

1 **The International Diabetes Closed Loop (iDCL) trial:**
2 **Clinical Acceptance of the Artificial Pancreas**

3 A Pivotal Study of t:slim X2 with Control-IQ
4 Technology - Extension Study

5 **Protocol Chair**
6 Sue Brown, MD
7 University of Virginia
8 Center for Diabetes Technology

9 **Participating Institutions**

10 University of Virginia, Charlottesville, Virginia
11 Harvard University and the Joslin Diabetes Center, Massachusetts
12 Sansum Diabetes Research Institute, Santa Barbara, California
13 Mount Sinai School of Medicine, New York City
14 Mayo Clinic, Rochester, Minnesota
15 Barbara Davis Center, University of Colorado, Colorado
16 Stanford University, California

17 **Coordinating Center**

18 Jaeb Center for Health Research, Tampa, FL

19 **Version Number: v6.1**

20 **11 SEP 2019**

22

KEY ROLES

Protocol Chair/Director	
Name, degree	Sue A. Brown, MD
Institution Name	University of Virginia, Center for Diabetes Technology
JCHR Coordinating Center Director	
Name, degree	John Lum, M.S.
Institution Name	Jaeb Center for Health Research
Medical Monitor	
Name, degree	Roy Beck, M.D., Ph.D.
Institution Name	Jaeb Center for Health Research

23

24

TABLE OF CONTENTS

25	CHAPTER 1: BACKGROUND INFORMATION	15
26	1.1 Introduction	15
27	1.2 Rationale.....	18
28	1.3 Potential Risks and Benefits of the Investigational Device.....	18
29	1.3.1 Known Potential Risks	18
30	1.3.1.1 Venipuncture Risks	18
31	1.3.1.2 Fingerstick Risks.....	18
32	1.3.1.3 Subcutaneous Catheter Risks (CGM)	18
33	1.3.1.4 Risk of Hypoglycemia	18
34	1.3.1.5 Risk of Hyperglycemia	19
35	1.3.1.6 Risk of Device Reuse.....	19
36	1.3.1.7 Questionnaire	19
37	1.3.1.8 Other Risks.....	19
38	1.3.2 Known Potential Benefits.....	20
39	1.3.3 Risk Assessment.....	20
40	1.4 General Considerations.....	20
41	CHAPTER 2: STUDY ENROLLMENT AND SCREENING	22
42	2.1 Participant Recruitment and Enrollment	22
43	2.1.1 Informed Consent and Authorization Procedures	22
44	2.2 Participant Inclusion Criteria.....	22
45	2.3 Participant Exclusion Criteria.....	23
46	2.4 Screening Procedures	23
47	2.4.1 . Assessment of Successful Completion of Original RCT.....	23
48	2.4.2 . Data Collection and Testing	24
49	CHAPTER 3: STUDY PROCEDURES.....	25
50	3.1 Treatment Assignment.....	25
51	3.1.1 Randomization.....	25
52	3.2 Training for the Group Switching from SAP in the Original RCT to CLC (Control-IQ System)....	25
53	3.2.1 Control-IQ System Training Details	26
54	3.2.2 System Initiation and Home Use	27
55	3.3 Training for the Group Switching from CLC in the Original RCT to PLGS (Basal-IQ System)	27
56	3.3.1 Basal-IQ System Training Details.....	27
57	3.3.2 System Initiation and Home Use	28
58	3.4 Training for Group Continuing CLC Use After Using CLC in the Original Study	29

59	3.5 Blood Glucose and Ketone Testing	29
60	3.6 Menstrual Cycle Data Collection	29
61	3.7 Optimization of Insulin Pump Settings.....	29
62	3.8 Phone Contacts and Study Visits.....	29
63	3.8.1 1- and 2-Week Phone Contacts	30
64	3.8.2 Data Uploads	30
65	3.8.3 13-Week Visit.....	30
66	3.8.4 26-Week Visit and Subsequent Visits Every 13 Weeks.....	31
67	3.8.5 Final Visit.....	31
68	3.9 Early Termination Visit (If Applicable)	32
69	3.10 Unscheduled Visits	32
70	3.11 Participant Access to Study Device at Study Closure	32
71	CHAPTER 4: STUDY DEVICES.....	33
72	4.1 Description of the Investigational Device	33
73	4.1.1 Insulin Pump.....	33
74	4.1.2 Continuous Glucose Monitoring	33
75	4.1.3 Blood Glucose Meter and Strips.....	33
76	4.1.4 Ketone Meter and Strips.....	33
77	4.1.5 Study Device Accountability Procedures.....	33
78	4.1.6 Blood Glucose Meter Testing.....	33
79	4.1.7 Blood Ketone Testing.....	33
80	4.2 Safety Measures.....	34
81	4.2.1 CGM Calibration	34
82	4.2.2 Control-IQ System Failure	34
83	4.2.3 Hypoglycemia Threshold Alert and Safety Protocol.....	34
84	4.2.4 Hyperglycemia Threshold Alert and Safety Protocol.....	34
85	CHAPTER 5: TESTING PROCEDURES AND QUESTIONNAIRES	36
86	5.1 Laboratory Testing	36
87	5.2 Questionnaires	36
88	CHAPTER 6: ADVERSE EVENTS, DEVICE ISSUES, AND STOPPING RULES	40
89	6.1 Adverse Events	40
90	6.1.1 Definitions	40
91	6.1.2 Reportable Adverse Events	41
92	6.1.2.1 Hypoglycemic Events	41
93	6.1.2.2 Hyperglycemic/Ketotic Events	41

94	6.1.3 Relationship of Adverse Event to Study Device	42
95	6.1.4 Intensity of Adverse Events.....	42
96	6.1.5 Coding of Adverse Events.....	43
97	6.1.6 Outcome of Adverse Events.....	43
98	6.2 Reportable Device Issues.....	44
99	6.3 Pregnancy Reporting	44
100	6.4 Timing of Event Reporting.....	44
101	6.5 Stopping Criteria	45
102	6.5.1 Participant Discontinuation of Study Device	45
103	6.5.2 Criteria for Suspending or Stopping Overall Study.....	45
104	6.6 Independent Safety Oversight	45
105	6.7 Risks	46
106	CHAPTER 7: MISCELLANEOUS CONSIDERATIONS.....	47
107	7.1 Drugs Used as Part of the Protocol.....	47
108	7.2 Prohibited Medications, Treatments, and Procedures	47
109	7.3 Participant Compensation.....	47
110	7.4 Participant Withdrawal.....	47
111	7.5 Confidentiality.....	47
112	CHAPTER 8: STATISTICAL CONSIDERATION	48
113	8.1 Objectives	48
114	8.2 Sample Size	48
115	8.3 Outcome Measures	48
116	8.4 Objective 1 Analyses.....	51
117	8.4.1 Principles of Analyses	51
118	8.4.2 Analytic Methods	51
119	8.4.3 Subgroup Analyses.....	52
120	8.5 Safety Analyses	52
121	8.6 Device Issues	53
122	8.7 Protocol Adherence	53
123	8.8 Other Tabulations	54
124	8.9 Planned Interim Analyses	54
125	8.10 Objective 2 Analyses.....	54
126	8.11 Objective 3 Analyses	55
127	CHAPTER 9: DATA COLLECTION AND MONITORING	56
128	9.1 Case Report Forms and Device Data.....	56

JAEB CENTER FOR HEALTH RESEARCH

129	9.2 Study Records Retention	56
130	9.3 Quality Assurance and Monitoring.....	56
131	9.4 Protocol Deviations	57
132	CHAPTER 10: ETHICS/PROTECTION OF HUMAN PARTICIPANTS.....	58
133	10.1 Ethical Standard.....	58
134	10.2 Institutional Review Boards	58
135	10.3 Informed Consent Process	58
136	10.3.1 Consent Procedures and Documentation.....	58
137	10.3.2 Participant and Data Confidentiality	58
138	CHAPTER 11: REFERENCES.....	60
139		
140		

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
JDRF	Juvenile Diabetes Research Foundation
PLGS	Predictive Low Glucose Suspend
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
SAP	Sensor-Augmented Pump
SD	Standard Deviation
TDD	Total Daily Dose
UI	User Interface
UVA	University of Virginia

144

Signature Page

145 The International Diabetes Closed Loop (iDCL) trial: Clinical
146 Acceptance of the Artificial Pancreas

147 A Pivotal Study of t:slim X2 with Control-IQ
148 Technology - Extension Study

149 **Protocol Identifying Number: DCLP3**

150 **IND/IDE Sponsor: University of Virginia**

151 **Version Number: v.6.1**

152 **11 SEP 2019**

153

154

155

156

JCHR Principal Investigator	
Name, degree	John W. Lum, M.S.
Signature / Date	
Protocol Chair/Director	
Name, degree	Sue A. Brown, MD
Signature / Date	

157

158 **SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE**

159 Protocol Title: **The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of**
160 **the Artificial Pancreas - A Pivotal Study of t:slim X2 with Control-IQ Technology –**
161 **Extension Study**

162 Protocol Version/Date: v6.1/11 SEP 2019

163 I have read the protocol specified above. In my formal capacity as a Site Principal Investigator,
164 my duties include ensuring the safety of the study participants enrolled under my supervision and
165 providing the Jaeb Center for Health Research, which serves as the Coordinating Center for the
166 protocol, with complete and timely information, as outlined in the protocol. It is understood that
167 all information pertaining to the study will be held strictly confidential and that this
168 confidentiality requirement applies to all study staff at this site.

169 This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as
170 required by the following: United States (US) Code of Federal Regulations (CFR) applicable to
171 clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21
172 CFR Part 812).

173 As the Principal Investigator, I will assure that no deviation from, or changes to the protocol
174 will take place without prior agreement from the sponsor and documented approval from the
175 Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary
176 to eliminate an immediate hazard(s) to the trial participants.

177 All key personnel (all individuals responsible for the design and conduct of this trial) have
178 completed Human Participants Protection Training and Good Clinical Practice Training.
179 Further, I agree to ensure that all staff members involved in the conduct of this study are
180 informed about their obligations in meeting the above commitments.

181 Investigator's Signature _____ Date: _____ / _____ / _____
182 _____ dd mmm yyyy

183 Investigator's Name: _____

184 Site Name/Number: _____

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	The International Diabetes Closed Loop (iDCL) Trial: Pivotal Trial of t:slim X2 with Control-IQ Technology - Extension Study
Précis	An extension study for participants who completed a prior 6-month randomized controlled trial (RCT) of a closed loop system (Control-IQ) vs. sensor-augmented pump (SAP).
Investigational Device	t:slim X2 with Control-IQ and Dexcom G6 system
Objectives	<p>The objectives of the study are</p> <ol style="list-style-type: none"> (1) Among individuals who used CLC in the original RCT, to compare continued use of CLC (t:slim X2 with Control-IQ Technology) for 3 months versus switching to a Predictive Low-Glucose Suspend (PLGS) system (t:slim X2 with Basal-IQ Technology) for 3 months. (2) Among individuals who used SAP in the original RCT, to obtain additional safety data by initiating use of the Control-IQ system for 3 months. (3) For all participants, use of the CLC system between the end of 3-month period and the point that the system becomes commercially available in order to gather additional safety data
Study Design	<p><u>Objective 1</u>: RCT with 1:1 randomization to intervention with CLC vs. PLGS for 3 months.</p> <p><u>Objective 2</u>: Observational study of initiation and use of CLC for 3 months.</p> <p><u>Objective 3</u>: Observational study of initiation and use of CLC for 3 months following use of PLGS for 3 months; use of CLC by all participants between end of 3-month period and the point that the system becomes commercially available in order to gather additional safety data.</p>
Number of Sites	Seven US clinical sites
Primary Endpoint	<p><u>Objective 1</u>: The primary efficacy outcome for the RCT is time in target range 70-180 mg/dL measured by CGM in CLC group vs. PLGS group over 3 months. Safety outcomes also will be assessed</p> <p><u>Objective 2</u>: The primary outcome is safety outcomes. Efficacy also will be assessed as a pre-post within participant analysis</p> <p><u>Objective 3</u>: The primary outcome is safety outcomes. Efficacy also will be assessed as a pre-post within participant analysis</p>
Population	<p>Key Inclusion Criteria</p> <ul style="list-style-type: none"> • Successfully completed the original 6-month RCT within the prior 14 days <p>Key Exclusion Criteria</p> <ul style="list-style-type: none"> • Use of any non-insulin glucose-lowering agents except metformin
Sample Size	Sample size is based on the number in the original RCT who successfully complete six months and sign consent to participate in this study (up to approximately 168 total).
Treatment Groups	<p><u>Objective 1</u></p> <ul style="list-style-type: none"> • Group 1: t:slim X2 with Control-IQ Technology and Study CGM • Group 2: t:slim X2 with Basal-IQ Technology and Study CGM
Participant Duration	3 months

PARTICIPANT AREA	DESCRIPTION
Protocol Overview/Synopsis	<p>Eligible participants in the original RCT who agree to be part of the Extension Study will sign the informed consent form.</p> <ul style="list-style-type: none">• Participants assigned to the original RCT SAP group will initiate use of the CLC system for 3 months.• Participants assigned to the original RCT CLC group will be randomly assigned 1:1 to either continue CLC or switch to PLGS for 3 months.• After 3 months, all participants will be given the opportunity to use the CLC system until the point that the system becomes commercially available

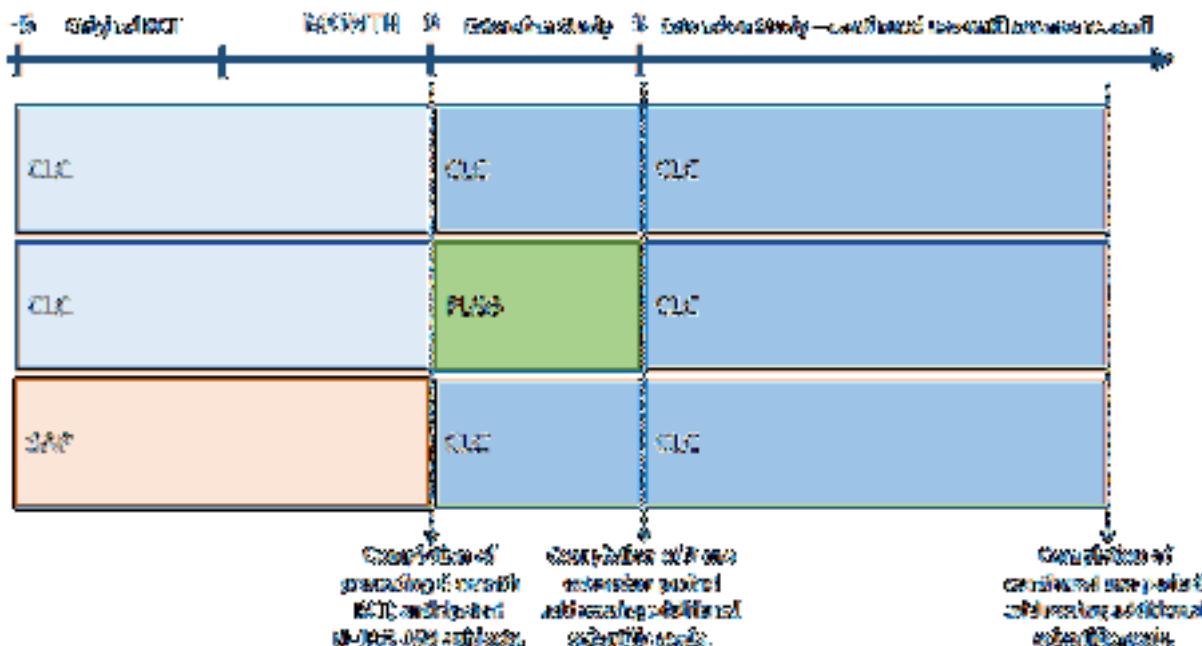
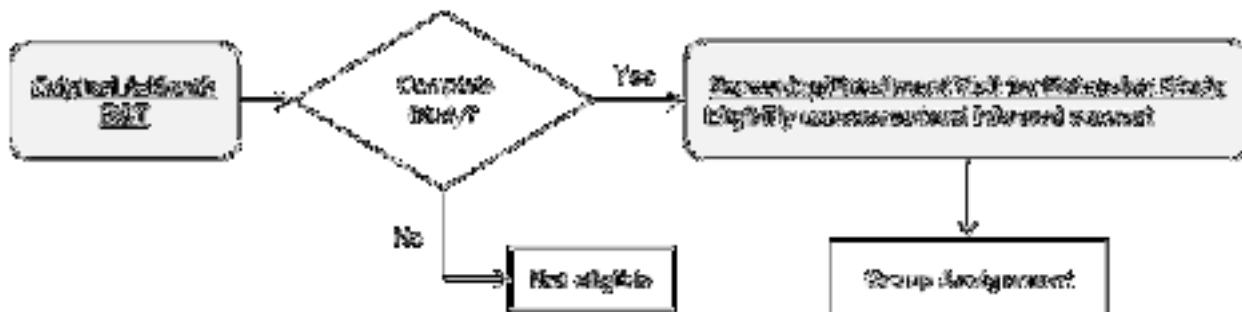
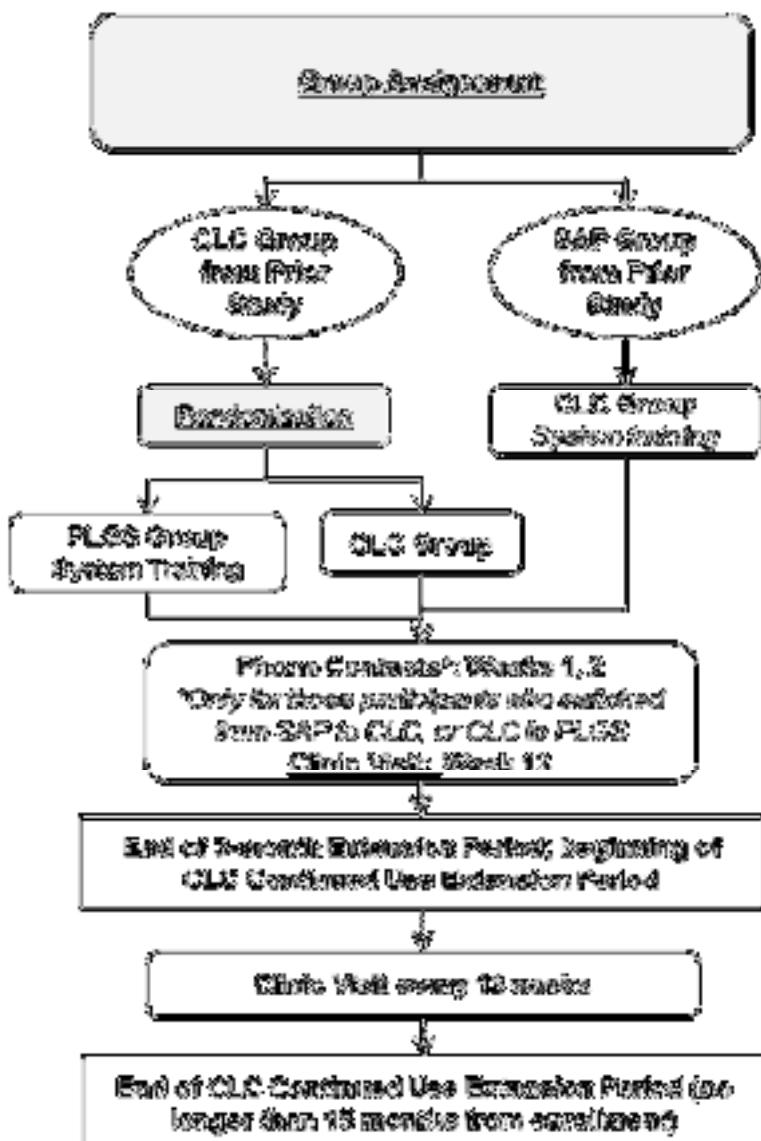



Figure 1: Study Design - Participants entering Extension Study after having completed preceding 6-month RCT. Participants in the original RCT SAP Group will use CLC in the first 3 months of the Extension Study while participants in the original RCT CLC Group will be randomly assigned 1:1 to either continue CLC or switch to PLGS. After 3 months, all participants will be given the opportunity to use CLC until the point that the CLC system becomes commercially available.

193

SCHEMATICS OF STUDY DESIGN



194

Figure 2: Schematic of Eligibility Assessment/Enrollment

195

196

197
198
Figure 3. Schematic of Study Design

Table 1. Schedule of Study Visits and Procedures

	0 Weeks	1w	2w	13w	26w, then every 13 weeks until end	Final Visit
Visit (V) or Phone (P)	V	P¹	P¹	V	V	V
Comment	Screen/Enroll and Rand/Assign					
Eligibility Assessment	X					
HbA1c (DCA Vantage or similar point of care device, or local lab)	X²			X	X	X
HbA1c (Central lab)	X²			X		
Pregnancy test (females of child-bearing potential)	X			X	X	
Device Data download(s)		X	X	X	X	X
Review diabetes management and AEs		X	X	X	X	X
Questionnaires as defined in section 5.2	X²			X	X³	X
Follow-up Phone Call						P

200 ¹ Only performed for those participants who switched from SAP in the original 6-month RCT to CLC in the Extension Study, or from CLC in the
 201 original RCT to PLGS in the Extension Study

202 ² Will use results obtained at Final Visit of preceding 6-month RCT

203 ³ 26-Week visit only

204

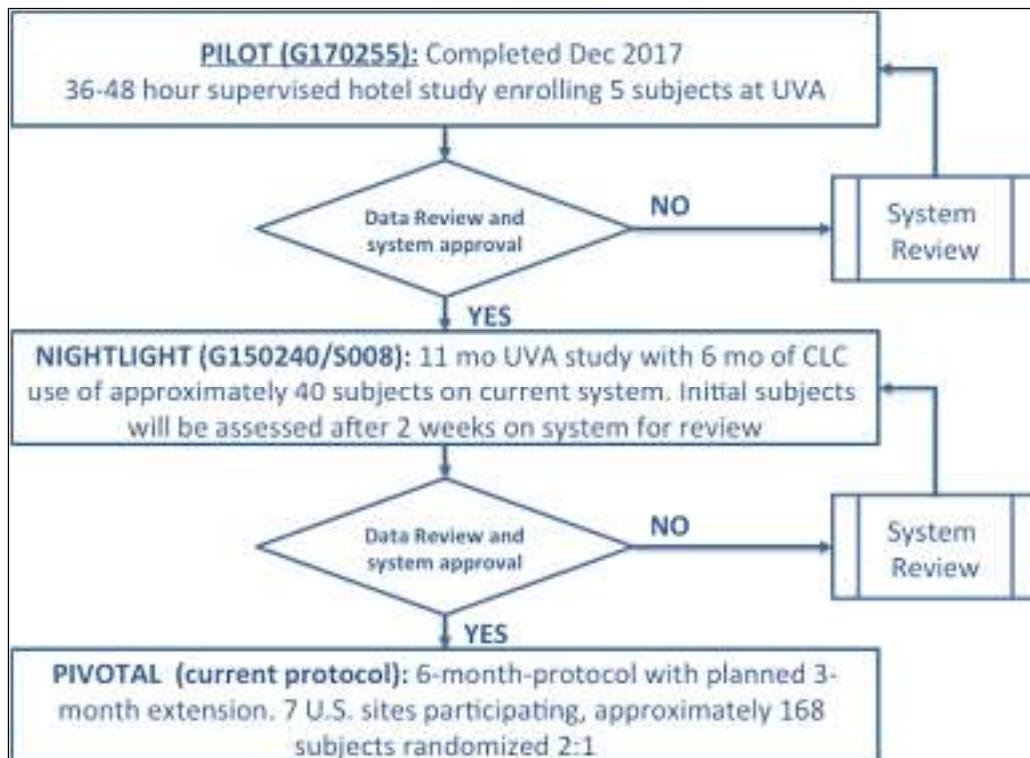
Chapter 1: Background Information

205

1.1 Introduction

206

The Tandem X2 insulin pump with Control-IQ Technology is a third-generation closed-loop control (CLC) system retaining the same control algorithm that was initially tested by University of Virginia's (UVA) diabetes assistant (DiAs) system and then implemented in the inControl system. DiAs is described in 13 IDEs (see IDEs 1-12 and 14 in the list below) and inControl is described in IDEs G160097, G160181, G150240, G140169/S010. For complete algorithmic and clinical background, we refer to these IDEs and to a number of scientific publications that describe glycemic control outcomes and clinical impressions from the use of these systems (see list of 25 peer-reviewed papers and scientific presentations under Bibliography). Overall, this control algorithm has been implemented in two mobile platforms (DiAs and inControl) and has been tested in 30 clinical trials by 450 adults and children with type 1 diabetes for over 280,000 hours of use to date in the U.S. and overseas.


217

As described in the Background, this project is a result from a sequence of clinical trials that have tested extensively the control system and in several centers in the U.S. and overseas. The following 18 IDEs reflect this progress:

220

1. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate monitoring as an exercise marker, approved 10/08/2011;
2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
5. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in adolescents; 6/19/2013;
6. IDE# G130142: Closed loop control in adolescents using heart rate as exercise indicator; 7/16/13;
7. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of type 1 diabetes; 7/19/2013;
8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor augmented pump therapy overnight in type 1 diabetes; 5/14/2014;
10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night in-home use; 6/6/2014;
11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes; 10/3/2014.
12. IDE #G150221: Reducing risks and improving glucose control during extended exercise in youth with T1DM: The AP Ski Camp; 11/09/2015;
13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24 hr closed loop control; 11/12/2015;

242 14. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform;
 243 03/29/2016;
 244 15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes
 245 Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.
 246 16. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The
 247 International Diabetes Closed Loop (iDCL) Trial; 09/21/16
 248 17. IDE#G170255: Protocol 3 for “Pilot Trial of t:slim X2 with Control-IQ
 249 Technology”; 11/16/17 and IDE#G170255/S001 Protocol 3 for “Training Study of t:slim X2
 250 with Control-IQ Technology”; 11/16/17
 251 18. IDE#G170267: “Real-Time Monitoring and Glucose Control During Winter-Sport Exercise
 252 in Youth with Type 1 Diabetes: The AP Ski Camp Continued”; 11/21/17
 253 We further reference pre-submission Q170885 and our discussion with FDA on July 18, 2017
 254 regarding the structure of studies intended to test inControl implemented on t:slim X2. Based on
 255 the input provided by the Agency, we initially defined a series of three studies leading to a future
 256 pivotal trial of this system (36-48 hr Pilot Study, 2 week at home Training Study, followed by
 257 the Pivotal Trial). Since the time of the initial discussion, we have concluded a successful Pilot
 258 of 5 Adult (December 2017) and a Ski Camp with 12 Teenagers (January 2018) on the System.
 259 We have also received approval for the use of this system in a long-term home study (Project
 260 Nightlight/G#150240/S008). The Project Nightlight Study will now replace the previous
 261 Training Study as noted in Figure 4.

262
 263
 264

Figure 4: Sequence of planned studies leading to this pivotal trial of the Tandem X2 insulin pump with Control-IQ Technology

265 A successful pilot of 5 Adults (mean age 52.8 yrs; 3F/2M, mean A1c 6.5%) with Type 1
 266 Diabetes was completed in December 2017. In this pilot study, the system was challenged with
 267 a variety of scenarios including: Pump disconnection, CGM sensor removal without stopping
 268 session, CGM sensor change, Basal Rate change, Cartridge Change, Extended Bolus, Calibration
 269 at non-ideal conditions, Stopping Control-IQ, Reset Sleep Time, Restaurant Meals and Exercise
 270 (treadmill/walk). The study demonstrated excellent connectivity with 98% time in closed-loop
 271 control and 94% time CGM is available during 196 hours of use.

272 **Table 2. Pilot Study results based on time in closed-loop**

METRIC (COMPUTED DURING CLOSED-LOOP USE)	OVERALL	DAYTIME	NIGHTTIME
Mean glucose (mg/dL)	129	135	121
Coefficient of variation (median)	27%	27%	21%
% below 54 mg/dL (median)	0.7%	0.0%	0.0%
% below 60 mg/dL (median)	1.1%	2.0%	0.0%
% below 70 mg/dL (median)	2.9%	4.1%	1.0%
Percent in range 70-180 mg/dL (mean)	87%	82%	94%
% above 180 mg/dL (median)	5%	8%	6%
% above 250 mg/dL (median)	0%	0%	0%
% above 300 mg/dL (median)	0%	0%	0%

273 **Closed-Loop Control System**

274 The Closed-Loop Control System contained in t-slim X2 with Control-IQ Technology is
 275 described in Master File MAF-2032/A008. Control-IQ Technology is derived from inControl
 276 previously described in IDE# G160097, G160181, G150240 and G140169/S010. The CLC is
 277 an “artificial pancreas” (AP) application that uses advanced closed loop control algorithms to
 278 automatically manage blood glucose levels for people with Type 1 Diabetes. The system
 279 modulates insulin to keep blood glucose in a targeted range. The system components include
 280 the t:slim X2 with Control-IQ Technology and the Dexcom CGM G6.

281
 282 **Figure 5. t:slim X2 with Control-IQ and Dexcom G6 system**

283 **1.2 Rationale**

284 The main objective of the study is to compare continued use of CLC (t:slim X2 with Control-IQ
285 Technology) for 3 months versus switching to a Predictive Low-Glucose Suspend (PLGS)
286 system (t:slim X2 with Basal-IQ Technology) for 3 months following 6 months of Control-IQ
287 use in a preceding study, in a parallel group RCT design.

288 Another objective is to obtain additional safety data from the Control-IQ system in a large
289 population.

290 **1.3 Potential Risks and Benefits of the Investigational Device**

291 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data
292 are handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are
293 always a risk in participants with type 1 diabetes and participants will be monitored for this.

294 **1.3.1 Known Potential Risks**295 **1.3.1.1 Venipuncture Risks**

296 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws
297 can cause some common reactions like pain, bruising, or redness at the sampling site. Less
298 common reactions include bleeding from the sampling site, formation of a small blood clot or
299 swelling of the vein and surrounding tissues, and fainting.

300 **1.3.1.2 Fingerstick Risks**

301 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
302 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital
303 laboratory tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount
304 of bleeding under the skin will produce a bruise. A small scar may persist for several weeks.
305 The risk of local infection is less than 1 in 1000. This should not be a significant contributor to
306 risks in this study as fingersticks are part of the usual care for people with diabetes.

307 **1.3.1.3 Subcutaneous Catheter Risks (CGM)**

308 Participants using the CGM will be at low risk for developing a local skin infection at the site of
309 the sensor needle placement. If a catheter is left under the skin for more than 24 hours it is
310 possible to get an infection where it goes into the skin, with swelling, redness and pain. There
311 may be bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10
312 risk).

313 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
314 leave a small portion of the sensor under the skin that may cause redness, swelling or pain at the
315 insertion site. The participant should be further instructed to notify the study coordinator
316 immediately if this occurs.

317 **1.3.1.4 Risk of Hypoglycemia**

318 As with any person having type 1 diabetes and using insulin, there is always a risk of having a
319 low blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and

320 possibly less than it would be as part of daily living. Symptoms of hypoglycemia can include
321 sweating, jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or
322 seizures (convulsions) and that for a few days the participant may not be as aware of symptoms
323 of hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values
324 could lead to inappropriate insulin delivery.

325 **1.3.1.5 Risk of Hyperglycemia**

326 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
327 extended period or if the pump or infusion set is not working properly. A CGM functioning
328 poorly and significantly under-reading glucose values could lead to inappropriate suspension of
329 insulin delivery.

330 **1.3.1.6 Risk of Device Reuse**

331 The study CGM system is labeled for single use only. The sensor (the component of the system
332 that enters the skin) will be single use only. The transmitter and receiver may be reused during
333 the study after cleaning the device using a hospital-approved cleaning procedure. The transmitter
334 is attached to the sensor but does not enter the skin and the receiver is a hand held device.
335 Participants will be informed that FDA or relevant national authorities have approved these
336 devices for single use and that by using them among multiple patients, bloodborne pathogens
337 (i.e. Hepatitis B) may be spread through the use of multiple users.

338 The study insulin pumps are labeled for single-patient use. During the study, this device may be
339 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
340 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)
341 Participants will be informed that FDA or relevant national authorities typically approve the
342 insulin pump device for single use and that by using them among multiple patients, bloodborne
343 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

344 The study blood glucose meter and blood ketone meter are labeled for single-patient use.
345 During the study, only one person can use each device as there are rare risks that bloodborne
346 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

347 **1.3.1.7 Questionnaire**

348 As part of the study, participants will complete questionnaires which include questions about
349 their private attitudes, feelings and behavior related to the investigational equipment as well as
350 managing diabetes. It is possible that some people may find these questionnaires to be mildly
351 upsetting. Similar questionnaires have been used in previous research and these types of
352 reactions have been uncommon.

353 **1.3.1.8 Other Risks**

354 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
355 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
356 If these reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm,
357 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
358 medication may be required.

359 Whenever the skin is broken there is the possibility of an infection. The CGM and pump
360 infusion sites are inserted under the skin. It is possible that any part that is inserted under the
361 skin may cause an infection. These occur very infrequently, but, if an infection was to occur,
362 oral and/or topical antibiotics can be used. The risk of skin problems could be greater if you use
363 a sensor for longer than it is supposed to be used. Therefore, participants will be carefully
364 instructed about proper use of the sensor.

365 Data downloaded from the CGM, pump, and the home glucose and ketone meter will be
366 collected for the study as measures of diabetes self-management behaviors. Some people
367 may be uncomfortable with the researchers' having such detailed information about their daily
368 diabetes habits.

369 **1.3.2 Known Potential Benefits**

370 One purpose of this research is to reduce the frequency of hypoglycemia and severe
371 hypoglycemic events. Hypoglycemia is the number one fear of many individuals and families
372 with someone who has type 1 diabetes and this fear often prevents optimal glycemic control.

373 It is expected that this protocol will yield increased knowledge about using an automated
374 closed-loop to control the glucose level and is intended to develop data to support a future
375 PMA-application. The individual participant may not benefit from study participation.

376 **1.3.3 Risk Assessment**

377 Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia
378 and hyperglycemia frequently as a consequence of the disease and its management, (2) the study
379 intervention involves periodic automated insulin dosing that may increase the likelihood of
380 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
381 likelihood of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies
382 using the investigational device system in the home setting, that limit the likelihood of excessive
383 insulin dosing or prolonged withdrawal of insulin, and (4) rapid reversal of hypoglycemia and
384 hyperglycemia can be achieved, it is the assessment of the investigators that this protocol falls
385 under DHHS 46.405 which is a minor increase over minimal risk. In addition, it is the belief of
386 the investigators that this study also presents prospect of direct benefit to the participants and
387 general benefit to others with diabetes.

388 **1.4 General Considerations**

389 The study is being conducted in compliance with the policies described in the study policies
390 document, with the ethical principles that have their origin in the Declaration of Helsinki, with
391 the protocol described herein, and with the standards of Good Clinical Practice (GCP).

392 Whenever possible, data will be directly collected in electronic case report forms, which will be
393 considered the source data.

394 There is no restriction on the number of participants to be enrolled by each site toward the
395 overall recruitment goal.

396 The protocol is considered a significant risk device study, due to the fact that the closed loop
397 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S.
398 Food and Drug Administration (FDA) is required to conduct the study.

Chapter 2: Study Enrollment and Screening

2.1 Participant Recruitment and Enrollment

401 Enrollment will include only those individuals who successfully completed the original 6-month
402 RCT comparing the CLC system to SAP, with a maximum of 168 participants.

403 Study participants will participate at the same 7 clinical centers in the United States who
404 participated in the preceding study without regard to gender, race, or ethnicity. Recruitment per
405 site will be based on the number at the site that successfully completed the original RCT.

2.1.1 Informed Consent and Authorization Procedures

407 Before completing any procedures or collecting any data that are specific for the study, written
408 informed consent will be obtained.

409 For potential study participants ≥ 18 years old, the study protocol will be discussed with the
410 potential study participant by study staff. The potential study participant will be given the
411 Informed Consent Form to read. Potential study participants will be encouraged to discuss the
412 study with family members and their personal physicians(s) before deciding whether to
413 participate in the study.

414 For potential participants under 18 years of age, a parent/legal guardian (referred to subsequently
415 as "parent") will be provided with the Informed Consent Form to read and will be given the
416 opportunity to ask questions. Potential participants meeting the IRB's minimum age of assent
417 will be given a Child Assent Form to read and discuss with his/her parents and study personnel.
418 If the parent and child agree to participate, the Informed Consent Form and Child Assent Form
419 will be signed. A copy of the consent form will be provided to the participant and his/her parent
420 and another copy will be added to the participant's study record.

421 As part of the informed consent process, each participant will be asked to sign an authorization
422 for release of personal information. The investigator, or his or her designee, will review the
423 study-specific information that will be collected and to whom that information will be disclosed.
424 After speaking with the participant, questions will be answered about the details regarding
425 authorization.

426 A participant is considered enrolled when the informed consent form has been signed.

2.2 Participant Inclusion Criteria

428 Individuals must meet all of the following inclusion criteria in order to be eligible to participate
429 in the study.

- 430 1. Successful completion of the original 6-month RCT within the prior 14 days
431 2. For females, not currently known to be pregnant

432 *If female and sexually active, must agree to use a form of contraception to prevent pregnancy*
433 *while a participant in the study. A negative urine pregnancy test will be required for all*
434 *females of child-bearing potential. Participants who become pregnant will be discontinued*

435 from the study. Also, participants who during the study develop and express the intention to
436 become pregnant within the timespan of the study will be discontinued.

- 437 3. For participants <18 years old, living with one or more parent/legal guardian knowledgeable
438 about emergency procedures for severe hypoglycemia and able to contact the participant in
439 case of an emergency.
- 440 4. Willingness to not use a personal CGM for the duration of the study
- 441 5. Investigator has confidence that the participant can successfully operate all study devices and
442 is capable of adhering to the protocol
- 443 6. Willingness to use only lispro (Humalog) or aspart (Novolog), and to use no other insulin
444 during the study.
- 445 7. Willingness not to start any new non-insulin glucose-lowering agent during the course of the
446 trial (see section 2.3)

447 **2.3 Participant Exclusion Criteria**

448 Individuals meeting any of the following exclusion criteria at baseline will be excluded from
449 study participation.

- 450 1. Concurrent use of any non-insulin glucose-lowering agent other than metformin (including
451 GLP-1 agonists, Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, sulfonylureas).
- 452 2. Hemophilia or any other bleeding disorder
- 453 3. A condition, which in the opinion of the investigator or designee, would put the participant or
454 study at risk
- 455 4. Participation in another pharmaceutical or device trial at the time of enrollment or during the
456 study
- 457 5. Employed by, or having immediate family members employed by Tandem Diabetes Care,
458 Inc., Dexcom, Inc., or TypeZero Technologies, LLC, or having a direct supervisor at place of
459 employment who is also directly involved in conducting the clinical trial (as a study
460 investigator, coordinator, etc.); or having a first-degree relative who is directly involved in
461 conducting the clinical trial

462 **2.4 Screening Procedures**

463 **2.4.1 . Assessment of Successful Completion of Original RCT**

464 A determination will be made as to whether the participant meets criteria for having successfully
465 completed the original RCT. Successful completion is defined as having participated in the
466 study's 26-week visit and having completed the following associated study visit procedures
467 within the prior 14 days:

- 468 • Local HbA1c determination and collection of blood sample for central laboratory HbA1c
469 determination
- 470 • Completion of study questionnaires

- 471 **2.4.2 . Data Collection and Testing**
- 472 For participants who satisfy the completion criteria above, the remaining inclusion and exclusion
473 criteria will be reviewed and documented to verify the participant's eligibility for the Extension
474 Study. A urine pregnancy test will be performed for all women of child-bearing potential.
- 475 The following information obtained during the original RCT will be captured/reviewed and
476 updated if necessary:
- 477 • Medical history
- 478 • Concomitant medications
- 479 Data obtained during the 26-week visit of the original RCT will be considered baseline data for
480 the Extension study, including:
- 481 • HbA1c as described above
- 482 • Weight (and height if <21 years of age)
- 483 Screening procedures may last approximately 15 minutes.

484

Chapter 3: Study Procedures

485

3.1 Treatment Assignment

486

Treatment assignment will occur on the same day as the Screening visit.

487

- Participants who were assigned to the SAP group in the original RCT will be assigned to use CLC during the extension study
- Participants who were assigned to the CLC group in the original RCT will receive a randomized treatment assignment as detailed below

491

3.1.1 Randomization

492

Participants who were assigned to the CLC group in the original RCT will be randomly assigned to one of two treatment groups in a 1:1 ratio:

494

1. CLC Group

495

2. PLGS Group

496

The participant's randomization group assignment is determined by completing a Randomization case report form on the study website. The randomization list will use a permuted block design, stratified by clinical center.

499

The participant will be included in the data analysis regardless of whether or not the protocol for the assigned randomization group is followed. Thus, the investigator must not randomize a participant until he/she is convinced that the participant/parent will accept assignment to either of the two groups.

503

It was decided that it was more important to stratify randomization by site than by factors such as baseline time in range, HbA1c, or device use since these factors will be easier to adjust for in analysis than will site in view of the relatively small number at each site.

506

3.2 Training for the Group Switching from SAP in the Original RCT to CLC (Control-IQ System)

508

Participants who were assigned to the SAP group in the original RCT will use CLC during the extension study. These participants will receive study system training on the Control-IQ system. This training sessions can occur on the same day or extend to up to one additional day if needed within 1-7 days from assignment; participants will not take the study system home until training has been completed.

513

For participants <18 years old, the parent/guardian will be trained on severe hypoglycemia emergency procedures including removal of the study pump and administration of glucagon. The parent/guardian will be asked to attend any/all of the other training procedures.

516 **3.2.1 Control-IQ System Training Details**

517 Participants will receive system training by a qualified trainer. The study system includes the
518 Tandem t:slim X2 with Control-IQ technology and associated Dexcom G6 CGM.

519 CGM training may include any of the following refresher topics as needed:

- 520 • The participant will be instructed and supervised on how to insert the sensor and transmitter.
521 • The participant will learn how to calibrate the CGM unit
522 • The participant will learn how to access the CGM trace via the t:slim X2 with Control-IQ
523 user interface
524 • Participants will be asked to perform fingerstick blood glucose measurements in accordance
525 with the labeling of the study CGM device

526 Pump training may include any of the following refresher topics as needed:

- 527 • The participant will be fully instructed on the study insulin pump. A qualified system trainer
528 will conduct the training and in particular discuss differences from their home pump in
529 important aspects such as calculation of insulin on board and correction boluses. Additional
530 topics not limited to but may include: infusion site initiation, cartridge/priming procedures,
531 setting up the pump, charging the pump, navigation through menus, bolus procedures
532 including stopping a bolus, etc.
533 • The study team will assist the participant in study pump infusion site initiation and will start
534 the participant on the study pump. The study pump will be programmed with the
535 participant's usual basal rates and pump parameters. The participant's current pump will be
536 removed.
537 • The participant will be supervised with the study pump during at least one meal or snack
538 bolus to ensure participant understanding of the pump features.
539 • The participant will be encouraged to review the literature provided with the pump and
540 infusion sets after the training is completed.

541 Pump training specific to the Control-IQ Technology functions will include:

- 542 • How to turn on and off Control-IQ technology.
543 • How to understand when Control-IQ is increasing or decreasing basal rates.
544 • How to administer a meal or correction bolus on the t:slim X2 with Control-IQ system
545 • What to do when exercising while using the system
546 • How to enable the sleep function and set the sleep schedule
547 • The participant will be assessed for understanding of the system interface and how to react to
548 safety/alert messages.
549 • The participant will be given a User Guide as a reference.

550 Upon completion of Control-IQ training, study staff will document, using a checklist, that the
551 participant is familiar with the function/feature and/or capable of performing each of the tasks
552 specified.

553 **3.2.2 System Initiation and Home Use**

554 After training on the study system has been completed, participants will proceed with home use
555 (meaning free-living use at work, home, etc.) of the Control-IQ system.

556 Participants will be instructed to use the system in closed-loop mode except 1) when no
557 calibrated CGM sensor is available or 2) if insulin is delivered by any means other than the
558 study pump (e.g. injection of subcutaneous insulin via syringe in the event of infusion site
559 failure). If insulin is delivered by any means other than the study pump, participant will be
560 instructed to turn off Control-IQ for approximately four hours.

561 Participants will also be instructed to contact study staff during periods of illness with an
562 elevated temperature >101.5 degrees Fahrenheit (38.6 degrees Celsius), periods of significant
563 illness, or during periods of use of medications such as epinephrine for the emergency treatment
564 of a severe allergic reaction or asthma attack in addition to use of oral or injectable
565 glucocorticoids to determine if Control-IQ use should be temporarily discontinued.

566 Participants may use available manufacturer-provided software and features of the study CGM
567 related to mobile data access or remote monitoring, but will be instructed not to use any third-
568 party components for this purpose.

569 **3.3 Training for the Group Switching from CLC in the Original RCT to**
570 **PLGS (Basal-IQ System)**

571 The participants who used CLC in the original RCT and who are assigned to the PLGS (Basal-
572 IQ) group during the extension study will receive study system training on the Basal-IQ system.
573 This training sessions can occur on the same day or extend to up to one additional day if needed
574 within 1-7 days from assignment; participants will not take the study system home until training
575 has been completed.

576 For participants <18 years old, the parent/guardian will be trained on severe hypoglycemia
577 emergency procedures including removal of the study pump and administration of glucagon.
578 The parent/guardian will be asked to attend any/all of the other training procedures.

579 **3.3.1 Basal-IQ System Training Details**

580 Participants will receive system training by a qualified trainer. The study system includes the
581 Tandem t:slim X2 with Basal-IQ technology and associated Dexcom G6 CGM.

582 CGM training may include any of the following refresher topics as needed:

- 583 • The participant will be instructed and supervised on how to insert the sensor and transmitter.
584 • The participant will learn how to calibrate the CGM unit

585 • The participant will learn how to access the CGM trace via the t:slim X2 with Basal-IQ user
586 interface

587 • Participants will be asked to perform fingerstick blood glucose measurements in accordance
588 with the labeling of the study CGM device

589 Pump training may include any of the following refresher topics as needed:

590 • The participant will be fully instructed on the study insulin pump. A qualified system trainer
591 will conduct the training and in particular discuss differences from their home pump in
592 important aspects such as calculation of insulin on board and correction boluses. Additional
593 topics not limited to but may include: infusion site initiation, cartridge/priming procedures,
594 setting up the pump, charging the pump, navigation through menus, bolus procedures
595 including stopping a bolus, etc.

596 • The study team will assist the participant in study pump infusion site initiation and will start
597 the participant on the study pump. The study pump will be programmed with the
598 participant's usual basal rates and pump parameters. The participant's current pump will be
599 removed.

600 • The participant will be supervised with the study pump during at least one meal or snack
601 bolus to ensure participant understanding of the pump features.

602 The participant will be encouraged to review the literature provided with the pump and infusion
603 sets after the training is completed.

604 Pump training specific to the Basal-IQ Technology functions will include:

605 • How to turn on and off Basal-IQ technology.
606 • How to understand when Basal-IQ has suspended basal insulin delivery.
607 • What to do when exercising while using the system
608 • The participant will be assessed for understanding of the system interface and how to react to
609 safety/alert messages.
610 • The participant will be given a User Guide as a reference.

611 Upon completion of Basal-IQ training, study staff will document, using a checklist, that the
612 participant is familiar with the function/feature and/or capable of performing each of the tasks
613 specified.

614 **3.3.2 System Initiation and Home Use**

615 After training on the study system has been completed, participants will proceed with home use
616 (meaning free-living use at work, home, etc.) of the Basal-IQ system.

617 Participants will be instructed to use the system in accordance with the user documentation
618 provided by study staff.

619 Participants may use available manufacturer-provided software and features of the study CGM
620 related to mobile data access or remote monitoring, but will be instructed not to use any third-
621 party components for this purpose.

622 **3.4 Training for Group Continuing CLC Use After Using CLC in the Original
623 Study**

624 No additional system training is required for these participants. However, at the discretion of the
625 investigator, refresher training may be provided using a subset of the topics described in section
626 3.2.1 above.

627 **3.5 Blood Glucose and Ketone Testing**

628 Participants will receive supplies for blood glucose and ketone testing as needed and will be
629 provided Hypoglycemia, Hyperglycemia and Ketone Guidelines as detailed in section 4.2.

630 Participants will be required to have a home glucagon emergency kit. Participants who currently
631 do not have one will be given a prescription for the glucagon emergency kit.

632 **3.6 Menstrual Cycle Data Collection**

633 Participants who consent to participate in the collection of menstrual cycle data will be asked to
634 install a Menstrual Cycle tracking app on their personal phones.

635 These participants will be given instructions on how to use the app to collect the desired
636 menstrual cycle data information and will use the app to collect these data on an ongoing basis
637 until the study Final Visit. The data collected will include details about contraception method
638 and menses dates.

639 **3.7 Optimization of Insulin Pump Settings**

640 Data-driven optimization of pump settings will occur at the following times:

- 641 ◆ Screening
- 642 ◆ At the 1- and 2-Week phone contacts for those participants participating in the
643 Extension Phase who switched from SAP to CLC or from CLC to PLGS
- 644 ◆ If the study participant contacts the study physician due to concerns about their pump
645 settings due to recurring hypo- or hyperglycemia.

646 Data will be obtained from CGM and/or pump downloads at the visit. Adjustments to pump
647 settings (basal rates, correction factor, insulin-to-carbohydrate ratio, etc.) will be made in
648 response to major trends observed in the CGM data, with flexibility for clinicians to adhere to
649 guidelines and practices established at each individual practice rather than a fixed set of
650 heuristics for all sites.

651 **3.8 Phone Contacts and Study Visits**

652 Participants will be provided with contact information and will be asked to call the study
653 clinical staff for any health related issues and for technical issues with study system components.
654 Participants will be provided with sufficient study supplies to last until the 13-Week visit.

655 **3.8.1 1- and 2-Week Phone Contacts**

656 For those participants who switched from SAP in the original RCT to CLC in the Extension
657 Study, or from CLC in the original RCT to PLGS in the Extension Study, study staff will
658 perform a phone call with the participant within 7 (± 3) days and at 14 (± 3) days following group
659 assignment.

660 If the participant cannot be reached, the participant's other contact methods will be utilized,
661 including the emergency contact.

662 The following will occur during each contact:

- 663 • Review of available CGM and/or system data to identify any safety issues associated
664 with insulin pump settings and current diabetes management approach
665 • Assessment of adverse events, adverse device effects, and device issues
666 • Optimization of pump settings, if indicated

667 At investigator discretion, either phone contact may be replaced by a clinic visit. Additional
668 phone contacts or clinic visits may be performed as needed.

669 **3.8.2 Data Uploads**

670 Participants will be instructed to upload data from their study insulin pump prior to the 1- and 2-
671 week phone contacts (if applicable) and at least every 4 weeks for the remainder of the study.
672 Participants will be provided with any software and hardware needed to perform these data
673 uploads.

674 If participating in the menstrual cycle data collection aspect of the study, participants may
675 periodically be asked to transmit the collected data to the clinical site using the export
676 functionality of the phone app that was used.

677 **3.8.3 13-Week Visit**

678 All participants will return to the clinic for a 13-Week (± 7 days) clinic visit during which the
679 following will occur:

- 680 • HbA1c determination using the DCA Vantage or similar point of care device
681 • Collection of a blood sample to send to the central laboratory for HbA1c determination
682 • Completion of questionnaires
683 • Urine pregnancy test for all women of child-bearing potential
684 • Weight measurement
685 • Assessment of adverse events, adverse device effects, and device issues
686 • Download of device data (study system or personal pump and study CGM, study BG meter,
687 study ketone meter)

688

689 All participants will be offered the opportunity to continue in the study, using the CLC system
690 until such time that the system becomes commercially available.

- 691 • Participants who do not wish to continue in the study will transition back to personal insulin
692 pump, or to resumption of MDI. The 13-Week visit will serve as the final study visit for
693 these participants.
- 694 • Participants who agree to continue in the study will be provided with sufficient study
695 supplies to last until the 26-Week visit
- 696 • Participants who had been randomized to PLGS for the preceding 13-week period will be
697 given a CLC pump and will receive refresher training on the CLC system at the
698 discretion of the investigator, using a subset of the topics described in section 3.2.1
699 above.

700 **3.8.4 26-Week Visit and Subsequent Visits Every 13 Weeks**

701 Until the point that the CLC system is commercially available (but not longer than 15 months
702 after study enrollment), participants will return to the clinic for a visit every 13 weeks (± 7 days),
703 beginning with a 26-Week visit (± 7 days), during which the following will occur:

- 704 • HbA1c determination using the DCA Vantage or similar point of care device
- 705 • Completion of questionnaire (26-Week visit only)
- 706 • Urine pregnancy test for all women of child-bearing potential
- 707 • Weight measurement
- 708 • Assessment of adverse events, adverse device effects, and device issues
- 709 • Download of device data (study system or personal pump and study CGM, study BG meter,
710 study ketone meter)

711 **3.8.5 Final Visit**

712 When the CLC system becomes commercially available from the manufacturer (or 15 months
713 has elapsed since enrollment), participants will return to the clinic within a 6-week period for a
714 final study visit. The 6-week transition period is intended to provide an opportunity for the
715 participant to complete the logistics of obtaining the system commercially (insurance, etc.). The
716 following will occur during the final visit:

- 717 • HbA1c determination using the DCA Vantage or similar point of care device (skipped if the
718 prior 13-Week clinic visit occurred in the preceding 2-week period)
- 719 • Completion of questionnaires
- 720 • Weight measurement (skipped if the prior 13-Week clinic visit occurred in the preceding 2-
721 week period)
- 722 • Assessment of adverse events, adverse device effects, and device issues

- 723 • Download of device data (study system or personal pump and study CGM, study BG meter,
724 study ketone meter)
- 725 • If participating in the menstrual cycle data collection aspect of the study, participants will
726 transmit the collected data to the clinical site using the export functionality of the phone app
727 that was used
- 728 • Transition back to personal insulin pump, or to resumption of MDI; insulin parameters will
729 be assessed by a qualified clinical study team member (e.g. MD, NP, CDE)
- 730 • Follow-up phone call with the participant within 7 (± 3) days of transitioning back to personal
731 insulin treatment regimen to assess safety of the treatment transition; will be instructed to
732 also continue usual clinical care with their personal health care team

733

734 **3.9 Early Termination Visit (If Applicable)**

735 Participants will be asked to come for an end of study visit in the event of withdrawal or early
736 termination.

737 **3.10 Unscheduled Visits**

738 Participants may have unscheduled visits during the study period if required for additional device
739 training or other unanticipated needs per the study investigator discretion.

740 **3.11 Participant Access to Study Device at Study Closure**

741 Participant will return all investigational study devices and supplies (insulin pump, CGM and
742 related supplies) at study closure. Participant may keep the study ketone meter and study
743 glucometer if these devices are not marked for investigational use only.

744

Chapter 4: Study Devices

745

4.1 Description of the Investigational Device

746

4.1.1 Insulin Pump

747

The study system will include the Tandem t:slim X2 with Control-IQ technology.

748

4.1.2 Continuous Glucose Monitoring

749

The study CGM will include the FDA-approved Dexcom G6 transmitter and sensors. The CGM sensor will be replaced at least once every 10 days.

751

4.1.3 Blood Glucose Meter and Strips

752

Blood glucose levels will be measured using the study-assigned blood glucose meter (glucometer) and the CGM device will be calibrated if needed using the study glucometer and strips in accordance with the manufacturer's labeling.

755

4.1.4 Ketone Meter and Strips

756

Blood ketone levels will be measured using the Abbott Precision Xtra meter and strips in accordance with the manufacturer's labeling. The blood glucose meter component of the Precision Xtra device will not be used.

759

4.1.5 Study Device Accountability Procedures

760

Device accountability procedures will be detailed in the site procedures manual.

761

4.1.6 Blood Glucose Meter Testing

762

- Participants will be provided with instructions to perform QC testing per manufacturer guidelines.
- All study blood glucose meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study if it does not read within the target range at each concentration per manufacturer labeling. The participant will be instructed to contact study staff for a replacement of the meter, test strips, and control solution if a meter fails QC testing at home.
- Participants will be reminded to use the study blood glucose meter for all fingerstick blood glucose measurements.
- Participants will be asked to perform fingerstick blood glucose measurements in accordance with the labelling of the study CGM device.

773

4.1.7 Blood Ketone Testing

774

- Participants to perform QC testing at home per manufacturer guidelines.
- All study blood ketone meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study if it does not read within the target range at each concentration per manufacturer labeling.

778 The participant will be instructed to contact study staff for a replacement of the meter, test
779 strips, and control solution if a meter fails QC testing at home.

- 780 • Participants will be instructed on how to perform blood ketone testing.
781 • Participants will be given guidelines for treatment of elevated blood ketones.

782 **4.2 Safety Measures**

783 **4.2.1 CGM Calibration**

784 Throughout the study, participants will be instructed to calibrate the study CGM in accordance
785 with manufacturer labelling.

786 **4.2.2 Control-IQ System Failure**

787 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
788 closed loop will not operate to automatically adjust insulin. If the CGM is not connected, the
789 system will revert to usual function of the pump and deliver insulin with the insulin dosing
790 parameters programmed in the system for that individual. Resumption of Closed-Loop will
791 occur automatically once CGM signal is available again.

792 If the study system is unable to activate Control-IQ for any reason, the pump will automatically
793 revert to preprogrammed basal insulin delivery without any need for instruction from the user.

794 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
795 Alarm will display and the participant will be instructed to contact Tandem Technical Support
796 via the study team.

797 **4.2.3 Hypoglycemia Threshold Alert and Safety Protocol**

798 During the course of the study, participants will be permitted to change the CGM low glucose
799 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
800 less than 60 mg/dL.

801 The t:slim X2 with Control-IQ system will issue a predictive hypoglycemia alert (Control-IQ
802 Low Alert) when the system predicts BG <70 mg/dL within the next 15 minutes (<80 mg/dL
803 when exercise mode is activated).

804 If the participant receives a Control-IQ Low Alert, a message appears on the user interface (UI)
805 that is accompanied by vibration followed by vibrations and/or sound if not acknowledged by the
806 user in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
807 prompted to test blood sugar and treat with carbs.

808 **4.2.4 Hyperglycemia Threshold Alert and Safety Protocol**

809 During the course of the study, participants will be permitted to change the CGM high glucose
810 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
811 greater than 300 mg/dL.

812 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alert (Control-IQ
813 High Alert) when the system has increased insulin delivery, but detects a CGM value above 200
814 mg/dL and does not predict the value will decrease in the next 30 minutes.

815 If the participant receives a Control-IQ High Alert, a message appears on the UI that is
816 accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user
817 in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
818 prompted to check the site for occlusion and test blood glucose.

819 If a participant's CGM reading is >300 mg/dL for over 2 hours or ≥ 400 mg/dL at any point, the
820 participant will be instructed to take the following steps:

- 821 • Perform a blood glucose meter check.
- 822 • If the blood glucose is >300 mg/dL, check for blood ketones with the study ketone meter.
- 823 • If the ketone level is >0.6 mmol/L, take correction insulin, change insulin (pump) infusion
824 site and contact study staff.
- 825 • If a participant administers correction insulin via insulin syringe, participants will be
826 instructed to turn Control-IQ off for approximately four hours.

827 **Chapter 5: Testing Procedures and Questionnaires**

828 **5.1 Laboratory Testing**

829 1. HbA1c:

- 830 • Performed locally at the 13-week visit and at subsequent study visits at 13-week intervals
831 using the DCA Vantage or similar point of care device
- 832 • A blood sample will be obtained and sent to central lab for HbA1c assessment at the 13-
833 week visit.

834 2. Urine Pregnancy:

- 835 • A urine pregnancy test will be performed locally for females of child-bearing potential at
836 the Screening visit. The test will be repeated at the 13-week visit for participants
837 continuing in the study, and will be repeated at subsequent clinic visits at 13-week
838 intervals. A test will also be done anytime pregnancy is suspected.

839 **5.2 Questionnaires**

840 Questionnaires, described briefly below, are completed at various clinic visits detailed below.
841 The procedures for administration are described in the study procedures manual.

842 The following questionnaire will be completed at the Screening visit:

- 843 • Technology Expectations Survey (*only for participants who had been assigned to SAP during
844 the original 6-month RCT*)

845 The following questionnaires will be completed at the 13-week Visit:

- 846 • Clarke's Hypoglycemia Awareness Scale
- 847 • Fear of Hypoglycemia Survey (HFS-II)
- 848 • Hyperglycemia Avoidance Scale
- 849 • Hypoglycemia Confidence Scale
- 850 • Diabetes Distress Scale
- 851 • INSPIRE Survey
- 852 • Technology Acceptance Survey
- 853 • System Usability Scale (SUS)

854 The following questionnaires will be completed at the 26-week Visit:

- 855 • Control-IQ Patient-Reported Outcomes Questionnaire

856 The following questionnaire will be completed at the final clinic visit:

- 859 • System Usability Scale (SUS)
860 • Control-IQ Patient-Reported Outcomes Questionnaire

861
862 **Clarke's Hypoglycemia Awareness Scale**

863 The scale (28) comprises eight questions characterizing the participant's exposure to episodes
864 of moderate and severe hypoglycemia. It also examines the glycemic threshold for, and
865 symptomatic responses to hypoglycemia. A score of four or more on a scale of 0 to 7 implies
866 impaired awareness of hypoglycemia.

867 Administration time is approximately 5 minutes.

868 **Hypoglycemia Fear Survey (HFS-II)/Low Blood Sugar Survey**

869 The Hypoglycemia Fear Survey-II (29) was developed to measure behaviors and worries related
870 to fear of hypoglycemia in adults with type 1 diabetes. It is composed of 2 subscales, the
871 Behavior (HFS-B) and Worry (HFS-W). HFS-B items describe behaviors in which patients may
872 engage to avoid hypoglycemic episodes and/or their negative consequences (e.g., keeping blood
873 glucose levels above 150 mg/dL, making sure other people are around, and limiting exercise or
874 physical activity). HFS-W items describe specific concerns that patients may have about their
875 hypoglycemic episodes (e.g., being alone, episodes occurring during sleep, or having an
876 accident).

877 Administration time is approximately 10 minutes.

878 **Hyperglycemia Avoidance Survey (HAS)/High Blood Sugar Survey**

879 The HAS (30) reliably quantifies affective and behavioral aspects of hyperglycemia avoidance
880 and is used to assess the extent of potentially problematic avoidant attitudes and behaviors
881 regarding hyperglycemia in people with Type 1 diabetes (T1D).

882 Administration time is approximately 10 minutes.

883 **Hypoglycemia Confidence Scale**

884 The HCS (31) is a 9-item self-report scale that examines the degree to which people with
885 diabetes feel able, secure, and comfortable regarding their ability to stay safe from
886 hypoglycemic-related problems. It has been validated for use in adults with type 1 diabetes and
887 insulin-using type 2 diabetes.

888 Administration time is approximately 5 minutes.

889 **Diabetes Distress Scale**

890 The Diabetes Distress Scale (32) is a measure of diabetes-related emotional distress and consists
891 of a scale of 28 items. These include 7 items from each of four domains central to diabetes-

892 related emotional distress. Patients rate the degree to which each item is currently problematic
893 for them on a 6-point Likert scale, from 1 (no problem) to 6 (serious problem).

894 Administration time is approximately 10 minutes.

895 **Technology Expectation and Technology Acceptance Surveys**

896 The Technology Expectation and Technology Acceptance Surveys were developed for a Bionic
897 Pancreas camp study (33). The 38 items in the Questionnaire were based on interviews
898 conducted with individuals who had participated in previous Bionic Pancreas trials about their
899 experience regarding the Bionic Pancreas. It was subsequently adapted to assess these same
900 measures for the inControl closed-loop system. It assesses both positive and negative
901 experiences with CLC, including blood glucose management, device burden, and overall
902 satisfaction. Items were rated on a 5-point scale.

903 Administration time is approximately 10 minutes.

904 **INSPIRE Survey**

905 The INSPIRE (Insulin Delivery Systems: Perceptions, Ideas, Reflections and Expectations)
906 survey was developed to assess various aspects of a user's experience regarding automated
907 insulin delivery for both patients and family members. The surveys include various topics
908 important to patients with type 1 diabetes and their family members based upon >200 hours
909 of qualitative interviews and focus groups. The adult survey includes 31 items; the adolescent
910 survey includes 28 items; and the parent survey includes 30 items. Response options for all
911 surveys include a 5-point Likert scale from strongly agree to strongly disagree, along with an
912 N/A option.

913 Administration time is approximately 5 minutes.

914 **System Usability Scale (SUS)**

915 The System Usability Scale (SUS) is a 10-item questionnaire that measures the overall
916 usability of a system. It is a valid and reliable measure of the perceived usability of a system
917 and is technology-agnostic. The questionnaire presents statements with five response options
918 (anchoring the options from strongly disagree to strongly agree) and asks users to rate their
919 agreement to the statements. User scores are transformed into a composite score, from 0 to 100,
920 and this score is taken as an overall measure of the system's usability; higher scores indicate
921 better perceived usability.

922 Administration time is approximately 5 minutes.

923

924

925 **Control-IQ Patient-Reported Outcomes Questionnaire**

926 This is a 10-item questionnaire that solicits information about frequency of use of the Control-IQ
927 closed-loop feature, satisfaction with and trust in the system, impact on aspects of living with
928 diabetes, and likelihood of recommending the system to others.

929 Administration time is approximately 5 minutes.

930 **Chapter 6: Adverse Events, Device Issues, and Stopping Rules**

931 **6.1 Adverse Events**

932 **6.1.1 Definitions**

933 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
934 relationship between the adverse event and the device(s) under investigation (see section 6.1.2
935 for reportable adverse events for this protocol).

936 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 937 • Results in death.
- 938 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might have
939 become life-threatening, is not necessarily considered a serious adverse event).
- 940 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 941 • Results in persistent or significant disability/incapacity or substantial disruption of the ability
942 to conduct normal life functions (sight threatening).
- 943 • Is a congenital anomaly or birth defect.
- 944 • Is considered a significant medical event by the investigator based on medical judgment (e.g.,
945 may jeopardize the participant or may require medical/surgical intervention to prevent one of
946 the outcomes listed above).

947 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
948 any life-threatening problem or death caused by, or associated with, a device, if that effect,
949 problem, or death was not previously identified in nature, severity, or degree of incidence in the
950 investigational plan or application (including a supplementary plan or application), or any other
951 unanticipated serious problem associated with a device that relates to the rights, safety, or
952 welfare of participants (21 CFR 812.3(s)).

953 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which
954 the device may have caused or to which the device may have contributed (Note that an Adverse
955 Event Form is to be completed in addition to a Device Deficiency or Issue Form, unless excluded
956 from reporting as defined in section 6.2).

957 Device Complaints and Malfunctions: A device complication or complaint is something that
958 happens to a device or related to device performance, whereas an adverse event happens to a
959 participant. A device complaint may occur independently from an AE, or along with an AE.
960 An AE may occur without a device complaint or there may be an AE related to a device
961 complaint. A device malfunction is any failure of a device to meet its performance specifications
962 or otherwise perform as intended. Performance specifications include all claims made in the
963 labeling for the device. The intended performance of a device refers to the intended use for
964 which the device is labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, sites
965 will not be asked to distinguish between device complaints and malfunctions.

966 **6.1.2 Reportable Adverse Events**

967 For this protocol, a reportable adverse event includes any untoward medical occurrence that
968 meets one of the following criteria:

- 969 1. An SAE
970 2. An ADE as defined in section 6.1.1, unless excluded from reporting in section 6.2
971 3. An AE as defined in section 6.1.1 occurring in association with a study procedure
972 4. An AE as defined in section 6.1.1 which leads to discontinuation of a study device for 2 or
973 more hours
974 5. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
975 6. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, a hyperglycemia or
976 ketosis event meeting the criteria defined below

977 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
978 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement
979 are only reportable if severe and/or required treatment.

980 Pregnancy occurring during the study will be reported as an AE (see section 6.3).

981 All reportable AEs—whether volunteered by the participant, discovered by study personnel
982 during questioning, or detected through physical examination, laboratory test, or other means—
983 will be reported on an AE form online. Each AE form is reviewed by the Medical Monitor to
984 assess safety and to verify the coding and the reporting that is required.

985 **6.1.2.1 Hypoglycemic Events**

986 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse
987 event when the following definition for severe hypoglycemia is met: the event required
988 assistance of another person due to altered consciousness, and required another person to actively
989 administer carbohydrate, glucagon, or other resuscitative actions. This means that the participant
990 was impaired cognitively to the point that he/she was unable to treat himself/herself, was unable
991 to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure
992 or loss of consciousness. These episodes may be associated with sufficient neuroglycopenia to
993 induce seizure or loss of consciousness. If plasma glucose measurements are not available
994 during such an event, neurological recovery attributable to the restoration of plasma glucose to
995 normal is considered sufficient evidence that the event was induced by a low plasma glucose
996 concentration.

997 **6.1.2.2 Hyperglycemic/Ketotic Events**

998 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
999 event when one of the following 4 criteria is met:

- 1000 • the event involved DKA, as defined by the Diabetes Control and Complications Trial
1001 (DCCT) and described below

- 1002 • evaluation or treatment was obtained at a health care provider facility for an acute event
1003 involving hyperglycemia or ketosis
- 1004 • blood ketone level ≥ 1.0 mmol/L and communication occurred with a health care provider
1005 at the time of the event
- 1006 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
1007 provider
- 1008 Hyperglycemic events are classified as DKA if the following are present:
- 1009 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
1010 • Serum ketones > 1.5 mmol/L or large/moderate urine ketones;
1011 • Either arterial blood pH < 7.30 or venous pH < 7.24 or serum bicarbonate < 15 ; and
1012 • Treatment provided in a health care facility

1013 **6.1.3 Relationship of Adverse Event to Study Device**

1014 The study investigator will assess the relationship of any adverse event to be related or unrelated
1015 by determining if there is a reasonable possibility that the adverse event may have been caused
1016 by the study device.

1017 To ensure consistency of adverse event causality assessments, investigators should apply the
1018 following general guideline when determining whether an adverse event is related:

1019 Yes

1020 There is a plausible temporal relationship between the onset of the adverse event and the study
1021 intervention, and the adverse event cannot be readily explained by the participant's clinical state,
1022 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern
1023 of response to the study intervention; and/or the adverse event abates or resolves upon
1024 discontinuation of the study intervention or dose reduction and, if applicable, reappears upon
1025 re-challenge.

1026 No

1027 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
1028 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
1029 medication); and/or the adverse event has no plausible temporal relationship to study
1030 intervention.

1031 **6.1.4 Intensity of Adverse Events**

1032 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or
1033 (3) severe. It is emphasized that the term severe is a measure of intensity: thus a severe adverse
1034 event is not necessarily serious. For example, itching for several days may be rated as severe,
1035 but may not be clinically serious.

- 1036 • MILD: Usually transient, requires no special treatment, and does not interfere with the
1037 participant's daily activities.
- 1038 • MODERATE: Usually causes a low level of inconvenience or concern to the participant and
1039 may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.
- 1040 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic
1041 drug therapy or other treatment.

1042 **6.1.5 Coding of Adverse Events**

1043 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review
1044 the investigator's assessment of causality and may agree or disagree. Both the investigator's and
1045 Medical Monitor's assessments will be recorded. The Medical Monitor will have the final say in
1046 determining the causality.

1047 **6.1.6 Outcome of Adverse Events**

1048 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 1049 • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without sequelae.
1050 Record the AE/SAE stop date.
- 1051 • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had stabilized
1052 without change in the event anticipated. Record the AE/SAE stop date.
- 1053 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that
1054 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time
1055 of death; however, were not the cause of death, will be recorded as “resolved” at the time of
1056 death.
- 1057 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined as
1058 the event was ongoing with an undetermined outcome.
- 1059 ◆ An ongoing outcome will require follow-up by the site in order to determine the final
1060 outcome of the AE/SAE.
- 1061 ◆ The outcome of an ongoing event at the time of death that was not the cause of death,
1062 will be updated and recorded as “resolved” with the date of death recorded as the stop
1063 date.
- 1064 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or
1065 the participant's records to determine the outcome (for example, a participant that was lost to
1066 follow-up).
- 1067 • If any reported adverse events are ongoing when a participant completes the study (or
1068 withdraws), adverse events classified UADEs will be followed until they are either resolved,
1069 or have no prospect of improvement or change, even after the subject has completed all
1070 applicable study visits/contacts. For all other adverse events, data collection will end at the
1071 time the participant completes the study. Note: participants should continue to receive
1072 appropriate medical care for an adverse event after their participation in the study ends.

1073

6.2 Reportable Device Issues

1074 All UADEs and ADEs as defined in section 6.1.1 will be reported on both a device issue form
1075 and AE form, except for skin reactions from CGM sensor placement or pump infusion set
1076 placement that do not require pharmacologic treatment.

1077 Device complaints and device malfunctions will be reported except in the following
1078 circumstances. These occurrences are expected and will not be reported on a Device Issue Form
1079 assuming criteria for a UADE or ADE have not been met:

- 1080 • CGM sensors lasting fewer than the number of days expected per CGM labeling
- 1081 • CGM tape adherence issues
- 1082 • Pump infusion set occlusion (including tubing and cartridge) not leading to ketosis ≥ 0.6
1083 mmol/L or in the absence of checking for blood ketones, blood glucose >350 mg/dL; and not
1084 requiring an intervention other than replacing the tubing and/or cartridge
- 1085 • Battery lifespan deficiency due to inadequate charging or extensive wireless communication
- 1086 • Intermittent device component disconnections/communication failures not leading to
1087 requiring system replacement or workaround/resolution not specified in user guide/manual
- 1088 • Device issues clearly addressed in the user guide manual that do not require additional
1089 troubleshooting

1090

6.3 Pregnancy Reporting

1091 If pregnancy occurs, the participant will be discontinued from the study. The occurrence of
1092 pregnancy will be reported on an AE Form.

1093

6.4 Timing of Event Reporting

1094 SAEs possibly related to a study device or study participation and UADEs must be reported to
1095 the Coordinating Center within 24 hours of the site becoming aware of the event. This can occur
1096 via phone or email, or by completion of the online serious adverse event form and device issue
1097 form if applicable. If the form is not initially completed, it should be completed as soon as
1098 possible after there is sufficient information to evaluate the event. All other reportable ADEs
1099 and other reportable AEs should be submitted by completion on the online form within 7 days of
1100 the site becoming aware of the event.

1101 The Coordinating Center will notify all participating investigators of any adverse event that is
1102 serious, related, and unexpected. Notification will be made within 10 days after the Coordinating
1103 Center becomes aware of the event.

1104 Each principal investigator is responsible for reporting serious study-related adverse events and
1105 abiding by any other reporting requirements specific to his/her Institutional Review Board or
1106 Ethics Committee.

1107 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report
1108 the results of the investigation to the sites' IRBs, and the FDA within 10 working days of the
1109 Sponsor becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must

1110 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor
1111 must ensure that all investigations, or parts of investigations presenting that risk, are terminated
1112 as soon as possible but no later than 5 working days after the Medical Monitor makes this
1113 determination and no later than 15 working days after first receipt notice of the UADE.

1114 In the case of a device system component malfunction (e.g. pump, CGM, control algorithm),
1115 information will be forwarded to the responsible company by the site personnel, to be handled
1116 by its complaint management system.

1117 **6.5 Stopping Criteria**

1118 **6.5.1 Participant Discontinuation of Study Device**

1119 Rules for discontinuing study device use are described below.

- 1120 • The investigator believes it is unsafe for the participant to continue on the intervention. This
1121 could be due to the development of a new medical condition or worsening of an existing
1122 condition; or participant behavior contrary to the indications for use of the device that
1123 imposes on the participant's safety
- 1124 • The participant requests that the treatment be stopped
- 1125 • Participant pregnancy
- 1126 • Two distinct episodes of DKA
- 1127 • Two distinct severe hypoglycemia events as defined in section 6.1.2.1

1128 Even if the study device system is discontinued, the participant will be encouraged to remain in
1129 the study through the final study visit.

1130 **6.5.2 Criteria for Suspending or Stopping Overall Study**

1131 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
1132 hyperglycemia event (as defined in section 6.1.2), use of the study device system will be
1133 suspended while the problem is diagnosed.

1134 In addition, study activities could be similarly suspended if the manufacturer of any constituent
1135 study device requires stoppage of device use for safety reasons (e.g. product recall). The
1136 affected study activities may resume if the underlying problem can be corrected by a protocol or
1137 system modification that will not invalidate the results obtained prior to suspension.

1138 The study Medical Monitor will review all adverse events and adverse device events that are
1139 reported during the study and will review compiled safety data at periodic intervals (generally
1140 timed to the review of compiled safety data by the DSMB). The Medical Monitor may request
1141 suspension of study activities or stoppage of the study if deemed necessary based on the totality
1142 of safety data available.

1143 **6.6 Independent Safety Oversight**

1144 A Data and Safety Monitoring Board (DSMB) will review compiled safety data at periodic
1145 intervals (typically every 6 months). In addition, the DSMB will review all DKA and severe

1146 hypoglycemia irrespective of relatedness to study device use, and all serious events (including
1147 UADEs) related to study device use at the time of occurrence. The DSMB also will be informed
1148 of any ADEs not meeting criteria for a UADE if the Medical Monitor requests the DSMB
1149 review. The DSMB can request modifications to the study protocol or suspension or outright
1150 stoppage of the study if deemed necessary based on the totality of safety data available. Details
1151 regarding DSMB review will be documented in a separate DSMB document.

1152 **6.7 Risks**

1153 The potential risks associated with use of the study device are described in section 1.3.

1154 Additional risks are minor and/or infrequent and include:

- 1155 • Pain, bruising, redness, or infection from blood draws
1156 • Loss of confidentiality
1157 • Stress from completing quality of life questionnaires

1158 **Chapter 7: Miscellaneous Considerations**

1159 **7.1 Drugs Used as Part of the Protocol**

1160 Participants will use either lispro or aspart insulin prescribed by their personal physician.

1161 **7.2 Prohibited Medications, Treatments, and Procedures**

1162 Participants using glulisine at the time of enrollment will be asked to contact their personal
1163 physician to change their prescribed personal insulin to lispro or aspart for the duration of the
1164 trial. This should not occur, since participants were required to use either lispro or aspart insulin
1165 during the preceding 6-month RCT.

1166 Treatment with any non-insulin glucose-lowering agent (including GLP-1 agonists, Symlin,
1167 DPP-4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas and naturaceuticals) will not be
1168 permitted.

1169 The investigational study devices (insulin pump, study CGM systems) must be removed before
1170 Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or diathermy treatment.
1171 Participants may continue in the trial after temporarily discontinuing use if requiring one of the
1172 treatments above.

1173 **7.3 Participant Compensation**

1174 Participant compensation will be specified in the informed consent form.

1175 A maximum of \$200 will be paid for completing the entire study. Participants will be paid \$100
1176 for completing the screening visit and \$100 for completing the 13-week visit. No additional
1177 payments will be provided for the subsequent clinic visits at 13-week intervals following the 13-
1178 week visit, or for unplanned visits to the research site.

- 1179 • Screening Visit: \$100
1180 • 13-week Visit: \$100

1181 **7.4 Participant Withdrawal**

1182 Participation in the study is voluntary, and a participant may withdraw at any time.
1183 For participants who withdraw, their data will be used up until the time of withdrawal.

1184 **7.5 Confidentiality**

1185 For security and confidentiality purposes, participants will be assigned an identifier that will
1186 be used instead of their name. Protected health information gathered for this study will be
1187 shared with the coordinating center, the Jaeb Center for Health Research in Tampa, FL.
1188 De-identified participant information may also be provided to research sites involved in the
1189 study. De-identified participant information may also be provided to Tandem for system
1190 evaluation purposes.

1191 Chapter 8: Statistical Consideration

1192 The approach to sample size and statistical analyses are summarized below. A detailed statistical
1193 analysis plan will be written and finalized prior to the first tabulation of data (i.e., for DSMB
1194 review).

1195 8.1 Objectives

1196 There are three objectives for this study:

- 1197 • Objective 1: Among individuals who used CLC in the Main RCT, to compare continued
1198 use of CLC (t:slim X2 with Control-IQ Technology) for 3 months versus switching to a
1199 Predictive Low-Glucose Suspend (PLGS) system (t:slim X2 with Basal-IQ Technology)
1200 for 3 months.
 - 1201 ○ RCT with 1:1 randomization to intervention with CLC vs. PLGS for 3 months.
1202 All analyses (treatment group comparisons) will be considered
1203 exploratory/hypothesis-generating. Consequently, there will not be an attempt to
1204 adjust for multiplicity. Time-in-range 70-180 mg/dL will be considered the
1205 primary exploratory outcome.
 - 1206 • Objective 2: Among individuals who used SAP in the Main RCT, to obtain additional
1207 safety data by initiating use of the Control-IQ system for 3 months.
 - 1208 ○ Observational study of initiation and use of CLC for 3 months. Safety outcomes
1209 will be tabulated and certain exploratory analyses will be conducted, analyzing
1210 metrics as change from baseline (using SAP) to study period (using CLC).
 - 1211 • Objective 3: To obtain additional safety data by continuing use of the Control-IQ system
1212 until it becomes commercially available
 - 1213 ○ Observational study of initiation and use of CLC for 3 months following use of
1214 PLGS for 3 months. Safety outcomes will be tabulated and certain exploratory
1215 analyses will be conducted, analyzing metrics as change from baseline (using
1216 PLGS) to study period (using CLC).

1217 8.2 Sample Size

1218 The sample size for Objectives 1 and 2 will depend on how many subjects will complete the
1219 prior 6-month Original RCT and consent to participate in the extension. However, it is expected
1220 that about 100 subjects will be enrolled and randomized for Objective 1 and 50 subjects enrolled
1221 for Objective 2.

1222 As the sample size for objective 1 is determined by the preceding RCT and a variance estimate
1223 for both the group continuing CLC and the group switching to PLGS is not known (no prior data
1224 available to estimate), a power calculation has not been performed.

1225 8.3 Outcome Measures

- 1226 • CGM Metrics
 - 1227 • Overall Control and Hyperglycemia

- 1228 ○ CGM-measured % in range 70-180 mg/dL.
- 1229 ○ CGM-measured % above 180 mg/dL
- 1230 ○ CGM-measured mean glucose
- 1231 ○ % >250 mg/dL
- 1232 ○ % >300 mg/dL
- 1233 ○ high blood glucose index
- 1234 ○ % in range 70-140 mg/dL
- 1235
- 1236 • Hypoglycemia
 - 1237 ○ % below 70 mg/dL
 - 1238 ○ % below 54 mg/dL
 - 1239 ○ % <60 mg/dL
 - 1240 ○ low blood glucose index
 - 1241 ○ hypoglycemia events (defined as at least 15 consecutive minutes <70 mg/dL)
- 1242
- 1243 • Glucose variability
 - 1244 ○ Coefficient of variation (CV)
 - 1245 ○ Standard deviation (SD)
- 1246
- 1247 The last 3 months of the Original RCT Study will be used to calculate baseline CGM metrics for
- 1248 the extension study. CGM data starting from randomization into the extension through the 3
- 1249 month visit will be included in the calculation of each CGM metric. Each metric will be
- 1250 calculated giving equal weight to each CGM reading for each participant. CGM metrics will be
- 1251 computed overall and all for daytime (6am-12mn) and nighttime (12mn-6am) by time of day.
- 1252
- 1253 HbA1c
 - 1254 • HbA1c at 13 weeks
 - 1255 • HbA1c <7.0% at 13 weeks
 - 1256 • HbA1c <7.5% at 13 weeks
 - 1257 • HbA1c improvement from baseline to 13 weeks >0.5%
 - 1258 • HbA1c improvement from baseline to 13 weeks >1.0%
 - 1259 • HbA1c relative improvement from baseline to 13 weeks >10%
 - 1260 • HbA1c improvement from baseline to 13 weeks >1.0% or HbA1c <7.0% at 13 weeks

1261 Questionnaires:

- 1262 • Fear of Hypoglycemia Survey (HFS-II) – total score and 3 subscales:
 - 1263 ◆ Behavior (avoid)
 - 1264 ◆ Behavior (maintain high BG)
 - 1265 ◆ Worry
- 1266 • Hyperglycemia Avoidance Scale – total score and 4 subscales:
 - 1267 ◆ Immediate action
 - 1268 ◆ Worry
 - 1269 ◆ Low BG preference
 - 1270 ◆ Avoid extremes
- 1271 • Diabetes Distress Scale – total score and 4 subscales:
 - 1272 ◆ Emotional burden
 - 1273 ◆ Physician-related distress
 - 1274 ◆ Regimen-related distress
 - 1275 ◆ Interpersonal distress
- 1276 • Hypoglycemia Confidence Scale – total score
- 1277 • Clarke Hypoglycemia Awareness Scores
- 1278 • INSPIRE survey scores
- 1279 • System Usability Scale (SUS)
- 1280 • Technology Acceptance Survey
- 1281 • Control-IQ Patient-Reported Outcomes Questionnaire
- 1282

1283 Other

- 1284 • Insulin
 - 1285 ◆ Total daily insulin (units/kg)
 - 1286 ◆ Basal: bolus insulin ratio
- 1287 • Weight and Body Mass Index (BMI)
- 1288

1289 **8.4 Objective 1 Analyses**1290 **8.4.1 Principles of Analyses**

1291 All analyses comparing the CLC arm with PLGS arm will follow the intention-to-treat (ITT)
1292 principle with each participant analyzed according to the treatment assigned by randomization.
1293 Safety outcomes will be reported for all enrolled participants.

1294 If more than 5% of participants have fewer than 50% of post-randomization CGM data,
1295 the analyses will be replicated excluding such participants. In addition, analyses will be
1296 replicated including only those participants from the CLC and PLGS groups who used the
1297 system for >80% overall.

1298 The analyses described below include a pre-specified list of covariates. As an additional
1299 sensitivity analysis, any baseline demographic or clinical characteristics observed to be
1300 imbalanced between treatment groups will be added as covariates to the analyses. The
1301 determination of a meaningful baseline imbalance will be based on clinical judgement and not a
1302 p-value.

1303 With respect to missing data, it is worth emphasizing that any statistical method for handling
1304 missing data makes a number of untestable assumptions. The goal will be to minimize the
1305 amount of missing data in this study so that results and conclusions will not be sensitive to which
1306 statistical method is used. To that end, sensitivity analyses will be performed to explore whether
1307 results are similar for when using different methods. The following methods will be applied:

- 1308 • Direct likelihood (analysis described below)
- 1309 • Rubin's multiple imputation
- 1310 • Available cases only

1311

1312 **8.4.2 Analytic Methods**1313 CGM Metrics

1314 Summary statistics (mean \pm SD or median (quartiles)) will be reported for each CGM metric and
1315 for differences from pre-randomization by treatment group.

1316 The analyses will be done using direct likelihood. A longitudinal linear regression model will be
1317 fit with the metric at baseline and follow-up as the dependent variable. This model will adjust for
1318 age as fixed effect and site as a random effect. The analyses will report the point estimate, 95%
1319 confidence interval and p-value for the treatment group difference at follow-up. Residual values
1320 will be examined for an approximate normal distribution. If residuals are highly skewed, then a
1321 transformation or robust statistical method (e.g., non-parametric or MM estimation) will be used
1322 instead.

1323 HbA1c

1324 Summary statistics (mean \pm SD or n(%)) will be reported for the central lab HbA1c (continuous
1325 variable) at 13-weeks and for differences from randomization by treatment group. A longitudinal

1326 model will be fit using values at randomization and 13 weeks adjusting for age as fixed effect
1327 and site as a random effect. Missing data will be handled by direct likelihood in this longitudinal
1328 model. This model implicitly adjusts for baseline HbA1c by forcing the treatment groups to have
1329 the same mean value at baseline. Local HbA1c values measured at the site will be included as an
1330 auxiliary variable (analogous to imputing any missing lab values). Regression diagnostics will
1331 be employed as described earlier.

1332 For the binary HbA1c outcomes listed above, risk-adjusted percentages by treatment group will
1333 be computed from a logistic regression model. The logistic regression will adjust for the same
1334 factors mentioned above for the analysis with HbA1c as a continuous factor.

1335 Questionnaires and Other Outcomes

1336 For questionnaires, insulin, weight, and BMI metrics comparisons between treatment arms will
1337 be made using similar methods as described above for the continuous HbA1c analysis.

1338

1339 **8.4.3 Subgroup Analyses**

1340 In exploratory analyses, outcomes for which analyses suggest a treatment group difference will
1341 be assessed separately in various subgroups and for continuous variables according to the
1342 baseline value as defined below. Tests for interaction with treatment group will be performed
1343 and further explored if an interaction will be found in the first place. For continuous variables,
1344 results will be displayed in subgroups based on cutpoints although the analysis will utilize the
1345 variable as continuous. If there is insufficient sample size in a given subgroup, the cutpoints for
1346 continuous measures may be adjusted per the observed distribution of values. Cutpoint selection
1347 for display purposes will be made masked to the outcome data.

- 1348 • Baseline HbA1c
- 1349 • Baseline CGM time spent <70 mg/dL
- 1350 • Baseline CGM time spent >180 mg/dL
- 1351 • Baseline CGM time 70-180 mg/dL
- 1352 • Age
- 1353 • Sex
- 1354 • Race
- 1355 • Clinical site
- 1356 • Body mass index
- 1357 • Income, education, and/or insurance status
- 1358 • Baseline scores for quality of life, hypoglycemia awareness and fear questionnaires

1360 **8.5 Safety Analyses**

1361 The following will be summarized and tabulated by treatment group:

- 1362 • Severe hypoglycemia
- 1363 • Diabetic ketoacidosis

- 1364 • Ketone events defined as a calendar day with ketone level >1.0 mmol/L
1365 • CGM-measured hypoglycemic events (defined as at least 15 consecutive minutes <54
1366 mg/dL)
1367 • CGM-measured hyperglycemic events (defined as at least 120 consecutive minutes
1368 >300 mg/dL)
1369 • Worsening of HbA1c from randomization to 13 weeks by $>0.5\%$
1370 • Serious adverse events with a possible or greater relationship to a study device
1371 (including anticipated and unanticipated adverse device effects)
1372 • Other serious adverse events not related to a study device
1373 • Adverse device effects (ADE) that do not meet criteria for SAE
1374
1375 • For the following, mean \pm SD or summary statistics appropriate to the distribution will be
1376 tabulated by treatment group:
1377 • Number of SH events and SH event rate per 100 person-years
1378 • Number of DKA events and DKA event rate per 100 person-years
1379 • Any adverse event rate per 100 person-years.
1380 If there are at least 10 events across both treatment arms, the numbers will be compared between
1381 the two treatment arms using a robust Poisson regression and the percentage of subjects with at
1382 least one event will be compared using logistic regression. The regression will adjust for site as
1383 random effect. The amount of follow up will be included as an offset covariate to compare the
1384 rates.

1385

1386 **8.6 Device Issues**

1387 Reported device issues will be tabulated by treatment group.
1388

1389 **8.7 Protocol Adherence**

1390 The following tabulations and analyses will be performed by treatment group to assess protocol
1391 adherence for the study:

- 1392 • Listing of all protocol deviations
1393 • Tabulation of protocol-specified visits and phone contacts completed in window, out
1394 of window and missed for each visit/phone contact
1395 • Flow chart accounting for all enrolled participants
1396 • Flow chart of all randomized participants at all scheduled visits and phone contacts to
1397 assess visit, and phone completion, and study completion rates

- 1398 • Number of and reasons for unscheduled visits and phone calls
1399 • Number of participants who stopped treatment (CLC or PLGS) and reasons
1400

1401 **8.8 Other Tabulations**

1402 Baseline demographic and clinical characteristics will be tabulated by treatment group.

1403 Individual listings of key data for each participant will be created.

1404 The following tabulations and analyses will be performed by treatment group:

- 1405 • Sensor performance metrics (difference, absolute relative difference, and
1406 International Organization for Standardization criteria)
1407 • Sensor use –percent time of use overall and by month
1408 • The daily frequency of downloaded BGM use - overall and by month
1409 • % time CGM data were available to the system – overall and by month
1410 • % time in different operational modes - overall and by month
1411 • Rate of different failure events and alarms per 24 recorded by the system – overall
1412 and by month Among women who consent to collection of the menstrual information,
1413 an analysis that compares outcomes at different times during the menstrual cycle will
1414 be performed overall and by contraception type for selected CGM and insulin
1415 metrics.

1416

1417 **8.9 Planned Interim Analyses**

1418 No interim efficacy analysis is planned.

1419 The DSMB will review safety data at intervals, with no formal stopping rules other than the
1420 guidelines provided in the participant-level and study-level stopping criteria (as defined in
1421 section 6.5 of the protocol).

1422

1423 **8.10 Objective 2 Analyses**

1424 All enrolled subjects will be included in the analyses. Although the primary objective is the
1425 collection of safety data, analyses will be conducted for the outcomes listed above for Objective
1426 1 comparing baseline to follow up using paired t-tests unless the data are highly skewed in which
1427 case a transformation or a robust statistical method will be used instead.

1428 Safety outcomes will be tabulated. Device issues, protocol adherence, and the other variables
1429 listed above for tabulation will be described or summarized as indicated.

1430

1431 **8.11 Objective 3 Analyses**

1432 All enrolled subjects will be included in the analyses. Although the primary objective is the
1433 collection of safety data, analyses will be conducted for the outcomes listed above for Objective
1434 1 comparing 3 months of PLGS baseline to 3 months of CLC follow up using paired t-tests
1435 unless the data are highly skewed in which case a transformation or a robust statistical method
1436 will be used instead.

1437 Safety outcomes will be tabulated. Device issues, protocol adherence, and the other variables
1438 listed above for tabulation will be described or summarized as indicated.

1439

1440 **Chapter 9: Data Collection and Monitoring**

1441 **9.1 Case Report Forms and Device Data**

1442 The main study data are collected through a combination of electronic case report forms
1443 (CRFs) and electronic device data files obtained from the study software and individual
1444 hardware components. These electronic device files and electronic CRFs from the study
1445 website are considered the primary source documentation.

1446 When data are directly collected in electronic case report forms, this will be considered the
1447 source data. Each participating site will maintain appropriate medical and research records for
1448 this trial, in compliance with ICH E6 and regulatory and institutional requirements for the
1449 protection of confidentiality of participants.

1450 **9.2 Study Records Retention**

1451 Study documents should be retained for a minimum of 2 years after the last approval of a
1452 marketing application in an ICH region and until there are no pending or contemplated marketing
1453 applications in an ICH region or until at least 2 years have elapsed since the formal
1454 discontinuation of clinical development of the investigational product. These documents should
1455 be retained for a longer period, however, if required by local regulations. No records will be
1456 destroyed without the written consent of the sponsor, if applicable. It is the responsibility of the
1457 sponsor to inform the investigator when these documents no longer need to be retained.

1458 **9.3 Quality Assurance and Monitoring**

1459 Designated personnel from the Coordinating Center will be responsible for maintaining quality
1460 assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is
1461 conducted and data are generated, documented and reported in compliance with the protocol,
1462 Good Clinical Practice (GCP) and the applicable regulatory requirements. Adverse events will
1463 be prioritized for monitoring.

1464 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course
1465 of the study, consistent with the FDA “Guidance for Industry Oversight of Clinical
1466 Investigations — A Risk-Based Approach to Monitoring” (August 2013). Study conduct and
1467 monitoring will conform with 21 Code of Federal Regulations (CFR) 812.

1468 The data of most importance for monitoring at the site are participant eligibility and adverse
1469 events. Therefore, the RBM plan will focus on these areas. As much as possible, remote
1470 monitoring will be performed in real-time with on-site monitoring performed to evaluate the
1471 verity and completeness of the key site data. Elements of the RBM may include:

- 1472 • Qualification assessment, training, and certification for sites and site personnel
- 1473 • Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- 1474 • Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol
1475 review of entered data and edits, statistical monitoring, study closeout
- 1476 • On-site monitoring (site visits): source data verification, site visit report

- 1477 • Agent/Device accountability
 - 1478 • Communications with site staff
 - 1479 • Patient retention and visit completion
 - 1480 • Quality control reports
 - 1481 • Management of noncompliance
 - 1482 • Documenting monitoring activities
 - 1483 • Adverse event reporting and monitoring
- 1484 Coordinating Center representatives or their designees may visit the study facilities at any time
1485 in order to maintain current and personal knowledge of the study through review of the records,
1486 comparison with source documents, observation and discussion of the conduct and progress of
1487 the study.
- 1488 **9.4 Protocol Deviations**
- 1489 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure
1490 requirements. The noncompliance may be either on the part of the participant, the investigator,
1491 or the study site staff. As a result of deviations, corrective actions are to be developed by the site
1492 and implemented promptly.
- 1493 The site PI/study staff is responsible for knowing and adhering to their IRB requirements.
1494 Further details about the handling of protocol deviations will be included in the monitoring plan.

1495 **Chapter 10: Ethics/Protection of Human Participants**

1496 **10.1 Ethical Standard**

1497 The investigator will ensure that this study is conducted in full conformity with Regulations for
1498 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50,
1499 21 CFR Part 56, and/or the ICH E6.

1500 **10.2 Institutional Review Boards**

1501 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1502 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1503 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1504 require review and approval by the IRB before the changes are implemented to the study. All
1505 changes to the consent form will be IRB approved; a determination will be made regarding
1506 whether previously consented participants need to be re-consented.

1507 **10.3 Informed Consent Process**

1508 **10.3.1 Consent Procedures and Documentation**

1509 Informed consent is a process that is initiated prior to the individual's agreeing to participate in
1510 the study and continues throughout the individual's study participation. Extensive discussion of
1511 risks and possible benefits of participation will be provided to the participants and their families.
1512 Consent forms will be IRB-approved and the participant will be asked to read and review the
1513 document. The investigator will explain the research study to the participant and answer any
1514 questions that may arise. All participants will receive a verbal explanation in terms suited to
1515 their comprehension of the purposes, procedures, and potential risks of the study and of their
1516 rights as research participants. Participants will have the opportunity to carefully review the
1517 written consent form and ask questions prior to signing.

1518 The participants should have the opportunity to discuss the study with their surrogates or think
1519 about it prior to agreeing to participate. The participant will sign the informed consent document
1520 prior to any procedures being done specifically for the study. The participants may withdraw
1521 consent at any time throughout the course of the trial. A copy of the informed consent document
1522 will be given to the participants for their records. The rights and welfare of the participants will
1523 be protected by emphasizing to them that the quality of their medical care will not be adversely
1524 affected if they decline to participate in this study.

1525 **10.3.2 Participant and Data Confidentiality**

1526 The study monitor, other authorized representatives of the sponsor, representatives of the IRB or
1527 device company supplying study product may inspect all documents and records required to be
1528 maintained by the investigator, including but not limited to, medical records (office, clinic, or
1529 hospital) for the participants in this study. The clinical study site will permit access to such
1530 records.

JAEB CENTER FOR HEALTH RESEARCH

1531 The study participant's contact information will be securely stored at each clinical site for
1532 internal use during the study. At the end of the study, all records will continue to be kept in a
1533 secure location for as long a period as dictated by local IRB and Institutional regulations.

1534 Study participant research data, which is for purposes of statistical analysis and scientific
1535 reporting, will be transmitted to and stored at the Jaeb Center for Health Research and the
1536 University of Virginia Center for Diabetes Technology. This will not include the participant's
1537 contact or identifying information. Rather, individual participants and their research data will be
1538 identified by a unique study identification number. The study data entry and study management
1539 systems used by clinical sites and by Jaeb research staff will be secured and password protected.
1540 At the end of the study, all study databases will be de-identified and archived at Jaeb Center for
1541 Health Research and the University of Virginia Center for Diabetes Technology. Permission to
1542 transmit data will be included in the informed consent.

1543

Chapter 11: References

- 1544 1. Kovatchev, B.P., Breton, M.D., Keith-Hynes, P.T., Patek, S.D. The Diabetes Assistant
1545 (DiAs) – Unified platform for monitoring and control of blood glucose levels in diabetic
1546 patients; PCT/US12/43910, 2012.
- 1547 2. Keith Hynes, P., Guerlain, S., Mize, L.B., Hughes Karvetski, C., Khan, M., McElwee
1548 Malloy, M. & Kovatchev, B.P. DiAs user interface: A patient-centric interface for mobile
1549 artificial pancreas systems. *J Diabetes Sci Technol*, 7, 1416–1426 (2013). PMID: 24351168
- 1550 3. Place, J., Robert, A., Ben Brahim, N., Keith Hynes, P., Farret, A., Pelletier, M.J.,
1551 Buckingham, B., Breton, M., Kovatchev, B.P. & Renard, E. DiAs web monitoring: A
1552 real-time remote monitoring system designed for artificial pancreas outpatient trials. *J
1553 Diabetes Sci Technol*, 7, 1427–1435. (2013). PMID: 24351169
- 1554 4. Keith-Hynes, P., Mize, B., Robert, A., Place, J. The Diabetes Assistant: A smartphone-based
1555 system for real-time control of blood glucose. *Electronics* 2014, 3, 609-623;
1556 doi:10.3390/electronics3040609
- 1557 5. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M.
1558 Brown, S.A. Chernavvsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J.,
1559 Bruttomesso, D., Del Favero, S., Visentin, R., Filippi, A., Scotton, R., Avogaro, A. & Doyle
1560 III, F.J. Feasibility of outpatient fully integrated closed-loop control: First studies of wearable
1561 artificial pancreas. *Diabetes Care*, 36, 1851-1858 doi: 10.2337/dc12-1965 (2013). PMID:
1562 23801798, PMCID: PMC3687268
- 1563 6. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M.,
1564 Brown, S.A., Chernavvsky, D.R., Breton, M.D., Mize, L.B., Farret, A., Place, J.,
1565 Bruttomesso, D., Del Favero, S., Boscari, F., Galasso, S., Avogaro, A., Magni, L., Di Palma,
1566 F., Toffanin, C., Messori, M., Dassay, E., Doyle, F. III. Safety of outpatient closed-loop
1567 control: First randomized crossover trials of a wearable artificial pancreas. *Diabetes Care*,
1568 37, 1789-1796 doi: 10.2337/dc13-2076 (2014). PMID: 24929429, PMCID: PMC4067397
- 1569 7. DeSalvo, D., Keith-Hynes, P., Peyser, T., Place, J., Caswell, K., Wilson, D., Harris, B.,
1570 Clinton, P., Kovatchev, B.P., Buckingham, B.A. Remote glucose monitoring in camp setting
1571 reduces the risk of prolonged nocturnal hypoglycemia. *Diabetes Technol Ther*, 16, 1-7
1572 doi:10.1089/dia.2013.0139 (2013). PMID: 24168317
- 1573 8. Ly, T.T., Breton, M.D., Keith-Hynes, P., De Salvo, D., Clinton, P., Benassi, K., Mize, L.B.,
1574 Chernavvsky, D.R., Place, J., Wilson, D.M., Kovatchev, B.P., Buckingham, B.A. Overnight
1575 glucose control with an automated, unified safety system in children and adolescents with
1576 type 1 diabetes at diabetes camp. *Diabetes Care*, 37, doi: 10.2337/dc14-0147 (2014). PMID:
1577 24879841, PMCID: PMC4179507
- 1578 9. Kropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M.,
1579 Di Palma, F., Lanzola, G., Farret, A., Boscari, F., Galasso, S., Magni, P., Avogaro, A.,
1580 Keith-Hynes, P., Kovatchev, B.P., Bruttomesso, D., Cobelli, C., DeVries, J.H., Renard, E.,
1581 Magni, L., for the AP@home consortium. 2 month evening and night closed-loop glucose
1582 control in patients with Type 1 Diabetes under free-living conditions: A randomised
1583 crossover trial. *Lancet Diabetes Endocrinol*, 3(12):939-47 dx.doi.org/10.1016/S2213-
1584 8587(15)00335-6 (2015).

- 1585 10. Renard, E et al. Reduction of hyper- and hypoglycemia during two months with a wearable
1586 artificial pancreas from dinner to breakfast in patients with type 1 diabetes. 2015-A-3083-
1587 Diabetes. American Diabetes Association 75th Scientific Sessions, Boston, MA, poster
1588 940-P.
- 1589 11. Anderson, S et al. First New Year's Night on closed-loop control (CLC) at home: Case
1590 reports from a multi-center international trial of long-term 24/7 CLC. 2015-A-4763-Diabetes.
1591 American Diabetes Association 75th Scientific Sessions, Boston, MA, presentation 223-OR.
- 1592 12. Kovatchev BP. JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control. Advanced
1593 Technologies and Treatments for Diabetes (ATTD), Plenary Session, Milan, Italy, 2016.
- 1594 13. Kovatchev, B.P. Closed-loop control modalities in type 1 diabetes: Efficacy and system
1595 acceptance. Advanced Technologies and Treatments for Diabetes (ATTD), Paris, France,
1596 2015.
- 1597 14. Del Favero S. A multicenter randomized cross-over Italian pediatric summer camp: AP vs
1598 SAP in 5-8 year old children. Advanced Technologies and Treatments for Diabetes (ATTD),
1599 Plenary Session, Milan, Italy, 2016.
- 1600 15. Cherñavvsky, D. et al. Closed-loop control during extended winter-sport exercise in youth
1601 with T1DM: Results from the first AP ski camp. ATTD Data Club Session, Milan, (2016).
- 1602 16. Chernavvsky, D.R., DeBoer, M.D., Keith-Hynes, P., Mize, B., McElwee, M., Demartini, S.,
1603 Dunsmore, S.F., Wakeman, C., Kovatchev, B.P., Breton, M.D. Use of an artificial pancreas
1604 among adolescents for a missed snack bolus and an underestimated meal bolus. Pediatric
1605 Diabetes, doi:10.1111/pedi.12230 (2014). PMID: 25348683
- 1606 17. Brown, S.A., Kovatchev, B.P., Breton, M.D., Anderson, S.M., Keith-Hynes, P., Patek, S.D.,
1607 Jiang, B., Ben Brahim, N., Vereshchetin, P., Bruttomesso, D., Avogaro, A., Del Favero, S.,
1608 Boscari, F., Galasso, S., Visentin, R., Monaro, M., Cobelli, C. Multinight "bedside"
1609 closed-loop control for patients with type 1 diabetes. Diabetes Technol Ther 17(3),
1610 doi:10.1089/dia.2014.0259 (2015). PMID: 25594434, PMCID: PMC4346235
- 1611 18. Kovatchev BP, Tamborlane WV, Cefalu WT, Cobelli C. The Artificial Pancreas in 2016:
1612 A Digital Treatment Ecosystem for Diabetes. Diabetes Care 2016; 39:1123-27. PMID:
1613 27330124
- 1614 19. Del Favero S, Boscari F, Messori M, Rabbone I, Bonfanti R, Sabbion A, IaFusco D,
1615 Schiaffini R, Visentin R, Calore R, Moncada YL, Galasso S, Galderisi A, Vallone V, Di
1616 Palma F, Losiuk E1, Lanzola G1, Tinti D, Rigamonti A, Marigliano M, Zanfardino A,
1617 Rapini N, Avogaro A, Chernavvsky D, Magni L, Cobelli C, Bruttomesso D. Randomized
1618 Summer Camp Crossover Trial in 5- to 9-Year-Old Children: Outpatient Wearable Artificial
1619 Pancreas Is Feasible and Safe. Diabetes Care. 2016;39:1180-5. PMID: 27208335
- 1620 20. Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J, Visentin R, Calore R,
1621 Toffanin C, Di Palma F, Lanzola G, Galasso S, Avogaro A, Keith-Hynes P, Kovatchev BP,
1622 Del Favero S, Cobelli C, Magni L, DeVries HJ. AP@home Consortium. Day and night
1623 closed loop glucose control in patients with type 1 diabetes under free-living conditions:
1624 comparison of a single-arm, 1-month experience to results of a previously reported feasibility
1625 study of evening and night at home. Diabetes Care 2016; 39:1151-60. PMID: 27208331

- 1626 21. Anderson SM, Raghinaru D, Pinsker JE, Boscari F, Renard E, Buckingham BA, Nimri R,
1627 Doyle FJ III, Brown SA, Keith-Hynes P, Breton MD, Chernavvsky D, Bevier WC, Bradley
1628 PK, Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT,
1629 Shanmugham S, Phillip M, Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW, and
1630 Kovatchev BP. Multinational home use of closed-loop control is safe and effective.
1631 Diabetes Care 2016; 39:1143-1150. PMID: 27208316
- 1632 22. DeBoer MD, Cherñavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart
1633 rate informed artificial pancreas system enhances glycemic control during exercise in
1634 adolescents with T1D. Pediatr Diabetes. 2016; doi: 10.1111/pedi.12454. PMID: 27734563
- 1635 23. Kovatchev BP, Cheng P, Anderson SM, Pinsker JE, Boscari F, Buckingham BA, Doyle FJ.
1636 III, Hood KK, Brown SA. Breton MD, Chernavvsky DR, Bevier WC, Bradley PK,
1637 Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Ly TT, Shanmugham S,
1638 Dassau E, Kollman C, Lum JW, Beck RW, for the Control to Range Study Group. Feasibility
1639 of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin
1640 Delivery. Diabetes Technol Ther 2017; 19: 18-24. doi:10.1089/dia.2016.0333. PMID:
1641 27982707
- 1642 24. DeBoer MD, Breton MD, Wakeman CA, Schertz EM, Emory EG, Robic JL, Kollar LL,
1643 Kovatchev BP, Chernavvsky DR. Performance of an Artificial Pancreas System for Young
1644 Children with Type 1 Diabetes. Diabetes Technol Ther 2017; 19, DOI:
1645 10.1089/dia.2016.0424. PMID: 28426239
- 1646 25. Breton MD, Cherñavvsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, Messer LH,
1647 Kovatchev BP, Maahs DM. Closed Loop Control During Intense Prolonged Outdoor
1648 Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. Diabetes
1649 Care 2017 Aug; dc170883. <https://doi.org/10.2337/dc17-0883>
- 1650 26. Gonder-Frederick L, Shepard J, Vajda K, Wakeman C, McElwee M, Kovatchev B:
1651 Personality traits and BG profile improvements with continuous glucose monitoring use.
1652 Diabetes 61 (Suppl 1):808-P, 2012
- 1653 27. Jackson DN, Ashton MC, Tomes JL: The six-factor model of personality: Facets from the
1654 Big Five. Personality & Individual Differences 21:391-402, 1996
- 1655 28. Clarke WL, Cox DJ, Gonder-Frederick L, Julian D, Schlundt D, Polonsky W: Reduced
1656 Awareness of Hypoglycemia in Adults With IDDM: A prospective study of hypoglycemic
1657 frequency and associated symptoms. Diabetes Care 18:517-522, 1995
- 1658 29. Gonder-Frederick LA, Schmidt KM, Vajda KA, Greear ML, Singh H, Shepard JA, Cox DJ:
1659 Psychometric properties of the hypoglycemia fear survey-ii for adults with type 1 diabetes.
1660 Diabetes Care 34:801-806, 2011
- 1661 30. Singh H, Gonder-Frederick L, Schmidt K, Ford D, Vajda K, Hawley J, Cox DJ: Assessing
1662 Hyperglycemia Avoidance in People with type 1 Diabetes. Diabetes Management 4:263-271,
1663 2014
- 1664 31. Polonsky WH, Fisher L, Hessler D, Edelman SV. Investigating Hypoglycemic Confidence in
1665 Type 1 and Type 2 Diabetes. Diabetes Technol Ther. 2017;19(2):131-6.

- 1666 32. Polonsky WH, Fisher L, Earles J, Dudl RJ, Lees J, Mullan J, Jackson RA: Assessing
1667 psychosocial distress in diabetes: development of the diabetes distress scale. *Diabetes Care*
1668 28:626-631, 2005
- 1669 33. Weissberg-Benchell J, Hessler D, Polonsky WH, Fisher L: Psychosocial Impact of the Bionic
1670 Pancreas During Summer Camp. *J Diabetes Sci Technol*, 2016