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Abstract 
 
Tuberculosis is the world’s second leading cause of death from a single infectious agent in 2022, 

after COVID-19 [1]. In 2022, TB disease was estimated to affect 10.6 million people, from which 1.3 

million dead because of it, despite the WHO adoption of the End TB Strategy [1] [2]. The 

standardised therapy involves a treatment regimen of INH, RMP, PZA, EMB, for 2 months, then INH 

and RMP for at least an additional 4-7 months [3]. Even though 85% of TB cases are successfully 

treated, significant morbidity from treatment-related adverse events, such as hepatotoxicity, skin 

reactions, gastrointestinal, and neurological disorders, reduces the efficacy of therapy [4] [5] [6]. In 

11% of patients receiving INH, RMP, and PZA in combination, hepatotoxicity is the most frequent 

adverse effect that results in drug discontinuation [5] [7] [8]. One of the most prevalent subtypes of 

idiosyncratic hepatotoxicity is caused by anti-TB drugs [4] [9] [10]. Numerous variables, including the 

features of the specific cohort, the drug regimens used, the employed threshold to define 

hepatotoxicity, and the monitoring and reporting procedures, influence the incidence of anti-TB drug-

induced hepatotoxicity. Overall, 5%–28% of patients receiving anti-TB drugs have experienced 

hepatotoxicity associated with the drug [4] [10]. It is difficult to determine how many of these fit the 

recent international consensus definition of DILI [9]. The majority of reports have defined 

hepatotoxicity as an elevated level of AST or ALT that is three times the ULN when symptoms (such 

as abdominal pain, nausea, vomiting, unexplained fatigue, or jaundice) are present, or five times the 

ULN when symptoms are absent [5]. Up to 20% of patients receiving INH as monotherapy or 

combination therapy for TB may experience a transient, asymptomatic elevation in liver enzymes; 

however, it usually resolves without drug discontinuation [11] [12] [13]. ATDH may manifest as 

asymptomatic elevations in liver enzymes or even as fulminant liver failure [5] [14]. In accordance to 

these results, the most commonly observed DILI pattern is the hepatocellular one [15]. Anti-TB drugs 

related hepatotoxicity is of great concern not only because of its frequency but also because of its 

severity and outcome. The median interval between starting a course of anti-TB treatment and the 

onset of clinical symptoms is 16 weeks (range 6 weeks-6 months) [16] [17] [18]. Despite decades of 

use and a large number of patients exposed to anti-TB drugs worldwide, the pathogenesis underlying 
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hepatotoxicity remains poorly understood. Further research investigating drug-related, host genetic, 

and environmental factors associated with susceptibility to hepatotoxicity, as well as additional 

studies searching for potential mechanisms leading to DILI, may be able to help clinicians develop 

strategies that reduce the incidence of hepatotoxicity and other adverse effects. 
 

Risk factors associated with hepatotoxicity 
 

Factors Associated with Drug 
 

Since most patients receive a combination of medications during their anti-TB therapy, it can be 

difficult to estimate the incidence of hepatotoxicity caused by individual agents. INH, RMP, and PZA 

are known to cause hepatotoxicity, whereas EMB is not thought to be hepatotoxic. Low risk of DILI 

has been shown by studies where RMP has been used alone in the treatment of TB infection [19] 

[20]. The most commonly reported drug associated with liver toxicity is INH [21]. According to four 

large population-based observational studies, the incidence of INH hepatotoxicity ranges from 0.1% 

to 0.56% when used as monotherapy to treat TB infections [16] [22]. A review based on FDA data 

estimated that 23.2 deaths per 100,000 patients receiving prophylactic therapy based on INH have 

occurred [23]. In a meta-analysis, INH was more likely to be associated with hepatotoxicity (odds 

ratio, OR 1.6), even in the absence of RMP [24]. However, when compared to each drug alone, the 

combination of these two was associated to a higher rate of hepatotoxicity (OR 2.6) [24]. The risk of 

hepatotoxicity has not been demonstrated to be higher for daily dosing regimens than for regimens 

that are administered three times a week [25]. 
 

Drug Biotransformation, Detoxification, and Elimination 
 

Reactive metabolites formation has been associated with several types of clinical toxicities, including 

some of those classified as idiosyncratic DILI [26]. In general, reactive metabolites are electrophiles, 

and, to escape detoxification, they interact with nucleophilic groups located on cellular proteins, 

especially at the level of lysine and cysteine [27]. Immune-mediated injury can also result from the 

production of reactive metabolites following covalent protein binding [28]. Cellular proteins with 
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covalent modifications should be degraded or repaired: failure of these processes results in the 

manifestation of target organ injury due to drug-metabolite adduct formation that compromises 

important cellular functions. An elevated concentration or an enhanced activity of the enzymes 

catalysing the biotransformation of a drug into a reactive metabolite may increase the level of 

reactive metabolites formation in an individual. Generally, these are phase I CYP450 enzymes 

involved in oxidation, reduction, or hydrolysis. Another reason of drug toxicity may be ascribed to 

low concentrations or reduced activity of those enzymes required to detoxify reactive metabolites. 

Generally, detoxification occurs through the processes of acetylation, sulfation, glucuronidation, or 

glutathione conjugation, which are mediated by phase II enzymes. Water soluble metabolites are 

excreted into bile or in the systemic circulation with the contribution of transporter molecules or 

proteins, which mediate phase III of drug disposition. Since the majority of first-line anti-TB drugs are 

lipophilic, they need to be biotransformed into water soluble compounds before being eliminated. 

Rather than being the direct result of the parent drug's action, hepatotoxicity seems to be related to 

the production and accumulation of reactive metabolites [29] [30]. 
 

Isoniazid 
 

INH is primarily metabolised in the liver. NAT2 and the microsomal enzyme CYP2E1 are the principal 

enzymes involved in INH metabolic pathway and therefore they are crucial in determining the 

greatest risk of hepatotoxicity. NAT2 converts INH to acetyl isoniazid, followed by hydrolysis to acetyl 

hydrazine. This latter could be oxidised by CYP2E1 to produce N-hydroxy acetyl hydrazine, which 

then undergoes additional dehydration to produce acetyl diazine. Acetyl diazine can be a toxic 

metabolite in and of itself, or it may breakdown into reactive acetyl radicals, acetyl onium ions, and 

ketene, which, in turn, can covalently bind to hepatic macromolecules and cause injury to the liver. 

Additionally, acetyl hydrazine is further acetylated by NAT2 to produce nontoxic diacetyl hydrazine 

[31] [32]. Thus, mono acetyl hydrazine and the parent compound accumulate as a consequence of 

slow acetylation [33]. INH itself further inhibits the acetylation of acetyl hydrazine. Furthermore, the 

production of hydrazine through direct hydrolysis of INH without acetylation increases the risk of liver 

injury [34], as observed in slow acetylators which show ten-fold increased INH metabolism through 



 

Version: 1.0 / 16 November 2023 
 

this pathway, especially when combined with rifampicin [35]. The human hepatic NAT2 enzyme 

exhibits a highly polymorphic nature. One or more wild-type, referred to as NAT2*4, alleles are 

associated with rapid acetylator status, whereas slow acetylators are characterised by the presence 

of any two of several variant alleles [36]. By in vitro experiments, it has been observed that 

acetylation activity gradually decreases according to the presence of a specific allelic variant, in the 

following order: NAT2*4 > NAT2*7 > NAT2*6 > NAT2*5 [37]. Genetic polymorphisms in metabolism 

account for 88% of the drug's PK variability, with a linear relationship between isoniazid clearance 

and number of high-activity NAT2 alleles [38] [39]. Due to the reduced metabolism, slow acetylators 

show higher plasma levels and lower drug clearance than rapid acetylators [40] [41] [42]. In several 

studies [43] [44] [45] [46] [47], NAT2 slow acetylator profiles (or two slow NAT2 alleles) have been 

associated with an increased risk of hepatotoxicity/liver injury/hepatitis caused by anti-TB drug 

treatment when compared to rapid acetylators. Due to the existence of common loss of function 

polymorphisms in NAT2 and the important contribution of acetylation to INH metabolism, there have 

been a large number of studies examining these variants as INH-induced hepatotoxicity risk factors 

in tuberculosis patients [48] [49] [50]. With an overall OR ranging from 1.59 to 6.42 and, although 

the risk varied depending on the specific genotypic definition of slow acetylation and the population 

under study, at least four meta-analyses, including a significant number of cases, have concluded 

that slow acetylators have an increased risk of DILI [46] [49] [51] [52] [53] [54]. Furthermore, slow 

acetylators were more likely to experience severe hepatotoxicity, with respect to rapid acetylators. 

In particular, compared to other genotypes, NAT2*6/6 and NAT2*6/7 variants are associated to 

reduced enzymatic activity and significantly higher risk of liver injury. In accordance with many 

candidate gene studies in several ethnic groups, a recent GWAS identified NAT2 as the most 

important risk factor for ATDH in the Thai population [55]. Based on available data, it appears that 

reactive metabolites are the cause of INH hepatotoxicity. Several studies on the mechanism of INH 

hepatotoxicity have highlighted the role of immune-mediated idiosyncrasy, described as the 

mechanism of the liver's adaptive responses to INH, and the heterogeneity of the clinical picture of 

INH hepatotoxicity [56] [57].  
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Rifampicin 
 

After oral administration on an empty stomach, RMP is rapidly and completely absorbed. In the liver, 

RMP is metabolised into desacetyl rifampicin by desacetylation [58] [59], and a separate pathway of 

hydrolysis produces 3-formyl rifampicin [59] [60]. The metabolic derivative, desacetylrifampicin, is 

more polar than the parent compound, and microbiologically active. This metabolite is indeed 

responsible for the majority of the antibacterial activity in the bile. RMP is almost equally excreted in 

bile and urine, with recovery rates on the same order of magnitude. All RMP metabolites are non-

toxic, however, RMP is considered able to induce hepatocellular patterns of DILI and to increase 

toxicity of other anti-TB drugs, like INH [58] [59] [61]. RMP is known as the activator of PXR, a ligand-

activated transcription factor that plays a crucial role in the metabolism of xenobiotics and 

endobiotics in mammals [58] [62]. Indeed, PXR regulates the expression of drug-metabolising 

enzymes and transporters, as well as genes involved in endobiotic metabolism, by binding to its DNA 

response elements. In particular, PXR positively influences the expression of the major Phase I 

enzymes, CYP450s. Via PXR, RMP induces several metabolic enzyme pathways, particularly the 

CYP3A4 system [63] [64]. CYP3A4 activation produces, indeed, an increased metabolism of INH, 

resulting in toxic metabolites, therefore explaining the anti-TB drug induced hepatotoxicity of RMP. 

When used in combination with INH, RMP also induces INH hydrolysis, leading to increased 

hydrazine production, and increasing its toxicity, especially for slow acetylators [35]. 

Pyrazinamide 
 

PZA is an analogue of nicotinamide, which is a vitamin B3 (nicotinic acid, also called niacin) 

precursor. PZA is mainly metabolised in the liver by amidase, which converts PZA to PA [65]. XO 

further oxidises PA to 5-OH-PA [66] [67]. Alternatively, PZA can be hydrolysed by amidase to form 

5-OH-PA, after first being oxidised by XO to 5-OH-PZA. Moreover, trace amounts of pyrazinuric acid 

can be produced when PA and glycine conjugate. Kidney excretion is the primary route of elimination 

for PZA and its metabolites [68] [69]. PZA has a longer half-life than both INH and RMP; moreover, 

it has been observed that PZA half-life increases, when taken with other drugs that inhibit XO, such 

as allopurinol, and in presence of an underlying liver disease [68] [69]. The extent of PZA 
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hepatotoxicity is associated with its hepatic metabolism, suggesting a direct toxic effect rather than 

an immunological or hypersensitive response [5] [69] [70]. PZA hepatotoxicity is also dose-

dependent, particularly at daily doses exceeding 40 mg/kg. In murine models, PZA inhibited CYP450 

activity [71] and changed NAD levels [72], leading to free radical species-mediated hepatotoxicity.  

Fluoroquinolones 
 

According to current WHO guidelines, fluoroquinolones are the most valuable second line anti-TB 

agents in case of multi-drug resistant TB and hepatotoxicity from first line agents [73]. Quinolones 

are either excreted unaltered by the kidneys (for example, levofloxacin) or metabolised in the liver 

(such as ciprofloxacin). Except for trovafloxacin, which is currently withdrawn, fluoroquinolone-

induced hepatotoxicity is extremely rare and can only be identified by extensive research or 

international pharmacovigilance reporting [74]. There have been isolated reports of ciprofloxacin, 

levofloxacin, and gatifloxacin-related severe hepatotoxicity [75]  [76], and hypersensitivity reactions, 

which are frequently associated to peripheral eosinophilia and fever, are assumed to be the cause 

of hepatotoxicity [77]. When fluoroquinolones were administered to patients with underlying chronic 

liver disease whose hepatitis was brought on by first-line anti-TB drugs, there was no further 

hepatotoxicity [78]. It has been also observed that ofloxacin is safe and effective when used in 

patients who already have liver diseases [79]. 

Factors Associated with Hosts 
 

Several risk factors for the development of hepatotoxicity have been suggested from a multitude of 

studies, but robust conclusion cannot be drawn due to significant variations in study design, cohort 

size and case definition. 

Age 
 

A correlation between age and a higher risk of DILI has been traced. Age over 60 has been 

associated to a 3.5-fold increased risk of DILI in a study involving 519 patients receiving standard 

anti-TB drugs [80]. In another study with 430 patients, the incidence of pyrazinamide-related adverse 

events, such as DILI, was 2.6 times greater in over 60 individuals [78]. Furthermore, among a cohort 
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of more than 3000 patients receiving INH monotherapy, those with 50 years of age or older showed 

a higher frequency of DILI [16]. There have also been reports of increased mortality rates associated 

with INH hepatotoxicity beyond the age of 50 [23] [29] [81]. Patients who experienced DILI with anti-

TB drugs were found to be older (39 years) in a case-control study than those who did not (32 years) 

[82]. A multivariate analysis revealed that the only independent variable that could predict anti-TB 

DILI in over 35 patients was their age, with a rate of 17% respecting a rate of 33% in patients over 

35 [83]. Moreover, advancing age is characterised by pharmacokinetic changes, including a 

reduction in renal and hepatic clearance and an increase in volume of distribution of lipid soluble 

drugs [84]. All these changes lead to a prolongation of plasma elimination half-life. In contrast, an 

older meta-analysis [24] found that children receiving INH and rifampicin had a higher incidence of 

clinical hepatitis (6.9%) than adults (2.7%). The inclusion of three small studies, each with 22–60 

patients, however, significantly contributed to the high frequency of DILI in children by reporting a 

high frequency of "clinical hepatitis" in 25–52% of all patients.  

Gender 
 

Anti-TB therapy has been shown to increase the risk of DILI in women [78] [85] [86], with a reported 

4-fold increase [87]. Females are indeed more susceptible to hepatotoxicity due to higher CYP3A 

activity [88]. Moreover, it has been observed that in the third trimester of pregnancy and in the first 

three months after giving birth, there is a trend towards an increased risk of INH hepatotoxicity [89]. 

Status of Nutrition 
 

Malnutrition is common in TB patients and has been related to an increased risk of anti-TB drugs 

hepatotoxicity [90]. According to a recent retrospective observational study [91], a highly significant 

independent risk factor for DILI is a weight loss of 2 kg or more occurring during the first 4 weeks of 

TB treatment. Given that fasting and malnutrition have an impact on cytochrome P450 enzyme 

system, TB drug detoxification is ensured by receiving adequate amounts of nutrients, therefore 

preserving liver metabolism integrity [92]. 
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Alcohol Intake 
 

Liver injury may be caused by both the direct toxicity of alcohol metabolic by-products and the 

inflammation induced by the by-products themselves. Numerous studies showed that alcohol 

extended the hepatotoxicity caused by anti-TB drugs [93] [94] [95]. Even patients receiving rifampicin 

as a preventative treatment have been shown to be at risk [96] [97].  

Concomitant Infection 
 

It has been suggested that mild inflammatory reactions caused by co-existing viral infections can 

frequently function as a "danger signal", allowing the development of early events in the 

pathophysiological process into a full-blown hepatotoxic reaction; this can be explained by the 

increased level of drug hypersensitivity in these patients [98]. Several cohorts have been examined 

to determine whether chronic infections other than tuberculosis raise DILI risk during anti-TB therapy. 

The risks of drug- and virus-induced hepatitis were significantly higher in patients with high initial 

viral load than those with low initial viral load and those without viral hepatitis (39% vs 10.5% of HBV 

patients and 33% vs 16.7% of HCV patients, p<0.001) [99]. This study has also demonstrated a 

direct correlation between the viral load at the onset of anti-TB therapy and the severity of 

hepatotoxicity [99]. Comparable to HBV infection, 30% of all HCV-infected patients receiving anti-

TB medication developed hepatotoxicity, whereas 11% of controls had a 5-fold relative risk of 

hepatotoxicity development and severity directly related to the viral load [100]. Additionally, there is 

a significant increased risk of hepatotoxicity from anti-TB drugs when HIV infection coexists. This 

has been observed both prior to and during the highly active HAART era. Hepatotoxicity ranged from 

4 to 15% in the pre-HAART period and from 4 to 27% in the HAART era [101]. Nevertheless, a 

number of confounding factors have been identified, including the use of intravenous drugs, 

alcoholism, viral hepatitis, hepatotoxicity due to HAART therapy, drug–drug interactions, and liver 

damage caused by immune reconstitution [101]. 
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Rationale and Aims 
 
Patient's susceptibility to DILI during treatment with anti-TB drugs is influenced by several drug- and 

host-related factors [102]. The most extensively studied potential causes of INH-induced DILI are 

related to those mechanisms. As to drug-related factors, acetylhydrazine, which is generated by 

NAT2, is widely considered as a crucial INH metabolite that contributes to INH-induced DILI. Given 

the importance of acetylation in INH metabolism, several studies have investigated into NAT2 loss 

of function polymorphisms as possible risk factors for DILI. In addition, advanced age [94], female 

gender [86], poor nutritional status [103], HBV or HCV infection [100] [104], HIV infection [78] [105], 

chronic liver disease, and alcoholism are environmental, physiological, and pathological factors 

contributing to DILI incidence. Moreover, the influencing variables differ according to racial and 

geographic characteristics. 

Studies conducted in China demonstrated that approximately one-third of DILI patients had no 

symptoms, including some cases with severe liver injury [106] [107]. It has been demonstrated that 

screening patients for risk factors is useful in preventing disease progression, improving the outcome 

of therapy, and reducing mortality. However, rapid acetylators are very common in the Chinese 

population, so they are characterised by a lower susceptibility to develop DILI. Our patient cohort is 

multi-ethnic, with a prevalence of Caucasians and so a higher frequency of slow acetylator status. 

For this reason, our objective is to corroborate the conclusions drawn by the previous studies through 

the examination of our complementary data. 

 

Outcome measures and assessments  
 
The primary outcome is to determine the association between risk factors (drug- and host-related 

factors) and the incidence of DILI.  

The primary outcome measures are the occurrence of anti-TB DILI (number of participants with DILI), 

which was defined by: 1) AST or ALT level > 5 times the ULN in patients with absence of symptoms 

or with total BIL level > 2 times the ULN, or 2) AST or ALT level > 3 time the ULN and total BIL level 

> 3 times the ULN in patients who show symptoms compatible with hepatitis. 
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The secondary outcome is to evaluate the characteristics of patients who first experienced anti-TB 

DILI. The secondary outcome measures are the prevalence of early hepatotoxicity experience. 

Methods 
 
Study design 
 

This is a retrospective observational study, no profit, to determine environmental, physiological, and 

pathological factors associated with the incidence of DILI during anti-TB treatment. Data collected 

from patients with confirmed tuberculosis, enrolled at the Department of Infectious Diseases of Luigi 

Sacco Hospital in Milan, Italy, between July 2020 and September 2023, will be analysed. Subjects 

were all followed up as outpatients at Tuberculosis Clinic at Luigi Sacco Hospital, some of them with 

previous inward stays at various hospitals in the Lombardy Region. 

Study population 
 

The following are the inclusion criteria: 1) adult patients (>18 years), 2) patient who received standard 

initial therapy including INH (5mg/kg), RMP (10mg/kg), and PZA (25mg/kg) for patients with active 

TB disease, 3) treatment with first line anti-TB drugs, including rifampicin and isoniazid for patients 

with latent TBI, 4) normal serum ALT and bilirubin levels, no symptoms related to abnormal liver 

function prior to anti-TB drug treatment and 5) informed consent. Patients with any of the following 

conditions are excluded from the study: 1) liver dysfunction, including biliary origin, before anti-TB 

therapy, 2) patients receiving non-standard treatment regimen initially (e.g., patients with severe 

pulmonary or extrapulmonary TB receiving large doses or more than four anti-TB drugs), 3) modified 

treatment regimen due to drug resistance or intolerance excluding first line anti-TB drugs, 4) lactation 

or pregnancy, 5) concomitant use of hepatotoxic drugs, 6) abnormal hepatic function on laboratory 

testing before anti-TB, 7) disease that was resistant to INH at the start of treatment or 8) patients 

refusing to sign informed consent. 

The participants were given standard anti-TB treatment in line with international guidelines (RMP 10 

mg/kg, INH 5 mg/kg), primarily administered orally, although intravenous administration was 
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employed for inpatients as needed, and modified to oral administration as soon as possible. The 

other drugs of the standard regimen included standard daily doses of PZA (15-30 mg/kg) and EMB 

(15-20 mg/kg). 

Data collection 
 

Data that will be collected include clinical, biochemical, and genotyping findings that are typically 

used in clinical practice to manage and monitor tuberculotic patients at Luigi Sacco Hospital. The 

complete list of parameters (host- and drug-related factors) is provided below:  

• Clinical data: age, weight, height, gender, ethnicity, hepatotoxicity or alcoholism, duration of anti-

TB treatment, tuberculosis site (pulmonary or extra), adverse event, concomitant infection (HIV, 

HAV, HCV, HBV), past medical history, concomitant drugs. Patient`s nutritional status was 

reported as BMI, which was calculated based on height and body weight; 

• Biochemical data: ALT, AST, GGT and BIL; 

• Laboratory data: NAT2 acetylator status. The acetylation status of patients will be assigned like 

as suggested by earlier research: 

− rapid acetylator: NAT2*4 is a wild-type allele (defined by absence of slow alleles); 

− intermediate acetylator status: carry one copy of NAT2*4 and one defective variant allele 

(NAT2*5, *6, *7, and *14); 

− slow acetylator: two copies of slow variant allele (NAT2*5, *6, *7, and *14). 

Statistical analysis 
 

Sample size calculation 
 

We are planning a study of matched sets of cases and controls with 2 matched controls per case. 

Prior data indicate that the probability of exposure among controls is 50%, and the correlation 

coefficient for exposure between matched cases and controls is -0.2 [10] [108] [109] [110] [111]. If 

the true odds ratio for disease in exposed subjects relative to unexposed subjects is 3, we will need 

to study 40 case patients with 80 matched controls to be able to reject the null hypothesis that this 
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odds ratio equals 1 with a power of 80%, assuming that the Type I error probability associated with 

the test of this null hypothesis is 5%.  

 

Parameters: Exposure in cases = 75%; Exposure in controls = 50% 

Absolute difference = 25%; Relative difference = 50%; Odds ratio = 3 

Sample sizes across range of OR and control exposure, with inputted values: 

 

Number of cases required varying ratio of controls per case, other inputs constant: 

We will use a nested case-control study design that takes into account time of events occurrence in 

sampling of controls. For each case, one or more controls are selected from the risk set at the time 

in which the event of interest occurred in the case. The risk set means the set of all individuals that 

are still “events-free” and not censored. Therefore, they are still included in the study at that time, 

thus, eligible to experience the event now observed in the case. As a consequence, individuals can 
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be sampled as controls for more than one case and, in turn, individuals sampled as controls may 

subsequently become cases. Cases and controls will be matched according to baseline variables, 

including age, sex, and BMI, and then conditional regression analysis (a type of matched statistical 

analysis) will be performed to draw associations. 

Data management 
 
All data are retrieved from the patient's medical record. Variables will be entered into the eCRF by 

site staff, who will be trained on how to use the eCRFs and capture the data required by the protocol. 

The eCRF is an electronic data entry media and should not constitute the original (or source) medical 

record. Data derived from source documents and reported in the eCRFs should be consistent with 

the source documents, or the discrepancies should be explained in these source documents. The 

investigator must complete the eCRF for each participant. The investigator’s signature on the eCRF 

will attest to their accuracy and completeness. 

Data collected from each participant will be anonymized: each subject will be assigned a unique 

code so that only the investigator will be able to identify the subject. The file associating the 

participant’s code with their identifying data will be stored separately on a password protected 

computer. The study database will be password protected and uploaded to a computer that is also 

password protected and accessible only to study personnel designated by PI. Identification of the 

data will be done in such a way that individuals accessing the database will not be able to trace the 

identity of the subjects in any way. 

The study will involve statistical calculations on collected data using literature standard methods to 

identify and correlate variables (Chi-square, Fisher's exact, Mann-Whitney U-test, conditional 

regression). The results will be published in medical journals and presented at conferences. Study 

data will be retained for 7 years starting from the study's conclusion. Data processing will be done in 

strict compliance with GDPR and any applicable national legislation.  
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Potential Benefit of the Study 
 

The data collected will provide important new perspectives on the management and prevention of 

DILI. Preventing serious hepatic failure requires early detection and prompt drug withdrawal, which 

is also a crucial step in managing adverse reactions. The diagnosis of DILI is based on the index of 

suspicion, the careful assessment of the temporal correlation between the exposure to a specific 

drug and the particular clinical event, and the exclusion of other possible diagnoses.  

For patients undergoing anti-TB treatment, hepatotoxic side effects represent significant obstacles. 

Indeed, DILI development can compromise treatment compliance, or lead to treatment interruption, 

or, again, result in disease relapse, or induce drug resistance; all these conditions will finally lead to 

treatment failure. Screening patients for risk factors is of great importance in preventing disease 

progression, improving therapeutic outcomes, and reducing mortality.  

Furthermore, patient’s re-exposure to the same drug regimen leads to DILI recurrence in 11%–30% 

of cases [112]. Compared with the initial event, DILI after rechallenge occurs more rapidly (generally 

after days or weeks) than after initial exposure [113]. DILI on rechallenge leads to jaundice in 64%, 

hospitalisation in 52%, and mortality in 13% of cases [114]. 

Combining host- and drug-related risk factors associated with the development of DILI might 

generate better tools to pre-empt or diagnose DILI, leading to better regimen tolerability and 

ultimately to a better treatment outcome. 

Study Management & Coordination 
 

PI with support from the working group's different specialists, is responsible for coordinating and 

accurately executing the study in compliance with the procedures outlined in this protocol. All study-

related documentation (including protocol, amendments, eCRF, database, partial and final reports) 

must be archived by PI. Each component of documentation will be preserved electronically. 

 

https://www.aosp.bo.it/content/hub-study-management-coordination
https://www.aosp.bo.it/content/hub-study-management-coordination
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Study Timeline  
 

The study will start after obtaining approval from the Ethical Committee. Consequently, the duration 

will be computed for a total of three months, starting from the approval of this study protocol. 

Ethical Considerations 
 

The responsible investigator will ensure that this study will be conducted in accordance with the 

protocol, following the instructions and procedures described, adhering to the principles of Good 

Clinical Practice E6 (R2) and in compliance with principles established by the 18th World Medical 

Assembly (Helsinki, 1964 and further amendments) and with the laws and regulations of the country 

in which the research will be carried out, whichever offers the greatest protection to the individual. 

The observational study and related documentation will be submitted to the relevant Ethics 

Committee. 

The study will begin only after obtaining the required authorisations, in accordance with the internal 

procedures of the institution. 
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