

1

2

3 **Probenecid as a pharmacotherapy for alcohol use disorder:**

4 **STATISTICAL ANALYSIS PLAN**

5

Carolina L. Haass-Koffler, PharmD, PhD

Brown University

121 South Main Street

Providence, RI 02903

Tel: 401-863-6624; Fax: 401-863-6697

carolina_haass-koffler@brown.edu

6

7 **October 15, 2019**

8 **Clinical trial registration:** Clinicaltrials.gov; [NCT04218357](https://clinicaltrials.gov/ct2/show/NCT04218357)

9 **IND/FDA:** 147824 Exempt, probenecid (Holder: Haass-Koffler)

10

11 **Statistical analysis plan**

12 All outcomes (primary, secondary, and others) were analyzed using an intention-to-treat (ITT) approach where
13 participant's data were included based on their *a priori* randomized code from the pharmacy and received at
14 least one dose of the study medication (probenecid or placebo) (Schulz et al., 2010). Probenecid and placebo
15 conditions were treated identically (medication administration and laboratory procedures) in a crossover design
16 (Pearce et al., 1990).

17 Outcome measures were analyzed to evaluate normal distribution. Comparisons with sociodemographic
18 and clinical characteristics, in relation to enrolled versus completer status, were performed using *t*-tests to
19 analyze continuous variables (age) and χ^2 for categorical variables (sex, race). Attrition rates between visit 1 and
20 visit 4 were examined descriptively to assess for potential bias. Logistic regression was performed to test for
21 possible bias due to period (probenecid first, then placebo and opposite conditions) or medication carryover
22 (Haass-Koffler et al., 2021). Blinding measures were tested using the Pearson χ^2 analysis. Effect size was
23 reported as Cohen *d*.

24 Alcohol pharmacokinetics parameters were analyzed using data collected from the BrAC curve using
25 confidence interval (CI 95%) and included max concentration (C_{max}) (target 0.08g/dL), time to reach C_{max} (T_{max})
26 (target 20min), and area under the curve (AUC), calculated by $\int_{t=100}^{t=0} (BrAC)dx$ (t_0 =pre-alcohol administration
27 and t_{100min} =post-alcohol administration).

28 All outcomes were assessed in real-time in the laboratory testing probenecid compared to placebo
29 condition during the alcohol administration procedure. We used a Generalized Estimating Equation (GEE) (Zeger
30 and Liang, 1986) with standard errors, and an unstructured correlation matrix with medication
31 (probenecid/placebo) and time (T_{20min} = ascending and T_{40min} =descending alcohol limb) as within-subject factors.
32 The model was specified to evaluate the main effect of medication (probenecid vs placebo) and main effect for
33 time (ascending vs descending alcohol limb). Also, the medication by time interaction was evaluated separately
34 to assess if the probenecid effect differed with descending vs. ascending limb.

35 Sex as biological variable (SABV) for all outcomes was analyzed using GEE with medication (probenecid
36 vs placebo) and time (T_{20min} = ascending and T_{40min} =descending alcohol limb) as within-subject factors. The SABV
37 model was specified to evaluate the main effect for medication (probenecid vs placebo) and sex (females vs

38 males). The medication by sex interaction assessed if the probenecid effect differed for female compared to
39 male participants.

40 *Primary and secondary outcomes.* The BAES was used to assess the stimulation (primary outcome) and
41 sedation (secondary outcome) effect of alcohol. Alcohol craving (secondary outcome) was assessed using the
42 AUQ and ACQ.

43 *Other outcomes.* Cognitive performance was assessed using two computer-based tasks: the DSST
44 (number of trials attempted, the proportion of correct responses, errors and the latency between responses)
45 (Jaeger, 2018) and the Go/no-Go (hit rate, false alarm rate, and the reaction time) (Holland and Ferner, 2017,
46 Mellanby, 1919) tasks, with an alcohol-free session inserted as covariate in the model, and tested the effect of
47 the study medications.

48 Biomarkers of inflammation were used to explore the effects of the co-administration of probenecid with
49 alcohol on pro-inflammatory (leptin, CCL2, CD40, IL-6, IL-18, IL-1 β , TNF- α) and anti-inflammatory (insulin, IL-
50 10) markers. Insulin, IL-10, IL-18, IL-6 and TNF- α had a kurtosis in excess of four; consequently, an outlier
51 analysis was performed and all outliers falling outside of ± 3 interquartile range were treated as recommended
52 (Tukey, 1962). Insulin and leptin serum levels were normalized to account for individual and sex-related
53 variability using a hormone/body mass index (BMI) ratio (Haass-Koffler et al., 2015, Haass-Koffler et al., 2016).
54 IL-1 β serum level was below the lower limit of quantification (LLOQ) and was not analyzed. Serum levels were
55 analyzed using GEE with baseline levels (visit 1: screening) inserted as a covariant in the model to test the effect
56 of study medications on analyte levels.

57 All statistical analyses were performed after participants had completed their follow-up visits and the
58 study database had been locked. All the statistical procedures were performed by IBM SPSS Statistics for
59 Windows, version 29 (IBM Corp., Armonk, NY, USA), and GraphPad Prism (v.10) was used to generate figures
60 (La Jolla, CA, USA). All statistical tests were two-tailed, and statistical significance was accepted if an alpha
61 value $p < .05$ was obtained.

62

63 **FUNDING**

64 The study was fully funded by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) 5R01 AA028982
65 (PI: Sanna) and R21 AA027614 (PI: Haass-Koffler). Dr. Haass-Koffler is also supported by the NIAAA (R01
66 AA027760). The views expressed herein are those of the authors and do not reflect the official policy or position
67 of the funding agencies.

68

69 **CONFLICT OF INTEREST**

70 CLH-K received mifepristone and matching placebo for another trial and travel support to CA to present the data
71 at the ConcepT Therapeutic Conference (September 2022) and she holds two patents for the development of
72 negative allosteric modulators targeting the stress system and one patent application on the development of a
73 compound for noradrenergic blockade. All is unrelated to this work. The other authors declare no competing
74 interests.

75

76 **DATA SHARING**

77 The data that support the findings of this study are available at the National Institute of Mental Health Data
78 Archive (NDA), Title: *Probenecid as pharmacotherapy for alcohol use disorder*, ID C3533 (PI: Haass-Koffler) and
79 will be available on April 2025.

80

81

82 **REFERENCES**

83 ALDO, P., MARUSOV, G., SVANCARA, D., DAVID, J. & MOR, G. 2016. Simple Plex™: a novel multi-analyte,
84 automated microfluidic immunoassay platform for the detection of human and mouse cytokines and
85 chemokines. Wiley Online Library.

86 BISAGA, A. & EVANS, S. M. 2006. The acute effects of gabapentin in combination with alcohol in heavy drinkers.
87 *Drug Alcohol Depend*, 83, 25-32.

88 BOGER, W. P. & STRICKLAND, S. C. 1955. PROBENECID (BENEMID): Its uses and side-effects in 2,502
89 patients. *AMA archives of internal medicine*, 95, 83-92.

90 BOHN, M. J., KRAHN, D. D. & STAehler, B. A. 1995. Development and initial validation of a measure of
91 drinking urges in abstinent alcoholics. *Alcohol Clin Exp Res*, 19, 600-6.

92 BRUZZONE, R., HORMUZDI, S. G., BARBE, M. T., HERB, A. & MONYER, H. 2003. Pannexins, a family of gap
93 junction proteins expressed in brain. *Proc Natl Acad Sci U S A*, 100, 13644-9.

94 DAHL, G. & KEANE, R. W. 2012. Pannexin: from discovery to bedside in 11+/-4 years? *Brain Res*, 1487, 150-
95 9.

96 DOHRMAN, D. P., DIAMOND, I. & GORDON, A. S. 1997. The role of the neuromodulator adenosine in alcohol's
97 actions. *Alcohol Health Res World*, 21, 136-43.

98 DOSSI, E. & ROUACH, N. 2021. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin
99 : The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling.
100 *Purinergic Signal*, 17, 533-548.

101 EVANS, S. M. & BISAGA, A. 2009. Acute interaction of baclofen in combination with alcohol in heavy social
102 drinkers. *Alcohol Clin Exp Res*, 33, 19-30.

103 FILLMORE, M. T. & WEAFER, J. 2004. Alcohol impairment of behavior in men and women. *Addiction*, 99, 1237-
104 46.

105 GILES, A., FOUSHÉE, J., LANTZ, E. & GUMINA, G. 2019. Sulfonamide Allergies. *Pharmacy (Basel)*, 7.

106 GUIDANCE, D. 2015. Alcoholism: developing drugs for treatment. *Center for Drug Evaluation and Research
(CDER)*.

107 GUIDANCE, E. 2010. Development of medicinal products for the treatment of alcohol dependence - Scientific
108 guideline. *European Medicie Agency*.

109 HAASS-KOFFLER, C. L., AKHLAGHI, F., SWIFT, R. M. & LEGGIO, L. 2017. Altering ethanol pharmacokinetics
110 to treat alcohol use disorder: Can you teach an old dog new tricks? *J Psychopharmacol*, 31, 812-818.

111 HAASS-KOFFLER, C. L., AOUN, E. G., SWIFT, R. M., DE LA MONTE, S. M., KENNA, G. A. & LEGGIO, L.
112 2015. Leptin levels are reduced by intravenous ghrelin administration and correlated with cue-induced
113 alcohol craving. *Transl Psychiatry*, 5, e646.

114 HAASS-KOFFLER, C. L., CANNELLA, N. & CICCOCIOOPPO, R. 2020a. Translational dynamics of alcohol
115 tolerance of preclinical models and human laboratory studies. *Exp Clin Psychopharmacol*, 28, 417-425.

117 HAASS-KOFFLER, C. L., GIOVENCO, D. E., LEE, M. R., ZYWIAK, W. H., DE LA MONTE, S. M., KENNA, G.
118 A., SWIFT, R. M. & LEGGIO, L. 2016. Serum Insulin Levels Are Reduced by Intravenous Ghrelin
119 Administration but Do Not Correlate with Alcohol Craving in Alcohol-Dependent Individuals. *Int J
120 Neuropsychopharmacol*, 19.

121 HAASS-KOFFLER, C. L. & KENNA, G. A. 2013. Bacchus by Caravaggio as the Visual Diagnosis of Alcohol Use
122 Disorder from the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).
123 *Front Psychiatry*, 4, 86.

124 HAASS-KOFFLER, C. L., LEGGIO, L. & KENNA, G. A. 2014. Pharmacological approaches to reducing craving
125 in patients with alcohol use disorders. *CNS Drugs*, 28, 343-60.

126 HAASS-KOFFLER, C. L. & PERCIBALLI, R. 2020. Alcohol Tolerance in Human Laboratory Studies for
127 Development of Medications to treat Alcohol Use Disorder. *Alcohol Alcohol*, 55, 129-135.

128 HAASS-KOFFLER, C. L., PERCIBALLI, R., MAGILL, M., LOCHE, A., CACCIAGLIA, R., LEGGIO, L. & SWIFT,
129 R. M. 2021. An inpatient human laboratory study assessing the safety and tolerability, pharmacokinetics,
130 and biobehavioral effect of GET 73 when co-administered with alcohol in individuals with alcohol use
131 disorder. *Psychopharmacology (Berl)*.

132 HAASS-KOFFLER, C. L., PIACENTINO, D., LI, X., LONG, V. M., LEE, M. R., SWIFT, R. M., KENNA, G. A. &
133 LEGGIO, L. 2020b. Differences in Sociodemographic and Alcohol-Related Clinical Characteristics
134 Between Treatment Seekers and Nontreatment Seekers and Their Role in Predicting Outcomes in the
135 COMBINE Study for Alcohol Use Disorder. *Alcohol Clin Exp Res*, 44, 2097-2108.

136 HAMILTON, M. 1959. The assessment of anxiety states by rating. *Br J Med Psychol*, 32, 50-5.

137 HOLLAND, M. G. & FERNER, R. E. 2017. A systematic review of the evidence for acute tolerance to alcohol -
138 the "Mellanby effect". *Clin Toxicol (Phila)*, 55, 545-556.

139 HUANG, Y., GRINSPAN, J. B., ABRAMS, C. K. & SCHERER, S. S. 2007. Pannexin1 is expressed by neurons
140 and glia but does not form functional gap junctions. *Glia*, 55, 46-56.

141 IGLESIAS, R., DAHL, G., QIU, F., SPRAY, D. C. & SCEMES, E. 2009. Pannexin 1: the molecular substrate of
142 astrocyte "hemichannels". *J Neurosci*, 29, 7092-7.

143 JAEGER, J. 2018. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in
144 Neuropsychological Testing. *J Clin Psychopharmacol*, 38, 513-519.

145 JORGENSEN, C. H., PEDERSEN, B. & TONNESEN, H. 2011. The efficacy of disulfiram for the treatment of
146 alcohol use disorder. *Alcohol Clin Exp Res*, 35, 1749-58.

147 LANNOY, S., DUKE, T., CARBIA, C., BILLIEUX, J., FONTESSE, S., DORMAL, V., GIERSKI, F., LOPEZ-
148 CANEDA, E., SULLIVAN, E. V. & MAURAGE, P. 2021. Emotional processes in binge drinking: A
149 systematic review and perspective. *Clin Psychol Rev*, 84, 101971.

150 MARCZINSKI, C. A. & FILLMORE, M. T. 2003a. Dissociative antagonistic effects of caffeine on alcohol-induced
151 impairment of behavioral control. *Exp Clin Psychopharmacol*, 11, 228-36.

152 MARCZINSKI, C. A. & FILLMORE, M. T. 2003b. Preresponse cues reduce the impairing effects of alcohol on
153 the execution and suppression of responses. *Exp Clin Psychopharmacol*, 11, 110-7.

154 MARTIN, C. S., EARLEYWINE, M., MUSTY, R. E., PERRINE, M. W. & SWIFT, R. M. 1993. Development and
155 validation of the Biphasic Alcohol Effects Scale. *Alcoholism, clinical and experimental research*, 17, 140-
156 6.

157 MC, K. S., PECK, H. M., BOCHEY, J. M., BYHAM, B. B., SCHUCHARDT, G. S. & BEYER, K. H. 1951. Benemid,
158 p-(Di-n-propylsulfamyl)-benzoic acid; toxicologic properties. *J Pharmacol Exp Ther*, 102, 208-14.

159 MELLANBY, E. 1919. *Alcohol: its absorption into and disappearance from the blood under different conditions*,
160 The University Press.

161 MOUSSEAU, M., BURMA, N. E., LEE, K. Y., LEDUC-PESSAH, H., KWOK, C. H. T., REID, A. R., O'BRIEN, M.,
162 SAGALAJEV, B., STRATTON, J. A., PATRICK, N., STEMKOWSKI, P. L., BIERNASKIE, J., ZAMPONI,
163 G. W., SALO, P., MCDougall, J. J., PRESCOTT, S. A., MATYAS, J. R. & TRANG, T. 2018. Microglial
164 pannexin-1 channel activation is a spinal determinant of joint pain. *Sci Adv*, 4, eaas9846.

165 NAM, H. W., BRUNER, R. C. & CHOI, D. S. 2013. Adenosine signaling in striatal circuits and alcohol use
166 disorders. *Mol Cells*, 36, 195-202.

167 NOSENGO, N. 2016. Can you teach old drugs new tricks? *Nature*, 534, 314-6.

168 PASCALE, L. R., DUBIN, A. & HOFFMAN, W. S. 1952. Therapeutic value of probenecid (benemid) in gout. *J
169 Am Med Assoc*, 149, 1188-94.

170 PEARCE, K., FISHER, L., DIXON, D., HERSON, J., FRANKOWSKI, R. & HEARON, M. 1990. Intention to treat
171 in clinical trials, Statistical Issues in Drug Research and Development. Edited by Pearce KE. New York,
172 Marcel Dekker.

173 REHM, J., DAWSON, D., FRICK, U., GMEL, G., ROERECKE, M., SHIELD, K. D. & GRANT, B. 2014. Burden of
174 disease associated with alcohol use disorders in the United States. *Alcohol Clin Exp Res*, 38, 1068-77.

175 ROBBINS, N., GILBERT, M., KUMAR, M., MCNAMARA, J. W., DALY, P., KOCH, S. E., CONWAY, G., EFFAT,
176 M., WOO, J. G., SADAYAPPAN, S. & RUBINSTEIN, J. 2018. Probenecid Improves Cardiac Function in
177 Patients With Heart Failure With Reduced Ejection Fraction In Vivo and Cardiomyocyte Calcium
178 Sensitivity In Vitro. *J Am Heart Assoc*, 7.

179 ROBBINS, N., KOCH, S. E., TRANTER, M. & RUBINSTEIN, J. 2012. The history and future of probenecid.
180 *Cardiovasc Toxicol*, 12, 1-9.

181 ROBERTS, A. J., HEYSER, C. J., COLE, M., GRIFFIN, P. & KOOB, G. F. 2000. Excessive ethanol drinking
182 following a history of dependence: animal model of allostasis. *Neuropsychopharmacology*, 22, 581-94.

183 RUBY, C. L., ADAMS, C. A., KNIGHT, E. J., NAM, H. W. & CHOI, D. S. 2010. An essential role for adenosine
184 signaling in alcohol abuse. *Curr Drug Abuse Rev*, 3, 163-74.

185 SAMHSA, C. F. B. H. S. A. Q. 2022. Alcohol use disorder in past year: among people aged 12 or older. *In:*
186 SAMHSA, C. F. B. H. S. A. Q. (ed.).

187 SCHULZ, K., ALTMAN, D. & MOHER, D. 2010. Consolidated Standards of Reporting Trials Group CONSORT
188 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. *Bmj*, 340, c332.

189 SELEN, A., AMIDON, G. L. & WELLING, P. G. 1982. Pharmacokinetics of probenecid following oral doses to
190 human volunteers. *J Pharm Sci*, 71, 1238-42.

191 SEO, J. H., DALAL, M. S. & CONTRERAS, J. E. 2021. Pannexin-1 Channels as Mediators of Neuroinflammation.
192 *Int J Mol Sci*, 22.

193 SILVERMAN, W., LOCOVEI, S. & DAHL, G. 2008a. Probenecid, a gout remedy, inhibits pannexin 1 channels.
194 *Am J Physiol Cell Physiol*, 295, C761-7.

195 SILVERMAN, W., LOCOVEI, S. & DAHL, G. 2008b. Probenecid, a gout remedy, inhibits pannexin 1 channels.
196 *American Journal of Physiology-Cell Physiology*, 295, C761-C767.

197 SINGLETON, E. 1995. Alcohol craving questionnaire, short-form (revised; ACQ-SF-R): background, scoring,
198 and administration. *Baltimore, MD, USA*.

199 SINGLETON, E., TIFFANY, S. & HENNINGFIELD, J. Development and validation of a new questionnaire to
200 assess craving for alcohol: problems of drug dependence. Proceeding of the 56th Annual Meeting, The
201 College on Problems of Drug Dependence. National Institute on Drug Abuse, Rockville, MD, 1994. 289.

202 SOBELL, L. C. & SOBELL, M. B. 1992. Timeline follow-back: A technique for assessing self-reported alcohol
203 consumption. *Measuring alcohol consumption: Psychosocial and biochemical methods*, 41-72.

204 SOLIMAN, P., AMAEFUNA, I., GULLY, B. & HAASS-KOFFLER, C. L. 2023. Evaluating the Readability of Online
205 Patient Facing Resources for Alcohol Use Disorder. *Alcohol*.

206 SPIELBERGER, C. D., GORSUCH, R. L. & LUSHENE, R. E. 1970. Manual for the state-trait anxiety inventory.

207 SULLIVAN, J. T., SYKORA, K., SCHNEIDERMAN, J., NARANJO, C. A. & SELLERS, E. M. 1989. Assessment
208 of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar).
209 *Br J Addict*, 84, 1353-7.

210 TUKEY, J. W. 1962. The future of data analysis. *The annals of mathematical statistics*, 33, 1-67.

211 TUNSTALL, B. J., LORRAI, I., MCCONNELL, S. A., GAZO, K. L., ZALLAR, L. J., DE GUGLIELMO, G., HOANG,
212 I., HAASS-KOFFLER, C. L., REPUNTE-CANONIGO, V., KOOB, G. F., VENDRUSCOLO, L. F. &
213 SANNA, P. P. 2019. Probenecid Reduces Alcohol Drinking in Rodents. Is Pannexin1 a Novel Therapeutic
214 Target for Alcohol Use Disorder? *Alcohol Alcohol*, 54, 497-502.

215 VERZIJL, C. L., AHLICH, E., SCHLAUCH, R. C. & RANCOURT, D. 2018. The role of craving in emotional and
216 uncontrolled eating. *Appetite*, 123, 146-151.

217 VOLPICELLI, J. R., WATSON, N. T., KING, A. C., SHERMAN, C. E. & O'BRIEN, C. P. 1995. Effect of naltrexone
218 on alcohol "high" in alcoholics. *Am J Psychiatry*, 152, 613-5.

219 ZEGER, S. L. & LIANG, K.-Y. 1986. Longitudinal data analysis for discrete and continuous outcomes. *Biometrics*,
220 121-130.

223 Figure Legends

224

225 **Figure 1 - Drug-alcohol Administration Protocol.** 90min following probenecid administration participants
226 received two drinks designed to raise the BrAC to 0.08g/dL within the next 30 min (probenecid pharmacokinetics:
227 C_{max} ~2 h). Pre-alcohol assessments were administered to monitor safety and to ensure the participant was
228 eligible to proceed with the alcohol administration procedure. A battery of physiological and psychological
229 assessments was administered to measure potential adverse events both on the alcohol ascending and
230 descending limbs. Post-alcohol assessments were administered to monitor safety prior to discharging the
231 participant. The BrAC was collected 20, 40, 60, 80, and 100 min post alcohol administration. Probenecid plasma
232 levels reflect expected pharmacokinetics. Image created with Biorender and Graphpad.

233

234 **Figure 2 – Study Design.** Visit 1: medical and psychiatric screen (ECG, blood, saliva, and urine analysis).
235 Participants (counterbalanced with visit 4) also underwent the computer-based cognitive test. Visit 2:
236 randomization, and laboratory I (single oral dose of probenecid, or placebo, and underwent an alcohol
237 challenge). After a 1-3-day washout period, participants returned to Visit 3: alternate condition and the same
238 alcohol laboratory session. Visit 4: follow-up visit and final assessments. Image created with Biorender.

239

240 **FIGURE 3 – CONSORT Diagram**

241

242 **FIGURE 4 – Alcohol pharmacokinetics and subjective response to alcohol.** Probenecid did not exert any
243 significant effect on the main pharmacokinetics of alcohol (C_{max} , T_{max} , AUC) in the: **A**) overall sample ($p's > .05$)
244 and **B**) between female and male participants ($N=34$, 50% females) ($P's > .05$). *Stimulant and sedative effect of*
245 *alcohol when co-administered with study drug.* The BAES **C**) stimulation subscale: there was no main effect of
246 medication or medication by time interaction. There was a significant main effect for time ($B_1=-6.696$; $p < .001$).
247 **D**) sedation subscale: there no main effect of medication, time, or medication by time interaction ($p > .05$). All data
248 presented as mean \pm SEM. * p (main effect); # p (interaction). All Cohen's d reported in **Supplementary, Table S1**.

249

250 **FIGURE 5 – Alcohol craving and urge.** **A**) AUQ: there was a significant main effect for medication ($B_1=-3.757$;
251 $P=.006$), medication by time interaction ($B_1=-6.111$; $p < .001$), and main effect for time ($B_1=-2.519$; $p=.002$) **B**)

252 ACQ total score: there was a significant main effect for medication ($B_1=-4.235$; $P=.005$), medication by time
253 interaction ($B_1=-4.943$; $p=.014$) and a main effect for time ($B_1=-3.643$; $P=.015$). **C**) ACQ Expectancy sub-score:
254 there was a significant a main effect for medication ($B_1=-.366$; $p=.043$) and main effect of time ($B_1=-.664$; $p<.001$).
255 **D**) ACQ Emotionality sub-score: there was a significant a main effect for medication ($B_1=-.609$; $p=.004$) sub-
256 score and medication by time interaction (ascending limb: $B_1=-.718$; $P=.008$ and descending limb: ($B_1=-.442$;
257 $p=.042$). All data presented as mean \pm SEM. * p (main effect); # p (interaction). All Cohen's d reported in
258 **Supplementary Table S2**.

259

260 **Figure 6 – Inflammatory Biomarkers. A)** Insulin: there was a main effect of sex ($B_1=1.993$; $p=.008$), but no
261 medication by sex interaction. **B)** TNF- α : there was no main effect of sex or medication. There was a significant
262 medication by sex interaction in males ($B_1=-1.350$; $p=.012$) probenecid, relative to placebo, significantly reduced
263 TNF- α serum concentrations in males but not females. * p (main effect); # p (interaction). All Cohen's d reported
264 in **Supplementary, Table S3**.

265

266 **Figure 7 – Proposed Mechanism. A) Baseline:** equilibrative nucleoside transporter type 1 (ENT1) transports
267 adenosine across the membrane according to the gradient. Pannexin 1 channels are open, releasing ATP into
268 the extracellular space. **B) Alcohol:** in the presence of alcohol, ENT1 is believed to be inhibited, leading to an
269 increase in extracellular adenosine. **C) Alcohol + Probenecid:** the introduction of probenecid inhibits pannexin 1
270 channels, decreasing extracellular ATP and potentially inhibiting the increase in extracellular adenosine
271 produced by alcohol. Image created with Biorender.

272

Table 1 – Sociodemographic and clinical characteristic of participants at baseline (N=35) Variable		M (SD)	N (%)
Sociodemographic	Sex <ul style="list-style-type: none"> • Male • Female 		17 (48.6) 18 (51.4)
	Age (years)	40 (15.7)	
	Race (N=35) <ul style="list-style-type: none"> • Black • Asian • White • Other or Multiracial 		4 (11.4) 1 (0.03) 25 (71.4) 5 (14.3) 4 (11.4)
	Ethnicity: Hispanic/Latino		
	Education <ul style="list-style-type: none"> • High School graduate • Vocational Training • College Graduate 		6 (17) 2 (6) 27 (77)
	Marital status <ul style="list-style-type: none"> • In a relationship (married, partnered, etc.) • Not in a relationship (single, never married, etc.) 		15 (43) 20 (57)
	Employment status <ul style="list-style-type: none"> • Working (full or part time) • Not currently working (retired, disable, unemployed) • Student 		20 (57) 7 (20) 8 (23)
	Family History of Drinking Questionnaire (yes to any relative)		26 (74)
	AUD Status: Structured Clinical Interview for Current DSM Disorders- 5 <ul style="list-style-type: none"> • No • Mild • Moderate • Severe 	9 12 8 6	
	Alcohol Urge (N=33)	17 (11.8)	
Alcohol and other substances use	Alcohol Craving (N=31)	33 (16.1)	
	90-day Timeline Follow Back Alcohol Use <ul style="list-style-type: none"> • Number of Drinks/Week (DPW) • Number of Drinking Days (DD) • Number of Drinks per Drinking Days (DDD) 	21.9 (23) 55.2 (32) 4.4 (2.9)	
	Other Substance Use Past Month (yes) <ul style="list-style-type: none"> • Cannabis • Tobacco 		8 (22.9) 12 (34.3)
	Currently under the care of a psychiatrist or psychologist (yes)		13 (37.1)
	Diagnosed comorbidities (Yes) <ul style="list-style-type: none"> • Depression or Bipolar Disorder • Anxiety Disorder • Attention Deficit Hyperactivity Disorder 		17 (48.6) 14 (40) 5 (14.3)
Psychiatric	Hamilton Anxiety Scale (HAM-A)	3.11 (4.107)	
	Hamilton Depression Scale (HAM-D)	2.17 (2.72)	
	Perceived Stress Scale (PSS) (N=34)	15 (7.86)	
	Self-Evaluation Questionnaire (state) (STAI-y1) (N=34)	32.67 (10.09)	
	Self-Evaluation Questionnaire (trait) (STAI-y2) (N=34)	36.28 (14.3)	
Medical	Systolic Blood Pressure (mmHg)	126.46 (16.326)	
	Diastolic Blood Pressure (mmHg)	77.60 (10.120)	
	Heart Rate (b/min)	74.74 (13.37)	
	Alanine Transaminase (ALT)	22 (13.7)	
	Aspartate Transaminase (AST)	23 (6.71)	
	Blood Urea Nitrogen (BUN)	11 (3.78)	
	Bilirubin	0.49 (0.23)	
	Creatinine	0.84 (0.18)	
	Estimated Glomerular Filtration Rate (eGFR)	101 (18)	