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1 INTRODUCTION

The Statistical Analysis Plan (SAP) was developed by DCC statisticians in collaboration with
study team leadership and NHLBI representatives. The SAP describes treatment arms, analysis
datasets, all outcomes and planned analyses, randomization procedure and algorithm, decision
thresholds and interim stopping rules, design and results of simulations to determine power and
sample size and demonstrate study operating characteristics, procedures for handling missing
data, and any other information that is essential to carry out all statistical analyses.

1.1 AngioNECTAR SAP

AngioNECTAR is a mechanistic sub-study that will utilize biospecimens collected as part of
ACTIV 4 Host Tissue and complement the clinical information obtained in our primary analysis.
This sub-study will examine the effects of study therapies on biomarkers of the Renin-
Angiotensin-Aldosterone-System. Statistical analyses associated with the AngioNECTAR sub-
study will be designed and implemented by AngioNECTAR PI D. Clark Files, MD, and Co-
Investigators Mark Chappell, PhD and Chris Schaich, PhD. A separate SAP for the
AngioNECTAR sub-study will be finalized by the AngioNECTAR investigators prior to unblinding
of the active/placebo status for sub-study participants.

1.2 SAP Approval and Revision
The SAP will be reviewed and approved by the ACTIV 4 Host Tissue stakeholders listed below
prior to the first interim analysis for any arm:

o ACTIV 4 Host Tissue Study Chair: Sean Collins, MD
e ACTIV 4 Host Tissue DCC PI: Matthew S. Shotwell, PhD
e NHLBI Statistician: James Troendle, PhD

Amendments to the SAP must also be approved by the stakeholders listed above. Amendments
must be version controlled and numbered. All revisions will be summarized briefly, including the
changes made, new version number, and the author of the changes.

2 STUDY DESIGN

21 Summary

The ACTIV 4 Host Tissue master protocol describes a common approach to studies of blinded,
placebo-controlled therapeutic approaches of host-tissue targeted therapies in hospitalized
COVID-19 patients. The Master Protocol is designed to be flexible in the number of study arms,
to have a common placebo group, and to allow for stopping and adding of new therapies, while
using a common approach to design, analysis, and implementation.

2.2 Study Arms and Pooled Placebo

The ACTIV 4 Host Tissue platform consists of multiple study arms that represent distinct drug
therapies. During the randomization process, each participant is assigned a study arm and
either the active drug or a matching placebo. The statistical analyses described herein will be
implemented separately for each study arm. However, placebo participants will be pooled
across arms. For each study arm, the placebo comparator group will consist of all placebo
participants that were eligible for that study arm at the time of randomization. A participant is
considered eligible for a study arm if assignment to that arm was a possible outcome of
randomization. Participants that decline to participate in any one or more study arms prior to
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randomization will be treated as ineligible for those arms. The randomization process is
designed to ensure balance in each active drug group versus the corresponding placebo
comparator group.

2.3 Randomization

Participants are randomized individually at enrollment using a central electronic system. The
permuted block method, with stratification by study site and study arm eligibility is used to
generate treatment assignments. An eligibility stratum is the collection of study arms for which a
participant is eligible. Stratification by site ensures balance across the active and pooled
placebo comparator groups at regular enrollment intervals at each site, thus mitigating the
impact of site heterogeneity on assessments of treatment effect. Each block contains a multiple
of m(m+1) assignments, where m is the number of study arms in the corresponding eligibility
stratum. Within each block there are an equal number of allocations across study arms and, for
each study arm, there are m active and 1 placebo assignments. For example, in the TXA127
and TRV027 eligibility stratum, each block consists of the following allocations, or multiples
thereof:

Study Arm  Placebo/Active
TXA127 Active

TXA127 Active

TXA127 Placebo
TRV027 Active

TRV027 Active

TRV027 Placebo

Thus, within each block, assignments are balanced across study arms, and the active
assignments are balanced with the pooled placebo assignments. The block size multiple is
either 1 or 2, selected uniformly at random for each block.

2.4 Blinding

For organizational purposes, the randomized assignment comprises two distinct pieces of
information: 1) study arm, and 2) active vs. placebo assignment. The study arm is not blinded,
whereas the active/placebo assignment is blinded from participants and investigators (other
than unblinded personnel as required for study operations, data quality/analysis, and safety).
Blinding will remain in place until all participants have completed the study, all data quality
monitoring is complete, and the database is locked.

3 OUTCOMES

3.1 Primary Outcome

The primary outcome for the ACTIV 4 Host Tissue platform is oxygen free days (OFD) at day
28. OFD will be calculated as the number of calendar days during the first 28 days after
randomization during which the patient was alive and not receiving supplemental oxygen
therapy. Participants who chronically used supplemental oxygen prior to their COVID-19 iliness
will be considered oxygen free when their use of supplemental oxygen does not exceed the
level of oxygen support (measured in daily L/min-h by nasal canula) used prior to COVID-19
illness. Supplemental oxygen therapy includes the following: supplemental oxygen by nasal
cannula, supplemental oxygen by face mask, high flow nasal cannula (HFNC), non-invasive
ventilation (NIV), invasive mechanical ventilation (IMV), or extracorporeal membrane
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oxygenation (ECMO). The day of randomization is defined as day 0. Starting with study day 1
(the day after randomization) and continuing for 28 days, study personnel will document
whether the participant received supplemental oxygen therapy on each day for any duration of
time. Use of supplemental oxygen at home after discharge will be assessed via telephone
follow-up calls to the participant or surrogates. OFD will be calculated as 28 minus the number
of days between and including the first and last days of supplemental oxygen use during the first
28 days after randomization. OFD will be coded as -1 for patients who died on or before study
day 28. Hence, OFD may take any integer value between -1 and 28. OFD is an ordered
categorical (i.e., ordinal) outcome that may be interpreted as a count of days. Additional details
about calculating OFDs may be found in the SAP appendix (see Appendix: Algorithm to
Compute Primary Outcome).

3.2 Secondary Outcomes

Listed below are the ACTIV 4 Host Tissue platform secondary outcomes. The “Test Order” field
indicates the order in which key secondary outcomes will be tested, using the fixed-sequence
method, to control the familywise type-I| error probability across the primary and key secondary
outcomes.

Description Type Test Order | Analysis Method
Alive and oxygen free at day 14 Binary LogR
Alive and oxygen free at day 28 Binary LogR
Alive and respiratory failure-free at day 14 | Binary LogR
Alive and respiratory failure-free at day 28 | Binary 1 LogR
Alive and free of new IMV at day 14 Binary LogR
Alive and free of new IMV at day 28 Binary LogR
Mortality in-hospital Binary LogR
Mortality at day 28 Binary 3 LogR
Mortality at day 60 Binary LogR
Mortality at day 90 Binary LogR
WHO 8-point ordinal scale at day 14 Ordinal POLR
WHO 8-point ordinal scale at day 28 Ordinal | 2 POLR
WHO 8-point ordinal scale at day 60 Ordinal POLR
Hospital-free days at day 28 Ordinal POLR
Respiratory failure-free days at day 28 Ordinal POLR
Ventilator-free days at day 28 Ordinal POLR

LogR — Logistic Regression; POLR — Proportional Odds Logistic Regression

The WHO 8-point ordinal scale is defined as most severe clinical status among the following on
the day of assessment:

Ambulatory — Not hospitalized, no limitation of activities

Ambulatory — Not hospitalized with limitation of activities or home oxygen therapy
Hospitalized Mild Disease — Hospitalized, no oxygen therapy

Hospitalized Mild Disease — Oxygen by mask or nasal prongs

Hospitalized Severe Disease — Non-invasive ventilation of high-flow oxygen
Hospitalized Severe Disease — IMV

Hospitalized Severe Disease — IMV + organ support with-vasopressors, RRT, or ECMO
Dead

Nl WN =

Alive and respiratory failure-free at day 28, the WHO 8-point ordinal scale at day 28, and
Mortality at day 28 are key secondary outcomes that will be treated as a family for testing
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purposes, even though the studies will not be adequately powered to detect anything but a very
strong treatment effect on these outcomes. A supplementary analysis to assess the evidence
that treatment lowers the risk of death in a way that is consistent with its effect on nonfatal
outcomes will be performed. A respiratory failure-free day is defined as a day alive without the
use of HFNC, NIV, IMV, or ECMO.

3.3 Safety Outcomes

Safety outcomes include the following events, assessed daily during hospitalization or
intermittently following hospital discharge. For each event, we will analyze two composite binary
outcomes: 1) the occurrence of one or more such events by the end of study day 7 and 2) the
occurrence of one or more such events by the end of study day 28.

Description Type Analysis Method
Hypotension Binary LogR
Allergic reaction, rash, or angioedema Binary LogR
Incident renal replacement therapy Binary LogR
Other PSESE Binary LogR

LogR — Logistic Regression

Hypotension is defined by low arterial blood pressure leading to either [1] initiation or increase in
vasopressor therapy, [2] administration of a fluid bolus of 500 ml or more, or [3] modification of
the dose or discontinuation of the study drug.

3.4 Exploratory Outcomes

Exploratory outcomes will include (at least) the following:

Description Type Analysis Method
Change in troponin during hospitalization Quantitative | LinR
Change in NT-proBNP Quantitative | LinR
Change in RAAS mechanistic biomarkers: | Quantitative | LinR

1. Angll

2. Ang(1-7)

3. Plasma renin activity

4. Aldosterone

5. ACE

6. ACE2
Change in serum creatinine Quantitative | LinR
Change in eGFR Quantitative | LinR
Acute kidney injury (KDIGO criteria) Ordinal POLR

LinR — Linear Regression; POLR — Proportional Odds Logistic Regression

Exploratory outcomes may be collected at just a subset of sites.

4 ANALYSIS DATASETS

For each study arm, the following analysis datasets will be produced using records for
participants that were assigned to the active drug group and placebo participants that were
eligible for the active drug group at the time of randomization:
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Modified intention-to-treat dataset: The mITT analysis dataset will include all randomized
participants grouped by study arm and active/placebo assignment at randomization, regardless
of subsequent compliance or protocol violations, with the following exceptions: 1. Participants
who have not received the study drug assigned at randomization will be excluded. 2.
Participants who were randomized and later found to be ineligible based on assessments
initiated prior to randomization will be excluded. All statistical analyses will be implemented
using mITT dataset unless otherwise explicitly specified in this statistical analysis plan.

Intention-to-treat dataset: The intention-to-treat (ITT) analysis dataset will consist of all
randomized participants grouped by study arm and active/placebo assignment at randomization
regardless of subsequent compliance or protocol violations.

Safety dataset: The safety analysis dataset will consist of all participants grouped by the
drug(s) received.

5 EFFICACY TESTING & FAMILYWISE TYPE-| ERROR CONTROL

Efficacy regarding the primary outcome and each key secondary outcome will be tested using a
one-sided method that ensures no more than a 2.5% chance of a type-I error. The fixed-
sequence method will be used to control the familywise type-I error probability at 2.5% for the
family of primary and key secondary outcomes." Specifically, a conclusion of efficacy regarding
the primary outcome will be required prior to testing the first designated key secondary
outcome. Each subsequent key secondary outcome, in the designated order, will take place
only if the preceding key secondary outcome demonstrates efficacy. This approach provides
strong control of the familywise type-I error probability at 2.5% for the family of primary and key
secondary outcomes. No other statistical hypothesis tests will be made regarding other
secondary, safety, or exploratory outcomes. P-values associated with certain null hypothesis
tests may be provided for descriptive purposes, or to fulfill special requests, e.g., for DSMB
safety assessments.

6 ANALYSIS OF THE PRIMARY OUTCOME

The effect of the active drug versus placebo will be quantified using an odds ratio — the primary
estimand — which quantifies the treatment effect on the odds of greater oxygen-free days at day
28. Based on the behavior of similar outcomes in prior trials,>® we anticipate the distribution of
the primary outcome to be irregular, with peaks around -1 to 0 and between 22 and 28 days.
Thus, we will use a flexible semi-parametric approach for the primary outcome analysis.
Estimation and inferences about the odds ratio will be made using Bayesian proportional odds
(PO) logistic regression methods, adjusting for the active drug vs placebo indicator variable, age
group (18-30, 31-65, >65 years), sex at birth, and WHO COVID ordinal outcome score at
baseline (4, 5, and 6-7).” Evidence for efficacy will be quantified using the posterior probability
that the active drug versus placebo odds ratio is greater than one (i.e., treatment is associated
with greater oxygen free days at day 28). This is denoted the “efficacy probability” or

P(OR > 1|Data), where OR represents the odds ratio, and Data represents the mITT analysis
dataset. The “inferiority/harm probability” is defined as P(OR < 1|Data). The primary analysis will
be implemented separately for each study arm, where the placebo comparator group will consist
of placebo participants that were eligible for the corresponding study arm at randomization,
regardless of the study arm assigned. The primary and supplementary estimates will be
presented with 95% credible intervals.
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6.1 Statistical Model

The PO model can be written in terms of the covariates X and an outcome variable Y, where
probabilities of outcome value y or greater Pr(Y > y|X) = expit(a, + XB) where a, is the
intercept for outcome value y and expit is the logistic (inverse logit) transformation and the
columns of matrix X contain coded baseline covariates and the active/placebo treatment
indicator. B represents the log odds ratio (OR) associated with the effects of covariates and
group assignment. Specifically, the group assignment odds ratio represents the relative effect of
treatment versus placebo on the odds Pr(Y = y|X)/(1 — Pr(Y = y|X)), for any value y.

A flat prior distribution will be used for all PO model parameters. This ensures that the estimate
of the primary estimand will be free of influence from an informative prior, and the Bayesian
maximum a posteriori estimate will be identical to the maximum likelihood estimate (see
Appendix: Cumulative Logit Model). The posterior distribution for the log odds ratio will be
approximated using the Laplace method.® Use of a flat prior ensures the Laplace-approximated
posterior distribution is identical to the asymptotic sampling distribution of the maximum likelihood
estimate; in both cases a normal distribution centered at the estimate with variance-covariance
equal to the negative inverse Hessian of the log likelihood function (inverse observed Fisher
information; see Appendix: Laplace Approximation). All statistical inferences about the odds ratio
will be made using this method. Statistical uncertainty about supplementary estimands (e.g.,
treatment difference in the median of the primary outcome) will be quantified using the delta
method.® Given the investigational nature of the agents tested by this platform, there is insufficient
information upon which to justify a more informative prior. The flat prior approach ensures that
Bayesian inferences regarding the efficacy of study agents are based exclusively on the data
collected in the ACTIV 4 Host Tissue platform.

6.2 Loss to Follow-up, Censoring, and Intercurrent Events

Participants who withdraw consent prior to data collection, or for whom there is no partial
information about the primary outcome, will not be excluded from analysis. We will strive to
avoid loss to follow-up by making repeated attempts to contact participants or otherwise retrieve
participant records. If loss-to-follow-up cannot be avoided, and the information needed to
compute the primary endpoint is partially known (i.e., censored), we will use a likelihood-based
method to account for this censoring. For example, if a study participant received supplemental
oxygen every day during the 10-day period after randomization, but is then lost to follow-up, the
primary outcome is only partially known (i.e., OFDs < 18 in this example). The PO model
provides a convenient mechanism to account for this and other types of censoring using a
likelihood-based approach.’® For observations that are fully observed, the log likelihood
contribution is I(a, 8; y,x) = logPr(Y = y|X = x). For observations that are left censored at y
(e.g., < 18 OFDs), the log likelihood contribution is I(a, 8; y,x) = logPr(Y < y|X = x). The latter
is conveniently computed by substituting 1 — expit(ay + xB). More complex partially observed
outcomes (e.g., right or interval censored) are modeled in a similar manner.

All primary analyses will be implemented using the mITT analysis dataset. The intercurrent
event of death will be coded as a special value in the primary outcome (i.e., composite
strategy). No other intercurrent events will affect the primary outcome assessment (i.e.,
treatment policy strategy).'

Participant age, sex, and WHO COVID scale at baseline are subject to source verification
monitoring. Thus, we do not anticipate missing covariate data.
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6.3 Planned Interim and Final Analyses, Early Stopping, and Type-l Error Control

Two planned interim analyses will occur separately for each study arm when the number of
participants with complete 28-day follow-up (or were deceased, withdrawn, or lost-to-follow-up
by day 28) reaches 33% and 67% of maximum enrollment for that arm. Interim analyses will be
executed by unblinded personnel only. Participant records that inform the primary outcome must
undergo monitoring prior to interim (and final) analysis. At each interim analysis, a study arm
may be stopped early if there is evidence for inferiority/harm. Enroliment in the trial will be
stopped early if the posterior probability for inferiority/harm exceeds 0.95.

Final analysis will occur once enroliment, follow-up, and the required monitoring are completed.
Should additional data be collected after enrollment is halted at an interim analysis, the final
analysis will incorporate this additional data. If the trial was stopped early at an interim analysis
due to evidence of inferiority/harm, a conclusion of inferiority/harm will be indicated if the
posterior probability for inferiority/harm remains greater than 0.95 at the final analysis. If the trial
was not stopped early at an interim analysis due to evidence of inferiority/harm, efficacy will be
indicated if the posterior probability for efficacy regarding the primary outcome exceeds a
threshold as follows: For studies under this master protocol, the efficacy threshold was selected
using statistical simulation to ensure a type-I error probability of 2.5% for each study arm. In all
other scenarios, the trial is inconclusive.

6.4 Supplementary Efficacy Estimands

The PO model is attractive for the analysis of ordinal and quantitative response variables, such
as the primary outcome, because they directly model the cumulative distribution function from
which the mean, median, other percentiles, and cumulative probabilities of the primary outcome,
stratified by treatment group, are easily derived.'? In addition to the odds ratio, the effects of
treatment versus placebo will be quantified using the difference in mean, difference in median,
and differences in clinically relevant proportions associated with the primary outcome: mortality
at day 28: Pr(Y = —1|X), and oxygen requirement every day until day 28: Pr(Y = 0|X), adjusted
to the modal value for each covariate. These important and clinically meaningful supplementary
estimands will be used to describe and communicate the treatment effect. The posterior
distribution for each of the supplementary estimands is readily computed using standard
Bayesian methods.

6.5 Sensitivity and Supplementary Analyses
Sensitivity and supplemental analyses will be implemented at the final analysis.

Most regression methods, including proportional odds logistic regression, Cox proportional
hazards regression, and linear (mean) regression, assume that the effects of the independent
variables are consistent across the outcome distribution. Violation of this assumption is a
complex situation that implies a heterogeneous treatment effect. For example, the active drug
group might experience more frequent extreme outcomes (death and 28 oxygen-free days)
versus the placebo group. In this type of situation, much like differential treatment effects
observed across participant strata such as sex, no single summary fully describes the treatment
effect, and the differential treatment effects must be carefully examined and interpreted in their
totality. The proportional odds assumption of the PO model specifies that the effect of treatment
on the odds that Y > 3 (measured as an odds ratio versus placebo) is the same relative effect as
for Y > 4. However, even when the PO assumption is strongly violated, the estimated OR
remains a simple function of the Wilcoxon-Mann-Whitney U-statistic, namely the probability that
a randomly chosen patient on treatment B has a higher response than a randomly chosen
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patient on treatment A, the probability index or concordance probability. In addition, under the
null hypothesis, the PO assumption is always satisfied. Thus, statistical testing based on the
odds ratio, as estimated using the PO model, has the specified type-I| error rate and provides a
reasonable global assessment of treatment effectiveness, regardless of violations of the
proportional odds assumption. However, derived quantities such as the difference in means
may be more sensitive to violations of the PO assumption. Deviations from proportional odds
will be examined by separately estimating the odds ratio for each possible dichotomization (that
preserves ordering) of the primary outcome (e.g., alive versus dead at day 28, alive and oxygen
free for at least 10 days at day 28 versus alive and oxygen free for fewer than 10 days or dead
at day 28, etc.), in a planned sensitivity analysis. These analyses will be implemented using the
logistic regression method described below (see Logistic Regression (LogR)). No hypothesis
testing will be implemented regarding the PO assumption. This sensitivity analysis serves the
following two purposes: 1) to assess for evidence of violation of the proportional odds
assumption and 2) to estimate the differential treatment effects (with 95% credible interval)
when the proportional odds assumption is relaxed. The latter provides the information needed to
interpret the treatment effects should there be evidence of violation of the proportional odds
assumption. In addition, as a key secondary outcome, we will quantify the effect of treatment on
28-day mortality, which directly addresses the possibility that treatment affects 28-day mortality
differently than cumulative oxygen use within the first 28 days. This analysis enables us to
detect non-proportional effects of the treatment on the two major components of the primary
outcome, mortality, and oxygen-free days.

As a supplementary analysis to inform decision-making in the event there is evidence of
violation of the PO assumption, we will implement an alternative primary outcome using a partial
proportional odds (PPO) model', where the effect of the study intervention and each covariate
will be allowed to vary across all possible order-preserving dichotomizations of the primary
outcome. These covariate effects will be “unconstrained.” However, to ensure estimability of this
model, and to shrink toward the PO model, a weakly informative prior will be assigned to shrink
each dichotomization effect toward the common effect. The log odds ratio for each
dichotomization will have a normal prior distribution centered at the common log odds ratio with
standard deviation 0.354, which assigns 95% prior probability that each dichotomization odds
ratio falls within a factor of 0.5 and 2.0 of the common odds ratio. The estimated common odds
ratio from the PPO model will be evaluated in a manner similar to the common odds ratio in the
primary analysis using the PO model. Specifically, we will report the estimated common odds
ratio with 95% credible interval and the posterior probability for efficacy. Due to limitations of
existing software to implement the PPO model, partially observed values of the primary
outcome will be treated as missing.

Analysis of partially observed or missing outcome data requires assumptions regarding the
mechanism by which censoring and missing values arise. The likelihood method described
above, and other similar methods such as multiple imputation assume that missing values occur
at random (i.e., missing at random or MAR). However, because censored and missing values
cannot be observed, assumptions about the missingness mechanism are not verifiable. In order
to assess the sensitivity of study findings to violations of this assumption, we will conduct
additional sensitivity analyses by reproducing the primary analysis under alternative
assumptions regarding the mechanism for missing values. Specifically, we will perform
sensitivity analyses that vary assumptions about the missing outcomes on the two treatment
arms separately. These analyses will consider the following two scenarios: 1 “missing favors
inefficacy”) each partially observed primary outcome in the placebo group will be assumed to
have taken the highest/best possible value, whereas each partially observed primary outcome in
the intervention group will be assumed to have taken the lowest/worst possible value, and 2
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“missing favors efficacy”) each partially observed primary outcome in the placebo group will be
assumed to have taken the lowest/worst possible value, whereas each partially observed
primary outcome in the intervention group will be assumed to have taken the highest/best
possible value. These analyses will be implemented using the primary analysis methodology,
including an assessment of hypothesis testing outcomes. For any trial under this platform, if
there is a conclusion of efficacy at the final analysis, and the conclusion would have been
different under the “missing favors inefficacy” scenario, then an additional tipping-point analysis
will be implemented to estimate the association between the degree to which missing values
must favor inefficacy versus the probability the trial would have failed to conclude efficacy. In
these analyses, the partially observed outcomes will be randomly imputed under the assumption
that partially observed outcomes favor the inefficacy conclusion by a specified amount. The
degree to which the partially observed outcomes favor inefficacy will be encoded using an odds
ratio that adjusts the outcome probabilities conditional on the participant covariates, using the
maximum a posteriori (MAP) estimate at the final analysis. These probabilities will then be used
to randomly sample the outcome for imputation purposes. For partially observed outcomes that
exclude some levels of the outcome, the sampling probabilities for the excluded levels will be
set to zero and the remaining probabilities normalized to sum to one. After sampling the
outcome for all partially observed outcomes, the primary analysis will then be implemented
using the imputed outcome data and the study conclusion recorded. This process will be
repeated 1000 times and the probability of a trial conclusion other than efficacy will be
calculated using a Monte-Carlo estimate. This process will again be repeated for a range of
odds ratios encoding the degree to which the partially observed outcomes favor inefficacy.
Specifically, this will be guided by two parameters: a0 and a1, where a0 is the log odds ratio of
more oxygen free days comparing partially missing versus non-missing placebo arm
participants and a1 is the log odds ratio of a higher score comparing partially missing versus
non-missing active arm participants. We will vary both parameters across the tipping point
analysis within in the following range (-0.5, -0.25, 0.25, 0.5) (i.e., 16 total scenarios). We chose
this range of parameters because together they induce a treatment effect in the partially
observed participants that ranges from reasonably pessimistic to reasonably optimistic. If B is
the observed log odds ratio (active versus control) in the analysis, then the treatment effect in
the partially observed participants would range from p-1 to f+1. This range (2 on the log odds
ratio scale) is four times the anticipated treatment effect for which the study is powered (i.e., to
detect a log odds ratio equal to 0.5, or an odds ratio equal to 1.65). The results of this sensitivity
analysis will be summarized graphically.

Co-enrollment in other studies testing COVID-19 therapeutics may occur. Co-enrollment may
affect the treatment effect estimates if there is effect modification associated with co-enroliment.
We expect co-enrollment to occur in fewer than 5% of patients enrolled in the trial. However,
because the decision to co-enroll is not affected by the treatment assignment in ACTIV 4 Host
Tissue, co-enroliment will not favor any particular treatment. In addition, due to its rarity, we
expect co-enrollment to have little impact on the estimated treatment effects, even when there is
effect modification.

Differential treatment effect, also referred to as heterogeneity of treatment effect, refers to
differences in efficacy as a function of pre-existing patient characteristics such as baseline
variables. This is often assessed by forming subgroups or using an interaction analysis.
Supplemental interaction analyses will be implemented to examine the potential for differential
treatment effect. Differential treatment effect will be examined in strata defined by (but not
limited to) respiratory support category at enroliment, status of co-enroliment in an open label
clinical trial of antiplatelet agents (ACTIV 4a), age category, SARS-CoV-2 vaccination status,
passive immunity status, co-enrollment in other studies, and concomitant use of study drug and
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other medications during the study drug administration period. These analyses will be
implemented using a modified version of the primary analysis method, where the treatment
effect will be estimated separately for each level of the stratification variable. Stratum-specific
treatment effect estimates will be presented with 95% Bayesian confidence interval. No formal
hypothesis testing will be implemented for these analyses. Studies under this master protocol
will be sized only for assessing efficacy using the primary analysis. Thus, there may be
inadequate power to examine differential treatment.

6.6 Sample Size and Decision Thresholds

The maximum number of participants to be enrolled in sub studies under the Master Protocol is
600 participants per trial, resulting in approximately 300 patients per active treatment arm, and
300 patients in the matching placebo arm. The placebo arm will be shared across all active
treatment arms. We expect placebo participants to continue to accrue for as long as there are
additional treatments to test and cases to enroll.

Type-I error and power regarding the analysis of the primary outcome was assessed based on
the pooled (across all active and placebo arms) distribution of the primary outcome among the
first 100 participants to complete follow-up and monitoring. The efficacy threshold was identified
using statistical simulation under the null hypothesis to ensure the study operating
characteristics achieve design specifications. Pooled and blinded summaries of oxygen-free
days at day 28 were used to approximate the distribution of the oxygen free days in the placebo
group. Based on these data, the anticipated frequency distribution, mean, and median of
oxygen-free days (OFDs) for the placebo group, and for the treatment group under hypothetical
effect sizes computed using the PO model are displayed in the table below.

Inferiority Superiority

OFDs / Odds Ratio |Placebo 0.67 080 | 140 145 150 155 160 1.65 1.70

Mean 8.8 6.6 75 108 111 113 115 117 119 120

Median 0 0 0 6.5 7.5 90 10.0 105 125 145

P(OFDs >= 22) 0.19 0.14 016 | 025 026 026 0.27 028 029 0.29
Proportion:

-1 (death) 0.235 0.316 0.279|0.181 0.176 0.171 0.166 0.162 0.158 0.154

0 0.296 0.314 0.309 | 0.268 0.264 0.261 0.257 0.254 0.251 0.247

1 0.006 0.006 0.006 | 0.006 0.006 0.006 0.006 0.006 0.006 0.006

27 0.050 0.034 0.041 | 0.069 0.072 0.074 0.076 0.078 0.081 0.083

28 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Based on these data and effect size scenarios, a series of statistical simulations were
implemented to examine the operating characteristics of the statistical study design described
above, including the plan for randomization, statistical analysis method, interim analysis, and
final assessments of efficacy using the odds ratio. In each simulation, participant age group,
sex, and baseline WHO COVID severity score were randomly sampled with replacement from
the values observed, and their effects on the primary outcome were simulated to match the
estimated effects of age group, sex, and WHO score on the primary outcome among the first
100 participants. In order to assess the potential impact of attrition and loss-to-follow-up,
partially observed oxygen free days were simulated to match the observed frequency of partially
observed outcomes, which occurred in 12% of the first 100 participants. To encode attrition, a
subset of the simulated study participants was selected at random, each with probability 0.12.
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The primary outcome for each selected participant was encoded as partially observed by
assuming that oxygen free days may have taken any value between -1 and a randomly sampled
value ranging from the simulated oxygen free days to 28. For example, if the simulated oxygen
free days is 10, then a value between 10 and 28 is sampled uniformly at random and this value
is treated at the upper limit for the partially observed oxygen free days. This pattern of partially
observed oxygen free days closely resembles the patterns observed among the first 100
participants. All simulation analyses, including those associated with interim and final
assessment of efficacy and inferiority were implemented using the methods described above for
the analysis of the primary outcome.

Simulation under the null hypothesis was used to select the efficacy threshold for the final
analysis. The efficacy threshold was selected to ensure no more than 2.5% type-I error. In this
simulation, 10000 replicates were used to ensure ~0.31% simulation margin of error in
estimating the type-I error rate. The efficacy threshold was identified as 0.976. A final analysis
will occur once enrollment, follow-up, and the required monitoring are completed for all
participants. Should additional data be collected after enroliment is halted at an interim analysis,
the final analysis will incorporate this additional data. If enroliment was halted at an interim
analysis due to evidence of inferiority/harm, a conclusion of inferiority/harm will be indicated if
the posterior probability for inferiority/harm remains greater than 0.95 at the final analysis. If the
trial was not stopped early at an interim analysis due to evidence of inferiority/harm, efficacy will
be indicated if the posterior probability for efficacy regarding the primary outcome exceeds
0.976 at the final analysis. If neither condition is met for a conclusion of efficacy or
inferiority/harm at the final analysis, the trial is inconclusive. The efficacy and inferiority/harm
thresholds will be applied as described in the table below.

Analysis Condition Action
Interim analysis Inferiority/harm probability > 0.950 Halt enroliment
Final analysis Inferiority/harm probability < 0.950 at Conclude efficacy

all interim analyses and efficacy
probability > 0.976
Final analysis Inferiority/harm probability > 0.950 Conclude inferiority/harm

Using the selected efficacy and inferiority/harm thresholds, the results of 10000 simulations
under the null hypothesis, and 1000 simulations per inferiority/efficacy scenario are summarized
in the table below. In these simulations, the type-| error probability was 2.47%. The frequency of
stopping early for inferiority under the null was 8.6% (5.3% at the first interim analysis, and 3.2%
at the second interim analysis). A maximum sample size of 600 participants per trial provides
greater than 85% power to detect an odds ratio of 1.65, corresponding to a 3.1-day difference in
mean OFDs, and a 7.8 percentage point reduction in 28-day mortality. Differences larger than 2
ventilator-free days on average have been considered clinically important in prior trials.>* Thus,
the minimum detectable effect with 85% power (MDEB85) is an odds ratio of 1.65. The frequency
of stopping early for inferiority when there was an effect larger than OR=1.40 was <1%. When
the simulated treatment was inferior/harmful relative to placebo, at OR=0.67, a conclusion of
inferiority/harm occurred in 83.3% of simulated trials (39.1%at the first interim, 27.9% at the
second interim, and 16.3% at the final analysis), and the average half-sample size was 193.9
per arm.

Null Inferiority Superiority

OFDs / Odds Ratio 1.00 | 0.67 080 | 140 145 150 155 160 1.65 1.70

Pr(Efficacy) 0.025 | 0.000 0.001 | 0.552 0.631 0.705 0.782 0.826 0.856 0.893
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Null Inferiority Superiority
OFDs / Odds Ratio 1.00 | 0.67 0.80 1.40 145 1.50 155 1.60 165 1.70
Pr(Inferiority) 0.108 | 0.833 0.508 | 0.003 0.002 0.001 0.000 0.000 0.001 0.000
Pr(Inconclusive) 0.867 | 0.167 0.491 | 0.445 0.366 0.294 0.218 0.173 0.143 0.107
Average(N/2) 286.1| 193.9 242.0 | 299.4 299.8 299.8 300.0 300.0 299.8 300.0

In order to characterize the effect of uncertainty in the distribution of the OFD outcome on the
type-l error probability, simulations under the null hypothesis were twice repeated assuming a
“mild” and “severe” distribution for the OFD outcome. The mild and severe distributions were
selected such that the unadjusted mortality rate ranged + 3% relative to the initial simulation.
The results of 1000 simulations in each of the mild placebo and severe placebo scenarios are
summarized in the table below. In these simulations, the type-I error probability was 2.5% and
2.3%.

Severe Mild

OR =1.00 OR=1.00
Mortality rate 0.266 0.206
Pr(Efficacy) 0.023 0.025
Pr(Inferiority) 0.0.119 0.117
Pr(Inconclusive) 0.858 0.858
Average(N) 284.0 286.4

Prior to the start of enrollment, initial sample size assessments were based on pooled and
blinded summaries of OFDs from the PassItOn (convalescent plasma) trial of patients
hospitalized for COVID-19. The inclusion and exclusion criteria for PassItOn are similar to that
for ACTIV 4 Host Tissue. In these initial assessments, the estimated MDE85 was OR=1.55.
Statistical power was subsequently reassessed using OFDs summaries in the first 100
participants enrolled in ACTIV 4 Host Tissue, which demonstrated a more severe distribution
relative to PassltOn participants (23.6% vs 17.6% mortality). The estimated MDE85 was
OR=1.65 at the time of sample size reassessment. However, additional information from blinded
summaries of the first 200 enrolled participants are consistent with the distribution of OFDs
observed in PassltOn (18.6% vs 17.6% mortality). After discussion of these findings among the
blinded study investigators and study sponsor, it was determined that statistical power was
sufficient and no sample size adjustment was warranted.

7 ANALYSIS OF SECONDARY, EXPLORATORY, AND SAFETY OUTCOMES

Final analysis of the secondary, exploratory, and safety outcomes will be implemented
separately for each study arm by comparing each active drug group with the corresponding
pooled placebo comparator group. The effect of active agent versus placebo on the odds of
binary and ordinal outcomes will be quantified using logistic and proportional odds logistic
regression. Quantitative outcomes will be analyzed using a linear regression method. In order to
preserve consistency across statistical analyses, we will uniformly apply a Bayesian approach
using flat priors. Odds ratio, hazard ratio, and differences in mean estimates will be presented
with a 95% credible interval.
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7.1 Statistical Methods for Secondary, Exploratory, and Safety Analyses

The methods described below will be applied uniformly to the examine the effect of each active
drug versus the placebo comparator on the secondary, exploratory, and safety outcomes, as
appropriate.

7.1.1 Proportional Odds Logistic Regression (POLR)

Ordinal secondary, exploratory, and safety outcomes will be analyzed using a method similar to
that described above for the analysis of the primary outcome, using proportional odds logistic
regression (POLR), and adjusting for participant age group, sex, and WHO COVID ordinal
severity at baseline. The effect of the active drug versus placebo will be presented using an odds
ratio which quantifies the treatment effect on the odds of greater values of the ordinal outcome.
The odds ratio will be presented with 95% credible interval. A flat prior distribution will be used for
all model parameters. The posterior distribution for the log odds ratio will be approximated using
the Laplace method. All statistical inferences about the odds ratio will be made using this method.
The proportional odds assumption means that the odds-ratio has the same interpretation for all
dichotomizations (that preserve ordering) of the ordinal outcome. The repeated dichotomization
method, as described for the analysis of the primary outcome, will be used to assess for severe
violations of the proportional odds assumptions. Missing or partially observed outcomes will be
handled using the likelihood method as described for the primary analysis (see Loss to Follow-
up, Censoring, and Intercurrent Events).

7.1.2 Logistic Regression (LogR)

Binary secondary, exploratory, and safety outcomes will be analyzed using logistic regression
(LogR), and adjusting for participant age group, sex, and WHO COVID ordinal severity at
baseline. The effect of the active drug versus placebo will be presented using an odds ratio
which quantifies the treatment effect on the odds of outcome occurrence. The odds ratio will be
presented with 95% credible interval. In addition, to facilitate clinical interpretability and
meaningfulness, the difference in proportions corresponding to the most common (modal)
values of the adjustment variables will be presented with 95% credible interval. A flat prior
distribution will be used for all model parameters. The posterior distribution for the log odds ratio
will be approximated using the Laplace method. All statistical inferences about the odds ratio
and other posterior quantities will be made using this method. Missing outcomes will be handled
using the likelihood method as described for the primary analysis (see Loss to Follow-up,
Censoring, and Intercurrent Events).

7.1.3 Linear Regression (LinR)

Quantitative exploratory will be analyzed using linear regression (LinR), and adjusting for
participant age group, sex, and WHO COVID ordinal severity at baseline. The effect of the
active drug versus placebo will be presented using a difference in means. The difference in
means will be presented with 95% credible interval. A flat prior distribution will be used for all
model parameters. The posterior distribution for the difference in means will be approximated
using the Laplace method. All statistical inferences about the difference in means will be made
using this method. Graphical regression diagnostics, including normal Q-Q plots, will be used to
assess for severe violations of the linear regression assumptions. Missing exploratory outcomes
will be omitted from linear regression analyses.

7.1.4 Key Secondary Outcome Testing Procedure

A fixed-sequence testing approach will be used to preserve the type-I error rate across tests of
the primary and key secondary outcomes. The key secondary outcomes will be tested in the
specified order (see Secondary Outcomes). This approach provides strong control of the
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familywise type-| error rate for the family of primary and key secondary outcomes. No other
formal hypothesis tests will be made regarding the secondary, exploratory, or safety outcomes.

All key secondary outcomes use Bayesian logistic regression with a flat prior. Thus, the log
odds ratio estimate is also a maximum likelihood estimate (MLE). At the final analysis (only) for
each arm and key secondary outcome, efficacy will be indicated using a one-sided likelihood-
based Wald test, to ensure a type-| error probability of 2.5% for each test. Specifically, a one-
sided test of the null hypothesis (log OR = 0) will be computed by approximating the asymptotic
distribution of the MLE under the null hypothesis: a Gaussian distribution with mean zero and
variance equal to the inverse observed Fisher information. For descriptive purposes, evidence
for efficacy will also be quantified using the posterior probability that the efficacy odds ratio is
greater than one (i.e., treatment is associated with greater odds of a favorable outcome). This is
denoted the “posterior probability for efficacy” or P(OR > 1|Data), where OR represents the odds
ratio, and Data represents the mITT analysis dataset.

7.2 Analysis of Safety, Adherence, and Retention Outcomes for DSMB Review
Monitoring and reporting of safety events will be conducted continuously as described in the
Data and Safety Monitoring Plan. Records will undergo monitoring for a two-week period (at
minimum) prior to interim analysis for inferiority or futility. However, all records, regardless of
monitoring status, will be used in enroliment, demographic, and safety summaries for DSMB
safety reporting. Agent-specific safety and toxicity endpoints (if any) are detailed in that
therapy’s appendix. The frequencies of PSESEs, adverse events, mortality, and other safety
endpoints will be reported. Screening, enrollment, withdrawal, loss-to-follow-up, mortality, study
completion, hospitalization status and discharge location will be summarized in a similar
manner. All safety-related protocol violations will be listed in the DSMB report. Receipt of
planned therapy and adverse events will be recorded on case report forms and monitored
continuously. Study drug stoppages and adverse events will be summarized and reported to the
DSMB.

8 DATA FLOW, SHARING, AND ARCHIVING

8.1 Requests for secondary use of the data

Requests for secondary use of study data must adhere to review, approval, and provision
processes developed by ACTIV 4 Host Tissue leadership and must comply with all applicable
rules and regulations. All study data will be de-identified prior to sharing for secondary use.

8.2 Data flow for final and interim analyses

All data necessary for interim analyses, final analyses, and DSMB reporting will be exported
from the EDC using the REDCap API. A custom R script will be used to both export the data
and perform the interim analyses.

8.3 Archival data model
Data will remain in the production database. At the time of data locking, all users will be moved
to read only access or removed, or as specified in the Data Management Plan.

8.4 Final analysis procedure

Once a study arm has completed enrollment, follow-up, and monitoring for all participants, all
records that contribute to final analyses will be locked. Final analysis will be executed promptly
after data lock, regardless of the status of other study arms. Blinded personnel will remain
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blinded to the active/placebo status for individual participants until all arms that share blinded
information with the completed arm have also been completed and their records locked. Final
analyses will be executed by unblinded personnel only. Reporting of final analyses should avoid
revealing the blinded treatment assignment for individual participants.
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APPENDIX: ALGORITHM TO COMPUTE PRIMARY OUTCOME

The primary outcome is oxygen-free days at study day 28. It can take values -1, 0, 2, ..., 27, 28.
When computing oxygen free days, the “outcome” for each participant should be a length 30
vector of zeros and ones that indicate which of the 30 possible values (-1, 0, 2, ..., 27, 28) that
OFDs could take for that participant. This representation allows for arbitrary censoring of the
outcome. For example [0,1,1,0,0,...,0] indicates that OFDs could be either 0 or 1. If there is loss-
to-follow-up, withdrawal, or missing follow-up information, there can be interval censoring. The
algorithm below is designed to compute OFDs in this representation.
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If participant was deceased by study day 28, OFDs is [1,0,0,0,0,...,0]
For study day 1 through 28, compute whether or not supplemental oxygen was used
(code with “yes” or “no”), or if supplemental oxygen use was uncertain (code with “?”).

O

O

For our purposes supplemental oxygen means oxygen use that exceeds any pre-
enrollment home oxygen use. Home oxygen use is recorded in the “Medical
History” form in variables mhco2, mhio2, and the amount (L/m) in field home_ox.
If a participant had not used pre-enrollment home oxygen, then it should be
assumed that all hospital and post-discharge use of oxygen counts against
oxygen-free days. If a participant had used pre-enroliment home oxygen, then
only the supplemental oxygen use that exceeds the amount used at home should
count against oxygen-free days. If the participant is in the inpatient phase of the
study and using standard supplemental oxygen (o2type = “O2 by mask or nasal
prongs”), then the L/m recorded on the vitals signs form (02_Ipm_cannula_sofa)
must exceed the amount used at home (home_ox). If hospital oxygen use takes
any other value except “No O2 therapy” and “O2 by mask or nasal prongs”, then
that study day should count against oxygen free-days.

If the participant is in the outpatient phase of the study (i.e., after discharge from
the enrollment admission or after 28 days, whichever comes first), but is not
hospitalized, then only the post-discharge home oxygen use that exceeds the
amount used at home prior to enroliment (if any) will count against oxygen-free
days. The phone script and outpatient form are designed to record only the home
oxygen use that exceeds any pre-hospitalization oxygen use.

If the participant is in the outpatient phase of the study, but is hospitalized, the
branching logic on the outpatient form determines whether the participant had
used oxygen. Any hospital oxygen use during the outpatient phase counts
against oxygen-free days.

If the preceding calculations cannot be made for any particular study day, then
the supplemental oxygen status is “?” for that study day.

The preceding step results in “yes”, “no”, or “?” for each study day 1 through 28.

O

O

If there are no “?” values, then OFDs is 28 minus the number of days between
and including the days of the first “yes” and the last “yes”.

If there are “?” before the first “yes” or after the last yes, then OFDs is partially
observed and multiple values are possible. To compute the possible values,
consider each possible pair of first ‘yes’ and last ‘yes’ days, and compute the
associated OFDs.

OFDs should be represented as a vector of length 30, one element for each value that
OFDs can take: -1, 0, 1, ..., 27, 28. There should be a 1 for each element that OFD that
is possible for this participant, and a zero otherwise. The -1 (first) element should take a
value 0 if the participant was known to be alive at day 28 and 1 otherwise.

11 APPENDIX: CUMULATIVE LOGIT MODEL

11.1 Model Formulation
The cumulative logit model can be written in terms of the covariates X and an ordinal outcome
variable G, where probabilities of outcome value g or smaller are modeled as follows

Pr(G < glX) = expit(ag — XB). €9)
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Without loss of generality, an outcome with p levels may be coded using the first p integers,
such that g may take on the values 1, ..., p. In the expression above, ay is a scalar intercept,
expit is the logistic (inverse logit) transformation, and the vector X contains coded baseline
covariates and the active/placebo treatment indicator. The model has intercepts for each of the
first p — 1 outcome levels, and the intercepts must be ordered: o; < a; < - < a,_;. The
ordering of intercepts ensures that the probabilities Pr(G < g|X) are monotonically increasing in
g. The parameter vector 8 represents the log odds ratios (OR) associated with the effects of
covariates and group assignment. Specifically, the group assignment odds ratio represents the
relative effect of treatment versus placebo on the odds Pr(G > g|X)/(1 — Pr(G > g|X)), for each
of the first p — 1 values that G may take.

The p — 1 linear predictors o, — X represent the logit transformed cumulative probabilities
associated with the first p — 1 levels of the ordinal outcome, adjusted for the effects of
covariates X. The probabilities that the outcome takes a specific value g, adjusted for covariates
X, is derived as follows:

Pr(G =g|X) = expit(ag - XB) — expit(ag_l - XB), (2)

where expit(ay — XB) and expit(a, — XpB) are defined to be 0 and 1, respectively.

When there are partially observed ordinal outcomes, it is convenient to recode the outcome as a
vectorY = [V;, ..., Y], such that Y, = 1if G = g or when g is one of the values that G might have
taken if the outcome were fully observed, and Y, = 0 otherwise. Thus, the cumulative logit
model may be written as follows

Pr(ty =1UY, =1 U--UY, =1]|X) = Pr(G < g|X) =expit(a; — XB). 3)

Denote a sample of covariate vectors x4, ..., x5 and outcomes g4, ..., gy, and corresponding
outcome vectors y;, ..., yy, Where y; = [y;q, ..., yip]. Using this representation, partially observed
outcomes are encoded by assigning a value 1 to each element of y; that the outcome g; might
have taken if fully observed. For example, if g; might have taken values 1 or 2, but other values
were not possible, then y; would be coded y; = [1,1,0, ..., 0]. Further denote the collection of
model parameters 0 = [al, ...,ap_l,ﬁ]. Using this notation, the observed data likelihood is as
follows:

N N P
L@, -y xw) = | [LOyxd =] [ D 10y =Dy = 11X =5, @
i=1

i=1j=1

where I(+) is the indicator function that takes a value 1 when its argument is true, and 0
otherwise.

In a Bayesian analysis, the posterior density function is proportional to the likelihood function
multiplied by the prior density function as follows:

POlys . VN, X1 . Xy) < L(O|yq ... YN, X1 ... x5 )P(O) (5)

A flat prior distribution, where P(0) « 1, is used for all model parameters. Thus, the posterior
density is proportional to the likelihood function.
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Each supplemental estimand is a treatment difference in one of the following summaries of the
adjusted outcome distribution: mean, median, proportion experiencing mortality by day 28, and
proportion receiving oxygen every day until day 28. Supplemental estimands are computed
using the probabilities expressed in equations (1) and (2) above, adjusted to the modal value for
each covariate: age group 31-64, WHO COVID-19 Score value 4 (hospitalized receiving oxygen
via nasal cannula), and male sex. The adjusted means are computed as the linear combination
of all possible outcome values and their associated adjusted probabilities. The adjusted
medians are computed as the smallest value of g such that the Pr(G > g|X) = 0.5. The
adjusted proportions of participants experiencing mortality by day 28 or oxygen requirement
every day until day 28 are computed as Pr(G = —1|X) and Pr(G = 0|X), respectively.

11.2 Model-based Statistical Inferences

The posterior distribution for the log odds ratio and any other required parameter is
approximated using the Laplace method. A flat prior ensures the Laplace-approximated
posterior distribution is identical to the approximate sampling distribution of the maximum
likelihood estimate for 6; in both cases a normal distribution centered at the estimate (i.e., the
maximum likelihood estimate or equivalently the maximum a posteriori estimate) with variance-
covariance equal to the negative inverse Hessian of the log likelihood function (inverse
observed Fisher information) evaluated at the estimate (see “Appendix: Laplace
Approximation”). All statistical inferences about the odds ratio and derivative quantities
(including all supplementary estimands) will be made using this method.

11.3 Model Fitting and Computation

The cumulative logit model is implemented in the R code file “clm_model.R”. Readers should
examine the c1m fit function first, which is the entry point for model fitting, and then examine
other functions as they are called by c1m fit. The function c1m fit takes as arguments the
matrix of coded covariates x, and a matrix of coded outcomes y. Each matrix has one row per
record (i.e., study participant). The covariate matrix has one column per coded covariate (e.g.,
age group has three levels and thus requires two columns to distinguish the levels), and the
outcome matrix has one column per value that the outcome might take. The cells of the
outcome matrix y contain the values y;; as defined above (see “Model Formulation”).

In practice, when one or more levels of an ordinal outcome are not observed in the analysis
data set, some of the model intercepts are not estimable (i.e., there is no unique set of model
intercepts that maximizes the likelihood/posterior density function). To overcome this, each
outcome level is characterized as “estimable” if there is at least one record in the analysis data
set where that level is observed and no other level was possible (i.e., ignoring partially observed
outcomes), and “not estimable” otherwise. Levels of the outcome that are not estimable are
collapsed with the nearest adjacent estimable level to form a new level, e.g., levels 3, 4, and 5
may be collapsed to form level “3|5”. When levels are collapsed, if any collapsed level was
possible as part of a partially observed outcome, then the collapsed level is considered possible
as well. This functionality is implemented by the function c1m collapse, which is called by
clm fit prior to any model fitting.

The estimate of 9 is found by maximizing the log of the posterior density function (i.e., a
maximum a posteriori estimate, or MAP for short) defined in expression (5). Note that the
normalizing constant in expression (5) is not needed to identify the MAP estimate, nor is it
necessary to form a Laplace approximation to the posterior density. The estimate of 9 is found
using an iterative optimization algorithm, and the associated observed Fisher information is
estimated using a finite difference method. These calculations are implemented using the R
function optim, which uses the quasi-Newton “BFGS” method (Byrd, Lu, Nocedal, and Zhu,
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1995, A limited memory algorithm for bound constrained optimization. SIAM Journal on
Scientific Computing, 16, 1190-1208. doi: 10.1137/0916069), and is built-in as part of the “stats”
package for R (R Core Team, 2022, R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). The
initial values for g are set to zero. Initial values for the model intercepts are generated by first
calculating the fraction of each observed outcome level (i.e., an initial estimate of Pr(G = g|X)
where B = 0), and then applying the inverse of expression (2) as follows:

g
init _ Ziyik

ag"t = logit =—. (6)
g £ i 2 i)

The initial values calculations for the model intercepts are implemented by the function

clm alpha init. Starting at the initial values, the opt im function iteratively maximizes the
clm_optim function, which computes the log of the posterior density function given by
expression (5). The clm optim function calls the cIm loglik and clm logpri functions,
which evaluate the log of the likelihood function given by expression (4) and log of the prior
density function (defined to be zero for a flat prior), respectively. The clm loglik function calls
clm_predict which computes, for each record, the linear predictors, oy — X =

logit Pr(G < g|X), and the associated covariate adjusted probabilities for each ordinal outcome
level Pr(G = g|X). The clm predict function calls alphs to probs to convert the logit
cumulative probabilities to level specific probabilities according to expression (2). The
probs_to alphs function computes the inverse of alphs to probs.

The c1m_fit function returns a model fit object that contains a model convergence
assessment, the MAP estimate for 6, and the estimated Hessian of the log posterior density
function evaluated at the estimate. The MAP estimate and Hessian are sufficient to define the
Laplace (Normal) approximation to the posterior density, and are used to compute posterior
cumulative probabilities as follows

-6
Pr(0y < qlyy .. yn, Xq o xy) = @ (\/[iIH——if]kk)’

where H is the estimated Hessian, 8 is the MAP estimate, and & is the standard normal
cumulative density function. This is implemented by the c1m ppost function for specified scalar
elements 6. Notably, this function is used to compute the posterior probabilities used for
decision-making at the interim and final analyses.

For supplementary estimands, g(8), that are smooth scalar functions of 6 (i.e., treatment
difference in the mean of the primary outcome, and treatment difference in the probabilities
associated with outcome categories -1 and 0), the posterior distribution will be approximated
using the delta method, for example, to compute posterior cumulative probabilities as follows:

a-9(8)
Jo @ an0@

Pr(g(®) < qly; ...yn, X1 . xy) = @

Where g’(é) is the gradient of g(-) evaluated at 8, which is approximated numerically using a
finite difference method. For non-smooth scalar functions of 6 (i.e., treatment difference in the
median of the primary outcome), the posterior distribution will be identified using a Monte Carlo
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method; by generating 10000 realizations from the posterior distribution for 6, and evaluating
the supplementary estimand using those realizations. For either approach, an equal-tailed, level
(1 — a) credible interval will then be identified by selecting the /2 and 1 — «/2 quantiles of the
approximate posterior distribution. The functions c1m crint delta and

clm crint montecarlo compute credible intervals for supplementary estimands using the
two methods described above, respectively. The adjusted outcome mean and median
calculations are implemented by functions mean xp and quantile xp, respectively. The four
supplementary estimands are implemented by functions defined in the R code file
“supplemental_estimands.R”

The four supplementary estimands include the treatment difference in mean and median of the
primary outcome, and the treatment difference in probabilities associated with outcome levels -1
and 0. Each of these estimands will be adjusted to the most common (modal) value for each
covariate. The mean and median estimates are defined as the mean and median of the
distribution defined by the cumulative probabilities associated with each outcome level, adjusted
for covariates.

12 APPENDIX: KEY SECONDARY OUTCOME TESTING PROCEDURE

Each trial in the ACTIV 4 Host Tissue platform will separately use a fixed sequence method to
control the familywise type-I error probability, i.e., the probability of erroneously concluding
efficacy of the trial intervention with respect to any one or more of the primary and key
secondary outcomes. Specifically, a conclusion of efficacy regarding the primary outcome will
be required prior to testing the first designated key secondary outcome. Each subsequent key
secondary outcome, in the designated order, will take place only if the preceding key secondary
outcome demonstrates efficacy. This approach provides strong control of the familywise type-I
error probability for the family of primary and key secondary outcomes. For weak familywise
type-I error control (i.e., under the assumption that the intervention effect is null for all tests in
the family), the fixed sequence method requires only that the test of the primary outcome (i.e.,
the outcome tested first) have the specified type-I error rate. For strong type-I error control, the
fixed sequence procedure requires that each individual test in the sequence have the desired
type-I error probability, 2.5% for trials under the ACTIV 4 Host Tissue platform. Because the test
of efficacy associated with the primary outcome has adaptive elements, including interim
analyses, a statistical simulation (as described in the “Statistical Analysis Plan”) was
implemented to identify the test characteristics that ensure a 2.5% type-I error probability for
that test. Each key secondary outcome is tested for efficacy only at the final analysis. Thus,
type-l error control for the key secondary outcomes relies on established theoretical arguments
and methods.

All key secondary outcomes use Bayesian logistic regression or proportional odds logistic
regression. If key secondary outcome testing is required under the fixed sequence procedure,
efficacy will be concluded if the posterior probability for efficacy (P(OR > 1|Data) for Alive and
respiratory failure-free at day 28, and P(OR < 1 | Data) for WHO 8-point ordinal scale at day 28
and Mortality at day 28) exceeds 0.975.

Because a flat prior is used, and the posterior is computed using a Laplace approximation, the
maximum a posteriori estimate of the log odds ratio is identical to the maximum likelihood
estimate (MLE), and the Laplace approximated posterior distribution is identical to the
approximate sampling distribution of the MLE: a normal distribution with mean equal to the
estimate and variance-covariance equal to the inverse observed Fisher information (see
Appendix: Laplace Approximation). In conventional frequentist testing, efficacy is indicated
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when the estimate exceeds a critical value selected such that the frequency of this occurring
under the null hypothesis is 0.025. Because of the equivalence between the approximate
posterior and MLE sampling distributions, setting the posterior probability for efficacy threshold
to 0.975 ensures that any estimate meeting this threshold must also exceed the critical value
that ensures less than 2.5% type-| error frequency. The figure below illustrates this concept:

Null Distribution of MLE Posterior Distribution

Density

Pr(6 < 6p|Data)

13 APPENDIX: LAPLACE APPROXIMATION

Let random variables Y; ... Yy represent an independent and identically distributed sample from a
probability distribution with density function f(Y|8), and define y;, ... yy as realizations of this
sample. If f(Y|0) is derived from a regression model, then the density function may also
condition on covariates (elsewhere denoted X and x). However, covariate information is not
pertinent to the derivations below, and are omitted for clarity. The likelihood function is defined

as follows:

N

LOWy -0 = | | Fouie) (M

=1

The natural log of the likelihood function is defined as follows:

N
£@1y, ) = ) log f(116) @
i=1
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In Bayesian analysis, the posterior density function is proportional to the likelihood function
multiplied by the prior density function as follows:

P(Oly; ...yn) < L(Oly; ... yn)P(6) 3

13.1 Equivalence of MAP and MLE with Flat Prior

A “flat prior” density function is defined to be proportional to 1 for all values of 6. Thus, when a
flat prior is specified, the posterior density function is proportional to the likelihood function. In
addition, the maximum a posteriori (MAP) estimator of 8 is also a maximum likelihood estimator
(MLE):

6= arg max POy, ..yn) = arg max LOly;y .yn) = argénaxi’(é’lyl YN 4)

13.2 Asymptotic Normality of MLE
Under regularity conditions, the MLE converges in distribution to a normal distribution:

83 N6, I (5)

where 6, is the true but unknown value of 6, and I is the Fisher information:

2

d
I = Ey, —Wi”(@om e Yy) (6)

In practice, because 6, is unknown, inferences about 6, are made by substituting 8 in place of
6, and the observed information is substituted in place of the Fisher information:

6~N(8,I™1) (7)

The observed information is the negative Hessian of the log likelihood function evaluated at 8:

2

. d
I = —W{’(Qbﬁ - YN) . (8)

13.3 Laplace Approximation to Posterior
The Laplace approximation to a posterior density function (or any density function) is based on
a two-term Taylor expansion of the natural log of the density function about 8:

4(9) ~ q(8) + (6 - 8)q'(8) + %(9 —8)"q"(0)(6 - 0) )

where q(6) is the log posterior density function and q'(8) and q"(8) are the gradient and

Hessian of q(8), respectively, evaluated at 8. When a flat prior is used, q(8) is equal to the log
likelihood function plus a constant c:

q(0) =log P(0ly1 -.yn) = £(0ly1 ...yn) + ¢ (10)
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Because § is defined to be the MAP estimate, q'(8) = 0. Thus, expression (9) simplifies:

1 Te A R
q(0) ~ — 5(9 -0) [-9"()](6 -8)+ ¢ (11)
where the negative Hessian is identical to the observed information when a flat prior is used:

R 92
=q"(0) = |~ 55zl08 P(BI ---}’N)] i

6=0

K "
= [—W{)(@bﬁ - YN) e =1 (12)

Exponentiating expression (11) demonstrates that the Laplace approximation to the posterior
density must be a normal density with mean 8 and variance-covariance /. This is identical to
the asymptotic sampling distribution of the MLE given in expression (7):

Oly, ..yn) ~N(0,171) (13)

Under regularity conditions, the Bernstein-von Mises theorem provides asymptotic guarantees
regarding the quality of the Laplace approximation.
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