolysis device for the treatment of
740 sensory and motor peripheral nerves. *Expert Rev Med Devices.* 2016;13(8):713-725.

741 58. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review.
742 *Neurosurg Focus.* 2004;16(5):E1.

743 59. Caillaud M, Richard L, Vallat JM, Desmouliere A, Billet F. Peripheral nerve regeneration
744 and intraneuronal revascularization. *Neural Regen Res.* 2019;14(1):24-33.

745 60. Seddon HJ. A Classification of Nerve Injuries. *Br Med J.* 1942;2(4260):237-239.

746 61. Moorjani N, Zhao F, Tian Y, Liang C, Kaluba J, Maiwand MO. Effects of cryoanalgesia
747 on post-thoracotomy pain and on the structure of intercostal nerves: a human prospective
748 randomized trial and a histological study. *Eur J Cardiothorac Surg.* 2001;20(3):502-507.

749 62. Kilcoyne A, Frenk NE, Arellano RS. Percutaneous Cryoablation of a Metastatic Right
750 External Iliac Lymph Node with Associated Injury to the Femoral Nerve. *J Vasc Interv
751 Radiol.* 2016;27(4):611-612.

752 63. Auloge P, Cazzato RL, Rousseau C, et al. Complications of Percutaneous Bone Tumor
753 Cryoablation: A 10-year Experience. *Radiology.* 2019;291(2):521-528.

754 64. Kingery WS, Lu JD, Roffers JA, Kell DR. The resolution of neuropathic hyperalgesia
755 following motor and sensory functional recovery in sciatic axonotmetic
756 mononeuropathies. *Pain.* 1994;58(2):157-168.

757 65. Hsu M, Stevenson FF. Wallerian degeneration and recovery of motor nerves after
758 multiple focused cold therapies. *Muscle Nerve.* 2015;51(2):268-275.

759 66. Johnson C MJ, Manyapu S, Hawkins C, Singer A, Prologo JD. Abstract No 410 Natural
760 history of motor nerve cryoablation: a retrospective cohort analysis. . *JVIR.*
761 2019;30(3):s176.

762 67. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha
763 inhibits signaling from the insulin receptor. *Proc Natl Acad Sci U S A.* 1994;91(11):4854-
764 4858.

765