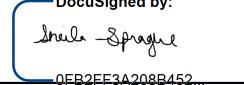
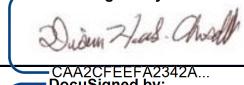
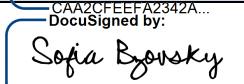


A Pragmatic Randomized trial Evaluating Pre-operative Alcohol skin solutions in Fractured Extremities (PREPARE Closed): Statistical Analysis Plan




Trial Registration: clinicaltrials.gov, NCT03523962. Registered May 14, 2018, <https://clinicaltrials.gov/ct2/show/NCT03523962>

SAP Version: 1.0

Protocol Version: 2.2

SAP Revisions: None

Disclaimer: This SAP was adapted from the Aqueous-PREP (Aqueous skin antisepsis before surgical fixation of open fractures) SAP, which was published in *Trials* in September 2022 (<https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-022-06541-0>). A copy of the Aqueous-PREP SAP was also uploaded onto the ClinicalTrials.gov trial registration page (<https://clinicaltrials.gov/ct2/show/NCT03385304>). The Aqueous-PREP primary manuscript was published in *The Lancet* in October 2022 ([https://www.thelancet.com/journals/lancet/article/PIIS0140-6736\(22\)01652-X/fulltext#seccetitle200](https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)01652-X/fulltext#seccetitle200)).

Reviewed and Approved by:		
Dr. Gerard Slobogean (Principal Investigator)	Signature: DocuSigned by: 7DFE42965445427...	Date: 22-Feb-2023
Dr. Sheila Sprague (Principal Investigator)	Signature: DocuSigned by: 0EB2EE3A208B452...	Date: 21-Feb-2023
Dr. Nathan N. O'Hara (Statistician)	Signature: DocuSigned by: Nathan O'Hara	Date: 21-Feb-2023
Diane Heels-Ansdell (Statistician)	Signature: A15DD93C7A70439... DocuSigned by: Diane Heels-Ansdell	Date: 27-Feb-2023
Sofia Bzovsky (Statistical Analyst)	Signature: CAA2CFFEEFA2342A... DocuSigned by: Sofia Bzovsky DE3009EA7FBB44B...	Date: 21-Feb-2023

ABSTRACT

Background

Approximately 5% of closed fractures that are treated operatively will develop a surgical site infection. The PREPARE Closed trial will investigate the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in reducing infections after surgery for closed lower extremity or pelvic fractures. The study protocol was published in April 2020.

Methods and Design

The PREPARE Closed trial is a pragmatic, multicentre, open-label, randomized multiple period cluster crossover trial. Each participating cluster is randomly assigned in a 1:1 ratio to provide 1 of the 2 study interventions on all eligible patients during a study period. The intervention periods are 2 months in length. After completing a 2-month period, the participating cluster crosses over to the alternative intervention. We plan to enroll a minimum of 6280 patients at 23 sites.

Results

The primary outcome is surgical site infection guided by the Centers for Disease Control and Prevention's National Healthcare Safety Network reporting criteria (2017). All participants' surgical site infection surveillance period will end 30 days after definitive fracture management surgery for superficial infections and 90 days after definitive fracture management surgery for deep incisional or organ/space infections.¹ The secondary outcome is an unplanned fracture-related reoperation within 12 months of the fracture.

Conclusion

This manuscript serves as the formal statistical analysis plan (version 1.0) for the PREPARE Closed trial. The statistical analysis plan was completed on February 21, 2023.

Keywords

Closed fracture, surgical site infection, alcohol antiseptic solutions

1.0 INTRODUCTION

1.1 Background and Rationale

The prevention of infection is a critical goal of perioperative care for patients with surgically treated fractures of the closed lower extremity or pelvis. Surgical site infections are often devastating complications because of the unplanned reoperations, fracture healing difficulties, and adverse events from prolonged antibiotic treatments. Ultimately, infectious complications in these fracture populations lead to prolonged morbidity, loss of function, and potential limb loss.

Standard practice in the management of extremity fractures includes cleaning the injured limb with an antiseptic skin solution in the operating room prior to making a surgical incision. The available solutions kill bacteria and decrease the quantity of native skin flora, thereby reducing surgical site infection.²⁻⁵ While there is extensive guidance on specific procedures for prophylactic antibiotic use and standards for sterile technique, the evidence regarding the choice of antiseptic skin preparation solution is very limited for extremity fracture surgery.

The PREPARE Closed trial will provide the necessary evidence to guide the choice of antiseptic skin solution to prevent surgical site infections in patients with closed lower extremity or pelvic fractures. The trial is poised to significantly impact the care and outcomes of closed lower extremity or pelvic fracture patients.

1.2 Objectives

The overall objective of the PREPARE Closed trial is to compare the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl

alcohol antiseptic solutions for the surgical management of closed lower extremity or pelvic fractures.

Primary Objective and Hypothesis

To determine the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in preventing surgical site infections. We hypothesize that iodine povacrylex in alcohol antiseptic will be more effective in preventing surgical site infections than chlorhexidine gluconate in alcohol antiseptic.^{5,6}

Secondary Objective and Hypothesis

To determine the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in preventing unplanned fracture-related reoperations. We hypothesize that iodine povacrylex in alcohol antiseptic will be more effective in preventing unplanned reoperations than chlorhexidine gluconate in alcohol antiseptic.^{5,6}

Subgroup Objectives and Hypotheses

We will perform two subgroup analyses to determine if the effects of preoperative antiseptic skin solutions on surgical site infection vary within clinically relevant subgroups. The subgroups will be defined by i) the presence or absence of the soft tissue injury (defined as severe soft tissue injury versus no severe soft tissue injury); and ii) the presence or absence of a periarticular fracture. We hypothesize that the magnitude of the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol compared with 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic

in preventing surgical site infections will be greater in severe soft tissue injuries and in the presence of periarticular fractures.

1.3 Reporting

The structure of this statistical analysis plan follows the Guidelines for the Content of Statistical Analysis Plans in Clinical Trials.⁷ The reporting of the trial results will follow the 2010 CONSORT statement and the extension statements for Cluster Trials and Randomized Crossover Trials, as applicable.⁸ Additional statistical analyses plans will be developed for secondary analyses of the trial data.

1 **2.0 STUDY METHODS**

2 **2.1 Trial Design**

3 The study is a pragmatic, multicentre, open-label, randomized multiple period cluster crossover
4 trial. We defined clusters as orthopaedic practices within participating hospitals, with each
5 participating hospital having only one participating orthopaedic practice.⁹ The intervention periods
6 are approximately 2 months in length. After completing a 2-month period, the participating cluster
7 crosses over to the alternative intervention where they use the other study solution for the next 2-
8 month period. There are no washout periods between treatment periods.

9

10 **2.2 Randomization**

11 The order of treatment allocation for each orthopaedic practice (cluster) will be randomly assigned
12 using a computer-generated randomization table. Each cluster will start with the initially allocated
13 study solution and crossover to the other solution for their second recruitment period. This process
14 of alternating treatments will repeat approximately every 2 months as dictated by the initial
15 randomization until enrollment targets are met. The randomization will be in a 1:1 ratio,
16 unrestricted, and executed only prior to the first sequence.

17

18 **2.3 Sample Size**

19 A sample size of 6280 patients will have 80% power to detect a 36% reduction in the odds of
20 infection with a two-sided alpha of 0.05. This estimate allows for a 10% loss to follow-up and
21 assumes a baseline infection risk of 3.5%, 10 recruiting clusters, no between-period variance, and
22 a 0.095 between-cluster variance.⁶ After the initial power calculations, we determined that
23 additional clusters were required to meet the study timelines. As such, we increased the number of

24 clusters from 10 to a minimum of 23. The increase in clusters results in a marginal increase in
25 statistical power (approximately 2%).

26

27 **2.4 Framework**

28 All study outcomes will be tested for superiority.

29

30 **2.5 Interim Analysis and Stopping Guidance**

31 PREPARE Closed does not have a planned interim analysis. However, the trial's Data and Safety
32 Monitoring Committee reviews the reporting of serious adverse events biannually and can
33 recommend early stopping if safety concerns are identified.

34

35 **2.6 Timing of Outcome Assessments**

36 Research personnel will contact study participants at 6 weeks, 3 months, 6 months, 9 months, and
37 12 months after their fracture. Our primary outcome will be surgical site infection (SSI) and it will
38 be assessed at 30 days (superficial infections) and at 90 days (deep and organ space infections)
39 after definitive fracture management surgery. The secondary outcome will be occurrence of an
40 unplanned fracture-related reoperation within 12 months of the fracture. Additional time points
41 will be used for our planned sensitivity analyses.

42

43

44

45 **3.0 STATISTICAL PRINCIPLES**

46 **3.1 Confidence Intervals and P-Values**

47 All statistical tests will be two-sided and performed using a 5% significance level. We will report
48 all confidence intervals as 95% and two-sided. All results will be expressed as odds ratios produced
49 by analyses described in section 5.2. Interaction p-values will be provided for the subgroup
50 analyses. We will not adjust for multiple testing, and all sensitivity analyses and secondary results
51 will be interpreted as exploratory.

52

53 **3.2 Adherence and Protocol Deviations**

54 Adherence will be assessed at the definitive fracture surgery for each participant and will be binary
55 in its definition. We will report adherence as the number and percentage of participants who
56 received the allocated intervention at their definitive fracture management surgery. If the
57 participant has multiple closed fractures and received the non-allocated treatment at the definitive
58 fracture management surgery for any of their closed fractures, we will consider them non-adherent.
59 We will also tabulate the reasons for non-adherence. The adherence percentages and reasons for
60 non-adherence will be reported by treatment arm.

61

62 Our rationale for defining adherence based solely on the antiseptic solution used during the
63 definitive fracture management surgery is that the vast majority of closed fractures do not require
64 staged surgical management and that the definitive fracture management surgery involves the final
65 implantation of the surgical fixation hardware, when it is most susceptible to bacterial
66 contamination and biofilm development.

67

68 **3.3 Analysis Populations**

69 *Intention-to-Treat*: Our primary analysis will use the intention-to-treat approach and will include
70 all enrolled patients in the treatment groups to which their cluster was allocated at the time of their
71 first fracture management surgery.

72

73 *As-Treated*: One of our sensitivity analyses will be performed on an as-treated population (see
74 Section 5.4). The as-treated population will include participants from the intention-to-treat
75 population but classified based on the intervention received at their definitive fracture management
76 surgery. Participants who do not receive one of the two study interventions will be excluded from
77 this analysis. This approach for defining the as-treated treatment groups is a simpler adaptation of
78 what was initially proposed in the protocol. This final approach was selected to be consistent with
79 the classification of adherence outlined above.

80

81

82 **4.0 TRIAL POPULATION**

83 **4.1 Cluster Screening and Eligibility**

84 Prior to commencing the trial, the investigators solicited orthopaedic surgery practices treating
85 patients with closed fracture(s) of the lower extremity or pelvis in hospitals in the United States
86 and Canada to participate in the trial. All potential clusters completed a feasibility questionnaire
87 prior to initiating start-up activities. To be included in the trial, each cluster had to demonstrate: 1)
88 adequate research personnel infrastructure to manage the study, 2) adequate fracture patient
89 volume to complete enrolment within the study timeline, 3) a commitment from all surgeons to
90 adhere to the assigned interventions, and 4) the ability to procure both study interventions. All
91 hospitals started with a run-in phase of at least 1 month to demonstrate that they could adhere to
92 the trial protocol prior to commencing the study.

93

94 We will report the number of clusters (orthopaedic practices) screened, included, and excluded in
95 a flow diagram. The number of clusters excluded by reason has been reported previously.⁹ Cluster
96 randomization allocation will be included in the flow diagram, and adherence with treatment
97 allocation during the run-in period by cluster will be summarized using percentages.

98

99 **4.2 Patient Screening and Eligibility**

100 All patients 18 years of age or older who present to a recruiting hospital for treatment of a closed
101 fracture(s) of the lower extremity or pelvis will be screened by a research staff member for
102 participation within 6 weeks of their fracture. Eligible patients must receive surgical incision (i.e.,
103 for fracture reduction or implant insertion), and the closed fracture(s) must be managed definitively
104 with a surgical implant (e.g., internal fixation, external fixation, joint prosthesis, etc.). Written

105 informed consent is required for study enrollment to permit the clinical follow-up of study
106 participants. However, our institutional review board did not require informed consent to occur
107 prior to the study treatment, given the urgent nature of the surgery and the predetermination of the
108 two commonly used interventions with cluster-crossover design. The patients, treating clinicians,
109 and research team members at the participating sites are unmasked to the treatment allocation.

110

111 The number of patients screened, included, and excluded will be presented in a flow diagram
112 (**Figure 1**). The figure will consist of the number of patients who were eligible, ineligible, and
113 enrolled. In addition, the number of patients excluded by reason will be summarized. We will also
114 list the number of participants who were enrolled and subsequently deemed ineligible by the
115 Central Adjudication Committee by treatment group and overall. Participants deemed ineligible
116 by a central adjudication committee blinded to the treatment will not be included in any analysis,
117 as per the guidance of Fergusson et al.¹⁰

118

119 **4.3 Participant Withdrawal**

120 The level of withdrawal will be tabulated and classified as “withdrawal of consent” or “lost to
121 follow-up”. Participant deaths will also be tabulated.

122

123 **4.4 Participant Follow-Up**

124 We will report the number of participants who complete follow-up at 3 months after definitive
125 fracture management surgery and 12 months after their fracture, stratified by treatment allocation.

126

127

128 **4.5 Cluster Characteristics**

129 Specific details on characteristics of participating clusters, orthopaedic characteristics, and surgical
130 infection prevention information in the PREPARE Closed trial have been previously published.⁹

131

132 **4.6 Participant Demographics, Fracture Characteristics, and Descriptions of Surgical and
133 Perioperative Care**

134 We will describe the study population with respect to age, sex, race or ethnicity, body mass index,
135 diabetes status, smoking status, Injury Severity Score, the American Society of Anesthesiologists
136 Physical Status Classification System, the number of included closed fractures per participant, the
137 presence of a severe soft tissue injury (defined as severe soft tissue injury versus no severe soft
138 tissue injury),¹¹ the location of the fracture, the use of temporary fracture stabilization, number of
139 planned surgeries, the duration of perioperative antibiotic administration, and the method of wound
140 closure (**Tables 1 and 2**). Categorical data will be summarised by counts with percentages. Age
141 will be summarised as a mean with standard deviation. We will report the Injury Severity Score as
142 a median with an interquartile range. The duration of systemic perioperative antibiotics will be
143 summarised in days and reported as a median with interquartile range. Body mass index (BMI)
144 will be reported in kg/m² and subcategorized as underweight (BMI < 18.5), normal weight (18.5
145 – 24.9), overweight (25 – 29.9), and obese (BMI > 30). Additional patient characteristics may be
146 reported as supplemental information. All reporting will be stratified by treatment groups. We will
147 not statistically test for differences in baseline characteristics between treatment groups; however,
148 the clinical importance of any imbalance will be noted.

149 **5.0 ANALYSIS**150 **5.1 Outcome Definitions**151 *Primary Outcome*

152 Our primary outcome is SSI guided by the Centers for Disease Control and Prevention's (CDC)
 153 National Healthcare Safety Network reporting criteria (2017).¹ The SSI surveillance period for all
 154 participants, including participants with multiple planned fracture surgeries, will end 30 days after
 155 definitive fracture management surgery for superficial SSI and 90 days after definitive fracture
 156 management surgery for deep incisional or organ/space SSI. We will also separately report but not
 157 statistically test the occurrence of each type of SSI (superficial incisional infections by 30 days,
 158 deep incisional infections by 90 days, and organ/space infections by 90 days) by treatment arm. If
 159 multiple tissue levels are involved in the infection, the type of SSI will be defined by the deepest
 160 tissue layer involved during the surveillance period. Therefore, only one type of SSI per participant
 161 will be reported.

162

163 **CDC National Healthcare Safety Network Surgical Site Infection Reporting Criteria (2017)**

Outcome	Description
<i>Superficial Incisional SSI</i>	<p>Date of event for infection may occur from the date of fracture to 30 days after the definitive fracture management surgery</p> <p>AND</p> <p>involves only skin and subcutaneous tissue of the incision</p> <p>AND</p> <p>patient has at least one of the following:</p> <ul style="list-style-type: none"> a. purulent drainage from the superficial incision. b. organisms identified from an aseptically obtained specimen from the superficial incision or subcutaneous tissue by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]). c. superficial incision that is deliberately opened by a surgeon, attending physician or other designee and culture or non-culture-based testing is not performed. <p>AND</p> <p>patient has at least one of the following signs or symptoms: pain or tenderness; localized swelling; erythema; or heat.</p> <ul style="list-style-type: none"> d. diagnosis of a superficial incisional SSI by the surgeon or attending physician or other designee. <p>The following do not qualify as criteria for meeting the definition of superficial SSI:</p> <ul style="list-style-type: none"> • Diagnosis/treatment of cellulitis (redness/warmth/swelling), by itself, does not meet criterion "d" for superficial incisional SSI. Conversely, an incision that is draining or that

Outcome	Description
	<p>has organisms identified by culture or non-culture-based testing is not considered a cellulitis.</p> <ul style="list-style-type: none"> • A stitch abscess alone (minimal inflammation and discharge confined to the points of suture penetration). • A localized stab wound or pin site infection- Such an infection might be considered either a skin (SKIN) or soft tissue (ST) infection, depending on its depth, but not an SSI <p>Note: A laparoscopic trocar site for an operative procedure is not considered a stab wound.</p> <ul style="list-style-type: none"> • An infected burn wound is classified as BURN and is not an SSI.
<i>Deep Incisional SSI</i>	<p>The date of event for infection may occur from the date of fracture to 90 days after the definitive fracture management surgery</p> <p>AND</p> <p>involves deep soft tissues of the incision (e.g., fascial and muscle layers)</p> <p>AND</p> <p>patient has at least one of the following:</p> <ol style="list-style-type: none"> a. purulent drainage from the deep incision. b. a deep incision that spontaneously dehisces, or is deliberately opened or aspirated by a surgeon, attending physician or other designee, and organism is identified by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]) or culture or non-culture based microbiologic testing method is not performed <p>AND</p> <p>patient has at least one of the following signs or symptoms: fever ($>38^{\circ}\text{C}$); localized pain or tenderness. A culture or non-culture-based test that has a negative finding does not meet this criterion.</p> <ol style="list-style-type: none"> c. an abscess or other evidence of infection involving the deep incision that is detected on gross anatomical or histopathologic exam, or imaging test
<i>Organ/Space SSI</i>	<p>Date of event for infection may occur from the date of fracture to 90 days after the definitive fracture management surgery</p> <p>AND</p> <p>infection involves any part of the body deeper than the fascial/muscle layers, that is opened or manipulated during the operative procedure</p> <p>AND</p> <p>patient has at least one of the following:</p> <ol style="list-style-type: none"> a. purulent drainage from a drain that is placed into the organ/space (e.g., closed suction drainage system, open drain, T-tube drain, CT guided drainage) b. organisms are identified from an aseptically obtained fluid or tissue in the organ/space by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]). c. an abscess or other evidence of infection involving the organ/space that is detected on gross anatomical or histopathologic exam, or imaging test evidence suggestive of infection. <p>AND</p> <p>meets at least one criterion for a specific organ/space infection site summarized in the Surveillance Definitions for Specific Types of Infections chapter.¹</p>

164 *The CDC criteria have been modified to include all definitive fracture management surgeries instead of including
 165 only National Healthcare Safety Network procedures that require infection reporting.

166
 167

168

169 *Secondary Outcome*

170 The secondary outcome is the occurrence of an unplanned fracture-related reoperation within 12
171 months of the fracture. Unplanned reoperations are a common, patient-important outcome in
172 fracture surgery research that captures severe wound and bone healing complications that may be
173 related to occult infections.¹²⁻¹⁴ Our definition includes treatments for infection, wound healing
174 complications, or fracture healing complications such as a delayed union or nonunion. We will
175 also report the occurrence of each type of unplanned reoperation by treatment arm.

176

177 **5.2 Analysis Methods**

178 We will report the number and percentage of patients who sustain the study outcomes by treatment
179 group. We will evaluate the effect of the preoperative antiseptic solutions on our study outcomes
180 using mixed effects regression models with a binomial distribution to produce treatment effect
181 estimates presented as odds ratios with 95% confidence intervals as recommended.¹⁵ For patients
182 with multiple closed fractures, the patient will remain the unit of analysis regardless of whether
183 the study event occurs in one or more of their closed fractures. As suggested by Morgan et al. and
184 Hemming et al., we will include time and treatment as fixed effects and use random effects to
185 account for the complex correlation structure.¹⁶⁻¹⁸ We will consider three correlation structures, in
186 the following sequence: exponential decay, nested exchangeable, and exchangeable. If we
187 experience convergence issues or find insufficient between-period correlation to support an
188 exponential decay or nested exchangeable structure, we will assume an exchangeable correlation
189 structure. If we encounter convergence issues even with this model, a more simplified structure
190 will be considered. The models will also include prespecified covariates prognostic of infection or
191 unplanned reoperation as fixed effects, which includes the presence or absence of a severe soft

192 tissue injury and the presence or absence of a periarticular fracture.¹⁹ The same covariates will be
193 used for all primary and secondary outcomes. This planned analysis is a more complex structure
194 than we proposed in the initial study protocol but represents the most recently recommended
195 statistical techniques for cluster-crossover trial analysis.^{16,18,20,21} Estimated within-period
196 intracluster correlation coefficients will also be reported.²²

197

198 Our primary and secondary analyses will use multiple imputations to account for missing data.
199 The multiple imputation analysis will create 100 imputed datasets using multivariate imputation
200 by chained equations and pooled using Rubin's rules for combining.²³ The imputation will be
201 performed separately within each treatment arm.

202

203 **5.3 Subgroup Analyses**

204 To determine treatment effect heterogeneity on the study outcomes, we will use the same analytical
205 approach as specified for the primary and secondary outcomes above but include a treatment by
206 subgroup interaction term in the model. We will report results by the prespecified subgroups,
207 which consists of the presence or absence of a severe soft tissue injury (defined as severe soft
208 tissue injury versus no severe soft tissue injury) and the presence or absence of a periarticular
209 fracture (defined as AO/OTA fracture types 33, 41, 43 and 44 versus all other included fractures).
210 The results of the subgroup analyses will be reported using a forest plot reporting odds ratios with
211 95% confidence intervals. These analyses will be approached and reported in accordance with best
212 practices and guidelines for subgroup analyses.²⁴⁻²⁸ We will use the criteria suggested by
213 Schandelmaier et al. to guide inferences about the credibility of our subgroup analyses.²⁸ As
214 participants may have more than one included fracture representing different subgroups, the

215 analyses will be performed by categorizing participants according to the fracture with the most
216 severe injury characteristic for each subgroup.

217

218 **5.4 Sensitivity Analyses**

219 We will consider four alternative analysis approaches to evaluate the robustness of our findings,
220 including alternative definitions of the primary outcome, an as-treated analysis of the primary and
221 secondary outcomes, a complete case missing data analysis of the primary and secondary
222 outcomes, and a Bayesian analysis of the primary and secondary outcomes. We will also allow
223 for post-hoc sensitivity analysis based on information not anticipated in advance.

224

225 *Alternative Definitions of SSI:* To evaluate the robustness of the result, we will consider two
226 alternative exploratory definitions of SSI: 1) using the confirmatory criteria from the consensus
227 definition of Fracture-Related Infection (FRI), and 2) expanding the CDC criteria for all types of
228 SSI to within 1 year of injury.²⁹

229

230 Our adjudication of Fracture-Related Infection is defined by the confirmatory criteria outlined in
231 its 2018 consensus definition.²⁹ The FRI criteria have been selected as an exploratory outcome
232 because the CDC criteria have been criticized for failing to adequately account for the complexities
233 of infections in traumatic fractures.^{30,31} The FRI criteria attempt to improve the ability to detect
234 infections specifically in fracture patients; however, this definition of FRI has not been fully
235 validated or widely adopted.

236

237 The confirmatory criteria include the presence of one or more of the following signs/symptoms:

238 1) Fistula, sinus, or wound breakdown (with communication to the bone or the implant).

239 2) Purulent drainage from the wound or presence of pus during surgery.

240 3) Phenotypically indistinguishable pathogens identified by culture from at least two separate

241 deep tissue/implant (including sonication-fluid) specimens taken during an operative

242 intervention. In the case of tissue, multiple specimens (3) should be taken, each with clean

243 instruments (not superficial or sinus tract swabs). In cases of joint effusion arising in a joint

244 adjacent to a fractured bone, fluid samples obtained by sterile puncture may be included as

245 a single sample.

246 4) Presence of microorganisms in deep tissue taken during an operative intervention, as

247 confirmed by histopathological examination using specific staining techniques for bacteria

248 or fungi.

249

250 The second exploratory definition of surgical site infection expands the CDC criteria to a 12-month

251 surveillance period. This outcome will use the same diagnostic CDC reporting criteria for the

252 primary; however, the timeframe for this outcome will be expanded to include all SSIs that occur

253 within 12 months of fracture. Similar to the rationale for using the FRI outcome and the

254 recommendations for a minimum of 12 months follow-up for orthopaedic fracture outcomes, this

255 expanded timeframe will detect infections that occur beyond the standard CDC surveillance

256 reporting periods. This modification of the CDC reporting periods has been used in previous

257 orthopaedic fracture trials.^{12,32}

258

259 *As-Treated Analysis:* One of our sensitivity analyses will be performed on an as-treated population.

260 The as-treated population will include participants from the intention-to-treat population who

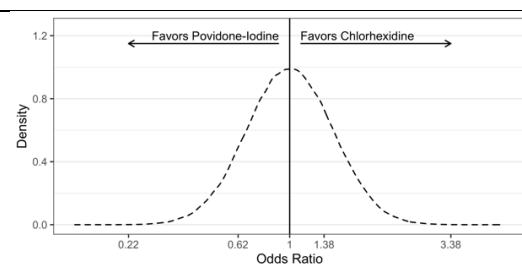
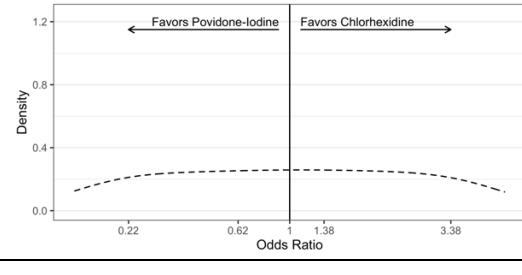
261 received one of the two interventions; however, participants will be classified based on the
262 intervention received at their definitive fracture management surgery. Participants who do not
263 receive one of the study interventions will be removed from this analysis. Similar to the primary
264 analysis, we will use mixed effects regression models with a binomial distribution and the same
265 covariates and correlation structure as the primary model. A more simplified structure will be
266 considered if we encounter convergence issues with this model.

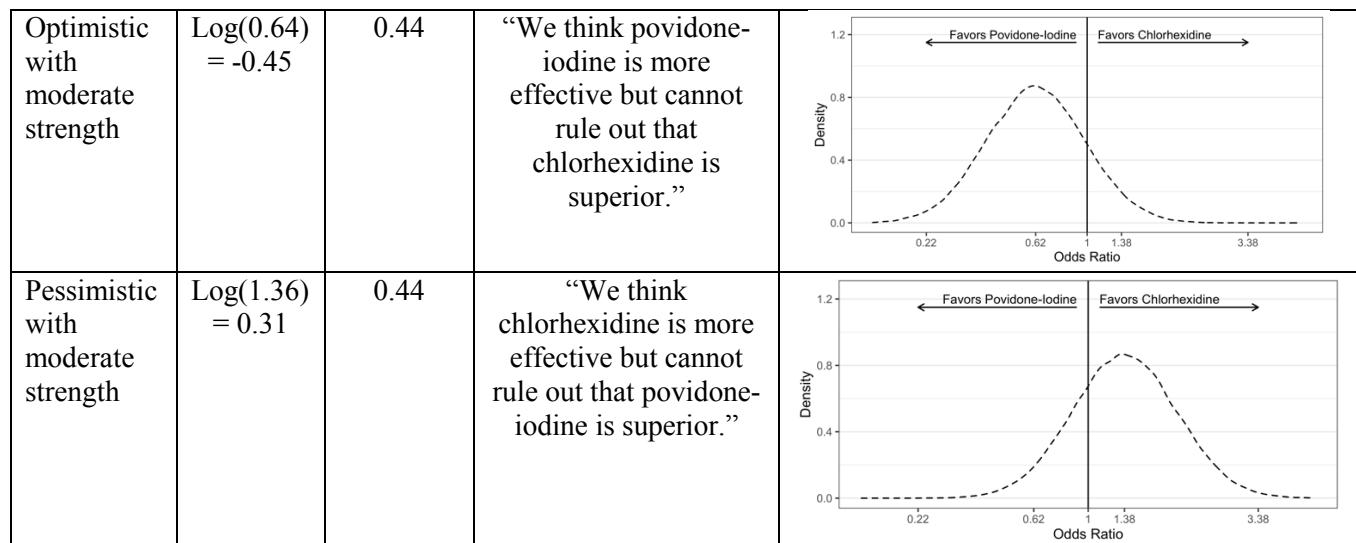
267

268 *Missing Data:* While we anticipate minimal missing outcome data, we will perform a sensitivity
269 analysis on the primary and secondary analyses to explore the impact of missing outcome data.
270 Our sensitivity analysis will be a complete case analysis, including only those patients with a
271 known status of the outcome being analyzed.

272

273 *Bayesian Analysis:* The Bayesian analyses will be performed using four different priors (neutral
274 with moderate strength, neutral flat, optimistic with moderate strength, and pessimistic with
275 moderate strength) defined on a log-odds scale and described below. The neutral priors will be
276 centered on a log odds of 0 (odds ratio of 1). The neutral flat prior will have a standard deviation
277 of 100. The optimistic prior will be centered on the estimated effect size of a 0.64 odds ratio (log
278 odds of -0.45). In contrast, the pessimistic prior is centered on the same effect size but for the
279 alternative treatment. As suggested by Zampieri et al.,³³ the standard deviation of 0.44 was selected
280 for the moderate strength priors as it allows for a 15% probability of the alternative treatment
281 benefit in both the optimistic and pessimistic prior. The prior probability of our neutral prior with
282 a moderate strength distribution implies a 68% chance the estimated effect will be between an odds



283 ratio of 0.64 and 1.36. The neutral prior with moderate strength will be our preferred prior in this
 284 sensitivity analysis.


285

286 The modeling for the Bayesian analysis will be consistent with our primary analysis. We will use
 287 a mixed effects regression model with a Bernoulli distribution. The model will include time and
 288 treatment as fixed effects and use random effects to account for the complex correlation structure.
 289 The best fitting correlation structure will be determined using information criteria. If we
 290 experience convergence issues with this model structure, we will transition to a less complex
 291 model. We will report treatment effects as odds ratios with 95% credible intervals. We will also
 292 report the probability of treatment benefits of povidone-iodine, with 50% implying no difference
 293 in the probability of benefit between the two treatment groups.

294

295 **Priors used in the analysis with their interpretation and a visual depiction.**

Prior	Mean	Standard Deviation	Interpretation	Visualization
Neutral with moderate strength	$\text{Log}(1.00) = 0$	0.44	“There is no strong information to suggest the intervention is good or bad in this study population, but we think extreme effect sizes are very unlikely.”	
Neutral flat	$\text{Log}(1.00) = 0$	100	“None of the prior research is relevant to this trial, and we cannot rule out extreme effect sizes.”	

296

297 **5.5 Harms**

298 The number and percentage of patients experiencing serious adverse events will be presented by
 299 treatment arm. No formal statistical testing will be undertaken.

300

301 **5.6 Statistical Software**

302 The statistical analyses will be performed with SAS, version 9.4 (SAS Institute, Cary, NC) and R
 303 (R Foundation for Statistical Computing, Vienna, Austria).

304 **6.0 FIGURES AND TABLES**305 **Table 1: Baseline characteristics**

	Iodine Povacrylex in Alcohol (n= XX participants)	Chlorhexidine in Alcohol (n= XX participants)
Age, years, mean (SD)		
Sex, n (%)		
Female		
Male		
Prefer not to answer		
Race or ethnicity, n (%)		
White		
Black		
Central or South American		
Asian		
Indigenous		
Native Hawaiian or Pacific Islander		
Multiracial		
Prefer not to answer		
Body mass index, kg/m ² , n (%)		
Underweight (BMI < 18.5)		
Normal weight (18.5 – 24.9)		
Overweight (25 – 29.9)		
Obese (BMI > 30)		
Diabetes, n (%)		
Current smoker, n (%)		
Injury severity score, mean (SD)		
American Society of Anesthesiologist Physical Score, n (%)		
Class I or II		
Class III or higher		
Number of included closed fractures per participant, n (%)		
One		
Two		
Three		

306
307

308

Table 2: Fracture Characteristics and Management

	Iodine Povacrylex in Alcohol (n= XX fractures)	Chlorhexidine in Alcohol (n= XX fractures)
Location of fracture, n (%)		
Pelvis		
Femur, proximal		
Femur, shaft		
Knee		
Tibia, shaft		
Tibia, distal		
Foot and ankle		
Periarticular fracture, n (%)*		
Severe soft tissue injury, n (%)**		
Temporary fracture stabilization, n (%)		
Number of planned surgeries, n (%)		
1		
2		
3		
4		
5 or more		
Duration of antibiotic administration (days), median (IQR)		
Closure method, n (%)***		
Primary wound closure		
No closure attempted/secondary wound healing		
Skin graft		
Local flap		
Free flap		

309
310
311
312
313
314
315

*Periarticular fractures are fractures of the distal femur, proximal tibia, distal tibia, or ankle.

**Severe soft tissue injury is defined as having one of the following: 1) extensive skin contusion or crush injury, 2) severe damage to underlying muscle, 3) compartment syndrome, 4) degloving

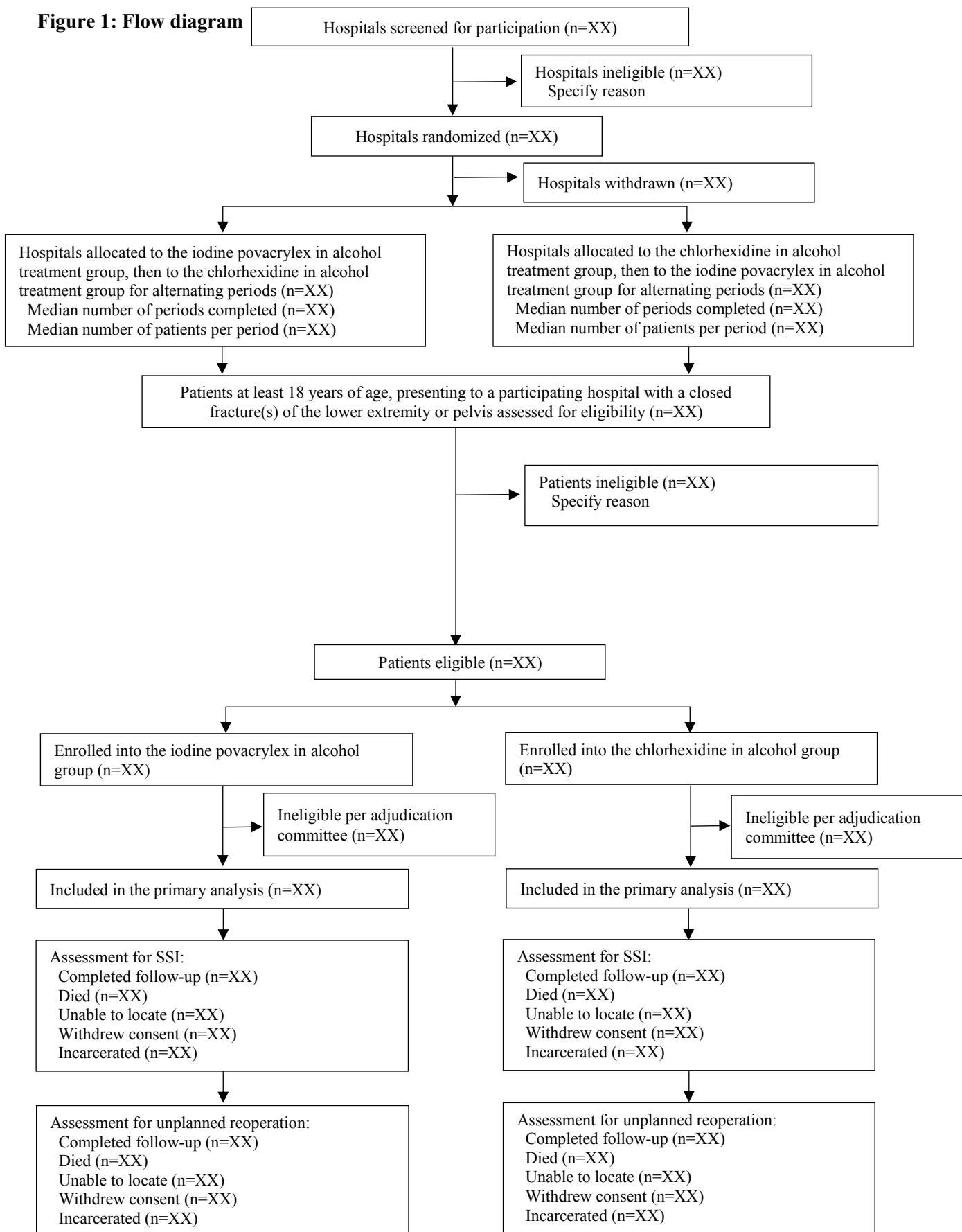
***More than one type of closure method may have been performed during surgery, but only the most complex method of closure is reported in the table using the following the hierarchy: 1) free flap, 2) local flap, 3) skin graft, 4) no closure attempted/secondary wound healing, 5) primary wound closure

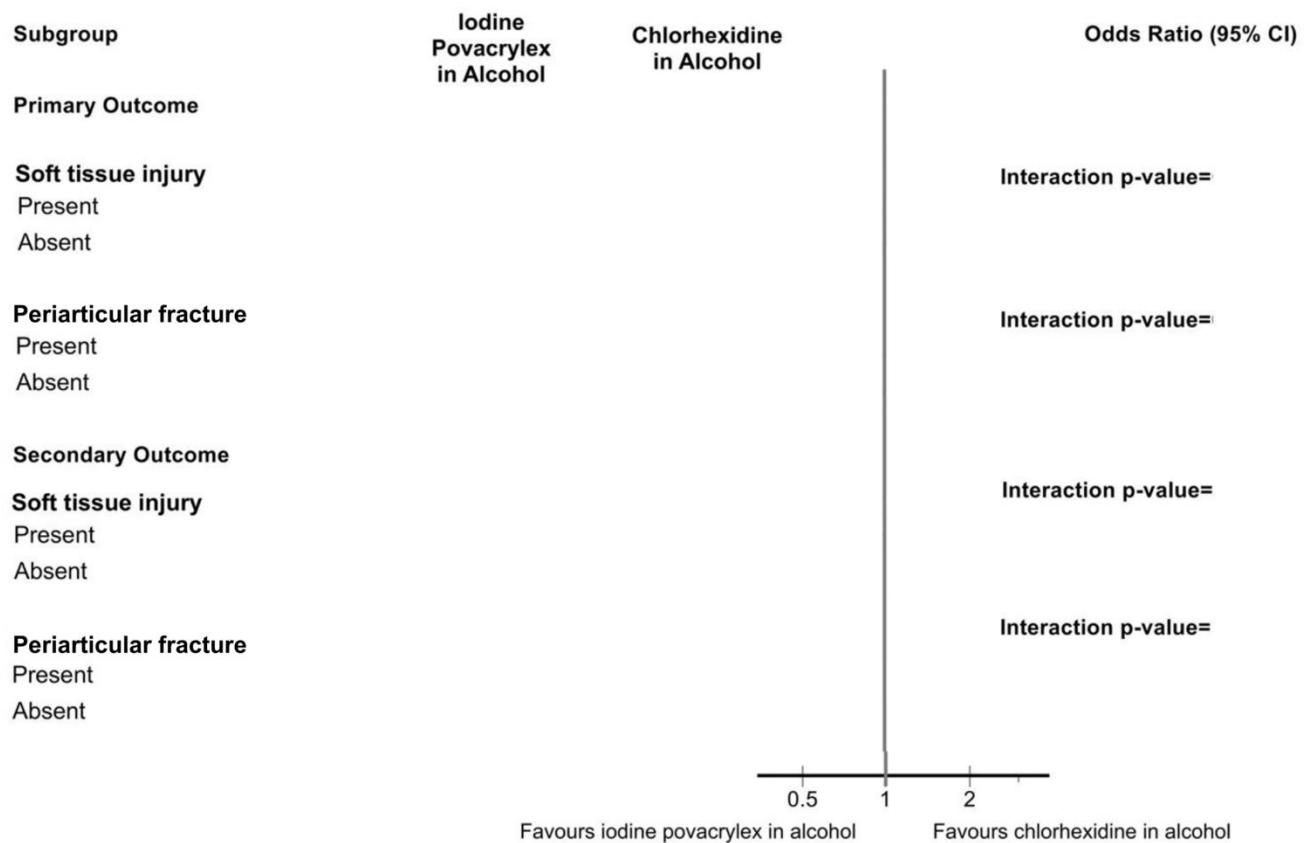
316

Table 3: Study outcomes

	Iodine Povacrylex in Alcohol (n=XXX) number (%) [*]	Chlorhexidine in Alcohol (n=XXX) number (%) [*]	Odds Ratio ^{**} (95% CI)	p-value ^{**}	Risk Difference ^{**} (95% CI)
Primary outcome	n=XXX	n=XXX			
Surgical site infection					
Superficial infection					
Deep incisional					
Organ/space infection					
<i>Alternative definitions of surgical site infection</i>	n=XXX	n=XXX			
Any surgical site infection by 365 days					
Fracture-related infection by 365 days					
Secondary outcome	n=XXX	n=XXX			
Unplanned reoperation by 365 days					
Unplanned reoperation for infection by 365 days					
Unplanned reoperation for wound healing complications by 365 days					
Unplanned reoperation to promote fracture healing by 365 days					

317


CI = Confidence Interval


318

*Percentages based on complete case description

319

**Missing outcome data were imputed using multiple imputations

Figure 1: Flow diagram

1 **Figure 2. Forest plot of subgroup analyses**

2

3 **LIST OF ABBREVIATIONS**

4

5

ASC/AST	Active surveillance culture/testing
PREPARE	A Pragmatic Randomized trial Evaluating Pre-operative Alcohol skin solutions in FRactured Extremities
BMI	Body mass index
CDC	Centers for Disease Control
FRI	Fracture-related infection
ST	Soft tissue
SSI	Surgical site infection

6

7

8

9 **DECLARATIONS**

10

11 **Ethics Approval and Consent to Participate**

12 Ethics approval has been obtained from the Hamilton Integrated Research Ethics Board for the
13 Methods Center (#4336), the Advarra Central Institutional Review Board (formerly Chesapeake
14 Institutional Review Board) (#Pro00023709), and each clinical site's local institutional review
15 board or research ethics board, if they are not using the central institutional review board. Written
16 informed consent has been obtained for study participation.

17

18 **Consent for Publication**

19 Not applicable

20

21 **Availability of Data and Materials**

22 The datasets generated and/or analyzed during the current study are not publicly available due to
23 the trial still being ongoing, but will be available from the corresponding author on reasonable
24 request.

25

26 **Competing Interests**

27 Dr. Slobogean reports editorial or governing board for the Journal of Orthopaedic Trauma, board
28 or committee member for the Orthopaedic Trauma Association, paid consultant for Smith &
29 Nephew, and paid consultant for Zimmer, all outside the submitted work. Dr. Sprague reports
30 board or committee member for Orthopaedic Trauma Association, employment from Global
31 Research Solutions Inc. and consultant fees from the University of Sherbrooke and Platform Life
32 Sciences, all outside the submitted work. Dr. Bhandari reports paid consultant from AgNovos

33 Healthcare, research support from the Canadian Institutes of Health Research (CIHR), board or
34 committee member for the International Society of Orthopaedic Surgery and Traumatology
35 (SICOT), research support from the National Institutes of Health (NIAMS & NICHD), research
36 support from Physicians' Services Incorporated, paid consultant for Sanofi-Aventis, paid
37 consultant for Smith & Nephew, and research support from the U.S. Department of Defense, all
38 outside the submitted work. Dr. O'Hara reports stock or stock options from Arbutus Medical Inc,
39 all outside the submitted work. All other authors have nothing to report.

40

41 **Funding**

42 The PREPARE trial is funded by the Patient-Centered Outcomes Research Institute (PCS-1609-
43 36512) and the Canadian Institutes of Health Research (Foundation Grant).

44

45 **Authors' Contributions**

46 All authors have been major contributors in writing the statistical analysis plan. All authors have
47 read and approved the statistical analysis plan.

48

49 **Acknowledgements**

50 **PREP-IT Investigators**

51

52 **Executive Committee:** Gerard P. Slobogean (Principal Investigator, University of Maryland
53 School of Medicine, Baltimore, MD); Sheila Sprague (Principal Investigator, McMaster
54 University, Hamilton, ON); Jeffrey L. Wells (Patient Representative, Trauma Survivors Network,
55 Falls Church, VA); Mohit Bhandari (Principal Investigator, McMaster University, Hamilton, ON)

56

57 **Steering Committee:** Gerard P. Slobogean (Co-Chair, University of Maryland School of
58 Medicine, Baltimore, MD); Mohit Bhandari (Co-Chair, McMaster University, Hamilton, ON);
59 Sheila Sprague (Principal Investigator, McMaster University, Hamilton, ON); Anthony D. Harris
60 (University of Maryland School of Medicine, Baltimore, MD); C. Daniel Mullins (University of
61 Maryland School of Medicine, Baltimore, MD); Lehana Thabane (McMaster University,

62 Hamilton, ON); Jeffrey L. Wells (Trauma Survivors Network, Falls Church, VA); Amber Wood
63 (Association of periOperative Registered Nurses, Denver, CO)

64
65 **Adjudication Committee:** Gregory J. Della Rocca (Chair, University of Missouri, Columbia,
66 MO); Anthony D. Harris (University of Maryland School of Medicine, Baltimore, MD); Joan N.
67 Hebden (University of Maryland School of Medicine, Baltimore, MD); Kyle J. Jeray (Prisma
68 Health - Upstate, Greenville, SC); Lucas S. Marchand (University of Utah, Salt Lake City, UT);
69 Lyndsay M. O'Hara (University of Maryland School of Medicine, Baltimore, MD); Robert D.
70 Zura (LSU Health, New Orleans, LA); Christopher Lee (University of California, Los Angeles,
71 CA); Joseph T. Patterson (University of Southern California, Los Angeles, CA)

72
73 **Data and Safety Monitoring Committee:** Michael J. Gardner (Chair, Stanford University School
74 of Medicine, Palo Alto, CA); Jenna Blasman (Patient Representative, Kitchener, ON); Jonah
75 Davies (University of Washington, Seattle, WA); Stephen Liang (Washington University, St.
76 Louis, MO); Monica Taljaard (Ottawa Hospital Research Institute, Ottawa, ON)

77
78 **Research Methodology Core:** PJ Devereaux (McMaster University, Hamilton, ON); Gordon
79 Guyatt (McMaster University, Hamilton, ON); Lehana Thabane (McMaster University, Hamilton,
80 ON); Diane Heels-Ansdell (McMaster University, Hamilton, ON)

81
82 **Patient Centred Outcomes Core:** Debra Marvel (Patient Representative, Baltimore, MD); Jana
83 E. Palmer (Patient Representative, Baltimore, MD); Jeffrey L. Wells (Patient Representative,
84 Trauma Survivors Network, Falls Church, VA); Jeff Friedrich (Editor, Slate Magazine,
85 Washington, DC); C. Daniel Mullins (University of Maryland School of Medicine, Baltimore,
86 MD); Nathan N. O'Hara (University of Maryland School of Medicine, Baltimore, MD); Frances
87 Grissom (Trauma Survivor Network, Baltimore, MD)

88
89 **Orthopaedic Surgery Core:** Gregory J. Della Rocca (University of Missouri, Columbia, MO); I.
90 Leah Gitajn (Dartmouth University, Hanover, NH); Kyle J. Jeray (Prisma Health - Upstate,
91 Greenville, SC); Saam Morshed (San Francisco General Hospital, San Francisco, CA); Robert V.
92 O'Toole (University of Maryland School of Medicine, Baltimore, MD); Bradley Petrisor
93 (Hamilton Health Sciences, Hamilton, ON)

94
95 **Operating Room Core:** Franca Mossuto (Hamilton Health Sciences, Hamilton, ON)

96 **Infectious Disease Core:** Anthony D. Harris (University of Maryland School of Medicine,
97 Baltimore, MD); Manjari G. Joshi (University of Maryland School of Medicine, Baltimore, MD)

98
99 **Military Core:** Jean-Claude G. D'Alleyrand (Walter Reed National Military Medical Center,
100 Bethesda, MD); Justin Fowler (United States Army, USA); Jessica C. Rivera (San Antonio
101 Military Medical Center, San Antonio, TX); Max Talbot (Canadian Armed Forces, Montreal, QC)

102
103 **McMaster University Methods Center** (Hamilton, ON): Sheila Sprague (Principal Investigator);
104 Mohit Bhandari (Principal Investigator); David Pogorzelski (Research Coordinator); Shannon
105 Dodds (Research Coordinator); Silvia Li (Research Coordinator); Gina Del Fabbro (Research
106 Assistant); Olivia Paige Szasz (Research Assistant); Diane Heels-Ansdell (Statistician); Paula

107 McKay (Manager); Alexandra Minea (Research Coordinator); Kevin Murphy (Research
108 Assistant); Sofia Bzovsky (Statistical Analyst)

109

110 **University of Maryland School of Medicine Administrative Center** (Baltimore, MD): Gerard
111 P. Slobogean (Principal Investigator); Nathan N. O'Hara (Manager); Andrea L. Howe (Project
112 Manager); Haley Demyanovich (Project Manager), Wayne Hoskins (Co-Investigator)

113

114 **University of Maryland School of Pharmacy, The PATIENTS Program** (Baltimore, MD): C.
115 Daniel Mullins (Executive Director); Michelle Medeiros (Director of Research); Genevieve Polk
116 (Assistant Director, Dissemination and Research); Eric Kettering (Senior Instructional Technology
117 and Dissemination Specialist); Nirmen Mahal (Program Specialist)

118

119 **PREP-IT Clinical Sites:**

120 *Lead Clinical Site (Aqueous-PREP and PREPARE):*

121 **University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center,
122 Baltimore, MD:** Robert V. O'Toole, Jean-Claude G. D'Alleyrand, Andrew Egseder, Aaron
123 Johnson, Christopher Langhammer, Christopher Lebrun, Jason Nascone, Raymond Pensy,
124 Andrew Pollak, Marcus Sciadini, Gerard P. Slobogean, Yasmin Degani, Haley K. Demyanovich,
125 Andrea L. Howe, Nathan N. O'Hara, Heather Phipps, Eric Hempen

126

127 *Aqueous-PREP and PREPARE:*

128 **Hamilton Health Sciences – General Site, Hamilton, ON:** Bradley Petrisor, Herman Johal, Bill
129 Ristevski, Dale Williams, Matthew Denkers, Krishan Rajaratnam, Jamal Al-Asiri, Jodi L. Gallant,
130 Kaitlyn Puszta, Sarah MacRae, Sara Renaud.

131

132 **Prisma Health - Upstate, Greenville, SC:** Kyle J. Jeray, John D. Adams, Michael L. Beckish,
133 Christopher C. Bray, Timothy R. Brown, Andrew W. Cross, Timothy Dew, Gregory K. Faucher,
134 Richard W. Gurich Jr, David E. Lazarus, S. John Millon, M. Christian Moody, M. Jason Palmer,
135 Scott E. Porter, Thomas M. Schaller, Michael S. Sridhar, John L. Sanders, L. Edwin Rudisill, Jr,
136 Michael J. Garitty, Andrew S. Poole, Michael L. Sims, Clark M. Walker, Robert Carlisle, Erin A.
137 Hofer, Brandon Huggins, Michael Hunter, William Marshall, Shea B. Ray, Cory Smith, Kyle M.
138 Altman, Erin Pichiotino, Julia C. Quirion, Markus F. Loeffler, Erin R. Pichiotino, Austin A. Cole,
139 Ethan J. Maltz, Wesley Parker, T. Bennett Ramsey, Alex Burnikel, Michael Colello, Russell
140 Stewart, Jeremy Wise, Matthew Anderson, Joshua Eskew, Benjamin Judkins, James M. Miller,
141 Stephanie L. Tanner, Rebecca G. Snider, Christine E. Townsend, Kayla H. Pham, Abigail Martin,
142 Emily Robertson, Emily Bray, J. Wilson Sykes, Krystina Yoder, Kelsey Conner, Harper Abbott

143

144 **IU Health Methodist Hospital, Indianapolis, IN:** Roman M. Natoli, Todd O. McKinley, Walter
145 W. Virkus, Anthony T. Sorkin, Jan P. Szatkowski, Brian H. Mullis, Yohan Jang, Luke A. Lopas,
146 Lauren C. Hill, Courteney L. Fentz, Maricela M. Diaz, Krista Brown, Katelyn M. Garst, Emma
147 W. Denari

148

149 **San Antonio Military Medical Center, San Antonio, TX:** Patrick Osborn, Justin Fowler, Sarah
150 N. Pierrie, Bradley Kessler, Maria Herrera

151

152 **University of California, San Francisco, San Francisco, CA:** Saam Morshed, Theodore
153 Miclau, Meir T. Marmor, Amir Matityahu, R. Trigg McClellan, David Shearer, Paul Toogood,
154 Anthony Ding, Jothi Murali, Ashraf El Naga, Jennifer Tangtiphaibootana, Tigist Belaye, Eleni
155 Berhaneselase, Dmitry Pokhvashchev

156

157 *Aqueous-PREP:*
158 **Vanderbilt Medical Center, Nashville, TN:** William T. Obremskey, Amir Alex Jahangir, Manish
159 Sethi, Robert Boyce, Daniel J. Stinner, Phillip P. Mitchell, Karen Trochez, Elsa Rodriguez, Charles
160 Pritchett, Natalie Hogan, A. Fidel Moreno

161

162 **University of Florida, Gainesville, FL:** Jennifer E. Hagen, Matthew Patrick, Richard Vlasak,
163 Thomas Krupko, Michael Talerico, Marybeth Horodyski, Marissa Pazik, Elizabeth Lossada-Soto
164

165 **McGovern Medical School at UTHealth Houston, Houston, TX:** Joshua L. Gary, Stephen J.
166 Warner, John W. Munz, Andrew M. Choo, Timothy S. Achor, Milton L. "Chip" Routt, Michael
167 Kutzler, Sterling Boutte, Ryan J. Warth

168

169 **Wright State University, Dayton, OH:** Michael J. Prayson, Indresh Venkatarayappa, Brandon
170 Horne, Jennifer Jerele, Linda Clark

171

172 **Banner University Medical Center – Tucson, Tucson, AZ:** Christina Boulton, Jason Lowe,
173 John T. Ruth, Brad Askam, Andrea Seach, Alejandro Cruz, Breanna Featherston, Robin Carlson,
174 Iliana Romero, Isaac Zarif

175

176 **The CORE Institute, Phoenix, AZ:** Niloofar Dehghan, Michael McKee, Clifford B. Jones, Debra
177 L. Sietsema, Alyse Williams, Tayler Dykes

178

179 **Vall d'Hebron University Hospital, Barcelona, Spain:** Ernesto Guerra-Farfán, Jordi Tomás-
180 Hernandez, Jordi Teixidor-Serra, Vicente Molero-García, Jordi Selga-Marsa, Juan Antonio
181 Porcel-Vazquez, Jose Vicente Andres-Peiro, Ignacio Esteban-Feliu, Nuria Vidal-Tarrason, Jordi
182 Serracanta, Jorge Nuñez-Camarena, Maria del Mar Villar-Casares, Jaume Mestre-Torres, Pilar
183 Lalueza-Broto, Felipe Moreira-Borim, Yaiza Garcia-Sánchez

184

185 **Hospital Universitari Parc Taulí, Barcelona, Spain:** Francesc Marcano-Fernández, Laia
186 Martínez-Carreres, David Martí-Garín, Jorge Serrano-Sanz, Joel Sánchez-Fernández, Matsuyama
187 Sanz-Molero, Alejandro Carballo, Xavier Pelfort, Francesc Acerboni-Flores, Anna Alavedra-
188 Massana, Neus Anglada-Torres, Alexandre Berenguer, Jaume Cámara-Cabrera, Ariadna
189 Caparros-García, Ferran Fillat-Gomà, Ruben Fuentes-López, Ramona Garcia-Rodriguez, Nuria
190 Gimeno-Calavia, Marta Martínez-Álvarez, Patricia Martínez-Grau, Raúl Pellejero-García, Ona
191 Ràfols-Perramon, Juan Manuel Peñalver, Mònica Salomó Domènec, Albert Soler-Cano, Aldo
192 Velasco-Barrera, Christian Yela-Verdú, Mercedes Bueno-Ruiz, Estrella Sánchez-Palomino, Vito
193 Andriola, Matilde Molina-Corbacho, Yeray Maldonado-Sotoca, Alfons Gasset-Teixidor, Jorge
194 Blasco-Moreu, Núria Fernández-Poch, Josep Rodoreda-Puigdemasa, Arnau Verdaguer-Figuerola,
195 Heber Enrique Cueva-Sevieri, Santiago Garcia-Gimenez

196

197 *PREPARE:*

198 **FRASER HEALTH AUTHORITY/Royal Columbian Hospital, New Westminster, BC:**
199 Darius G. Viskontas, Kelly L. Apostle, Dory S. Boyer, Farhad O. Moola, Bertrand H. Perey,
200 Trevor B. Stone, H. Michael Lemke, Ella Spicer, Kyrsten Payne
201
202 **Inova Fairfax Medical Campus, Falls Church, VA:** Robert A. Hymes, Cary C. Schwartzbach,
203 Jeff E. Schulman, A. Stephen Malekzadeh, Michael A. Holzman, Greg E. Gaski, Jonathan Wills,
204
205 **Wake Forest Baptist Health, Winston-Salem, NC:** Holly Pilson, Eben A. Carroll, Jason J.
206 Halvorson, Sharon Babcock, J. Brett Goodman, Martha B. Holden, Wendy Williams, Taylor Hill,
207 Ariel Brotherton
208
209 **MetroHealth Medical Center, Cleveland, OH:** Nicholas M. Romeo, Heather A. Vallier, Anna
210 Vergon
211
212 **University of Utah, Salt Lake City, Utah:** Thomas F. Higgins, Justin M. Haller, David L.
213 Rothberg, Lucas S. Marchand, Zachary M. Olsen, Abby V. McGowan, Sophia Hill, Morgan K.
214 Dauk
215
216 **University of Mississippi Medical Center, Jackson, MS:** Patrick F. Bergin, George V. Russell,
217 Matthew L. Graves, John Morellato, Sheketha L. McGee, Eldrin L. Bhanat, Ugur Yener, Rajinder
218 Khanna, Priyanka Nehete
219
220 **Sanford Health, Sioux Falls, SD:** David Potter, Robert VanDemark III, Kyle Seabold, Nicholas
221 Staudenmier
222
223 **Dartmouth-Hitchcock Medical Center, Lebanon, NH:** I. Leah Gitajn, Marcus Coe, Kevin
224 Dwyer, Devin S. Mullin, Theresa A. Chockbengboun, Peter A. DePalo Sr.
225
226 **Carolinas Medical Center, Atrium Health Musculoskeletal Institute, Charlotte, NC:** Kevin
227 Phelps, Michael Bosse, Madhav Karunakar, Laurence Kempton, Stephen Sims, Joseph Hsu,
228 Rachel Seymour, Christine Churchill, Ada Mayfield, Juliette Sweeney
229
230 **University of Maryland, Capital Region Health: Largo, MD:** Todd Jaebolon, Robert Beer, Haley
231 K. Demyanovich, Brent Bauer, Sean Meredith, Sneh Talwar
232
233 **University of Wisconsin Madison, Madison, WI:** Christopher M. Domes
234
235 **Duke University Hospital, Durham, NC:** Mark J. Gage, Rachel M. Reilly, Ariana Paniagua,
236 JaNell Dupree
237
238 **Brigham Women's Hospital, Boston, MA:** Michael J. Weaver, Arvind G. von Keudell, Abigail
239 E. Sagona
240
241 **University of Pennsylvania, Philadelphia, PA:** Samir Mehta, Derek Donegan, Annamarie
242 Horan, Mary Dooley
243

244 **Massachusetts General Hospital, Boston, MA:** Marilyn Heng, Mitchel B. Harris, David W.
245 Howe, John G. Esposito, Ahmad Alnasser

246

247 **Bryan Medical Center, Lincoln, Nebraska:** Steven F. Shannon, Alesha N. Scott, Bobbi Clinch,
248 Becky Weber

249

250 **University of Cincinnati, Cincinnati, OH:** Michael J. Beltran, Michael T. Archdeacon, Henry
251 Claude Sagi, John D. Wyrick, Theodore Toan Le, Richard T. Laughlin, Cameron G. Thomson,
252 Kimberly Hasselfeld

253

254 **Cedars-Sinai Medical Center, Los Angeles, CA:** Carol A. Lin, Mark S. Vrahas, Charles N.
255 Moon, Milton T. Little, Geoffrey S. Marecek, Denice M. Dubuclet

256

257 **University of California, Irvine, Orange, CA:** John A. Scolaro, James R. Learned, Philip K.
258 Lim, Susan Demas, Arya Amirhekmat, Yan Marco Dela Cruz

259

260

261

262 **REFERENCES**

263 1. Centers for Disease Control and Prevention (CDC). *Surgical Site Infection (SSI) Event.*;
264 2017.

265 2. Darouiche RO, Wall MJ, Itani KMF, et al. Chlorhexidine-Alcohol versus Povidone-Iodine
266 for Surgical-Site Antiseptics. *N Engl J Med.* 2010;362(1):18-26.

267 3. Tuuli MG, Liu J, Stout MJ, et al. A Randomized Trial Comparing Skin Antiseptic Agents at
268 Cesarean Delivery. *N Engl J Med.* 2016;374(7):647-655.

269 4. Swenson BR, Sawyer RG. Importance of alcohol in skin preparation protocols. *Infect
270 Control Hosp Epidemiol.* 2010;31(9):977.

271 5. Swenson BR, Hedrick TL, Metzger R, Bonatti H, Pruitt TL, Sawyer RG. Effects of
272 preoperative skin preparation on postoperative wound infection rates: a prospective study of
273 3 skin preparation protocols. *Infect Control Hosp Epidemiol.* 2009;30(10):964-971.

274 6. FLOW Investigators, Bhandari M, Jeray KJ, et al. A Trial of Wound Irrigation in the Initial
275 Management of Open Fracture Wounds. *N Engl J Med.* 2015;373(27):2629-2641.
276 doi:10.1056/NEJMoa1508502

277 7. Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical Analysis
278 Plans in Clinical Trials. *JAMA.* 2017;318(23):2337. doi:10.1001/jama.2017.18556

279 8. Dwan K, Li T, Altman DG, Elbourne D. CONSORT 2010 statement: extension to
280 randomised crossover trials. *BMJ.* Published online July 31, 2019:14378.
281 doi:10.1136/bmj.l4378

282 9. Sprague S, Scott T, Dodds S, et al. Cluster identification, selection, and description in
283 cluster randomized crossover trials: the PREP-IT trials. *Trials.* 2020;21(1):712.

284 10. Fergusson D, Aaron SD, Guyatt G, Hébert P. Post-randomisation exclusions: the intention
285 to treat principle and excluding patients from analysis. *BMJ.* 2002;325(7365):652-654.
286 doi:10.1136/bmj.325.7365.652

287 11. Ibrahim DA, Swenson A, Sasseen A, Fernando ND. Classifications In Brief: The Tscherne
288 Classification of Soft Tissue Injury. *Clin Orthop.* 2017;475(2):560-564.
289 doi:10.1007/s11999-016-4980-3

290 12. FLOW Investigators, Bhandari M, Jeray KJ, et al. A Trial of Wound Irrigation in the Initial
291 Management of Open Fracture Wounds. *N Engl J Med.* 2015;373(27):2629-2641.

292 13. FAITH Investigators. Fracture fixation in the operative management of hip fractures
293 (FAITH): an international, multicentre, randomised controlled trial. *Lancet Lond Engl.*
294 2017;389(10078):1519-1527. doi:10.1016/S0140-6736(17)30066-1

295 14. HEALTH Investigators, Bhandari M, Einhorn TA, et al. Total Hip Arthroplasty or
296 Hemiarthroplasty for Hip Fracture. *N Engl J Med.* 2019;381(23):2199-2208.
297 doi:10.1056/NEJMoa1906190

298 15. the CONSORT Group, Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement:
299 updated guidelines for reporting parallel group randomised trials. *Trials.* 2010;11(1):32.
300 doi:10.1186/1745-6215-11-32

301 16. Morgan KE, Forbes AB, Keogh RH, Jairath V, Kahan BC. Choosing appropriate analysis
302 methods for cluster randomised cross-over trials with a binary outcome: K. E. MORGAN
303 ET AL. *Stat Med.* 2017;36(2):318-333. doi:10.1002/sim.7137

304 17. Hemming K, Kasza J, Hooper R, Forbes A, Taljaard M. A tutorial on sample size
305 calculation for multiple-period cluster randomized parallel, cross-over and stepped-wedge
306 trials using the Shiny CRT Calculator. *Int J Epidemiol.* 2020;49(3):979-995.
307 doi:10.1093/ije/dyz237

308 18. Hemming K, Taljaard M, Weijer C, Forbes AB. Use of multiple period, cluster randomised,
309 crossover trial designs for comparative effectiveness research. *BMJ.* Published online
310 November 4, 2020:m3800. doi:10.1136/bmj.m3800

311 19. Wise BT, Connelly D, Rocca M, et al. A Predictive Score for Determining Risk of Surgical
312 Site Infection After Orthopaedic Trauma Surgery. *J Orthop Trauma.* 2019;33(10):506-513.
313 doi:10.1097/BOT.0000000000001513

314 20. Thompson DD, Lingsma HF, Whiteley WN, Murray GD, Steyerberg EW. Covariate
315 adjustment had similar benefits in small and large randomized controlled trials. *J Clin
316 Epidemiol.* 2015;68(9):1068-1075. doi:10.1016/j.jclinepi.2014.11.001

317 21. Program of Randomized Trials to Evaluate Pre-operative Antiseptic Skin Solutions in
318 Orthopaedic Trauma (PREP-IT) Investigators, Slobogean GP, Sprague S, et al.
319 Effectiveness of Iodophor vs Chlorhexidine Solutions for Surgical Site Infections and
320 Unplanned Reoperations for Patients Who Underwent Fracture Repair: The PREP-IT
321 Master Protocol. *JAMA Netw Open.* 2020;3(4):e202215.

322 22. Campbell MK, Piaggio G, Elbourne DR, Altman DG, CONSORT Group. Consort 2010
323 statement: extension to cluster randomised trials. *BMJ.* 2012;345:e5661.
324 doi:10.1136/bmj.e5661

325 23. Rubin DB. Multiple imputation for survey nonresponse. Published online 1987.

326 24. Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine--reporting
327 of subgroup analyses in clinical trials. *N Engl J Med.* 2007;357(21):2189-2194.

328 25. Sun X, Ioannidis JPA, Agoritsas T, Alba AC, Guyatt G. How to use a subgroup analysis:
329 users' guide to the medical literature. *JAMA.* 2014;311(4):405-411.

330 26. Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria
331 to evaluate the credibility of subgroup analyses. *BMJ*. 2010;340:c117.

332 27. Sun X, Briel M, Busse JW, et al. Subgroup Analysis of Trials Is Rarely Easy (SATIRE): a
333 study protocol for a systematic review to characterize the analysis, reporting, and claim of
334 subgroup effects in randomized trials. *Trials*. 2009;10:101.

335 28. Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the
336 Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and
337 meta-analyses. *CMAJ Can Med Assoc J J Assoc Medicale Can*. 2020;192(32):E901-E906.
338 doi:10.1503/cmaj.200077

339 29. Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: A
340 consensus on definition from an international expert group. *Injury*. 2018;49(3):505-510.
341 doi:10.1016/j.injury.2017.08.040

342 30. Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: A
343 consensus on definition from an international expert group. *Injury*. 2018;49:505-510.

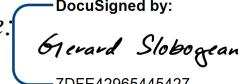
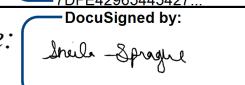
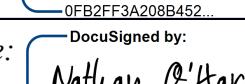
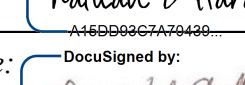
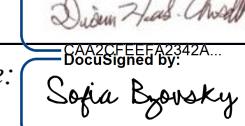
344 31. Metsemakers WJ, Kuehl R, Moriarty TF, et al. Infection after fracture fixation: Current
345 surgical and microbiological concepts. *Injury*. 2018;49(3):511-522.

346 32. Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial
347 Fractures Investigators, Bhandari M, Guyatt G, et al. Randomized Trial of Reamed and
348 Unreamed Intramedullary Nailing of Tibial Shaft Fractures. *J Bone Jt Surg-Am Vol*.
349 2008;90(12):2567-2578.

350 33. Zampieri FG, Casey JD, Shankar-Hari M, Harrell FE, Harhay MO. Using Bayesian
351 Methods to Augment the Interpretation of Critical Care Trials. An Overview of Theory and
352 Example Reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome
353 Trial. *Am J Respir Crit Care Med*. 2021;203(5):543-552. doi:10.1164/rccm.202006-
354 2381CP

355

A Pragmatic Randomized trial Evaluating Pre-operative Alcohol skin solutions in Fractured Extremities (PREPARE Open): Statistical Analysis Plan






Trial Registration: clinicaltrials.gov, NCT03523962. Registered May 14, 2018, <https://clinicaltrials.gov/ct2/show/NCT03523962>

SAP Version: 1.0

Protocol Version: 2.2

SAP Revisions: None

Disclaimer: This SAP was adapted from the Aqueous-PREP (Aqueous skin antisepsis before surgical fixation of open fractures) SAP, which was published in *Trials* in September 2022 (<https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-022-06541-0>). A copy of the Aqueous-PREP SAP was also uploaded onto the ClinicalTrials.gov trial registration page (<https://clinicaltrials.gov/ct2/show/NCT03385304>). The Aqueous-PREP primary manuscript was published in *The Lancet* in October 2022 ([https://www.thelancet.com/journals/lancet/article/PIIS0140-6736\(22\)01652-X/fulltext#seccetitle200](https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)01652-X/fulltext#seccetitle200)).

Reviewed and Approved by:		
Dr. Gerard Slobogean (Principal Investigator)	Signature: DocuSigned by: 7DFE42965445427...	Date: 22-Feb-2023
Dr. Sheila Sprague (Principal Investigator)	Signature: DocuSigned by: 0FB2FF3A208B452...	Date: 21-Feb-2023
Dr. Nathan N. O'Hara (Statistician)	Signature: DocuSigned by: A15DD03C7A70430...	Date: 21-Feb-2023
Diane Heels-Ansdell (Statistician)	Signature: DocuSigned by: CAA2CFEEFA2342A...	Date: 27-Feb-2023
Sofia Bzovsky (Statistical Analyst)	Signature: DocuSigned by: DE3069EA7FB844B...	Date: 21-Feb-2023

ABSTRACT

Background

Approximately 1 in 10 patients with a surgically treated open fracture will develop a surgical site infection. The PREPARE Open trial will investigate the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in reducing infections after open fracture surgery. The study protocol was published in April 2020.

Methods and Design

The PREPARE Open trial is a pragmatic, multicentre, open-label, randomized multiple period cluster crossover trial. Each participating cluster is randomly assigned in a 1:1 ratio to provide 1 of the 2 study interventions on all eligible patients during a study period. The intervention periods are 2 months in length. After completing a 2-month period, the participating cluster crosses over to the alternative intervention. We plan to enroll a minimum of 1540 patients at 22 sites.

Results

The primary outcome is surgical site infection guided by the Centers for Disease Control and Prevention's National Healthcare Safety Network reporting criteria (2017). All participants' surgical site infection surveillance period will end 30 days after definitive fracture management surgery for superficial infections and 90 days after definitive fracture management surgery for deep incisional or organ/space infections.¹ The secondary outcome is an unplanned fracture-related reoperation within 12 months of the fracture.

Conclusion

This manuscript serves as the formal statistical analysis plan (version 1.0) for the PREPARE Open trial. The statistical analysis plan was completed on February 21, 2023.

Keywords

Open fracture, surgical site infection, alcohol antiseptic solutions

1.0 INTRODUCTION

1.1 Background and Rationale

The prevention of infection is a critical goal of perioperative care for patients with surgically treated open fractures. Surgical site infections are often devastating complications for open fracture patients because of the unplanned reoperations, fracture healing difficulties, and adverse events from prolonged antibiotic treatments. Given the severity of open fractures, maximizing the effectiveness of current prophylactic procedures is essential.

Standard practice in the management of open fractures includes cleaning the injured limb with an antiseptic skin solution in the operating room prior to making a surgical incision. The available solutions kill bacteria and decrease the quantity of native skin flora, thereby reducing surgical site infection.²⁻⁵ While there is extensive guidance on specific procedures for prophylactic antibiotic use and standards for sterile technique, the evidence regarding the choice of antiseptic skin preparation solution is very limited for open fracture surgery.

The PREPARE Open trial will provide the necessary evidence to guide the choice of antiseptic skin solution to prevent surgical site infections in patients with open fractures. The trial is poised to significantly impact the care and outcomes of open extremity fracture patients.

1.2 Objectives

The overall objective of the PREPARE Open trial is to compare the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions for the surgical management of open fractures.

Primary Objective and Hypothesis

To determine the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in preventing surgical site infections. We hypothesize that iodine povacrylex in alcohol antiseptic will be more effective in preventing surgical site infections than chlorhexidine gluconate in alcohol antiseptic.^{5,6}

Secondary Objective and Hypothesis

To determine the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol versus 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic solutions in preventing unplanned fracture-related reoperations. We hypothesize that iodine povacrylex in alcohol antiseptic will be more effective in preventing unplanned reoperations than chlorhexidine gluconate in alcohol antiseptic.^{5,6}

Subgroup Objectives and Hypotheses

We will perform three subgroup analyses to determine if the effects of preoperative antiseptic skin solutions on surgical site infection vary within clinically relevant subgroups. The subgroups will be defined by i) the severity of the open fracture; ii) the location of the fracture; and iii) the severity of wound contamination. We hypothesize that the magnitude of the effect of iodine povacrylex (0.7% free iodine) in 74% isopropyl alcohol compared with 2% chlorhexidine gluconate in 70% isopropyl alcohol antiseptic in preventing surgical site infections will be greater in Gustilo-Anderson type III open fractures versus Gustilo-Anderson type I or II open fractures,⁷ lower extremity fractures versus upper extremity fractures, and wounds with embedded contamination

versus wounds with no, minimal, or surface contamination according to the Orthopaedic Trauma Association Open Fracture Classification (OTA-OFC).⁸⁻¹⁰

1.3 Reporting

The structure of this statistical analysis plan follows the Guidelines for the Content of Statistical Analysis Plans in Clinical Trials.¹¹ The reporting of the trial results will follow the 2010 CONSORT statement and the extension statements for Cluster Trials and Randomized Crossover Trials, as applicable.¹² Additional statistical analyses plans will be developed for secondary analyses of the trial data.

1 **2.0 STUDY METHODS**

2 **2.1 Trial Design**

3 The study is a pragmatic, multicentre, open-label, randomized multiple period cluster crossover
4 trial. We defined clusters as orthopaedic practices within participating hospitals, with each
5 participating hospital having only one participating orthopaedic practice.¹³ The intervention
6 periods are approximately 2 months in length. After completing a 2-month period, the participating
7 cluster crosses over to the alternative intervention where they use the other study solution for the
8 next 2-month period. There are no washout periods between treatment periods.

9

10 **2.2 Randomization**

11 The order of treatment allocation for each orthopaedic practice (cluster) will be randomly assigned
12 using a computer-generated randomization table. Each cluster will start with the initially allocated
13 study solution and crossover to the other solution for their second recruitment period. This process
14 of alternating treatments will repeat approximately every 2 months as dictated by the initial
15 randomization until enrollment targets are met. The randomization will be in a 1:1 ratio,
16 unrestricted, and executed only prior to the first sequence.

17

18 **2.3 Sample Size**

19 A sample size of 1540 patients will have 80% power to detect a 38% reduction in the odds of
20 infection with a two-sided alpha of 0.05. This estimate allows for a 10% loss to follow-up and
21 assumes a baseline infection risk of 12.5%, 10 recruiting clusters, no between-period variance, and
22 a 0.095 between-cluster variance.⁶ After the initial power calculations, we determined that
23 additional clusters were required to meet the study timelines. As such, we increased the number of

24 clusters from 10 to a minimum of 22. The increase in clusters results in a marginal increase in
25 statistical power (approximately 2%).

26

27 **2.4 Framework**

28 All study outcomes will be tested for superiority.

29

30 **2.5 Interim Analysis and Stopping Guidance**

31 PREPARE Open does not have a planned interim analysis. However, the trial's Data and Safety
32 Monitoring Committee reviews the reporting of serious adverse events biannually and can
33 recommend early stopping if safety concerns are identified.

34

35 **2.6 Timing of Outcome Assessments**

36 Research personnel will contact study participants at 6 weeks, 3 months, 6 months, 9 months, and
37 12 months after their fracture. Our primary outcome will be surgical site infection (SSI) and it will
38 be assessed at 30 days (superficial infections) and at 90 days (deep and organ space infections)
39 after definitive fracture management surgery. The secondary outcome will be occurrence of an
40 unplanned fracture-related reoperation within 12 months of the fracture. Additional time points
41 will be used for our planned sensitivity analyses.

42

43

44

45 **3.0 STATISTICAL PRINCIPLES**

46 **3.1 Confidence Intervals and P-Values**

47 All statistical tests will be two-sided and performed using a 5% significance level. We will report
48 all confidence intervals as 95% and two-sided. All results will be expressed as odds ratios produced
49 by analyses described in section 5.2. Interaction p-values will be provided for the subgroup
50 analyses. We will not adjust for multiple testing, and all sensitivity analyses and secondary results
51 will be interpreted as exploratory.

52

53 **3.2 Adherence and Protocol Deviations**

54 Adherence will be assessed at the definitive fracture surgery for each participant and will be binary
55 in its definition. We will report adherence as the number and percentage of participants who
56 received the allocated intervention at their definitive fracture management surgery. If the
57 participant has multiple open fractures and received the non-allocated treatment at the definitive
58 fracture management surgery for any of their open fractures, we will consider them non-adherent.
59 We will also tabulate the reasons for non-adherence. The adherence percentages and reasons for
60 non-adherence will be reported by treatment arm.

61

62 Our rationale for defining adherence based solely on the antiseptic solution used during the
63 definitive fracture management surgery is two-fold. 1) The definitive fracture management surgery
64 involves the final implantation of the surgical fixation hardware, when it is most susceptible to
65 bacterial contamination and biofilm development. 2) Any open fracture surgeries prior to the
66 definitive fracture management surgery are staged procedures to remove gross contamination,
67 temporarily stabilize fractures in multi-trauma patients, and minimize evolving soft tissue injuries.

68 Temporally these procedures occur prior to the surgery of interest for the trial's objectives, and if
69 bacterial contamination had occurred in one of the proceeding procedures, the repeat surgical
70 debridement and perioperative antibiotics would reduce the likelihood of persistent occult
71 infection occurring prior to the definitive fracture surgery.

72

73 **3.3 Analysis Populations**

74 *Intention-to-Treat*: Our primary analysis will use the intention-to-treat approach and will include
75 all enrolled participants in the treatment groups to which their cluster was allocated at the time of
76 their first fracture management surgery.

77

78 *As-Treated*: One of our sensitivity analyses will be performed on an as-treated population (see
79 Section 5.4). The as-treated population will include participants from the intention-to-treat
80 population but classified based on the intervention received at their definitive fracture management
81 surgery. Participants who do not receive one of the two study interventions will be excluded from
82 this analysis. This approach for defining the as-treated treatment groups is a simpler adaptation of
83 what was initially proposed in the protocol. This final approach was selected to be consistent with
84 the classification of adherence outlined above.

85

86

87 **4.0 TRIAL POPULATION**

88 **4.1 Cluster Screening and Eligibility**

89 Prior to commencing the trial, the investigators solicited orthopaedic surgery practices treating
90 open fracture patients in hospitals in the United States and Canada to participate in the trial. All
91 potential clusters completed a feasibility questionnaire prior to initiating start-up activities. To be
92 included in the trial, each cluster had to demonstrate: 1) adequate research personnel infrastructure
93 to manage the study, 2) adequate fracture patient volume to complete enrolment within the study
94 timeline, 3) a commitment from all surgeons to adhere to the assigned interventions, and 4) the
95 ability to procure both study interventions. All hospitals started with a run-in phase of at least 1
96 month to demonstrate that they could adhere to the trial protocol prior to commencing the study.

97

98 We will report the number of clusters (orthopaedic practices) screened, included, and excluded in
99 a flow diagram. The number of clusters excluded by reason has been reported previously.¹³ Cluster
100 randomization allocation will be included in the flow diagram, and adherence with treatment
101 allocation during the run-in period by cluster will be summarized using percentages.

102

103 **4.2 Patient Screening and Eligibility**

104 All patients 18 years of age or older who present to a recruiting hospital for treatment of an open
105 fracture(s) of the appendicular skeleton will be screened by a research staff member for
106 participation within 3 weeks of their fracture. Eligible patients must receive surgical debridement
107 of their open fracture wound(s) within 72 hours of their injury, and the open fracture(s) must be
108 managed definitively with a surgical implant (e.g., internal fixation, external fixation, joint
109 prosthesis, etc.). Written informed consent is required for study enrollment to permit the clinical

110 follow-up of study participants. However, our institutional review board did not require informed
111 consent to occur prior to the study treatment, given the urgent nature of the surgery and the
112 predetermination of the two commonly used interventions with cluster-crossover design. The
113 patients, treating clinicians, and research team members at the participating sites are unmasked to
114 the treatment allocation.

115

116 The number of patients screened, included, and excluded will be presented in a flow diagram
117 (**Figure 1**). The figure will consist of the number of patients who were eligible, ineligible, and
118 enrolled. In addition, the number of patients excluded by reason will be summarized. We will also
119 list the number of participants who were enrolled and subsequently deemed ineligible by the
120 Central Adjudication Committee by treatment group and overall. Participants deemed ineligible
121 by a central adjudication committee blinded to the treatment will not be included in any analysis,
122 as per the guidance of Fergusson et al.¹⁴

123

124 **4.3 Participant Withdrawal**

125 The level of withdrawal will be tabulated and classified as “withdrawal of consent” or “lost to
126 follow-up”. Participant deaths will also be tabulated.

127

128 **4.4 Participant Follow-Up**

129 We will report the number of participants who complete follow-up at 3 months after definitive
130 fracture management surgery and 12 months after their fracture, stratified by treatment allocation.

131

132

133 **4.5 Cluster Characteristics**

134 Specific details on characteristics of participating clusters, orthopaedic characteristics, and surgical
135 infection prevention information in the PREPARE Open trial have been previously published.¹³

136

137 **4.6 Participant Demographics, Fracture Characteristics, and Descriptions of Surgical and
138 Perioperative Care**

139 We will describe the study population with respect to age, sex, race or ethnicity, body mass index,
140 diabetes status, smoking status, Injury Severity Score, the American Society of Anesthesiologists
141 Physical Status Classification System, the number of included open fractures per participant, the
142 severity of the open fracture according to the Gustilo-Anderson classification,⁷ the location of the
143 fracture, level of wound contamination using the OTA-OFC classification,⁸ the use of temporary
144 fracture stabilization, the number of planned surgeries, the duration of perioperative antibiotic
145 administration, and the method of wound closure (**Tables 1 and 2**). Categorical data will be
146 summarised by counts with percentages. Age will be summarised as a mean with standard
147 deviation. We will report the Injury Severity Score as a median with an interquartile range. The
148 duration of systemic perioperative antibiotics will be summarised in days and reported as a median
149 with interquartile range. Body mass index (BMI) will be reported in kg/m² and subcategorized as
150 underweight (BMI < 18.5), normal weight (18.5 – 24.9), overweight (25 – 29.9), and obese (BMI
151 > 30). Additional patient characteristics may be reported as supplemental information. All
152 reporting will be stratified by treatment groups. We will not statistically test for differences in
153 baseline characteristics between treatment groups; however, the clinical importance of any
154 imbalance will be noted.

155 **5.0 ANALYSIS**156 **5.1 Outcome Definitions**157 *Primary Outcome*

158 Our primary outcome is SSI guided by the Centers for Disease Control and Prevention's (CDC)
 159 National Healthcare Safety Network reporting criteria (2017).¹ The SSI surveillance period for all
 160 participants, including participants with multiple planned fracture surgeries, will end 30 days after
 161 definitive fracture management surgery for superficial SSI and 90 days after definitive fracture
 162 management surgery for deep incisional or organ/space SSI. We will also separately report but not
 163 statistically test the occurrence of each type of SSI (superficial incisional infections by 30 days,
 164 deep incisional infections by 90 days, and organ/space infections by 90 days) by treatment arm. If
 165 multiple tissue levels are involved in the infection, the type of SSI will be defined by the deepest
 166 tissue layer involved during the surveillance period. Therefore, only one type of SSI per participant
 167 will be reported.

168

169 **CDC National Healthcare Safety Network Surgical Site Infection Reporting Criteria (2017)**

Outcome	Description
<i>Superficial Incisional SSI</i>	<p>Date of event for infection may occur from the date of fracture to 30 days after the definitive fracture management surgery</p> <p>AND</p> <p>involves only skin and subcutaneous tissue of the incision</p> <p>AND</p> <p>patient has at least one of the following:</p> <ul style="list-style-type: none"> a. purulent drainage from the superficial incision. b. organisms identified from an aseptically obtained specimen from the superficial incision or subcutaneous tissue by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]). c. superficial incision that is deliberately opened by a surgeon, attending physician or other designee and culture or non-culture-based testing is not performed. <p>AND</p> <p>patient has at least one of the following signs or symptoms: pain or tenderness; localized swelling; erythema; or heat.</p> <ul style="list-style-type: none"> d. diagnosis of a superficial incisional SSI by the surgeon or attending physician or other designee. <p>The following do not qualify as criteria for meeting the definition of superficial SSI:</p> <ul style="list-style-type: none"> • Diagnosis/treatment of cellulitis (redness/warmth/swelling), by itself, does not meet criterion "d" for superficial incisional SSI. Conversely, an incision that is draining or that

Outcome	Description
	<p>has organisms identified by culture or non-culture-based testing is not considered a cellulitis.</p> <ul style="list-style-type: none"> • A stitch abscess alone (minimal inflammation and discharge confined to the points of suture penetration). • A localized stab wound or pin site infection- Such an infection might be considered either a skin (SKIN) or soft tissue (ST) infection, depending on its depth, but not an SSI <p>Note: A laparoscopic trocar site for an operative procedure is not considered a stab wound.</p> <ul style="list-style-type: none"> • An infected burn wound is classified as BURN and is not an SSI.
<i>Deep Incisional SSI</i>	<p>The date of event for infection may occur from the date of fracture to 90 days after the definitive fracture management surgery</p> <p>AND</p> <p>involves deep soft tissues of the incision (e.g., fascial and muscle layers)</p> <p>AND</p> <p>patient has at least one of the following:</p> <ol style="list-style-type: none"> a. purulent drainage from the deep incision. b. a deep incision that spontaneously dehisces, or is deliberately opened or aspirated by a surgeon, attending physician or other designee, and organism is identified by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]) or culture or non-culture based microbiologic testing method is not performed <p>AND</p> <p>patient has at least one of the following signs or symptoms: fever ($>38^{\circ}\text{C}$); localized pain or tenderness. A culture or non-culture-based test that has a negative finding does not meet this criterion.</p> <ol style="list-style-type: none"> c. an abscess or other evidence of infection involving the deep incision that is detected on gross anatomical or histopathologic exam, or imaging test
<i>Organ/Space SSI</i>	<p>Date of event for infection may occur from the date of fracture to 90 days after the definitive fracture management surgery</p> <p>AND</p> <p>infection involves any part of the body deeper than the fascial/muscle layers, that is opened or manipulated during the operative procedure</p> <p>AND</p> <p>patient has at least one of the following:</p> <ol style="list-style-type: none"> a. purulent drainage from a drain that is placed into the organ/space (e.g., closed suction drainage system, open drain, T-tube drain, CT guided drainage) b. organisms are identified from an aseptically obtained fluid or tissue in the organ/space by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment (e.g., not Active Surveillance Culture/Testing [ASC/AST]). c. an abscess or other evidence of infection involving the organ/space that is detected on gross anatomical or histopathologic exam, or imaging test evidence suggestive of infection. <p>AND</p> <p>meets at least one criterion for a specific organ/space infection site summarized in the <i>Surveillance Definitions for Specific Types of Infections</i> chapter.¹</p>

170 *The CDC criteria have been modified to include all definitive fracture management surgeries instead of including
 171 only National Healthcare Safety Network procedures that require infection reporting.

172
 173

174

175 *Secondary Outcome*

176 The secondary outcome is the occurrence of an unplanned fracture-related reoperation within 12
177 months of the fracture. Unplanned reoperations are a common, patient-important outcome in
178 fracture surgery research that captures severe wound and bone healing complications that may be
179 related to occult infections.¹⁵⁻¹⁷ Our definition includes treatments for infection, wound healing
180 complications, or fracture healing complications such as a delayed union or nonunion. We will
181 also report the occurrence of each type of unplanned reoperation by treatment arm.

182

183 **5.2 Analysis Methods**

184 We will report the number and percentage of patients who sustain the study outcomes by treatment
185 group. We will evaluate the effect of the preoperative antiseptic solutions on our study outcomes
186 using mixed effects regression models with a binomial distribution to produce treatment effect
187 estimates presented as odds ratios with 95% confidence intervals as recommended.¹⁸ For patients
188 with multiple open fractures, the patient will remain the unit of analysis regardless of whether the
189 study event occurs in one or more of their open fractures. As suggested by Morgan et al. and
190 Hemming et al., we will include time and treatment as fixed effects and use random effects to
191 account for the complex correlation structure.¹⁹⁻²¹ We will consider three correlation structures, in
192 the following sequence: exponential decay, nested exchangeable, and exchangeable. If we
193 experience convergence issues or find insufficient between-period correlation to support an
194 exponential decay or nested exchangeable structure, we will assume an exchangeable correlation
195 structure. If we encounter convergence issues even with this model, a more simplified structure
196 will be considered. The models will also include prespecified covariates prognostic of infection or
197 unplanned reoperation as fixed effects. These covariates are the severity of the open fracture,

198 location of the fracture, and severity of the wound contamination.²² The same covariates will be
199 used for all primary and secondary outcomes. This planned analysis is a more complex structure
200 than we proposed in the initial study protocol but represents the most recently recommended
201 statistical techniques for cluster-crossover trial analysis.^{19,21,23,24} Estimated within-period
202 intracluster correlation coefficients will also be reported.²⁵

203

204 Our primary and secondary analyses will use multiple imputations to account for missing data.
205 The multiple imputation analysis will create 100 imputed datasets using multivariate imputation
206 by chained equations and pooled using Rubin's rules for combining.²⁶ The imputation will be
207 performed separately within each treatment arm.

208

209 **5.3 Subgroup Analyses**

210 To determine treatment effect heterogeneity on the study outcomes, we will use the same analytical
211 approach as specified for the primary and secondary outcomes above but include a treatment by
212 subgroup interaction term in the model. We will report results by the prespecified subgroups,
213 which consists of the severity of the open fracture (Gustilo-Anderson type I or II versus type III),
214 upper extremity versus lower extremity open fractures, and the severity of the wound
215 contamination (none, minimal, or surface contamination versus embedded wound contamination)
216 using a forest plot reporting odds ratios with 95% confidence intervals. These analyses will be
217 approached and reported in accordance with best practices and guidelines for subgroup analyses.²⁷⁻
218 ³¹ We will use the criteria suggested by Schandelmaier et al. to guide inferences about the
219 credibility of our subgroup analyses.³¹ As participants may have more than one included fracture

220 representing different subgroups, the analyses will be performed by categorizing participants
221 according to the fracture with the most severe injury characteristic for each subgroup.

222

223 **5.4 Sensitivity Analyses**

224 We will consider four alternative analysis approaches to evaluate the robustness of our findings,
225 including alternative definitions of the primary outcome, an as-treated analysis of the primary and
226 secondary outcomes, a complete case missing data analysis of the primary and secondary
227 outcomes, and a Bayesian analysis of the primary and secondary outcomes. We will also allow
228 for post-hoc sensitivity analysis based on information not anticipated in advance.

229

230 *Alternative Definitions of SSI:* To evaluate the robustness of the result, we will consider two
231 alternative exploratory definitions of SSI: 1) using the confirmatory criteria from the consensus
232 definition of Fracture-Related Infection (FRI), and 2) expanding the CDC criteria for all types of
233 SSI to within 1 year of injury.³²

234

235 Our adjudication of Fracture-Related Infection is defined by the confirmatory criteria outlined in
236 its 2018 consensus definition.³² The FRI criteria have been selected as an exploratory outcome
237 because the CDC criteria have been criticized for failing to adequately account for the complexities
238 of infections in traumatic fractures.^{33,34} The FRI criteria attempt to improve the ability to detect
239 infections specifically in fracture patients; however, this definition of FRI has not been fully
240 validated or widely adopted.

241

242 The confirmatory criteria include the presence of one or more of the following signs/symptoms:

243 1) Fistula, sinus, or wound breakdown (with communication to the bone or the implant).

244 2) Purulent drainage from the wound or presence of pus during surgery.

245 3) Phenotypically indistinguishable pathogens identified by culture from at least two separate

246 deep tissue/implant (including sonication-fluid) specimens taken during an operative

247 intervention. In the case of tissue, multiple specimens (3) should be taken, each with clean

248 instruments (not superficial or sinus tract swabs). In cases of joint effusion arising in a joint

249 adjacent to a fractured bone, fluid samples obtained by sterile puncture may be included as

250 a single sample.

251 4) Presence of microorganisms in deep tissue taken during an operative intervention, as

252 confirmed by histopathological examination using specific staining techniques for bacteria

253 or fungi.

254

255 The second exploratory definition of surgical site infection expands the CDC criteria to a 12-month

256 surveillance period. This outcome will use the same diagnostic CDC reporting criteria for the

257 primary; however, the timeframe for this outcome will be expanded to include all SSIs that occur

258 within 12 months of open fracture. Similar to the rationale for using the FRI outcome and the

259 recommendations for a minimum of 12 months follow-up for orthopaedic fracture outcomes, this

260 expanded timeframe will detect infections that occur beyond the standard CDC surveillance

261 reporting periods. This modification of the CDC reporting periods has been used in previous

262 orthopaedic fracture trials.^{15,35}

263

264 *As-Treated Analysis:* One of our sensitivity analyses will be performed on an as-treated population.

265 The as-treated population will include participants from the intention-to-treat population who

266 received one of the two interventions; however, participants will be classified based on the
267 intervention received at their definitive fracture management surgery. Participants who do not
268 receive one of the study interventions will be removed from this analysis. Similar to the primary
269 analysis, we will use mixed effects regression models with a binomial distribution and the same
270 covariates and correlation structure as the primary model. A more simplified structure will be
271 considered if we encounter convergence issues with this model.

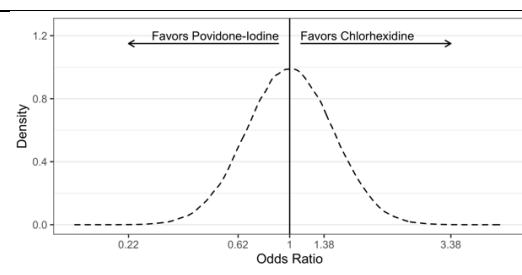
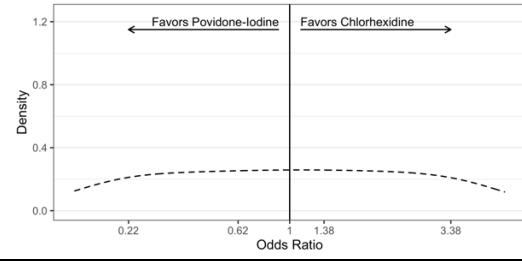
272

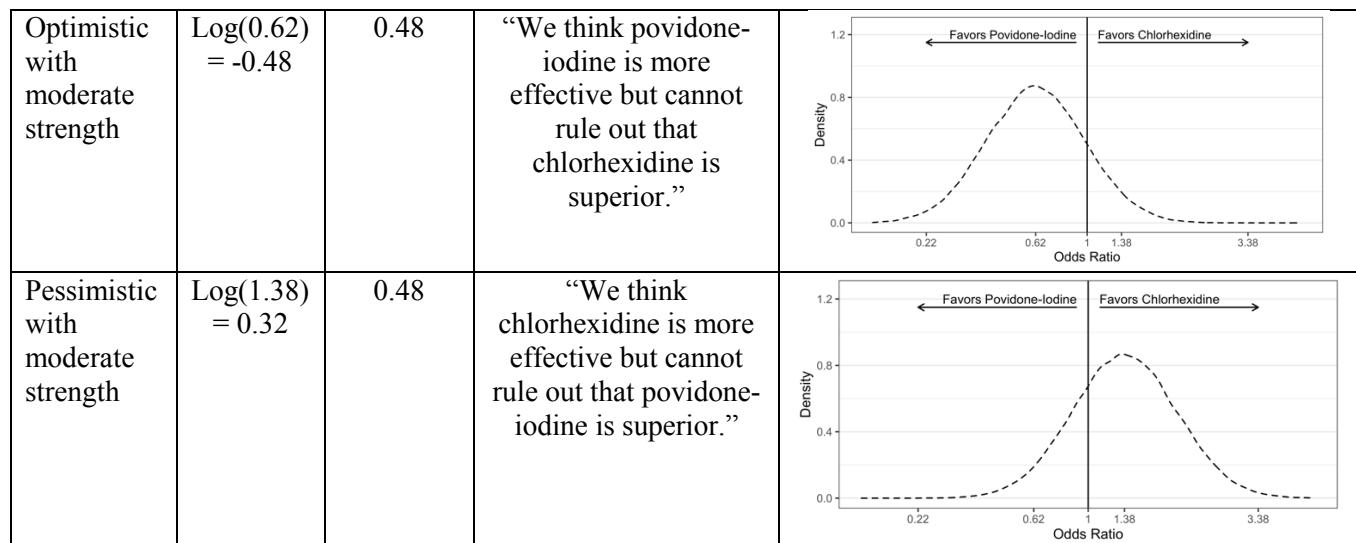
273 *Missing Data:* While we anticipate minimal missing outcome data, we will perform a sensitivity
274 analysis on the primary and secondary analyses to explore the impact of missing outcome data.
275 Our sensitivity analysis will be a complete case analysis, including only those patients with a
276 known status of the outcome being analyzed.

277

278 *Bayesian Analysis:* The Bayesian analyses will be performed using four different priors (neutral
279 with moderate strength, neutral flat, optimistic with moderate strength, and pessimistic with
280 moderate strength) defined on a log-odds scale and described below. The neutral priors will be
281 centered on a log odds of 0 (odds ratio of 1). The neutral flat prior will have a standard deviation
282 of 100. The optimistic prior will be centered on the estimated effect size of a 0.62 odds ratio (log
283 odds of -0.48). In contrast, the pessimistic prior is centered on the same effect size but for the
284 alternative treatment. As suggested by Zampieri et al.,³⁶ the standard deviation of 0.48 was selected
285 for the moderate strength priors as it allows for a 15% probability of the alternative treatment
286 benefit in both the optimistic and pessimistic prior. The prior probability of our neutral prior with
287 a moderate strength distribution implies a 68% chance the estimated effect will be between an odds

288 ratio of 0.62 and 1.38. The neutral prior with moderate strength will be our preferred prior in this
 289 sensitivity analysis.



290


291 The modeling for the Bayesian analysis will be consistent with our primary analysis. We will use
 292 a mixed effects regression model with a Bernoulli distribution. The model will include time and
 293 treatment as fixed effects and use random effects to account for the complex correlation structure.

294 The best fitting correlation structure will be determined using information criteria. If we
 295 experience convergence issues with this model structure, we will transition to a less complex
 296 model. We will report treatment effects as odds ratios with 95% credible intervals. We will also
 297 report the probability of treatment benefits of povidone-iodine, with 50% implying no difference
 298 in the probability of benefit between the two treatment groups.

299

300 **Priors used in the analysis with their interpretation and a visual depiction.**

Prior	Mean	Standard Deviation	Interpretation	Visualization
Neutral with moderate strength	$\text{Log}(1.00) = 0$	0.48	“There is no strong information to suggest the intervention is good or bad in this study population, but we think extreme effect sizes are very unlikely.”	
Neutral flat	$\text{Log}(1.00) = 0$	100	“None of the prior research is relevant to this trial, and we cannot rule out extreme effect sizes.”	

301

302 **5.5 Harms**

303 The number and percentage of patients experiencing serious adverse events will be presented by
 304 treatment arm. No formal statistical testing will be undertaken.

305

306 **5.6 Statistical Software**

307 The statistical analyses will be performed with SAS, version 9.4 (SAS Institute, Cary, NC) and R
 308 (R Foundation for Statistical Computing, Vienna, Austria).

309

310 **6.0 FIGURES AND TABLES**311 **Table 1: Baseline characteristics**

	Iodine Povacrylex in Alcohol (n= XX participants)	Chlorhexidine in Alcohol (n= XX participants)
Age, years, mean (SD)		
Sex, n (%)		
Female		
Male		
Prefer not to answer		
Race or ethnicity, n (%)		
White		
Black		
Central or South American		
Asian		
Indigenous		
Native Hawaiian or Pacific Islander		
Multiracial		
Prefer not to answer		
Body mass index, kg/m ² , n (%)		
Underweight (BMI < 18.5)		
Normal weight (18.5 – 24.9)		
Overweight (25 – 29.9)		
Obese (BMI > 30)		
Diabetes, n (%)		
Current smoker, n (%)		
Injury severity score, mean (SD)		
American Society of Anesthesiologist Physical Score, n (%)		
Class I or II		
Class III or higher		
Number of included open fractures per participant, n (%)		
One		
Two		
Three		

312

313

Table 2: Fracture Characteristics and Management

	Iodine Povacrylex in Alcohol (n= XX fractures)	Chlorhexidine in Alcohol (n= XX fractures)
Severity of open fracture, n (%)		
Gustilo-Anderson type I		
Gustilo-Anderson type II		
Gustilo-Anderson type IIIA		
Gustilo-Anderson type IIIB/IIC		
Location of fracture, n (%)		
Lower extremity or pelvis		
Upper extremity		
Wound contamination, n (%)		
None or minimal contamination		
Surface contamination		
Contaminant embedded in bone or deep soft tissue		
Temporary fracture stabilization, n (%)		
Number of planned surgeries, n (%)		
1		
2		
3		
4		
5 or more		
Duration of antibiotic administration (days), median (IQR)		
Closure method, n (%)*		
Primary wound closure		
No closure attempted/secondary wound healing		
Skin graft		
Local flap		
Free flap		

314

*More than one type of closure method may have been performed during surgery, but only the most complex method of closure is reported in the table using the following the hierarchy: 1) free flap, 2) local flap, 3) skin graft, 4) no closure attempted/secondary wound healing, 5) primary wound closure

315

316

317

318

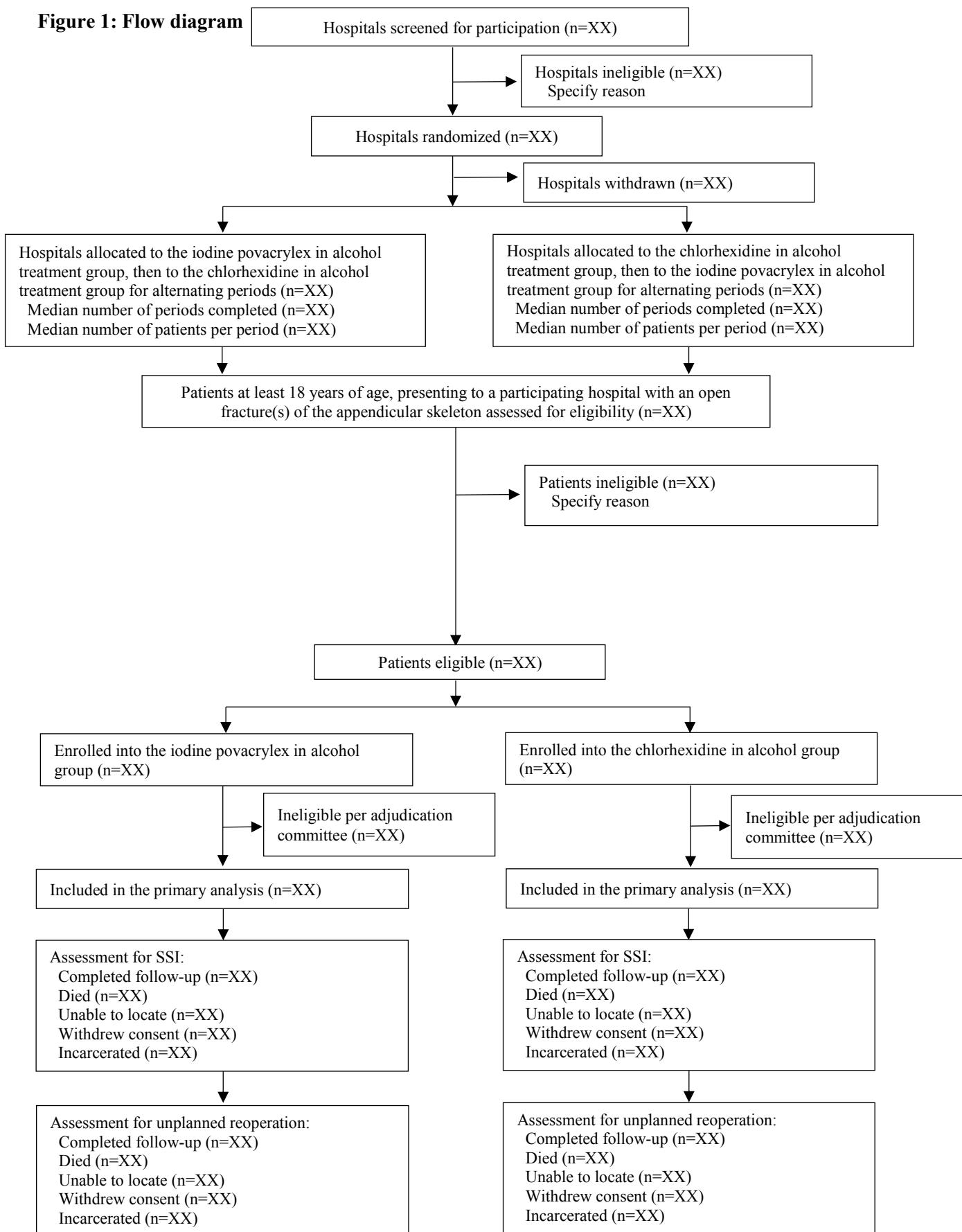
319

Table 3: Study outcomes

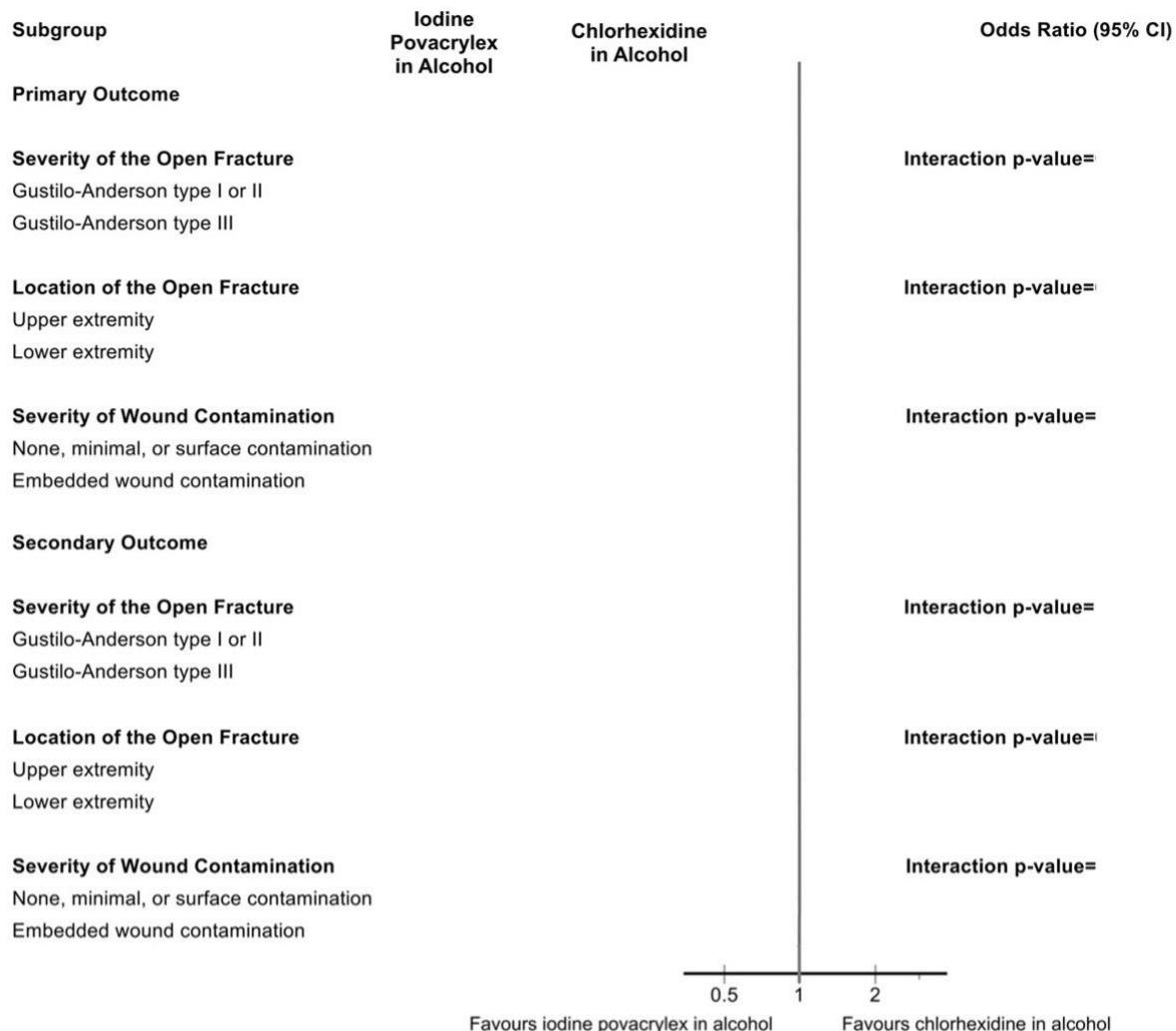
	Iodine Povacrylex in Alcohol (n=XXX) number (%) [*]	Chlorhexidine in Alcohol (n=XXX) number (%) [*]	Odds Ratio ^{**} (95% CI)	p-value ^{**}	Risk Difference ^{**} (95% CI)
Primary outcome	n=XXX	n=XXX			
Surgical site infection					
Superficial infection					
Deep incisional					
Organ/space infection					
 <i>Alternative definitions of surgical site infection</i>	 n=XXX	 n=XXX			
Any surgical site infection by 365 days					
Fracture-related infection by 365 days					
 Secondary outcome	 n=XXX	 n=XXX			
Unplanned reoperation by 365 days					
Unplanned reoperation for infection by 365 days					
Unplanned reoperation for wound healing complications by 365 days					
Unplanned reoperation to promote fracture healing by 365 days					

320

CI = Confidence Interval


321

*Percentages based on complete case description


322

**Missing outcome data were imputed using multiple imputations

323

Figure 1: Flow diagram

1 Figure 2. Forest plot of subgroup analyses

2

3 **LIST OF ABBREVIATIONS**

4

5

ASC/AST	Active surveillance culture/testing
PREPARE	A Pragmatic Randomized trial Evaluating Pre-operative Alcohol skin solutions in FRactured Extremities
BMI	Body mass index
CDC	Centers for Disease Control
FRI	Fracture-related infection
OTA-OFC	Orthopaedic Trauma Association open fracture classification
ST	Soft tissue
SSI	Surgical site infection

6

7

8

9 **DECLARATIONS**

10

11 **Ethics Approval and Consent to Participate**

12 Ethics approval has been obtained from the Hamilton Integrated Research Ethics Board for the
13 Methods Center (#4336), the Advarra Central Institutional Review Board (formerly Chesapeake
14 Institutional Review Board) (#Pro00023709), and each clinical site's local institutional review
15 board or research ethics board, if they are not using the central institutional review board. Written
16 informed consent has been obtained for study participation.

17

18 **Consent for Publication**

19 Not applicable

20

21 **Availability of Data and Materials**

22 The datasets generated and/or analyzed during the current study are not publicly available due to
23 the trial still being ongoing, but will be available from the corresponding author on reasonable
24 request.

25

26 **Competing Interests**

27 Dr. Slobogean reports editorial or governing board for the Journal of Orthopaedic Trauma, board
28 or committee member for the Orthopaedic Trauma Association, paid consultant for Smith &
29 Nephew, and paid consultant for Zimmer, all outside the submitted work. Dr. Sprague reports
30 board or committee member for Orthopaedic Trauma Association, employment from Global
31 Research Solutions Inc. and consultant fees from the University of Sherbrooke and Platform Life
32 Sciences, all outside the submitted work. Dr. Bhandari reports paid consultant from AgNovos

33 Healthcare, research support from the Canadian Institutes of Health Research (CIHR), board or
34 committee member for the International Society of Orthopaedic Surgery and Traumatology
35 (SICOT), research support from the National Institutes of Health (NIAMS & NICHD), research
36 support from Physicians' Services Incorporated, paid consultant for Sanofi-Aventis, paid
37 consultant for Smith & Nephew, and research support from the U.S. Department of Defense, all
38 outside the submitted work. Dr. O'Hara reports stock or stock options from Arbutus Medical Inc,
39 all outside the submitted work. All other authors have nothing to report.

40

41 **Funding**

42 The PREPARE trial is funded by the Patient-Centered Outcomes Research Institute (PCS-1609-
43 36512) and the Canadian Institutes of Health Research (Foundation Grant).

44

45 **Authors' Contributions**

46 All authors have been major contributors in writing the statistical analysis plan. All authors have
47 read and approved the statistical analysis plan.

48

49 **Acknowledgements**

50 **PREP-IT Investigators**

51
52 **Executive Committee:** Gerard P. Slobogean (Principal Investigator, University of Maryland
53 School of Medicine, Baltimore, MD); Sheila Sprague (Principal Investigator, McMaster
54 University, Hamilton, ON); Jeffrey L. Wells (Patient Representative, Trauma Survivors Network,
55 Falls Church, VA); Mohit Bhandari (Principal Investigator, McMaster University, Hamilton, ON)

56
57 **Steering Committee:** Gerard P. Slobogean (Co-Chair, University of Maryland School of
58 Medicine, Baltimore, MD); Mohit Bhandari (Co-Chair, McMaster University, Hamilton, ON);
59 Sheila Sprague (Principal Investigator, McMaster University, Hamilton, ON); Anthony D. Harris
60 (University of Maryland School of Medicine, Baltimore, MD); C. Daniel Mullins (University of
61 Maryland School of Medicine, Baltimore, MD); Lehana Thabane (McMaster University,

62 Hamilton, ON); Jeffrey L. Wells (Trauma Survivors Network, Falls Church, VA); Amber Wood
63 (Association of periOperative Registered Nurses, Denver, CO)

64
65 **Adjudication Committee:** Gregory J. Della Rocca (Chair, University of Missouri, Columbia,
66 MO); Anthony D. Harris (University of Maryland School of Medicine, Baltimore, MD); Joan N.
67 Hebden (University of Maryland School of Medicine, Baltimore, MD); Kyle J. Jeray (Prisma
68 Health - Upstate, Greenville, SC); Lucas S. Marchand (University of Utah, Salt Lake City, UT);
69 Lyndsay M. O'Hara (University of Maryland School of Medicine, Baltimore, MD); Robert D.
70 Zura (LSU Health, New Orleans, LA); Christopher Lee (University of California, Los Angeles,
71 CA); Joseph T. Patterson (University of Southern California, Los Angeles, CA)

72
73 **Data and Safety Monitoring Committee:** Michael J. Gardner (Chair, Stanford University School
74 of Medicine, Palo Alto, CA); Jenna Blasman (Patient Representative, Kitchener, ON); Jonah
75 Davies (University of Washington, Seattle, WA); Stephen Liang (Washington University, St.
76 Louis, MO); Monica Taljaard (Ottawa Hospital Research Institute, Ottawa, ON)

77
78 **Research Methodology Core:** PJ Devereaux (McMaster University, Hamilton, ON); Gordon
79 Guyatt (McMaster University, Hamilton, ON); Lehana Thabane (McMaster University, Hamilton,
80 ON); Diane Heels-Ansdell (McMaster University, Hamilton, ON)

81
82 **Patient Centred Outcomes Core:** Debra Marvel (Patient Representative, Baltimore, MD); Jana
83 E. Palmer (Patient Representative, Baltimore, MD); Jeffrey L. Wells (Patient Representative,
84 Trauma Survivors Network, Falls Church, VA); Jeff Friedrich (Editor, Slate Magazine,
85 Washington, DC); C. Daniel Mullins (University of Maryland School of Medicine, Baltimore,
86 MD); Nathan N. O'Hara (University of Maryland School of Medicine, Baltimore, MD); Frances
87 Grissom (Trauma Survivor Network, Baltimore, MD)

88
89 **Orthopaedic Surgery Core:** Gregory J. Della Rocca (University of Missouri, Columbia, MO); I.
90 Leah Gitajn (Dartmouth University, Hanover, NH); Kyle J. Jeray (Prisma Health - Upstate,
91 Greenville, SC); Saam Morshed (San Francisco General Hospital, San Francisco, CA); Robert V.
92 O'Toole (University of Maryland School of Medicine, Baltimore, MD); Bradley Petrisor
93 (Hamilton Health Sciences, Hamilton, ON)

94
95 **Operating Room Core:** Franca Mossuto (Hamilton Health Sciences, Hamilton, ON)

96 **Infectious Disease Core:** Anthony D. Harris (University of Maryland School of Medicine,
97 Baltimore, MD); Manjari G. Joshi (University of Maryland School of Medicine, Baltimore, MD)

98
99 **Military Core:** Jean-Claude G. D'Alleyrand (Walter Reed National Military Medical Center,
100 Bethesda, MD); Justin Fowler (United States Army, USA); Jessica C. Rivera (San Antonio
101 Military Medical Center, San Antonio, TX); Max Talbot (Canadian Armed Forces, Montreal, QC)

102
103 **McMaster University Methods Center** (Hamilton, ON): Sheila Sprague (Principal Investigator);
104 Mohit Bhandari (Principal Investigator); David Pogorzelski (Research Coordinator); Shannon
105 Dodds (Research Coordinator); Silvia Li (Research Coordinator); Gina Del Fabbro (Research
106 Assistant); Olivia Paige Szasz (Research Assistant); Diane Heels-Ansdell (Statistician); Paula

107 McKay (Manager); Alexandra Minea (Research Coordinator); Kevin Murphy (Research
108 Assistant); Sofia Bzovsky (Statistical Analyst)

109
110 **University of Maryland School of Medicine Administrative Center** (Baltimore, MD): Gerard
111 P. Slobogean (Principal Investigator); Nathan N. O'Hara (Manager); Andrea L. Howe (Project
112 Manager); Haley Demyanovich (Project Manager), Wayne Hoskins (Co-Investigator)

113
114 **University of Maryland School of Pharmacy, The PATIENTS Program** (Baltimore, MD): C.
115 Daniel Mullins (Executive Director); Michelle Medeiros (Director of Research); Genevieve Polk
116 (Assistant Director, Dissemination and Research); Eric Kettering (Senior Instructional Technology
117 and Dissemination Specialist); Nirmen Mahal (Program Specialist)

118
119 **PREP-IT Clinical Sites:**

120 *Lead Clinical Site (Aqueous-PREP and PREPARE):*

121 **University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center,**
122 **Baltimore, MD:** Robert V. O'Toole, Jean-Claude G. D'Alleyrand, Andrew Egseder, Aaron
123 Johnson, Christopher Langhammer, Christopher Lebrun, Jason Nascone, Raymond Pensy,
124 Andrew Pollak, Marcus Sciadini, Gerard P. Slobogean, Yasmin Degani, Haley K. Demyanovich,
125 Andrea L. Howe, Nathan N. O'Hara, Heather Phipps, Eric Hempen

126
127 *Aqueous-PREP and PREPARE:*

128 **Hamilton Health Sciences – General Site, Hamilton, ON:** Bradley Petrisor, Herman Johal, Bill
129 Ristevski, Dale Williams, Matthew Denkers, Krishan Rajaratnam, Jamal Al-Asiri, Jodi L. Gallant,
130 Kaitlyn Puszta, Sarah MacRae, Sara Renaud.

131
132 **Prisma Health - Upstate, Greenville, SC:** Kyle J. Jeray, John D. Adams, Michael L. Beckish,
133 Christopher C. Bray, Timothy R. Brown, Andrew W. Cross, Timothy Dew, Gregory K. Faucher,
134 Richard W. Gurich Jr, David E. Lazarus, S. John Millon, M. Christian Moody, M. Jason Palmer,
135 Scott E. Porter, Thomas M. Schaller, Michael S. Sridhar, John L. Sanders, L. Edwin Rudisill, Jr,
136 Michael J. Garitty, Andrew S. Poole, Michael L. Sims, Clark M. Walker, Robert Carlisle, Erin A.
137 Hofer, Brandon Huggins, Michael Hunter, William Marshall, Shea B. Ray, Cory Smith, Kyle M.
138 Altman, Erin Pichiotino, Julia C. Quirion, Markus F. Loeffler, Erin R. Pichiotino, Austin A. Cole,
139 Ethan J. Maltz, Wesley Parker, T. Bennett Ramsey, Alex Burnikel, Michael Colello, Russell
140 Stewart, Jeremy Wise, Matthew Anderson, Joshua Eskew, Benjamin Judkins, James M. Miller,
141 Stephanie L. Tanner, Rebecca G. Snider, Christine E. Townsend, Kayla H. Pham, Abigail Martin,
142 Emily Robertson, Emily Bray, J. Wilson Sykes, Krystina Yoder, Kelsey Conner, Harper Abbott

143
144 **IU Health Methodist Hospital, Indianapolis, IN:** Roman M. Natoli, Todd O. McKinley, Walter
145 W. Virkus, Anthony T. Sorkin, Jan P. Szatkowski, Brian H. Mullis, Yohan Jang, Luke A. Lopas,
146 Lauren C. Hill, Courteney L. Fentz, Maricela M. Diaz, Krista Brown, Katelyn M. Garst, Emma
147 W. Denari

148
149 **San Antonio Military Medical Center, San Antonio, TX:** Patrick Osborn, Justin Fowler, Sarah
150 N. Pierrie, Bradley Kessler, Maria Herrera

152 **University of California, San Francisco, San Francisco, CA:** Saam Morshed, Theodore
153 Miclau, Meir T. Marmor, Amir Matityahu, R. Trigg McClellan, David Shearer, Paul Toogood,
154 Anthony Ding, Jothi Murali, Ashraf El Naga, Jennifer Tangtiphaibooontana, Tigist Belaye, Eleni
155 Berhaneselase, Dmitry Pokhvashchev

156

157 *Aqueous-PREP:*

158 **Vanderbilt Medical Center, Nashville, TN:** William T. Obremskey, Amir Alex Jahangir, Manish
159 Sethi, Robert Boyce, Daniel J. Stinner, Phillip P. Mitchell, Karen Trochez, Elsa Rodriguez, Charles
160 Pritchett, Natalie Hogan, A. Fidel Moreno

161

162 **University of Florida, Gainesville, FL:** Jennifer E. Hagen, Matthew Patrick, Richard Vlasak,
163 Thomas Krupko, Michael Talerico, Marybeth Horodyski, Marissa Pazik, Elizabeth Lossada-Soto

164

165 **McGovern Medical School at UTHealth Houston, Houston, TX:** Joshua L. Gary, Stephen J.
166 Warner, John W. Munz, Andrew M. Choo, Timothy S. Achor, Milton L. "Chip" Routt, Michael
167 Kutzler, Sterling Boutte, Ryan J. Warth

168

169 **Wright State University, Dayton, OH:** Michael J. Prayson, Indresh Venkatarayappa, Brandon
170 Horne, Jennifer Jerele, Linda Clark

171

172 **Banner University Medical Center – Tucson, Tucson, AZ:** Christina Boulton, Jason Lowe,
173 John T. Ruth, Brad Askam, Andrea Seach, Alejandro Cruz, Breanna Featherston, Robin Carlson,
174 Iliana Romero, Isaac Zarif

175

176 **The CORE Institute, Phoenix, AZ:** Niloofar Dehghan, Michael McKee, Clifford B. Jones, Debra
177 L. Sietsema, Alyse Williams, Tayler Dykes

178

179 **Vall d'Hebron University Hospital, Barcelona, Spain:** Ernesto Guerra-Farfán, Jordi Tomás-
180 Hernandez, Jordi Teixidor-Serra, Vicente Molero-García, Jordi Selga-Marsa, Juan Antonio
181 Porcel-Vazquez, Jose Vicente Andres-Peiro, Ignacio Esteban-Feliu, Nuria Vidal-Tarrason, Jordi
182 Serracanta, Jorge Nuñez-Camarena, Maria del Mar Villar-Casares, Jaume Mestre-Torres, Pilar
183 Lalueza-Broto, Felipe Moreira-Borim, Yaiza García-Sánchez

184

185 **Hospital Universitari Parc Taulí, Barcelona, Spain:** Francesc Marcano-Fernández, Laia
186 Martínez-Carreres, David Martí-Garín, Jorge Serrano-Sanz, Joel Sánchez-Fernández, Matsuyama
187 Sanz-Molero, Alejandro Carballo, Xavier Pelfort, Francesc Acerboni-Flores, Anna Alavedra-
188 Massana, Neus Anglada-Torres, Alexandre Berenguer, Jaume Cámara-Cabrera, Ariadna
189 Caparros-García, Ferran Fillat-Gomà, Ruben Fuentes-López, Ramona García-Rodríguez, Nuria
190 Gimeno-Calavia, Marta Martínez-Álvarez, Patricia Martínez-Grau, Raúl Pellejero-García, Ona
191 Ràfols-Perramon, Juan Manuel Peñalver, Mònica Salomó Domènech, Albert Soler-Cano, Aldo
192 Velasco-Barrera, Christian Yela-Verdú, Mercedes Bueno-Ruiz, Estrella Sánchez-Palomino, Vito
193 Andriola, Matilde Molina-Corbacho, Yeray Maldonado-Sotoca, Alfons Gasset-Teixidor, Jorge
194 Blasco-Moreu, Núria Fernández-Poch, Josep Rodoreda-Puigdemasa, Arnau Verdaguer-Figuerola,
195 Heber Enrique Cueva-Sevieri, Santiago García-Giménez

196

197 *PREPARE:*

198 **FRASER HEALTH AUTHORITY/Royal Columbian Hospital, New Westminster, BC:**
199 Darius G. Viskontas, Kelly L. Apostle, Dory S. Boyer, Farhad O. Moola, Bertrand H. Perey,
200 Trevor B. Stone, H. Michael Lemke, Ella Spicer, Kyrsten Payne
201
202 **Inova Fairfax Medical Campus, Falls Church, VA:** Robert A. Hymes, Cary C. Schwartzbach,
203 Jeff E. Schulman, A. Stephen Malekzadeh, Michael A. Holzman, Greg E. Gaski, Jonathan Wills,
204
205 **Wake Forest Baptist Health, Winston-Salem, NC:** Holly Pilson, Eben A. Carroll, Jason J.
206 Halvorson, Sharon Babcock, J. Brett Goodman, Martha B. Holden, Wendy Williams, Taylor Hill,
207 Ariel Brotherton
208
209 **MetroHealth Medical Center, Cleveland, OH:** Nicholas M. Romeo, Heather A. Vallier, Anna
210 Vergon
211
212 **University of Utah, Salt Lake City, Utah:** Thomas F. Higgins, Justin M. Haller, David L.
213 Rothberg, Lucas S. Marchand, Zachary M. Olsen, Abby V. McGowan, Sophia Hill, Morgan K.
214 Dauk
215
216 **University of Mississippi Medical Center, Jackson, MS:** Patrick F. Bergin, George V. Russell,
217 Matthew L. Graves, John Morellato, Sheketha L. McGee, Eldrin L. Bhanat, Ugur Yener, Rajinder
218 Khanna, Priyanka Nehete
219
220 **Sanford Health, Sioux Falls, SD:** David Potter, Robert VanDemark III, Kyle Seabold, Nicholas
221 Staudenmier
222
223 **Dartmouth-Hitchcock Medical Center, Lebanon, NH:** I. Leah Gitajn, Marcus Coe, Kevin
224 Dwyer, Devin S. Mullin, Theresa A. Chockbengboun, Peter A. DePalo Sr.
225
226 **Carolinas Medical Center, Atrium Health Musculoskeletal Institute, Charlotte, NC:** Kevin
227 Phelps, Michael Bosse, Madhav Karunakar, Laurence Kempton, Stephen Sims, Joseph Hsu,
228 Rachel Seymour, Christine Churchill, Ada Mayfield, Juliette Sweeney
229
230 **University of Maryland, Capital Region Health: Largo, MD:** Todd Jaeblon, Robert Beer, Haley
231 K. Demyanovich, Brent Bauer, Sean Meredith, Sneh Talwar
232
233 **University of Wisconsin Madison, Madison, WI:** Christopher M. Domes
234
235 **Duke University Hospital, Durham, NC:** Mark J. Gage, Rachel M. Reilly, Ariana Paniagua,
236 JaNell Dupree
237
238 **Brigham Women's Hospital, Boston, MA:** Michael J. Weaver, Arvind G. von Keudell, Abigail
239 E. Sagona
240
241 **University of Pennsylvania, Philadelphia, PA:** Samir Mehta, Derek Donegan, Annamarie
242 Horan, Mary Dooley
243

244 **Massachusetts General Hospital, Boston, MA:** Marilyn Heng, Mitchel B. Harris, David W.
245 Howe, John G. Esposito, Ahmad Alnasser

246

247 **Bryan Medical Center, Lincoln, Nebraska:** Steven F. Shannon, Alesha N. Scott, Bobbi Clinch,
248 Becky Weber

249

250 **University of Cincinnati, Cincinnati, OH:** Michael J. Beltran, Michael T. Archdeacon, Henry
251 Claude Sagi, John D. Wyrick, Theodore Toan Le, Richard T. Laughlin, Cameron G. Thomson,
252 Kimberly Hasselfeld

253

254 **Cedars-Sinai Medical Center, Los Angeles, CA:** Carol A. Lin, Mark S. Vrahas, Charles N.
255 Moon, Milton T. Little, Geoffrey S. Marecek, Denice M. Dubuclet

256

257 **University of California, Irvine, Orange, CA:** John A. Scolaro, James R. Learned, Philip K.
258 Lim, Susan Demas, Arya Amirhekmat, Yan Marco Dela Cruz

259

260

261 **REFERENCES**

262 1. Centers for Disease Control and Prevention (CDC). *Surgical Site Infection (SSI) Event.*; 263 2017.

264 2. Darouiche RO, Wall MJ, Itani KMF, et al. Chlorhexidine-Alcohol versus Povidone-Iodine 265 for Surgical-Site Antiseptics. *N Engl J Med.* 2010;362(1):18-26.

266 3. Tuuli MG, Liu J, Stout MJ, et al. A Randomized Trial Comparing Skin Antiseptic Agents at 267 Cesarean Delivery. *N Engl J Med.* 2016;374(7):647-655.

268 4. Swenson BR, Sawyer RG. Importance of alcohol in skin preparation protocols. *Infect 269 Control Hosp Epidemiol.* 2010;31(9):977.

270 5. Swenson BR, Hedrick TL, Metzger R, Bonatti H, Pruitt TL, Sawyer RG. Effects of 271 preoperative skin preparation on postoperative wound infection rates: a prospective study of 272 3 skin preparation protocols. *Infect Control Hosp Epidemiol.* 2009;30(10):964-971.

273 6. FLOW Investigators, Bhandari M, Jeray KJ, et al. A Trial of Wound Irrigation in the Initial 274 Management of Open Fracture Wounds. *N Engl J Med.* 2015;373(27):2629-2641. 275 doi:10.1056/NEJMoa1508502

276 7. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and 277 twenty-five open fractures of long bones: retrospective and prospective analyses. *J Bone 278 Joint Surg Am.* 1976;58(4):453-458.

279 8. Orthopaedic Trauma Association: Open Fracture Study Group. A new classification scheme 280 for open fractures. *J Orthop Trauma.* 2010;24(8):457-464. 281 doi:10.1097/BOT.0b013e3181c7cb6b

282 9. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. 283 *Clin Microbiol Rev.* 1999;12(1):147-179. doi:10.1128/CMR.12.1.147

284 10. Kunisada T, Yamada K, Oda S, Hara O. Investigation on the efficacy of povidone-iodine 285 against antiseptic-resistant species. *Dermatol Basel Switz.* 1997;195 Suppl 2:14-18. 286 doi:10.1159/000246025

287 11. Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical Analysis 288 Plans in Clinical Trials. *JAMA.* 2017;318(23):2337. doi:10.1001/jama.2017.18556

289 12. Dwan K, Li T, Altman DG, Elbourne D. CONSORT 2010 statement: extension to 290 randomised crossover trials. *BMJ.* Published online July 31, 2019:14378. 291 doi:10.1136/bmj.l4378

292 13. Sprague S, Scott T, Dodds S, et al. Cluster identification, selection, and description in 293 cluster randomized crossover trials: the PREP-IT trials. *Trials.* 2020;21(1):712.

294 14. Fergusson D, Aaron SD, Guyatt G, Hébert P. Post-randomisation exclusions: the intention
295 to treat principle and excluding patients from analysis. *BMJ*. 2002;325(7365):652-654.
296 doi:10.1136/bmj.325.7365.652

297 15. FLOW Investigators, Bhandari M, Jeray KJ, et al. A Trial of Wound Irrigation in the Initial
298 Management of Open Fracture Wounds. *N Engl J Med*. 2015;373(27):2629-2641.

299 16. FAITH Investigators. Fracture fixation in the operative management of hip fractures
300 (FAITH): an international, multicentre, randomised controlled trial. *Lancet Lond Engl*.
301 2017;389(10078):1519-1527. doi:10.1016/S0140-6736(17)30066-1

302 17. HEALTH Investigators, Bhandari M, Einhorn TA, et al. Total Hip Arthroplasty or
303 Hemiarthroplasty for Hip Fracture. *N Engl J Med*. 2019;381(23):2199-2208.
304 doi:10.1056/NEJMoa1906190

305 18. the CONSORT Group, Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement:
306 updated guidelines for reporting parallel group randomised trials. *Trials*. 2010;11(1):32.
307 doi:10.1186/1745-6215-11-32

308 19. Morgan KE, Forbes AB, Keogh RH, Jairath V, Kahan BC. Choosing appropriate analysis
309 methods for cluster randomised cross-over trials with a binary outcome: K. E. MORGAN
310 ET AL. *Stat Med*. 2017;36(2):318-333. doi:10.1002/sim.7137

311 20. Hemming K, Kasza J, Hooper R, Forbes A, Taljaard M. A tutorial on sample size
312 calculation for multiple-period cluster randomized parallel, cross-over and stepped-wedge
313 trials using the Shiny CRT Calculator. *Int J Epidemiol*. 2020;49(3):979-995.
314 doi:10.1093/ije/dyz237

315 21. Hemming K, Taljaard M, Weijer C, Forbes AB. Use of multiple period, cluster randomised,
316 crossover trial designs for comparative effectiveness research. *BMJ*. Published online
317 November 4, 2020:m3800. doi:10.1136/bmj.m3800

318 22. Wise BT, Connelly D, Rocca M, et al. A Predictive Score for Determining Risk of Surgical
319 Site Infection After Orthopaedic Trauma Surgery. *J Orthop Trauma*. 2019;33(10):506-513.
320 doi:10.1097/BOT.0000000000001513

321 23. Thompson DD, Lingsma HF, Whiteley WN, Murray GD, Steyerberg EW. Covariate
322 adjustment had similar benefits in small and large randomized controlled trials. *J Clin
323 Epidemiol*. 2015;68(9):1068-1075. doi:10.1016/j.jclinepi.2014.11.001

324 24. Program of Randomized Trials to Evaluate Pre-operative Antiseptic Skin Solutions in
325 Orthopaedic Trauma (PREP-IT) Investigators, Slobogean GP, Sprague S, et al.
326 Effectiveness of Iodophor vs Chlorhexidine Solutions for Surgical Site Infections and
327 Unplanned Reoperations for Patients Who Underwent Fracture Repair: The PREP-IT
328 Master Protocol. *JAMA Netw Open*. 2020;3(4):e202215.

329 25. Campbell MK, Piaggio G, Elbourne DR, Altman DG, CONSORT Group. Consort 2010
330 statement: extension to cluster randomised trials. *BMJ*. 2012;345:e5661.
331 doi:10.1136/bmj.e5661

332 26. Rubin DB. Multiple imputation for survey nonresponse. Published online 1987.

333 27. Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine--reporting
334 of subgroup analyses in clinical trials. *N Engl J Med*. 2007;357(21):2189-2194.

335 28. Sun X, Ioannidis JPA, Agoritsas T, Alba AC, Guyatt G. How to use a subgroup analysis:
336 users' guide to the medical literature. *JAMA*. 2014;311(4):405-411.

337 29. Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria
338 to evaluate the credibility of subgroup analyses. *BMJ*. 2010;340:c117.

339 30. Sun X, Briel M, Busse JW, et al. Subgroup Analysis of Trials Is Rarely Easy (SATIRE): a
340 study protocol for a systematic review to characterize the analysis, reporting, and claim of
341 subgroup effects in randomized trials. *Trials*. 2009;10:101.

342 31. Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the
343 Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and
344 meta-analyses. *CMAJ Can Med Assoc J J Assoc Medicale Can*. 2020;192(32):E901-E906.
345 doi:10.1503/cmaj.200077

346 32. Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: A
347 consensus on definition from an international expert group. *Injury*. 2018;49(3):505-510.
348 doi:10.1016/j.injury.2017.08.040

349 33. Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: A
350 consensus on definition from an international expert group. *Injury*. 2018;49:505-510.

351 34. Metsemakers WJ, Kuehl R, Moriarty TF, et al. Infection after fracture fixation: Current
352 surgical and microbiological concepts. *Injury*. 2018;49(3):511-522.

353 35. Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial
354 Fractures Investigators, Bhandari M, Guyatt G, et al. Randomized Trial of Reamed and
355 Unreamed Intramedullary Nailing of Tibial Shaft Fractures. *J Bone Jt Surg-Am Vol*.
356 2008;90(12):2567-2578.

357 36. Zampieri FG, Casey JD, Shankar-Hari M, Harrell FE, Harhay MO. Using Bayesian
358 Methods to Augment the Interpretation of Critical Care Trials. An Overview of Theory and
359 Example Reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome
360 Trial. *Am J Respir Crit Care Med*. 2021;203(5):543-552. doi:10.1164/rccm.202006-
361 2381CP

362