

Evaluation of a Cone-beam CT scanner for Image Guided Radiotherapy (CONFIGURE)

Evaluation of a cone-beam CT scanner for image-guided radiotherapy (CONFIGURE)

Protocol ID	VAR-2022-04
Short title	CONFIGURE
EudraCT number	N/A
Version	1.3
Date	6 March 2023
Coordinating investigator/project leader	Dr. ir. Wouter van Elmpt Dr Tanslaan 12, NL-6229 ET Maastricht wouter.vanelmpt@maastro.nl
Principal investigator	Dr. Ir. Wouter van Elmpt Maastro (Maastricht, The Netherlands)
Writing committee	Dr. Marta Bogowicz Dr. ir. Richard Canters Dr. Colien Hazelaar Dr. Vicki Trier Taasti Dr. ir. Rik Hansen Prof. Dr. Dirk De Ruysscher Dr. Karolien Verhoeven Drs. Frederik Wesseling Dr. Evert Van Limbergen Dr. Maaike Berbee
Sponsor (in Dutch: verrichter/opdrachtgever)	Varian Medical Systems 3100 Hansen Way Palo Alto, CA 94304 USA
Subsidising party	Varian Medical Systems
Independent expert	Dr. Danielle Eekers Dr Tanslaan 12, NL-6229 ET Maastricht danielle.eekers@maastro.nl
Laboratory sites <if applicable>	N/A
Pharmacy <if applicable>	N/A

PROTOCOL SIGNATURE SHEET

Name	Signature	Date
Sponsor or legal representative: <i>Sean Davidson</i> <i>Senior Clinical Research Manager</i> <i>Varian, a Siemens Healthineers Company</i>		
Principal Investigator: <i>Dr. Ir. Wouter van Elmpt</i>		

TABLE OF CONTENTS

1. INTRODUCTION AND RATIONALE.....	8
2. OBJECTIVES.....	10
3. STUDY DESIGN	10
4. STUDY POPULATION.....	10
4.1 Population (base).....	10
4.2 Inclusion criteria	10
4.3 Exclusion criteria.....	11
4.4 Sample size calculation	11
5. TREATMENT OF SUBJECTS	11
5.1 Investigational product/treatment.....	11
6. INVESTIGATIONAL PRODUCT	12
6.1 Name and description of investigational product(s).....	12
6.2 Summary of findings from non-clinical studies.....	12
6.3 Summary of findings from clinical studies	12
6.4 Summary of known and potential risks and benefits.....	12
6.5 Description and justification of route of administration and dosage	12
6.6 Dosages, dosage modifications and method of administration.....	12
6.7 Preparation and labelling of Investigational Medicinal Product.....	12
6.8 Drug accountability	12
7. NON-INVESTIGATIONAL PRODUCT	12
8. METHODS	12
8.1 Study parameters/endpoints	12
8.1.1 Main study parameter/endpoint	12
8.1.2 Secondary study parameters/endpoints	13
8.1.3 Other study parameters (if applicable).....	14
8.2 Randomisation, blinding and treatment allocation	14
8.3 Study procedures.....	14
8.4 Withdrawal of individual subjects	15
8.4.1 Specific criteria for withdrawal (if applicable).....	15
8.5 Replacement of individual subjects after withdrawal	15
8.6 Follow-up of subjects withdrawn from treatment.....	15
8.7 Premature termination of the study.....	15
9. SAFETY REPORTING.....	16
9.1 Temporary halt for reasons of subject safety.....	16
9.2 AEs, SAEs and SUSARs	16
9.2.1 Adverse events (AEs)	16
9.2.2 Serious adverse events (SAEs).....	16
9.2.3 Suspected unexpected serious adverse reactions (SUSARs).....	17
9.3 Annual safety report.....	17
9.4 Follow-up of adverse events	17
9.5 Data Safety Monitoring Board (DSMB) / Safety Committee	18

10. STATISTICAL ANALYSIS.....	18
10.1 Primary study parameter(s)	18
10.2 Secondary study parameters	18
10.3 Other study parameters	20
10.4 Interim analysis (if applicable).....	20
11. ETHICAL CONSIDERATIONS.....	20
11.1 Regulation statement.....	20
11.2 Recruitment and consent.....	20
11.3 Objection by minors or incapacitated subjects (if applicable)	21
11.4 Benefits and risks assessment, group relatedness.....	21
11.5 Compensation for injury	21
11.6 Incentives (if applicable)	22
12. ADMINISTRATIVE ASPECTS, MONITORING AND PUBLICATION	22
12.1 Handling and storage of data and documents	22
12.2 Monitoring and Quality Assurance	24
12.3 Amendments.....	24
12.4 Annual progress report	24
12.5 Temporary halt and (prematurely) end of study report	25
12.6 Public disclosure and publication policy.....	25
13. STRUCTURED RISK ANALYSIS	25
13.1 Potential issues of concern	25
13.2 Synthesis	26
14. REFERENCES.....	27

LIST OF ABBREVIATIONS AND RELEVANT DEFINITIONS

2D	Two Dimensional
ABR	General Assessment and Registration form (ABR form), the application form that is required for submission to the accredited Ethics Committee; in Dutch: <i>Algemeen Beoordelings- en Registratieformulier (ABR-formulier)</i>
AE	Adverse Event
CBCT	Cone-Beam Computed Tomography
CNR	Contrast-to-Noise Ratio
CT	Computed Tomography
DVH	Dose-Volume Histogram
DSMB	Data Safety Monitoring Board
FOV	Field Of View
HU	Hounsfield Units
IB	Investigator's Brochure
IMDD	Investigational Medicinal Product Dossier
METC	Medical research ethics committee (MREC); in Dutch: <i>medisch-ethische toetsingscommissie (METC)</i>
RT	Radiation Therapy
(N)SCLC	(Non-)Small Cell Lung Cancer
(S)AE	(Serious) Adverse Event
Sponsor	The sponsor is the party that commissions the organisation or performance of the research, for example a pharmaceutical company, academic hospital, scientific organisation or investigator. A party that provides funding for a study but does not commission it is not regarded as the sponsor, but referred to as a subsidising party.
SUSAR	Suspected Unexpected Serious Adverse Reaction
WMO	Medical Research Involving Human Subjects Act; in Dutch: <i>Wet Medisch-wetenschappelijk Onderzoek met Mensen</i>

1 **SUMMARY**

2 **Rationale:** A novel cone-beam computerized tomography (CT) imaging system has been
3 developed for image-guided radiotherapy. This new system can acquire cone-beam CT
4 (CBCT) images faster than previous systems. Furthermore, the new system has demonstrated
5 increased image quality, resolution and Hounsfield Unit (HU) accuracy in phantom images
6 compared to previous cone-beam CT systems. This CBCT system opens new possibilities for
7 use of CBCT images in various radiotherapy tasks for which previous CBCT images were not
8 optimal. Specifically, the use of CBCT images for delineation of anatomical structures,
9 radiotherapy treatment planning and radiation treatment dose calculation is limited with current
10 on-board imaging technology. The improved image quality of the new system will be evaluated
11 in a broad clinical setting and patient population with respect to its suitability for tumour and
12 organ delineation, image-guided radiotherapy and radiation dosimetry for patients receiving
13 external beam photon radiotherapy.

14 **Objective:** The main objective of this study is to evaluate the image quality of a new cone-
15 beam CT imaging system that will be used to acquire images of a wide selection of anatomical
16 locations in patients receiving radiotherapy for cancer.

17 **Study design:** Single arm, non-randomized prospective study.

18 **Study population:** Patients treated with external beam photon radiotherapy at Maastro. Six
19 treatment/tumour sites will be investigated: head-and-neck, lung (stage I), lung (stage II-IV),
20 left breast, pelvis, and (upper) abdomen. A total of 40 subjects distributed over the various
21 anatomical sites will be enrolled with at least 5 subjects per treatment site.

22 **Intervention:** One additional imaging session with 1-2 additional CBCT image acquisitions will
23 be performed using the novel cone-beam CT imaging device. The acquired images will not be
24 used in any way to change the patient's treatment.

25 **Main study parameters/endpoints:** *Primary objective:* Qualitative comparison of the image
26 quality of the novel cone-beam CT imaging system to standard cone-beam CT imaging and
27 conventional fan beam CT imaging used for radiotherapy planning purposes.

28 *Secondary objectives:* Evaluation of the suitability of the novel CBCT images for radiation
29 treatment planning and dose calculation. Qualitative assessments of novel CBCT vs. standard
30 (cone-beam) CT images.

31 **Nature and extent of the burden and risks associated with participation, benefit and**
32 **group relatedness:** There is no direct benefit expected for the individual patients who
33 participate in this study. Additional imaging is performed on the novel cone-beam CT imaging
34 device using x-rays. Additional radiation exposure resulting from the two additional CBCT
35 images acquired for this study is a small fraction (<0.1%) of the radiation received during a
36 subject's standard radiotherapy treatment. Collected data will not be used for clinical decision
37 making.

38

39 1. INTRODUCTION AND RATIONALE

40 Radiotherapy is administered to 40-50% of patients receiving treatment for cancer making it a
41 standard treatment modality for a large number of patients. The radiation can be administered
42 with high precision to the tumour while minimizing dose to the surrounding healthy tissue.
43 Patient-specific radiation dosimetry plans are generated for patients receiving radiotherapy. A
44 treatment planning fan-beam computed tomography (CT) scan is acquired using dedicated
45 equipment (e.g., flat tabletop, laser-alignment based patient positioning, and dedicated CT
46 scan protocols calibrated for radiotherapy purposes). Both the target (tumour) and the
47 surrounding normal organs and tissues (so-called organs at risk) are delineated on the
48 treatment planning CT, which forms the basis of an individualized treatment plan for each
49 patient. Calibration of the treatment planning CT allows radiation doses to be calculated based
50 on the CT Hounsfield numbers.

51
52 Radiation therapy is typically delivered in 25-35 daily treatments, or “fractions”, over the course
53 of 5-7 weeks. Before every fraction of radiation treatment, images are acquired with the patient
54 on the treatment table to ensure correct patient positioning and set-up (i.e., alignment with the
55 patient position and set-up on the treatment planning CT). Daily images are acquired using
56 imaging systems integrated with the treatment device (linear accelerator) [Jaffray 2012].
57 Typical on-board imaging systems produce either orthogonal 2D x-ray images or cone-beam
58 CT (CBCT) images, the quality of which has historically been less than that of the treatment
59 planning CT.

60
61 A novel cone-beam CT imaging system has recently been developed specifically for image-
62 guided radiotherapy (Halcyon 4.0, developed by Varian, a Siemens Healthineers company).
63 The new CBCT imaging system has the potential to optimize the image guidance workflow and
64 increase the efficiency of the radiotherapy workflow. This new imaging system can acquire
65 cone-beam CT images faster (i.e., by a factor of 3-6) than conventional CBCT systems and
66 has a larger imaging panel resulting in an increased field-of-view (FOV). Image quality and
67 Hounsfield Unit accuracy have increased compared to previous cone-beam CT image guided
68 systems, as determined by evaluation of images acquired of phantoms. Furthermore,
69 improvements have been made to the reconstruction algorithms used to convert the x-ray
70 projections collected at multiple rotation angles around the patient into a 3D image volume.
71 The updated algorithms may reduce artefacts due to both motion and due to the presence of
72 metal implants.

73
74 The improved image quality of the new CBCT imaging system may allow the use of CBCT
75 images for radiotherapy purposes for which standard CBCT images are not appropriate.
76 Specifically, the use of high-quality CBCT images may enable the anatomic contouring
77 required for radiotherapy treatment planning and the Hounsfield unit accuracy for radiation
78 treatment dose calculation [Giacometti 2020]. This would represent a considerable advance
79 over the CBCT technology currently integrated with treatment machines. High-quality CBCT

80 images would open possibilities for adaptive radiotherapy and streamlined palliative treatment
81 workflows [Glide-Hurst 2021]. The quality of the CBCT images from this new system will be
82 evaluated in a clinical setting.

83
84 This study will evaluate the image quality and Hounsfield Unit accuracy of the new CBCT
85 images, which is necessary to determine the accuracy of radiation dose calculation based on
86 those images. Images of tumours at multiple anatomical locations (head-and-neck, lung (stage
87 I), lung (stage II-IV), left breast, pelvis, and (upper) abdomen) will be acquired and analysed.
88 In addition to the quantitative metrics, images from each anatomical location will be evaluated
89 using different qualitative metrics since higher quality CBCT images may offer different
90 advantages for different anatomical locations.

91
92 For head-and-neck images, the expected improvement in visualisation of soft tissue contrast
93 between the tumour, lymph nodes and various organs-at-risk (possibly combined with the
94 reduction of image artefacts caused by metal, e.g., dental implants), together with an extended
95 field of view in both axial and cranial-caudal directions, could allow for the omission of a repeat
96 CT scan that is regularly needed in this patient population for mid-treatment replanning to
97 account for significant changes in the patient anatomy. A CBCT could be captured for
98 treatment replanning purposes without the patient leaving the treatment room and without
99 requiring an additional patient visit.

100
101 For images of the thorax, visualisation of small lesions, such as stage I (non-)small cell lung
102 cancer ((N)SCLC), is sometimes difficult in current clinical practice because of the presence
103 of motion artifacts due to breathing. The faster image acquisition of the novel CBCT system
104 (approx. 6 seconds) should allow imaging in a single breath hold for most patients, which
105 should reduce motion artifacts and improve image quality. Also, for lower lobe tumours close
106 to the diaphragm (where diaphragmatic motion compromises image quality), the new CBCT
107 images may provide better visualisation than in current technology for image-guidance.

108
109 For advanced stage lung cancer (Stage II-IV), a poor contrast-to-noise ratio (CNR) in the
110 mediastinal region currently hampers proper identification of anatomical structures of interest
111 (e.g., heart, lymph nodes). Improved image quality with improved CNR properties may improve
112 image-guidance procedures for thoracic tumours.

113
114 For breast cancer patients, who may have large (nodal) areas that need to be treated, the
115 visualisation of these (nodal) areas on current CBCT systems is hampered by (residual)
116 breathing motion during a breath hold. Also, metal hardware (e.g., surgical clips, expanders)
117 introduce artifacts in the standard CBCT images. The increased FOV, faster image acquisition
118 and newer metal artifact reduction strategies of the novel CBCT system may overcome these
119 problems and improve visualisation.

120
121 For the pelvic and (upper) abdominal regions, various tumour sites may be eligible (e.g.,
122 bladder, liver, stomach, cervical, prostate, anal and rectal cancer) for inclusion in this study. In

123 all these tumour sites, artifacts may occur with standard CBCT imaging systems due to long
124 (e.g., 30-60 seconds) CBCT imaging acquisition times. Regions with air-tissue interfaces such
125 as the stomach, intestines, and rectum are known to cause image artifacts with standard CBCT
126 systems. Faster image acquisition with the novel CBCT system (approx. 6 seconds) reduces
127 the likelihood of (residual) motion during the scan. Improved soft-tissue characterisation may
128 improve visualization of individual structures in this anatomical region. Furthermore, metal
129 artifact reduction strategies of the novel CBCT system may improve visualization of structures
130 in the pelvis in patients with hip implants, which lead to severely decreased image quality in
131 standard CBCT images.

132

133 **2. OBJECTIVES**

134 *Primary Objective:*

135 • Describe the differences in quality of CBCT images acquired with the novel cone-beam
136 CT imaging system to the quality of standard cone-beam CT images used for image-
137 guidance and to that of conventional CT images used for radiotherapy planning
138 purposes.

139

140 *Secondary Objectives:*

141 • Evaluate the suitability of the novel CBCT images for radiation dose calculation.
142 • Obtain qualitative assessments of novel CBCT vs. standard cone-beam CT images (if
143 available) from the perspectives of radiation oncologists and radiation therapists for the
144 use of the CBCT images in image guidance and planning.
145 • Obtain qualitative assessments of breath hold CBCT vs. free breathing cone-beam CT
146 images (for patients receiving a breath hold and a free breathing CBCT) or of fast CBCT
147 acquisition vs. slow CBCT acquisition (for patients receiving a 6-second and a 60-
148 second CBCT) for the use of the CBCT images in image guidance and planning.

149

150 **3. STUDY DESIGN**

151 Single arm, non-randomized, prospective study.

152

153 **4. STUDY POPULATION**

154

155 **4.1 Population (base)**

156 The population being investigated are patients referred to Maastro for external beam
157 photon radiation treatment.

158

159 **4.2 Inclusion criteria**

160 In order to be eligible to participate in this study, a subject must meet all of the following
161 criteria:

- 162 - The patient will be treated with external beam photon radiotherapy at Maastro for head-
163 and-neck cancer, stage I lung cancer, stage II-IV lung cancer, left breast cancer, or
164 tumours in the abdominal or pelvic region.
- 165 - Age \geq 18 years

166 - Ability to understand the requirements of the study and to give written informed consent,
167 as determined by the treating physician
168 - Provision of written informed consent

169

170 **4.3 Exclusion criteria**

171 A potential subject who meets any of the following criteria will be excluded from
172 participation in this study:

173 - Patient is pregnant

174

175 **4.4 Sample size calculation**

176 This study is being performed to generate initial quality and suitability assessments for a
177 novel cone beam CT imaging system. The study design does not involve any intervention
178 in the subject's cancer care.

179

180 Endpoints are based on the comparison of image quality produced by the novel cone-beam
181 CT imaging system to that of standard cone-beam CT imaging and to conventional CT
182 images used for radiotherapy planning purposes. Image quality is determined from
183 Contrast-to-Noise Ratio (CNR) for a Region of Interest (ROI) and a Reference (REF). The
184 specific ROI and REF depend on the tumour site that is scanned (see Chapter 10.1).
185 Therefore, the expected mean difference and variation for CNR are unclear up front and
186 no single assumption for a minimum difference and standard error can be selected. The
187 sample size calculation will be based on effect size of the CNR for a paired samples T-
188 Test. With this method, no assumptions have to be made on the exact difference and
189 variation. 40 subjects will be enrolled with a minimum of 5 patients per each of the six target
190 anatomical locations (head-and-neck, stage I lung cancer, stage II-IV lung cancer, left
191 breast, pelvic and abdomen), which will provide sufficient data for initial assessments to be
192 performed in each anatomical location. A sample of 40 patients is sufficient to determine
193 differences between means for related samples with an effect size of 0.45. This is between
194 a small and medium effect size [Cohen 1988]. In order to attain sufficient variability in
195 patient shape, size and distribution of anatomical structures, a minimum of 5 patients per
196 each of the six target areas (head-and-neck, stage I lung cancer, stage II-IV lung cancer,
197 left breast, pelvic and abdomen) will be included in the study.

198

199 **5. TREATMENT OF SUBJECTS**

200 Not applicable as no treatment of patients will be delivered on the new Halcyon 4.0 system.
201 Patients will receive regular treatment in Maastro using the standard clinical equipment and
202 procedures.

203

204 **5.1 Investigational product/treatment**

205 An investigational product is used (see Chapter 6), no treatments are performed using the
206 investigational product.

207 **6. INVESTIGATIONAL PRODUCT**

208

209 **6.1 Name and description of investigational product(s)**

210 Halcyon 4.0

211

212 **6.2 Summary of findings from non-clinical studies**213 No pre-clinical (animal) testing of the novel CBCT imaging system was performed because
214 it is standard practice to verify dose and image quality using head and body phantoms.
215 Information about the pre-clinical testing for safety and conformity is presented in Section
216 6 (Product verification and validation) of the Investigational Medicinal Product Dossier
217 (IMDD) checklist, which is attached to this clinical trial protocol.

218

219 **6.3 Summary of findings from clinical studies**

220 There are no results or findings from clinical studies currently available.

221

222 **6.4 Summary of known and potential risks and benefits**223 Information about the benefit-risk analysis and the risk management for the novel CBCT
224 imaging system is provided in Section 5 (Benefit-risk analysis and risk management) of the
225 Investigational Medicinal Product Dossier (IMDD) checklist, which is attached to this clinical
226 trial protocol.

227

228 **6.5 Description and justification of route of administration and dosage**

229 Not Applicable.

230

231 **6.6 Dosages, dosage modifications and method of administration**

232 Not applicable.

233

234 **6.7 Preparation and labelling of Investigational Medicinal Product**

235 Not Applicable.

236

237 **6.8 Drug accountability**

238 Not applicable.

239

240 **7. NON-INVESTIGATIONAL PRODUCT**

241 Not applicable.

242

243 **8. METHODS**

244

245 **8.1 Study parameters/endpoints**

246

247 **8.1.1 Main study parameter/endpoint**248 Primary objective: Describe the differences in image quality produced by the novel
249 cone-beam CT imaging system to the quality of standard cone-beam CT imaging and
250 to that of conventional CT images used for radiotherapy planning purposes. For this

251 objective, the image contrast-to-noise ratio (CNR) will be evaluated. CNR is frequently
252 used to measure image quality.

8.1.2 Secondary study parameters/endpoints

Secondary objective: Evaluate the suitability of the novel CBCT images for radiation dose calculation.

For this objective, targets and organs at risk will be delineated on the novel CBCT images acquired for each subject. The treatment plan created for the patient on the planning CT scan will be registered to the novel cone-beam CT dataset, the dose will be recalculated on the standard CBCT (if available) as well as the novel cone-beam CT. The delineations of target and OARs will either be copied, deformed or manually delineated on the CBCT images, the radiotherapy dose metrics for specific structures relevant for the anatomical site that is imaged will be compared to dose metrics from the original treatment plan.

Secondary objective: Qualitative assessment of novel CBCT vs. standard cone-beam CT imaging system by radiation oncologists and therapists.

Qualitative assessment of the novel CBCT images will be obtained by presenting individual novel CBCT images as well as head-to-head comparisons of novel and standard CBCT images from the same patient. At least 2 radiation oncologists and 2 radiation therapists will be asked to rank the suitability of the images for image guided radiotherapy and for treatment planning on a 5-point Likert scale, with specific assessments for each of the anatomical locations included in the study:

- Head and neck: contrast between tumour and organs at risk; sufficiency of imaging volume, reduction in metal artifacts (where applicable)
- Lung cancer (stage I): Identification and delineation of the tumour
- Lung cancer (stage II-IV): Identification of structures of interest in the mediastinal region (organs-at-risk, primary tumour and possible involved lymph nodes).
- Left breast cancer: Identification and delineation of structures of interest; sufficiency of imaging volume; reduction in metal artifacts (where applicable).
- Abdominal cancers: Identification and delineation of structures of interest; reduction in air/tissue interface artifacts.
- Pelvic cancers: Identification and delineation of structures of interest; reduction in air/tissue interface artifacts; reduction in metal artifacts (where applicable).

Secondary objective: Qualitative assessment will be performed for the patient categories receiving 2 different novel CBCT imaging modes. Stage II-IV lung cancer patients stage (II-IV) receive a 60 seconds free breathing CBCT acquisition and a 6 seconds breath hold CBCT acquisition. Breast, stage I lung cancer stage I and abdominal cancer patients receive a 6 seconds breath hold and a 6 seconds free-breathing CBCT acquisition. A head-to-head comparison of image quality between the 2 modes of novel CBCT image acquisition will also be performed. At least 2 radiation oncologists and 2 radiation therapists will be asked to rank the suitability of

294 the images for RT image guidance and for treatment planning on a 5-point Likert
295 scale, with specific assessments for each of the anatomical locations included in the
296 study (as defined in previous secondary endpoint).

297
298 In all analyses where a novel CBCT is compared to a standard CBCT, the standard
299 CBCT will be taken from the subject's radiation treatment fraction that was delivered
300 on the same day as the novel CBCT image acquisition. Therefore, the only additional
301 imaging is the novel CBCT.

302
303 **8.1.3 Other study parameters (if applicable)**
304 Not applicable

305
306 **8.2 Randomisation, blinding and treatment allocation**

307 No randomisation will be performed.

308
309 **8.3 Study procedures**

310 Patients will be recruited from the standard radiotherapy population. Patients will be asked
311 to undergo an additional imaging session on the novel cone-beam CT imaging system
312 during which 1 or 2 additional CBCT images will be acquired. The additional imaging
313 session will be performed on one of the subject's standard treatment days to limit additional
314 travel and burden on the patients.

315
316 The exact technical details of the additional imaging session depend on the anatomical
317 region to be investigated, as described below.

318
319 For head-and-neck patients: one additional extended cone-beam CT scan will be
320 performed. The extended CBCT consists of (typically 2) sequential cone-beam CT scans
321 that are automatically stitched together to create a full field-of-view of the treated region.

322
323 For stage I lung cancer patients: two additional cone-beam CT scans will be acquired. The
324 first cone-beam CT scan will be performed under conditions of free-breathing. An additional
325 cone-beam CT scan will be acquired with the subject performing a breath hold.

326
327 For stage II-IV lung cancer patients: two additional cone-beam CT scans will be acquired.
328 Both cone-beam CT scans will be performed under conditions of free-breathing. The first
329 cone-beam CT will be a fast (6 second) cone-beam CT. The second CBCT will be a slow
330 scan (approximately 60 seconds in duration) that will be used to evaluate novel motion
331 compensation algorithms.

332
333 For left breast cancer patients: one additional breath hold cone-beam CT scan will be
334 acquired.

336 For pelvic cancer patients: one additional cone-beam CT scan will be acquired under
337 conditions of free breathing.

338

339 For abdominal cancer patients: two additional cone-beam CT scans will be acquired. The
340 first cone-beam CT scan will be performed under conditions of free-breathing. An additional
341 cone-beam CT scan will be acquired with the subject performing a breath hold.

342

343 All cone-beam CT scans will be acquired using the vendor-supplied default imaging mode
344 for the anatomical region being imaged.

345

346 **8.4 Withdrawal of individual subjects**

347 Subjects can withdraw from the study at any time for any reason if they wish to do so. The
348 decision to withdraw from the study will not result in any consequences for the subject. The
349 investigator can decide to withdraw a subject from the study if the investigator decides that
350 continuation in the study may be harmful to the subject. Data collected until the time of
351 withdrawal will be used for analysis, unless the patient requests that the data is destroyed.

352

353 **8.4.1 Specific criteria for withdrawal (if applicable)**

354 Not applicable

355

356 **8.5 Replacement of individual subjects after withdrawal**

357 Subjects who withdraw before their novel CBCT imaging session has occurred will be
358 replaced by new subjects as long as the inclusion numbers are not exceeded.

359

360 **8.6 Follow-up of subjects withdrawn from treatment**

361 No follow-up is foreseen after withdrawal.

362

363 **8.7 Premature termination of the study**

364 Premature termination of the study will occur if:

- 365 - The approval of the competent medical ethics review committee that assessed the
366 research is irrevocably withdrawn;
- 367 - It appears that the continuation of the research cannot serve a scientific purpose, and
368 this is confirmed by the medical ethics review committee that had given a positive
369 assessment of the research;
- 370 - The principal investigator is no longer able to perform the duties of the principal
371 investigator, and no substitute can be found by mutual consent.
- 372 - The Sponsor decides to end the study early.
- 373 - It can be reasonably concluded that the study must be terminated in the interests of the
374 health of the study subjects.
- 375 - The Sponsor and/or the Institution become or are declared insolvent or a petition in
376 bankruptcy has been filed against one of them or if one of them is dissolved
- 377 - Circumstances beyond a party's control occur that render continuation of the study
378 unreasonable.

379 - One of the parties fails to comply with the obligations arising from the CTA and, if
380 capable of remedy, is not remedied within 30 days after receipt of written notice from
381 the other party specifying the non-compliance and requiring its remedy, unless failure
382 to comply is not in reasonable proportion to the premature termination of the study.
383

384 **9. SAFETY REPORTING**

386 **9.1 Temporary halt for reasons of subject safety**

387 In accordance with section 10, subsection 4, of the WMO, the sponsor will suspend the
388 study if there is sufficient grounds to believe that continuation of the study will jeopardise
389 subject health or safety. The sponsor will notify the accredited METC without undue delay
390 of a temporary halt, including the reason for such an action. The study will be suspended
391 pending a further positive decision by the accredited METC. The investigator will ensure
392 that all subjects are kept informed.

394 **9.2 AEs, SAEs and SUSARs**

396 **9.2.1 Adverse events (AEs)**

397 An adverse event, per ISO 14155:2020, is any untoward medical occurrence,
398 unintended disease or injury, or untoward clinical signs (including abnormal laboratory
399 findings) in subjects, users or other persons, whether or not related to the
400 investigational medical device and whether anticipated or unanticipated.

402 All adverse events that are reported spontaneously by the subject or observed by the
403 investigator or his staff, and that the investigator judges to be possibly, probably or
404 definitely related to the acquisition of the novel CBCT images will be recorded in the
405 study database.

407 **9.2.2 Serious adverse events (SAEs)**

408 A serious adverse event, per the CCMO, is any untoward medical occurrence or effect
409 that results in:

- 410 a) death;
- 411 b) serious deterioration in the health of the subject, users, or other persons as
412 defined by one or more of the following:
 - 413 1) a life-threatening illness or injury (at the time of the event), or
 - 414 2) a permanent impairment of a body structure or a body function including
415 chronic diseases, or
 - 416 3) in-patient or prolonged hospitalization, or
 - 417 4) medical or surgical intervention to prevent life-threatening illness or injury,
418 or permanent impairment to a body structure or a body function,
- 419 c) foetal distress, foetal death, a congenital abnormality, or birth defect including
420 physical or mental impairment.

421 d) any other important medical event that did not result in any of the outcomes listed
422 above due to medical or surgical intervention but could have been based upon
423 appropriate judgement by the investigator.

424
425 Items a), b), and c) are aligned with the ISO 14155:2020 definition of a Serious
426 Adverse Event.

427
428 Note that planned hospitalization for a pre-existing condition, or a procedure required
429 by this protocol without serious deterioration in health, is not considered a serious
430 adverse event.

431
432 Study staff are required to notify the Principal Investigator of any serious adverse
433 event (SAE) experienced by a subject while that subject is enrolled in the study.
434 SAEs that the investigator judges as possibly, probably or definitely related to the
435 acquisition of a novel CBCT image must be reported to the study sponsor within 24
436 hours of becoming aware of the event.

437
438 Sponsor contact for AE reporting:

439 Sean Davidson

440 Phone: +1 (437) 991-8294

441 Email: sean.davidson@varian.com

442
443 The local principal investigator or an authorized delegate will report the SAE to the
444 sponsor within 24 hours delay after obtaining knowledge of the event. The local
445 principal investigator or an authorized delegate will report the SAEs through the web
446 portal *ToetsingOnline* to the accredited METC that approved the protocol. An initial
447 notification of SAEs that result in death or are life threatening will be made within 7
448 days of first learning about the SAE, with a complete preliminary report submitted
449 within at most an additional 8 days. All other SAEs will be reported within a period of
450 at most 15 days after the local investigator has first knowledge of the serious adverse
451 events.

452
453 **9.2.3 Suspected unexpected serious adverse reactions (SUSARs)**

454 Not applicable

455
456 **9.3 Annual safety report**

457 The sponsor will submit, once a year throughout the clinical trial, or as part of the final report
458 if the trial takes less than a year to complete, a safety report to the accredited METC.

459
460 **9.4 Follow-up of adverse events**

461 All AEs will be followed until they have abated, or until a stable situation has been reached.
462 Depending on the event, follow up may require additional tests or medical procedures as
463 indicated, and/or referral to the general physician or a medical specialist. Recording of AEs

464 is required during the period that a subject participates in the study. A subject's participation
465 ends with the additional novel CBCT acquisitions.

466

467 **9.5 Data Safety Monitoring Board (DSMB) / Safety Committee**

468 A DSMB or safety committee is not deemed applicable for this study.

469

470 **10. STATISTICAL ANALYSIS**

471

472 Analysis will include all patients that provided informed consent and completed the novel cone
473 beam CT imaging. In general, analyses will depend upon the type of data. Categorical data
474 will be described using proportions and 95% confidence interval and differences will be tested
475 using Chi-square analyses. Means, standard deviations and 95% confidence interval will be
476 calculated for continuous parameters which are normally distributed and differences will be
477 analysed using T-tests or analysis of variance. In case variables violate the normality
478 distribution, medians, interquartile range, minimum and maximum will be reported and the
479 appropriate non-parametric alternative for T-tests and analysis of variance will be used.

480

481 **10.1 Primary study parameter(s)**

482 Primary objective: Describe the differences in image quality produced by the novel cone-
483 beam CT imaging system to the quality of standard cone-beam CT imaging and to that of
484 conventional CT images used for radiotherapy planning purposes. To quantify image
485 contrast-to-noise ratio (CNR) every image acquired for each subject will be analysed.
486 Contrast-to-noise ratio (CNR) will be quantified using the following equation:

487

$$488 \text{CNR} = (|\langle \text{HU}_{\text{ROI}} \rangle - \langle \text{HU}_{\text{REF}} \rangle|) / (\text{SD}_{\text{ROI}}^2 + \text{SD}_{\text{REF}}^2)^{0.5}$$

489

490 where $\langle \text{HU}_{\text{ROI}} \rangle$ and $\langle \text{HU}_{\text{REF}} \rangle$ are the mean Hounsfield Units (HU) in a region of interest
491 and referenced (background) region, respectively, with SD_{ROI} and SD_{REF} the corresponding
492 standard deviations of the HU values in those regions.

493 The ROI and REF are defined for every tumour site individually. For the head-and-neck
494 cohort this will be the tumour region (ROI) and a proximal muscle tissue for reference
495 (REF). For lung cancer (both stage I and II-IV), the gross tumor volume will be defined as
496 ROI, and a proximal muscle or fat tissue will serve as the reference (REF). For the left-
497 sided breast cancer, the breast tissue is the ROI, with a proximal muscle or fat tissue as
498 the reference. For abdominal and pelvic case, the tumour volume is the ROI, with a
499 proximal muscle or fat tissue

500 Difference in CNR will be tested using a paired samples T-Test for which the hypothesis is
501 that there is a difference in CNR between the novel CBCT imaging system and standard
502 cone-beam CT/conventional planning CT imaging. A p-value lower than 0.05 (Bonferroni
503 corrected p-value lower than 0.025) will be assumed to be statistically significant.

504

505 **10.2 Secondary study parameters**

506 Secondary objective: Evaluate the suitability of the novel CBCT images for radiation dose
507 calculation. For this objective, targets and organs at risk will be delineated or propagated

508 from the planning CT scan on the standard CBCT and novel CBCT images acquired for
509 each subject. The treatment plan created for the patient on the planning CT scan will be
510 registered to both the CBCT acquired during the standard treatment of the patient (if
511 available) and the novel cone-beam CT dataset. The dose will be recalculated on the
512 standard CBCT and the novel cone-beam CT and the radiotherapy dose metrics for specific
513 structures relevant for the imaged tumour location will be compared to dose metrics from
514 the original treatment plan. The standard CBCT will be taken from the patients' radiation
515 treatment fraction delivered on the same day (if available) as the novel CBCT image
516 acquisition. Dose Volume Histogram (DVH) parameters will be extracted using the
517 commercially available treatment planning system (Varian Eclipse).

518

519 **Secondary objective:** Qualitative assessment of novel CBCT vs. standard cone-beam CT
520 imaging system from radiation oncologists and therapists. Qualitative assessment of the
521 novel CBCT images will be obtained by presenting individual novel CBCT images as well
522 as head-to-head comparisons of novel and standard CBCT images from the same patient
523 (if available). At least 2 radiation oncologists and 2 radiation therapists will be asked to rank
524 the suitability of the images for RT image guidance and for treatment planning on a 5-point
525 Likert scale, with specific assessments for each of the anatomical locations included in the
526 study.

527

528 Besides a rating of the image quality in terms of overall quality impression, specific
529 questions will be tailored for the different anatomical areas:

530 - Head and neck: contrast between tumour and organs at risk; sufficiency of imaging
531 volume; reduction of artifacts (e.g., due to dental fillings), where applicable.

532 - Lung cancer (stage I): Identification and delineation of the tumour

533 - Lung cancer (stage II-IV): Identification of structures of interest in the mediastinal region
534 (organs-at-risk, primary tumour and possible involved lymph nodes).

535 - Left breast cancer: Identification and delineation of structures of interest; sufficiency of
536 imaging volume; reduction in metal artifacts (where applicable).

537 - Abdominal cancers: Identification and delineation of structures of interest; reduction in
538 air/tissue interface artifacts.

539 - Pelvic cancers: Identification and delineation of structures of interest; reduction in
540 air/tissue interface artifacts; reduction in metal artifacts (where applicable).

541

542 **Secondary objective:** Qualitative assessment will be performed for the patient categories
543 receiving 2 different novel CBCT imaging modes. Stage II-IV lung cancer patients stage
544 receive a 60 seconds free breathing and a 6 seconds breath hold CBCT acquisition. Breast,
545 stage I lung cancer and abdominal cancer patients receive a 6 seconds breath hold and 6
546 seconds free-breathing CBCT acquisition. A head-to-head comparison of image quality
547 between the 2 modes of novel CBCT image acquisition will also be performed. At least 2
548 radiation oncologists and 2 radiation therapists will be asked to rank the suitability of the
549 images for RT image guidance and for treatment planning on a 5-point Likert scale, with
550 specific assessments for each of the anatomical locations included in the study (as defined

551 in previous secondary endpoint). No statistical tests are planned for these secondary
552 endpoints. Comparisons will be based on descriptive statistics and calculation of 95%
553 confidence intervals.

554

555 **10.3 Other study parameters**

556 Not applicable.

557

558 **10.4 Interim analysis (if applicable)**

559 Not applicable.

560

561 **11. ETHICAL CONSIDERATIONS**

562

563 **11.1 Regulation statement**

564 The study will be conducted according to the principles of the Declaration of Helsinki
565 (version date 19th October 2013), in accordance with the Medical Research Involving
566 Human Subjects Act (WMO) and in accordance with the Medical Device Regulation (EU)
567 2017/745 (MDR, article 82).

568

569 **11.2 Recruitment and consent**

570 Potential participants will be identified by the Trial Physician Assistant (TPA), a process
571 that is embedded in the standard clinical patient workflow at Maastro. When a patient is
572 identified as a potential participant and meets all inclusion and exclusion criteria, the
573 treating physician will inform the patient about the study and will provide the patient with
574 the written patient information and informed consent that has been prepared and approved
575 for the study. The treating physician will give the patient a brief explanation of the study ask
576 the patient for permission to contact them about the study.

577

578 Informed Consent procedure will be conducted conforming Article 63 of the MDR. If the
579 patient agrees to be contacted about the study, the TPA will provide the patient with
580 additional information about the clinical trial and will answer any questions the patient may
581 have. If the patient will not visit Maastro before the start of the study, the TPA will provide
582 the patient with all the information and will answer questions the patient may have by
583 phone. If, after reading the written patient information and informed consent, the patient
584 has additional questions, the patient can contact the TPA who informed the patient about
585 the study. The patient can also contact the independent physician for this study with their
586 questions. The contact details for all these persons are included in the informed consent
587 document that is provided to the patient.

588

589 The recruitment will take place at Maastro. The patient will have at least 3 days of time to
590 consider participation in the trial, however a period much longer than 3 days will interfere
591 with normal clinical workflows and risk delaying urgently needed treatment. Therefore, the
592 subject will be contacted after 3 days by the TPA. The TPA will ensure that the patient
593 understands the content of the study, that all the patient's questions are answered, and the
594 patient is willing to participate in the study. The TPA will verify whether the patient

595 understands what participation in the trial entails by asking them to repeat in their own
596 words what the participation means. If the patient decides to participate in the trial, they will
597 give verbal consent to plan the additional scan. Prior to this scan, an appointment will be
598 planned for the patient and TPA to discuss any questions of the patients regarding the trial
599 and to sign the Informed Consent form. The participant must personally sign and date the
600 latest approved version of the Informed Consent form before any trial specific procedures
601 are performed.

602

603 The written and verbal versions of the Participant Information and Informed Consent that
604 are presented to the participants will detail no less than: the exact nature of the trial; what
605 participation in the trial will involve for the participant; the implications and constraints of
606 the protocol and any risks involved in taking part. It will be clearly stated that the participant
607 is free to withdraw from the trial at any time for any reason without prejudice to future care,
608 and with no obligation to give the reason for withdrawal.

609

610 Written Informed Consent will then be obtained by means of a dated participant signature
611 and a dated signature of the person who presented and obtained the Informed Consent.
612 The TPA will, together with the clinical trial coordinator, ensure that the informed consent
613 is correctly and fully signed and dated by the participant and included in the study
614 documentation at the research department of Maastro before any study-related procedures
615 take place. The person who obtains the consent must be suitably qualified and experienced
616 and have been authorized to do so by the Principal Investigator. The participant will also
617 receive an original of the signed informed consent form. The signed form will be retained
618 at the trial site.

619

620 **11.3 Objection by minors or incapacitated subjects (if applicable)**

621 Not applicable.

622

623 **11.4 Benefits and risks assessment, group relatedness**

624 Additional imaging is performed on the novel cone-beam CT imaging device using x-rays.
625 There is no direct benefit for the individual patients. Additional radiation exposure is only a
626 small fraction (<0.1%) of the radiation received during their standard radiotherapy
627 treatment. Collected data will not be used for clinical decision making. If the novel CBCT
628 images provide new information that may lead to improved treatment, the findings will be
629 communicated to the treating physician but need verification using standard imaging
630 procedures.

631

632 **11.5 Compensation for injury**

633 The sponsor has a liability insurance which is in accordance with article 7 of the WMO. The
634 sponsor (also) has a clinical trial insurance which is in accordance with the legal
635 requirements in the Netherlands (Article 7 WMO). This insurance provides coverage for
636 damage to research subjects through injury or death caused by participation in the study.
637 The insurance applies to the damage that becomes apparent during the study or within 4
638 years after the end of the study.

639

11.6 Incentives (if applicable)640
641 Not applicable.

642

12. ADMINISTRATIVE ASPECTS, MONITORING AND PUBLICATION

643

Data processing Varian-Maastro is described within the CTA; various precautions regarding the protection of patient privacy are included in; only deidentified (pseudonymized) information will be shared with Varian and legal arrangements are in place using Standard Contractual Clauses for GDPR describing the details of the data processing, transfer and storage of data using encryption methods, rules and roles of MAASTRO and Varian personnel handling the data including user authentication and training, logging and auditing of access.

644

12.1 Handling and storage of data and documents

645

A study ID will be attributed to each patient registered in the trial consisting of a sequential inclusion number (i.e. H4GN-MAAS-###). This code will identify the patient and must be included on all case report forms. All data in the study database will be linked to a study ID. Information that could directly identify a patient will not be entered in the database. The study ID will be attributed by Clinical Trial Office (CTO) Maastro. The link between the participant study IDs and their name, unique patient identifier, or other identifying information will be accessible only to delegated Maastro clinical site personnel and will be stored in a secure location at Maastro with limited access. Any paper documents (e.g., worksheets) used in the collection of study data will also be securely stored at the site. Study data will be stored for 15 years on a protected server at Maastro and Varian. The IGJ (Inspectie Gezondheidszorg en Jeugd) and monitors have permission to check all data documents, which will be obtained by CTO Maastro based on the codes for the included patients.

646

When the participant has signed the informed consent, the participant has given permission that the collected data can be used to answer the research questions of this trial. The patient will be asked to give additional permission for storing and using the data for 15 years for future research projects that are related to CT imaging in cancer patients.

647

Patient data will be used in accordance with the EU General Data Protection Regulation and the Dutch Act on Implementation of the General Data Protection Regulation, for transfer to Varian (USA based company) dedicated Standard Contractual Clauses ensuring compliance with the EU 2016/679 regulations. Patient data and/or patient material can only leave Maastro in coded form.

648

Data collected for this study will consist of:

- Case report form data.
- Image data and radiation planning data (target and organ at risk contours, treatment plans, calculated radiation dose distributions).

649

683 *Case report form data*
684
685 Case report form data will include
686 • Basic demographic data (age at consent, sex)
687 • Information about the anatomical region and type of cancer being imaged
688 • Medical information relevant to the interpretation of medical images (e.g., the
689 presence of metal implants)
690 • Information about the acquisition of the images (date, time, imaging parameters)
691 that are collected for the study
692 • Information about any adverse events or device issues related to the study
693
694 Case report form data will be stored in an electronic database provided by a third-party
695 vendor that is contracted by the Sponsor. The database vendor (Cloudbyz) has built their
696 system on top of the Salesforce platform. Study data will be stored in a secure Salesforce
697 data centre located in the United States. All data are encrypted in transit and any data value
698 that can potentially contain personal participant information will be encrypted at rest.
699
700 Maastro site personnel who have been delegated responsibility for study data management
701 will be specified on the delegation log and trained by Varian on the study database prior to
702 receiving access to it. Maastro site personnel will access study data via a secure web portal
703 (Cloudbyz Investigator Portal). Individual login credentials (username and password) are
704 provided to each person who will be responsible for data entry. All access and all changes
705 to study data are recorded in an audit log.
706
707 Sponsor personnel with responsibilities related to the study will have read-only access to
708 study data. Sponsor access is also linked to individual credentials and requires two-factor
709 authentication. All access to the study database (clinical site and sponsor) is role-based,
710 with permissions defined by a user's role.
711
712 *Imaging and radiation planning data*
713 The image files collected for the study analyses (novel CBCTs, standard CBCTs and
714 standard CTs used for radiation treatment planning) and the radiation treatment plan data
715 (dose, plan and structure set files) used for the dosimetry analyses, will be exported from
716 the system(s) where they are generated and de-identified. All identifying information will be
717 removed from the image file headers and the patient ID will be replaced with the study ID
718 so that the images can be linked to the correct case report form data and so that images
719 from the same participant can be compared.
720
721 Maastro site personnel will upload the de-identified image and radiation treatment plan data
722 generated in this study to a Varian-hosted SharePoint that is physically located in the
723 United States. Access to the SharePoint will be provided via unique web links that are tied
724 to an individual's institutional email address and verified through access codes sent to that
725 email address. Access to the SharePoint will be granted only to site personnel who have

726 been delegated authorization by the Principal Investigator to manage study data and who
727 have received specific training on SharePoint uploads. Only sponsor personnel with
728 responsibilities related to the study will have access to the de-identified data once it has
729 been uploaded. Sponsor personnel will perform periodic checks of the data that have been
730 uploaded to ensure that it does not contain any identifying information.

731
732 Varian personnel will upload de-identified image data from Varian's SharePoint to MeVis
733 Online Academy to conduct the qualitative image assessments specified in this protocol.
734 The MeVis software will be configured to present individual CBCTs or head-to-head
735 comparisons of CBCTs from the same participant to observers (radiation oncologists and
736 radiation therapists). Observers access MeVis Online Academy using individual login
737 credentials and can only see imaging "cases" that are assigned to their account. Sponsor
738 personnel are responsible for managing observer accounts and assigning "cases". The
739 observers will be able to rank the suitability of CBCTs for image guidance and dosimetry
740 planning by answering questions presented by the MeVis software. Only image data will be
741 presented to the observers via MeVis Online Academy (no header information is displayed).
742 Image data will be stored in the MeVis database (physically located in Germany) only long
743 enough for all observers to perform their assessments; image data will be deleted from the
744 MeVis database once the qualitative assessments specified in the protocol are complete.

745
746 **12.2 Monitoring and Quality Assurance**
747 Regular reviews of case report form data will be performed by the Sponsor Clinical
748 Research Manager or Clinical Data Manager. Data queries will be issued directly from
749 within the study database by sponsor personnel. Maastro clinical site personnel can
750 respond to those queries via the Investigator Portal to the study database.

751
752 Monitoring of the study data will be performed onsite on behalf of the sponsor by qualified
753 Maastro monitoring personnel from the Maastro Clinical Trial Office. Maastro monitors will
754 be individuals who are not directly involved in conducting the study. The focus of monitoring
755 activities will be to ensure the rights of the participants are respected, to ensure the study
756 is conducted according to Good Clinical Practice and according to this protocol, and to
757 ensure accurate data collection. Further details will be provided by a Monitoring Plan
758 drafted by the Sponsor.

759
760 **12.3 Amendments**
761 Amendments are changes that are made to the research after a favourable opinion by the
762 accredited METC has been given. All amendments will be communicated to the METC that
763 provided the favourable opinion of the research.

764
765 **12.4 Annual progress report**
766 The sponsor will submit a summary of the progress of the trial to the accredited METC once
767 a year. Information will be provided on the date of inclusion of the first subject, numbers of
768 subjects included and numbers of subjects that have completed the trial, serious adverse
769 events/serious adverse reactions, other problems, and amendments.

770

12.5 Temporary halt and (prematurely) end of study report

771

The sponsor will notify the accredited METC within eight weeks of the end of the study, which is defined as the last participant's novel CBCT imaging session. The sponsor will notify the METC immediately of a temporary halt of the study, including the reason of such an action. In case the study is ended prematurely, the sponsor will notify the accredited METC within 15 days, including the reasons for the premature termination.

772

773

774

775

776

777

Within one year after the end of the study, the investigator/sponsor will submit a final study report with the results of the study, including any publications/abstracts of the study, to the accredited METC.

778

779

780

781

12.6 Public disclosure and publication policy

782

783

784

785

786

The results of the study, whatever they may be, will be presented at international scientific conference(s) and published in peer-reviewed scientific journals by either the clinical site or the sponsor. This will be done in accordance with the CCMO guidelines with regard to publication of research results.

787

788

789

790

791

792

793

794

795

796

Agreements made in the research contract (Chapter 11) with regard to the 'publication conditions' prevail over the statement(s) made in the research protocol. However, Maastro and Varian have agreed on a policy concerning publication. The publishing party will provide the reviewing party with a proposed publication. The reviewing party will respond within 30 days. When reviewing a proposed publication submitted by the clinical site, Varian may comment on the scientific content of the publication, may make suggestions to improve the clarity of the publication, may request the removal of Varian's confidential information and may request a postponement of publication to allow time to protect proprietary information.

797

798

13. STRUCTURED RISK ANALYSIS

799

800

13.1 Potential issues of concern

801

802

A full risk analysis of the novel CBCT imaging system has been performed and information about the residual risks can be found in Section 5 of the IMDD checklist.

803

804

805

806

807

808

809

810

811

812

The additional risks to study participants related to their participation in the study include the small amount of additional ionizing radiation received from the extra 1-2 novel CBCT images acquired during this study. As mentioned previously in this document, the amount of additional radiation is very small compared to the radiation doses these participants are receiving for their cancer treatment. The additional dose received from acquisition of a novel CBCT is equivalent to the dose received from a standard CBCT acquisition, which is performed at least once every treatment fraction in standard care. The additional dose from the novel CBCT is unlikely to result in additional harm to the participants.

813 Participation in the trial also includes additional risk of a privacy breach created by the
814 collection of data for the study. This risk will be minimized by collecting only the minimum
815 amount of data required to conduct the analyses specified in this study, by linking study
816 data to study IDs and removing any information that could directly identify the subject, and
817 by restricting access to the study data to those individuals with defined responsibilities in
818 conducting the study.

819
820 The mechanism of action of CBCT imaging is well understood and there are no adverse
821 effects expected from 1-2 additional CBCT images. A search of international medical
822 device databases shows no recalls or serious adverse events within the last four years that
823 are related to previous versions of the CBCT imaging system and radiation treatment
824 platform, indicating that the system has a strong safety record. The new imaging system
825 has been characterized as much as possible through the use of standardized phantoms.
826 The purpose of this study is to evaluate the suitability of the images in a clinical setting,
827 which requires acquiring images of human patients who are being treated with radiation
828 therapy.

829
830 **13.2 Synthesis**
831 The results from this study have the potential to benefit future patients undergoing radiation
832 treatment for cancer or other malignant conditions. Participation in the study is not expected
833 to result in direct benefits to the participants. The higher image quality that is anticipated in
834 the novel CBCT imaging system may result in findings that may improve a participant's
835 treatment but such findings must be confirmed by conventional imaging; no clinical
836 decisions will be made from the novel CBCTs acquired during this study.

837
838 The residual risks from the novel imaging system and the risks from participation in the
839 study are low and have been reduced as low as reasonably achievable. On balance, the
840 benefits from the study outweigh the risks.

841 **14. REFERENCES**

842

843 [Jaffray 2012] Jaffray D. *Image-guided radiotherapy: from current concept to future*
844 *perspectives*. Nat Rev Clin Oncol 2012 Dec;9(12):688-99.

845

846 [Glide-Hurst 2021] Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, Parker W,
847 Doemer A, Rong Y, Kishan AU, Benedict SH, Li XA, Erickson BA, Sohn JW, Xiao Y, Wuthrich
848 E. *Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A*
849 *State of the ART Review From NRG Oncology*. Int J Radiat Oncol Biol Phys. 2021; Mar
850 15;109(4):1054-1075.

851

852 [Giacometti 2020] Giacometti V, Hounsell AR, McGarry CK. *A review of dose calculation*
853 *approaches with cone beam CT in photon and proton therapy*, Phys Med 2020 Aug;76:243-
854 276.

855

856 [Cohen 1998] Cohen, Jacob. *Statistical Power Analysis for the Behavioral Sciences*. Lawrence
857 Erlbaum Associates. 1988. Hillsdale, New Jersey