

Signature Page

Automated Insulin Delivery in Elderly with Type 1 Diabetes (AIDE T1D):

A Randomized Cross-over Trial Evaluating Automated Insulin Delivery Technologies on Hypoglycemia and Quality of Life in Elderly Adults with Type 1 Diabetes

Sponsor: Jaeb Center for Health Research

Version Number: 5.0

05 May 2021

JCHR Protocol Director, Name, degree	Kellee Miller, PhD
Signature/Date	
Clinical Lead Investigator, Name, degree	Richard Pratley, MD
Signature/Date	
Clinical Lead Investigator, Name, degree	Yogish Kudva, MD
Signature/Date	
Clinical Lead Investigator, Name, degree	Michael Rickels, MD

Signature/Date	
Neuropsychologist Lead Investigator, Name, degree	Naomi Chaytor, PhD
Signature/Date	
Medical Monitor, Name, degree	Roy W. Beck, MD, PhD
Signature/Date	

**Automated Insulin Delivery in Elderly with Type 1 Diabetes
(AIDE T1D):**

**A Randomized Cross-over Trial Evaluating Automated
Insulin Delivery Technologies on Hypoglycemia and Quality
of Life in Elderly Adults with Type 1 Diabetes**

Sponsor: Jaeb Center for Health Research

Funded by: NIH

Version Number: 5.0

KEY ROLES

Name, degree	Richard Pratley, MD
Title	Clinical Principal Investigator
Institution Name	AdventHealth Translational Research Institute
Name, degree	Yogish Kudva, MD
Title	Clinical Principal Investigator
Institution Name	Mayo Clinic
Name, degree	Michael Rickels, MD
Title	Clinical Principal Investigator
Institution Name	University of Pennsylvania
Name, degree	Naomi Chaytor, PhD
Title	Neuropsychology Principal Investigator
Institution Name	Washington State University
Name, degree	Kellee Miller, PhD
Title	Principal Investigator & Coordinator Center Director
Institution Name	Jaeb Center for Health Research (JCHR)
Name, degree	Roy Beck, MD
Title	Medical Monitor
Institution Name	Jaeb Center for Health Research (JCHR)
Sponsor	Jaeb Center for Health Research (JCHR)

TABLE OF CONTENTS

CHAPTER 1: BACKGROUND INFORMATION	18
1.1 Introduction	18
1.1.1 Background and Importance.....	18
1.1.2 Predictive Low-Glucose Suspend Systems	19
1.1.3 Hybrid Closed Loop Systems.....	19
1.1.4 Quality of Life Outcomes in Automated Insulin Delivery Trials.....	20
1.2 Rationale.....	21
1.3 Potential Risks and Benefits.....	21
1.3.1 Known Potential Risks	21
1.3.2 Risk Assessment.....	22
1.3.3 Known Potential Benefits.....	23
1.4 General Considerations.....	23
1.5 Virtual Visits	23
CHAPTER 2: STUDY ENROLLMENT AND SCREENING	24
2.1 Participant Recruitment and Enrollment	24
2.1.1 Informed Consent and Authorization Procedures	24
2.2 Participant Inclusion Criteria	25
2.3 Participant Exclusion Criteria.....	25
2.4 Screening Procedures	26
2.4.1 Data Collection and Testing	26
2.5 Screen Failures	27
CHAPTER 3: RUN-IN TRAINING PHASE	28
3.1 Introduction	28
3.2 Start of Run-In Visit (Same day as screening or within 14 days) (virtual or in-clinic)	29
3.2.1 Participants using CGM at Screening.....	29
3.2.2 Participants not using CGM at screening/start of run-in	29
3.3 CGM Training Visit (virtual or in-clinic)	29
3.4 SAP Initiation Visit (Required In-clinic Visit).....	29
3.5 SAP Evaluation Visit (virtual or in-clinic)	30
3.6 Device Data Uploads	31
CHAPTER 4: RANDOMIZATION & START OF PERIOD 1 VISIT	32
4.1 Randomization.....	32
4.2 Start of Period 1	32

CHAPTER 5: CROSSOVER TRIAL.....	33
5.1 Start of Period Visit	33
5.1.1 HCL or PLGS System Training	33
5.1.2 Study Visits and Contacts for Periods 1, 2 and 3	33
5.1.3 Procedures during Study Periods.....	34
5.1.3.1 Procedures Performed during Each Contact and 4-week period visits	34
5.1.3.2 Procedures Performed during Each End of Study Period Follow-up Visit.....	34
5.1.3.3 Device Data Uploads During the Crossover Trial	35
5.1.4 Early Termination Visit.....	35
5.1.5 Unscheduled Visits.....	35
CHAPTER 6: EXTENSION STUDY	36
6.1 Study Procedures During the Extension Study.....	36
6.1.1 End of Study Visit (Required In-clinic Visit).....	36
CHAPTER 7: STUDY DEVICES AND SAFETY	37
7.1 Description of the Study Devices	37
7.1.1 Insulin Pump.....	37
7.1.1.1 Tandem t:slim X2 pump with Basal-IQ Technology	37
7.1.1.2 Tandem t:slim X2 pump with Control-IQ Technology.....	37
7.1.2 Continuous Glucose Monitoring	38
7.1.3 Ketone Meters and Strips	38
7.1.4 Study Device Accountability Procedures	38
7.2 Safety Measures.....	38
7.2.1 CGM Calibration	38
7.2.2 Pump System Failure.....	38
7.2.3 Hypoglycemia Threshold Alarm and Safety Protocol	39
7.2.4 Hyperglycemia Threshold Alarm and Safety Protocol	39
7.3 Participant Access to Study Device at Study Closure	40
7.4 Cognitive Assessment after SAE Occurrence.....	40
CHAPTER 8: TESTING PROCEDURES AND QUESTIONNAIRES	41
8.1 Testing Procedures	41
8.2 Questionnaires	42
CHAPTER 9: ADVERSE EVENTS, DEVICE ISSUES AND STOPPING RULES	44
9.1 Adverse Events	44
9.1.1 Definitions	44
9.1.2 Reportable Adverse Events	44

9.1.2.1 Hypoglycemic Events	45
9.1.2.2 Hyperglycemic/Ketosis Events	45
9.1.3 Relationship of Adverse Event to Study Investigational Device.....	46
9.1.4 Severity (Intensity) of Adverse Events.....	47
9.1.5 Expectedness	47
9.1.6 Coding of Adverse Events.....	47
9.1.7 Outcome of Adverse Events.....	47
9.2 Reportable Device Issues.....	48
9.3 Timing of Event Reporting.....	49
9.4 Stopping Criteria	49
9.4.1 Participant Discontinuation of Study Phase	49
9.4.2 Criteria for Suspending or Stopping Overall Study.....	50
9.5 Independent Safety Oversight	50
CHAPTER 10: MISCELLANEOUS CONSIDERATIONS.....	51
10.1 Drugs Used as Part of the Protocol.....	51
10.2 Collection of Medical Conditions and Medications	51
10.3 Participant Compensation.....	51
10.4 Participant Withdrawal	51
10.5 Confidentiality	51
CHAPTER 11: STATISTICAL CONSIDERATIONS.....	52
11.1 Statistical and Analytical Plans	52
11.2 Statistical Hypotheses.....	52
11.3 Sample Size	52
11.4 Outcome Measures	53
11.5 Analysis Datasets and Sensitivity Analysis.....	54
11.5.1 Per-protocol Analysis	54
11.5.2 Other Sensitivity Analysis.....	54
11.6 Analysis of the Primary Efficacy Endpoint.....	55
11.7 Analysis of the Secondary Endpoints	55
11.7.1 Secondary Hypoglycemia CGM Endpoints	55
11.7.2 Additional CGM Endpoints.....	55
11.7.3 HbA1c	55
11.7.4 Questionnaires	56
11.8 Safety Analyses	56
11.9 Protocol Adherence and Retention	56
11.10 Baseline Descriptive Statistics.....	57

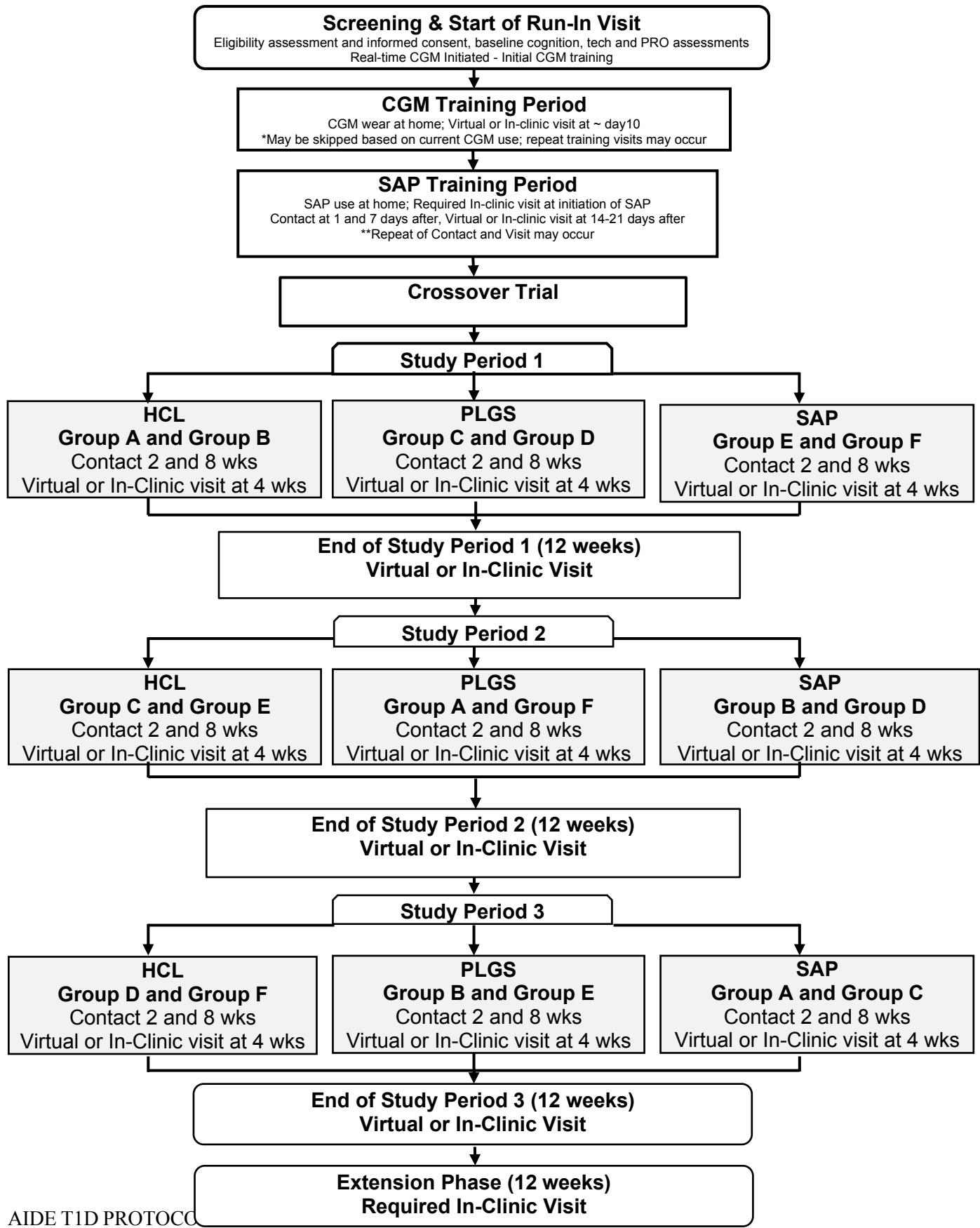
JAEB CENTER FOR HEALTH RESEARCH

11.11 Planned Interim Analyses.....	57
11.12 Sub-Group Analyses.....	57
11.13 Exploratory Analyses	57
11.14 Additional Tabulations and Analysis	58
11.15 Multiple Comparison/Multiplicity.....	58
11.16 Extension Phase.....	59
CHAPTER 12: DATA COLLECTION AND MONITORING	60
12.1 Case Report Forms and Other Data Collection	60
12.2 Study Records Retention	60
12.3 Quality Assurance and Monitoring.....	60
12.4 Protocol Deviations	61
CHAPTER 13: ETHICS/PROTECTION OF HUMAN PARTICIPANTS.....	62
13.1 Ethical Standard.....	62
13.2 Institutional Review Boards	62
13.3 Informed Consent Process	62
13.3.1 Consent Procedures and Documentation.....	62
13.3.2 Participant and Data Confidentiality	62
CHAPTER 14: REFERENCES.....	64

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
AUC	Area Under the Curve
BG	Blood Glucose
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CI	Confidence Interval
CSII	Continuous Subcutaneous Insulin Infusion
DKA	Diabetic Ketoacidosis
DSMB	Data and Safety Monitoring Board
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
HCL	Hybrid Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
NIH	National Institutes of Health
PLGS	Predictive Low Glucose Suspend
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RCT	Randomized Controlled/Clinical Trial
RMB	Risk-Based Monitoring
SADE	Serious Adverse Device Event
SAE	Serious Adverse Event
SAP	Sensor-Augmented Pump
SD	Standard Deviation
SH	Severe Hypoglycemia
SMBG	Self-Monitoring of Blood Glucose

ABBREVIATION	DEFINITION
TDI	Total Daily Insulin
UADE	Unanticipated Adverse Device Effect
UI	User Interface


PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	A Randomized Cross-over Trial Evaluating Automated Insulin Delivery (AID) Technologies on Hypoglycemia and Quality of Life (QOL) in Elderly Adults with Type 1 Diabetes (T1D)
Précis	<i>The primary objective of this protocol is to assess the safety and effectiveness of both hybrid closed loop control (HCL) technology and predictive low-glucose insulin suspension (PLGS) on hypoglycemia and other glycemic outcomes, QOL and usability compared with sensor-augmented pump (SAP) therapy in older adults with T1D. A secondary objective is to identify patient characteristics associated with use of SAP, HCL or PLGS during a 12-week patient preference extension phase. The study aims will be completed via a multi-center, randomized, crossover trial consisting of three sequential 12-week periods, with the HCL feature used during one period, the PLGS feature used during one period and SAP therapy (control) during one period. The crossover trial will be preceded by a run-in phase in which participants will receive training using the study devices (Dexcom G6 and Tandem t:slim X2 pump). After the last crossover period, participants will be given the opportunity to use study devices for an additional 12 weeks to assess preference of system use (PLGS, HCL or SAP) and associated characteristics, durability and safety in a more real-world setting with less frequent study contact.</i>
Investigational Device	<p>The HCL intervention arm will utilize the Tandem t:slim X2 with Control-IQ Technology and Dexcom G6 CGM.</p> <p>The PLGS intervention arm will utilize the Tandem t:slim X2 with Basal-IQ Technology and Dexcom G6 CGM.</p> <p>The control arm will utilize the Tandem t:slim X2 pump and Dexcom G6 CGM without HCL or PLGS features turned on.</p>
Objectives	<p>Primary RCT Objectives:</p> <ol style="list-style-type: none"> 1) Determine the effect of HCL on hypoglycemia in adults with T1D ≥ 65 years old. 2) Determine the effect of PLGS on hypoglycemia in adults with T1D ≥ 65 years old. <p>Extension Phase Objective: Determine user preferences of available CGM augmented pump technologies (PLGS, HCL or SAP) among elderly adults with T1D ≥ 65 years old in a more real-world setting during the twelve-week extension phase</p>
Study Design	A multi-center, randomized, crossover trial consisting of three sequential 12-week periods, with the HCL feature used during one period, the PLGS feature used during one period and SAP therapy (control) during one period. The crossover trial will be preceded by a run-in phase in which participants will receive training using the study devices (Dexcom G6 and Tandem t:slim X2 pump). After the last crossover period, participants will be given the opportunity to use study devices for an additional 12 weeks to assess preference of system use (PLGS, HCL or SAP) and associated characteristics, durability and safety in a more real-world setting with less frequent study contact.
Number of Sites	3 to 5 in the United States
Endpoint	<p>Primary Efficacy Outcome: CGM-measured time spent <70 mg/dL</p> <p>Key Secondary Efficacy Outcomes:</p> <ul style="list-style-type: none"> <i>Hypoglycemia</i> • Percentage of values <54 mg/dL

PARTICIPANT AREA	DESCRIPTION
	<ul style="list-style-type: none"> Incidence of CGM-measured hypoglycemic events <p><i>Glucose Control</i></p> <ul style="list-style-type: none"> Mean glucose Percentage of values 70 to 180 mg/dL HbA1c <p><i>Hyperglycemia</i></p> <ul style="list-style-type: none"> Percentage of values >250 mg/dL Percentage of values >180 mg/dL <p><i>Glycemic Variability</i></p> <ul style="list-style-type: none"> Coefficient of variation <p>Key Safety Outcomes:</p> <ul style="list-style-type: none"> Diabetic ketoacidosis (DKA), as defined by the Diabetes Control and Complications Trial (DCCT) Severe clinical hypoglycemic events such that the participant required active assistance from another person due to altered consciousness to actively administer carbohydrate, glucagon, or engage in other resuscitative actions; note severe hypoglycemia could be considered both an efficacy and safety outcome Emergency room and hospitalizations related to SH and DKA Severe adverse events Unanticipated adverse device effects <p>Other Outcomes:</p> <ul style="list-style-type: none"> Hypoglycemia unawareness Participant reported outcomes: diabetes distress, hypoglycemic fear, hypoglycemia confidence and general quality of life Usability and patient perspective of each system
Population	<p>Key Inclusion Criteria:</p> <ul style="list-style-type: none"> Clinical diagnosis of T1D Age \geq 65 years old T1D Duration of at least 1 year HbA1c < 10.0% from point of care or local lab within 6 months Insulin regimen involves basal/bolus insulin via insulin pump or multiple daily injections Ability to download study devices at home or willing to come into clinic for devices to be downloaded at visits and when needed for safety <p>Key Exclusion Criteria:</p> <ul style="list-style-type: none"> Use of PLGS technology or HCL insulin delivery in the past 1 month
Sample Size	At least 90 participants completing the crossover trial
Phase	N/A
Treatment Groups	Random assignment (1:1:1) to one of the following treatment orders: (A) HCL in period 1, PLGS in period 2, SAP in period 3 (B) HCL in period 1, SAP in period 2, PLGS in period 3 (C) PLGS in period 1, HCL in period 2, SAP in period 3 (D) PLGS in period 1, SAP in period 2, HCL in period 3 (E) SAP in period 1, HCL in period 2, PLGS in period 3 (F) SAP in period 1, PLGS in period 2, HCL in period 3
Participant Duration	~ 54 weeks

PARTICIPANT AREA	DESCRIPTION
Protocol Overview/Synopsis	<p>1) Screening and Enrollment</p> <ul style="list-style-type: none"> • Informed consent will be signed and eligibility will be assessed • Medical history obtained • HbA1c measurement if historical data within 6 months prior to enrollment not available (see eligibility criteria) • Evaluation of CGM experience and CGM use • CGM training and initiation of study CGM • Baseline patient reported outcomes • Brief cognitive assessment for eligibility (5 min MoCA) <p>2) CGM and SAP Run-In</p> <ol style="list-style-type: none"> a. CGM Training Period (~ 10 to 30 days): After ~10 days following the initial study CGM placement, participants who were not already CGM users at screening will have a visit for additional CGM training. b. SAP Training Period (~14 to 35 days): Participants will be provided the Tandem t:slim X2 pump which will be integrated with the Dexcom G6. Participants will be contacted 1 and 7 days following initiation of SAP and a SAP evaluation visit will occur 14 – 21 days following initiation of SAP. Basal and bolus insulin delivery will be adjusted as needed. <p>Prior to initiating the cross-over trial the following will be done:</p> <ul style="list-style-type: none"> • The clinician will confirm the participant's willingness to participate in the crossover trial • Study devices downloaded for baseline assessment and eligibility of device wear time • Baseline patient reported outcomes (at screening or prior to randomization) • Cognitive testing (In-person) • Frailty assessment • Physical Exam • Blood draw for central lab samples <p>3) Randomized Crossover Trial</p> <p>Eligible participants will continue into randomized cross-over trial:</p> <ul style="list-style-type: none"> • Random assignment to: <ul style="list-style-type: none"> (A) HCL in period 1, PLGS in period 2, SAP in period 3 (B) HCL in period 1, SAP in period 2, PLGS in period 3 (C) PLGS in period 1, HCL in period 2, SAP in period 3 (D) PLGS in period 1, SAP in period 2, HCL in period 3 (E) SAP in period 1, HCL in period 2 and PLGS in period 3 (F) SAP in period 1, PLGS in period 2, HCL in period 3 <p>During each of the three 12-week intervention periods, a phone or virtual contact will occur at 2 and 8 weeks and a visit (in clinic or virtual) at 4 and 12 weeks. HbA1c will be measured at the end of each period either in clinic or using an at-home sample collection kit.</p> <p>4) Extension phase</p> <p>At the start of the extension phase participants will be given the opportunity to choose between SAP, PLGS or HCL and will be followed for an additional 12 weeks.</p>

SCHEMATIC OF STUDY DESIGN

SCHEDULE OF STUDY VISITS AND PROCEDURES

Table 1. Schedule of Visits and Procedures during Screening and Run-In

	Screening/Sta rt of Run-In ¹	CGM Run-In	SAP Run-In		
		CGM Training Visit ³	Initiation of SAP ⁴	SAP Training Contacts ⁵	SAP Evaluation ⁶
Time from Randomization²	At least 14 days prior	At least 14 days prior	At least 14 days prior		0 to 7 days prior
In-clinic Visit or Virtual Visit (V) or Contact (C)	V	V	In-clinic Visit	C	V
Informed Consent	X				
Inclusion/Exclusion	X				
Medical history	X				
Physical exam, Height, weight, blood pressure			X		
HbA1c – point-of-care or local lab if historical value within 6 months not available	X				
Blood draw - central lab⁸			X		
10-foot timed walk			X		
5-min MoCA	X				
Cognitive Assessments			X		
Questionnaires⁹	X				
Study CGM training	X	X			
Study pump with integrated CGM training			X	X	X
Hypo Assessment¹⁰	X		X		
CGM Compliance					X
Skin Assessment¹¹		X	X		X
Upload device data		X	X	X	X
Review blood sugars and make insulin adjustments as needed		X	X	X	X

	Screening/Sta rt of Run-In ¹	CGM Run-In	SAP Run-In			
		CGM Training Visit ³	Initiation of SAP ⁴	SAP Training Contacts ⁵	SAP Evaluation ⁶	
¹ The Screening and start of run-in training visits may occur on the same day or separate days but no more than 14 days apart.						
² Visit timing will depend on experience with study devices.						
³ Participants using real-time CGM may skip CGM training period and proceed to SAP training period.						
⁴ Required in-clinic visit. Pump training will occur after participant is comfortable with use of CGM and meets minimum hypoglycemia requirement. Participants using both a Tandem t:slim X2 pump and Dexcom CGM may skip both the CGM training and SAP initiation visits but will need to use study devices for 14 days prior to randomization visit and have one in-person visit (screening or SAP evaluation) for completion of testing and assessments.						
⁵ Phone or video contacts to take place 1 day after SAP initiation and 7 days after SAP initiation and may be repeated as needed. Participants who are not able to upload device data from home may need to bring device to clinic to be downloaded and reviewed. Ability to upload device will be assessed during training on the device.						
⁶ Evaluate SAP use to determine eligibility and if ready to proceed with randomized trial. Participants who need additional training on pump may have a repeat visit.						
⁷ HbA1c obtained at screening only if not done as usual care in the prior 6 months from enrollment						
⁸ Blood draw for central lab HbA1c and C-peptide will take place on initiation of SAP for baseline assessment.						
⁹ Completed at screening or prior to randomization electronically or on paper if preferred.						
¹⁰ Assessment of amount of hypoglycemia for eligibility may be performed either at screening for those using CGM with available data or at the SAP initiation period.						
¹¹ When possible via video for virtual visit.						

Table 2. Schedule of Visits and Procedures During the Crossover Trial and Extension

	Randomization	Start of Period ¹	Crossover Period 1, 2 & 3			End of Period ¹	Extension Phase Start	End of Extension Phase
Time from Randomization or beginning of period	0	0	2w ± 4d	4w ± 7d	8w ± 7d	12w ± 7d	End of Period 3 Visit ± 7d	48w±14d
In-clinic Visit or Virtual Visit (V) or Contact (C)	V	V	C ⁵	V	C ⁵	V	V	In-clinic Visit
Re-review of eligibility	X							
Randomization of treatment order	X							
Height, weight, blood pressure ²						X		X
HbA1c central lab ³						X		X
Questionnaires ⁴						X		X
Cognitive Assessments								X
AE Assessment			X	X	X	X		X
Upload device data			X	X	X	X		X
Review glucose patterns		X	X	X	X	X	X	X
Training on PLGS or HCL user interface if starting next period		X				X		

¹Start of period 1 will take place on same day as randomization. Start of period 2 and 3 will take place on same day at end of previous period or within 7 days. Start of extension phase should take place on same day of end of period 3.

²Completed for in-clinic visit but allowed to skip for virtual visit.

³Central lab HbA1c will be collected in-clinic or at home for virtual visits at the end of period 1, period 2, period 3. Collected in-clinic at the end of the extension phase.

⁴ Completed electronically by participant or on paper if preferred.

⁵ Device data review may take place during follow up contacts if participant can upload data from home. Clinic visit may be completed if participant cannot upload data from home. Ability to upload device will be assessed during training on the device.

7 Chapter 1: Background Information

8 1.1 Introduction

9 1.1.1 Background and Importance

10 Older adults with type 1 diabetes (T1D) are a growing but under-evaluated population (1-4).
11 Older adults, particularly those with longstanding diabetes, are more prone to hypoglycemia and
12 hypoglycemia unawareness. Hypoglycemia, which in addition to producing altered mental status
13 and sometimes seizure or loss of consciousness, can be associated with falls leading to fractures,
14 and cardiac arrhythmias resulting in sudden death (5-7). In Medicare beneficiaries with diabetes,
15 hospitalizations related to hypoglycemia are now more frequent than those for hyperglycemia
16 and are associated with high 1-year mortality (6; 8). Emergency room visits due to hypoglycemia
17 also are common (5). These reports likely underestimate the risk of hypoglycemia in older adults
18 with T1D since they include individuals with the more prevalent type 2 diabetes in whom severe
19 hypoglycemic events are likely considerably less frequent than they are in individuals with T1D.

20 **Current strategies for avoidance of hypoglycemia in older adults are insufficient.** Unlike
21 treatment guidelines in younger individuals with T1D, guidelines for older adults with T1D are
22 focused on minimizing hypoglycemia rather than attempting to achieve low glycated hemoglobin
23 (HbA1c) levels (9; 10). Despite these efforts, biochemical hypoglycemia occurs frequently and
24 severe hypoglycemia (SH) occurs more often in older than younger adults with T1D. Data from
25 the T1D Exchange registry has shown a remarkably high frequency of SH in older adults with
26 longstanding T1D: 18% of registry participants ≥ 60 years old reported seizure or loss of
27 consciousness due to hypoglycemia in the prior 12 months (11). In addition, T1D Exchange
28 registry data indicate that SH is just as common with HbA1c levels $>8.0\%$ as it is for HbA1c
29 levels $<7.0\%$ (11). A prior study we conducted within the T1D Exchange (12) of 201 adults ≥ 60
30 years old with T1D duration ≥ 20 years (101 with SH in the prior year and 100 without SH in the
31 prior 3 years) found that glucose concentrations measured with blinded continuous glucose
32 monitoring (CGM) were <70 mg/dL for a median of 91 minutes per day. Furthermore, mean
33 HbA1c was similar in the individuals who had experienced SH in the prior year compared with
34 those who had not experienced SH in the prior 3 years (7.8% versus 7.7%). These data in
35 addition to the T1D exchange registry data do not support the strategy of “raising the HbA1c” as
36 being a desirable or effective approach for hypoglycemia prevention in older adults with T1D.

37 **Hypoglycemia impacts quality of life (QOL).** Poor glycemic control, including frequent
38 hypoglycemia, has adverse effects on QOL of both the individuals with T1D (13; 14) and their
39 families (15). In fact, hypoglycemia has a stronger impact than diabetes complications on QOL
40 in older adults (16). Hypoglycemic episodes and hypoglycemia fear limit participation in
41 activities that are beneficial to emotional, cognitive and physical well-being (e.g., exercise,
42 socializing, and travelling). Diabetes-related distress (i.e., the emotions, stresses and worries
43 associated with diabetes) is also an important component of QOL for people with T1D and is
44 associated with poor glycemic control, longer duration of diabetes, higher rates of depression,
45 and SH (17). Automated insulin delivery (AID) systems hold promise for improving QOL via
46 reductions in hypoglycemia. However, there are also possible adverse QOL impacts of advanced
47 diabetes technologies that may limit uptake of these systems (18; 19).

48 **Older adults with T1D have unique needs.** The prevalence of hypoglycemia unawareness, or
49 the loss of physiological symptoms associated with low blood glucose, is remarkably high in
50 older adults with recent SH, with 58% of those with SH within the prior year having
51 hypoglycemic unawareness compared with 25% in those with no SH in the prior 3 years (12).
52 Furthermore, glycemic variability is greater for those having experienced SH within the prior
53 year. Aging is associated with normative decline in cognitive functioning that may impact
54 diabetes self-management and contribute to hypoglycemia risk. In addition, older adults with
55 T1D have high rates of mild cognitive impairment (48% of those ≥ 60 years old (20), and
56 cognitive impairment is associated with hypoglycemia unawareness and recent SH (20; 21).
57 Further, we previously found that psychomotor processing speed, fine motor dexterity and
58 executive functioning were poorer in older adults with SH in the past year (12) and was
59 associated with simulated diabetes self-management skill (22). Thus, older adults with T1D may
60 have more difficulty with the cognitive demands of diabetes self-management, coupled with high
61 glycemic variability and hypoglycemia unawareness, that all contribute to hypoglycemia (21;
62 23). AID has the potential to reduce the cognitive burden of daily diabetes management
63 decisions, thereby improving overall control in those with diminished cognitive resources.
64 Conversely, learning and adopting new technologies and trouble-shooting component failures
65 may be overwhelming for older adults with cognitive decline. Thus, it is imperative to assess
66 whether automation of insulin delivery can be successfully implemented into diabetes
67 management of older adults with and without cognitive impairment.

68 **1.1.2 Predictive Low-Glucose Suspend Systems**

69 Many episodes of SH occur during the night, specifically during sleep (24; 25). Even with the
70 advent of real-time CGM, patients do not awaken to over 70% of nocturnal alarms (26). Studies
71 have demonstrated that using a CGM device with a hypoglycemic prediction algorithm to
72 suspend basal insulin delivery when hypoglycemia is predicted is both safe and effective (27-29).
73 The suspension of insulin delivery when glucose is declining to prevent hypoglycemia was one
74 of the first steps towards the development of an artificial pancreas. The first PLGS system was
75 the Medtronic 640G which received approval outside of the US in 2015 after results showed the
76 device to be safe and effective in reducing hypoglycemia (30). The first large RCT of the PLGS
77 algorithm that was ultimately implemented in the Tandem Basal-IQ pump, published in 2013,
78 showed a reduction in overnight hypoglycemia of about 50% (27). The Tandem Basal-IQ PLGS
79 system, planned for this proposed study, received FDA approval in 2018 following results of a
80 pivotal trial showing significant reduction in hypoglycemia with PLGS use (see Section 1.7
81 Preliminary Results).

82 **1.1.3 Hybrid Closed Loop Systems**
83 Hybrid closed loop (HCL) systems are a further step towards reducing the burden of diabetes
84 management through the development of an artificial pancreas. These systems are classified as
85 “hybrid” due to the fact that users still need to bolus for carbohydrate intake; however, basal
86 insulin delivery is modulated without user input based on sensor glucose readings. Specifically,
87 the various systems decrease insulin delivery when a patient’s sensor glucose is predicted to be
88 low and increase insulin delivery when a patient’s sensor glucose is predicted to be high. Several
89 years of HCL studies conducted for short durations with intense remote monitoring and study
90 staff support for enrolled patients led to the first pivotal trial of the Medtronic 670 G system.
91 This system was the first to be approved in the US in September 2016 following the single arm

93 clinical trial conducted in 2015/2016. This study enrolled 124 subjects with T1D of which 30
94 were age 14-21 years and the rest 22-75 years with mean 44 ± 12 years. There were ~ 10
95 subjects age ≥ 65 years in this study. Time spent < 70 mg/dL was reduced from 90 to 49 minutes
96 in the adult cohort ($p < .001$) with A1c reduction from 7.3 % to 6.8 % ($p < .001$) (31). Currently,
97 Medtronic is conducting a study randomizing subjects to 670 G HCL that includes older adults,
98 but it is not focused on hypoglycemia. Subjects being enrolled are up to 80 years old. Another
99 HCL algorithm was developed at Cambridge University and has been tested in a series of studies
100 referred to as APCAM. Results of the at home study of APCAM HCL algorithm were published
101 in Lancet in October 2018 and showed significant improvement in time in range in the HCL
102 group compared with control as well as a reduction in hypoglycemia (% < 70 mg/dL) (32). In
103 2011, the Diabetes Assistant (DiAs) was developed – a smart-phone multi-use platform designed
104 at the University of Virginia (UVA) to operate in several treatment modes ranging from CGM or
105 insulin pump support to overnight and 24/7 HCL (33). Since its introduction in 2011, DiAs has
106 earned regulatory approvals in the U.S., France, Italy, Netherlands, and Israel; 3 different control
107 algorithms have been implemented on the DiAs platform and used in approximately 20 clinical
108 trials, including long-term studies at home.

109 The Tandem X2 insulin pump with Control-IQ Technology is a third-generation HCL
110 system retaining the same control algorithm that was initially tested by UVA's DiAs system and
111 then implemented in the inControl system (33-36). The pivotal trial for the Tandem Control-IQ
112 was published in the New England Journal of Medicine in October 2019 (37). This 6-month
113 randomized trial included 168 patients age 14 to 71 years with 112 assigned to use HCL
114 (Tandem Control-IQ) and 56 sensor augmented pump (SAP) therapy. Participants in the HCL
115 group had significant improvements in time in target glucose range of 70 to 180 mg/dL as well
116 as significant reductions in time spent in hypoglycemia (< 70 mg/dL and < 54 mg/dL) and time
117 spent in hyperglycemia (> 180 mg/dL). The Tandem X2 pump with Control-IQ technology
118 received FDA approval on December 13, 2019.
119

120 **1.1.4 Quality of Life Outcomes in Automated Insulin Delivery Trials**

121 There is increasing recognition that positive glycemic outcomes with AID systems may not
122 necessarily be indicative of positive user experiences. Thus, it is important to assess psychosocial
123 and QOL impacts of AID systems (18; 19; 38; 39). Early systems were evaluated under artificial
124 conditions (e.g., diabetes camp, inpatient or supervised hotel), in very small samples and for
125 relatively short durations (typically under 1 week), making evaluation of QOL impacts difficult.
126 Nonetheless, AID systems do appear to be associated with a generally positive user experience
127 (40), including reduced diabetes management distress and improved attitudes towards diabetes
128 technology (41). However, significant barriers have also been identified, including variable trust
129 in the system, physical bulk, technical glitches and incorporation in daily life (40). As a result, it
130 is possible that many patients may prefer a PLGS-only AID system compared with an HCL
131 system. While our understanding of patient expectations of and experiences with AID systems is
132 increasing, there continues to be very little data, especially with prolonged outpatient use (18).
133 This is particularly true for the older adult population, as there is no available published data on
134 the user experience and QOL impacts of AID in older adults.

135

136 **1.2 Rationale**

137 Automated insulin delivery (AID) technologies hold the promise of optimizing glycemic control
138 and reducing the burden of diabetes care for patients with Type 1 Diabetes (T1D). However,
139 clinical trials of lower burden AID technologies have not included older adults in sufficient
140 numbers to allow for focused evaluation of efficacy and quality of life (QOL) impacts that may
141 differ from those observed in younger age groups. Most notably, primary endpoints have focused
142 on reducing hyperglycemia, while avoidance of hypoglycemia is of upmost concern for older
143 adults with T1D. T1D Exchange clinic registry data have shown severe hypoglycemia (SH)
144 occurs more commonly in older adults with longstanding T1D than in younger individuals with
145 events occurring just as often with HbA1c levels $>8.0\%$ as with HbA1c levels $<7.0\%$. These data
146 do not support the strategy of “raising the HbA1c” as being an effective approach for
147 hypoglycemia prevention in older adults with T1D. In addition to acutely altered mental status,
148 hypoglycemia is associated with an increased risk for falls leading to fractures, car accidents,
149 emergency room (ER) visits, hospitalizations, and mortality resulting in substantial societal
150 costs. The occurrence of hypoglycemia, hypoglycemia unawareness and fear of hypoglycemia
151 have adverse effects on overall QOL of both individuals with T1D and their families.

152
153 While continuous glucose monitoring (CGM) technology alone has been shown to be beneficial
154 in reducing hypoglycemia in older patients, our data from the Wireless Innovations for Seniors
155 with Diabetes Mellitus (WISDM) trial shows a majority of patients still have frequent
156 hypoglycemia even when using CGM (42). Thus, knowledge of CGM alone may not be
157 sufficient to avoid hypoglycemia in this population. Predictive low-glucose suspend algorithms
158 have particular promise when the primary goal is hypoglycemia avoidance rather than glucose
159 reduction. Whether the added complexity of closed loop systems provides additional glycemic
160 benefit is not known. There is a *critical need* to determine whether automated insulin delivery
161 can reduce hypoglycemia in the older adult population with T1D.

162

163 **1.3 Potential Risks and Benefits**

164 **1.3.1 Known Potential Risks**

165 **Fingerstick Risks**

166 A fingerstick will be performed for measuring HbA1c. This is a standard method used to obtain
167 blood for routine blood glucose monitoring. Pain may occur at the time of lancing, but is less
168 likely in patients with T1D who are used to frequent blood glucose monitoring. In about 1 in 10
169 cases, a small amount of bleeding under the skin will produce a bruise. A small scar may persist
170 for several weeks. The risk of local infection is less than 1 in 1000. This should not be a
171 significant contributor to risks in this study as fingersticks are part of the usual care for people
172 with diabetes.

173

174 **Venipuncture Risks**

175 Blood draws can cause some common reactions like pain, bruising, or redness at the sampling
176 site. Less common reactions include bleeding from the sampling site, formation of a small blood
177 clot or swelling of the vein and surrounding tissues, and fainting.

178

179

180 **Subcutaneous Catheter Risks (CGM and Insulin Pump)**

181 There is a low risk for developing a local skin infection at the site of the sensor or infusion
182 catheter placement. Itchiness, redness, bleeding, and bruising at the insertion site may occur as
183 well as local tape allergies. Sensors may fracture in situ on rare occasions. In the rare instances
184 when this has occurred in the past, consulting physicians and surgeons have recommended not to
185 remove the wire fragment from beneath the skin as long as there are no symptoms of infection or
186 inflammation and allow the body to expel the foreign body on its own.

187
188 **Risk of Hypoglycemia**

189 As with any person having type 1 diabetes and using insulin, there is always a risk for
190 experiencing low blood sugar (hypoglycemia). The frequency of hypoglycemia should be no
191 more and possibly less than it would be as part of daily living. A CGM functioning poorly and
192 significantly over-reading glucose values could lead to inappropriate insulin delivery.
193 Participants will be instructed to always check sensor readings with a self-monitored blood
194 glucose measurement (fingerstick) if the sensor readings appear out of the expected range.

195
196 **Risk of Hyperglycemia**

197 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
198 extended period or if the pump or infusion set is not working properly. A CGM functioning
199 poorly and significantly under-reading glucose values could lead to inappropriate suspension of
200 insulin delivery. Again, this risk is exceedingly low. As above, participants will be instructed to
201 always check sensor readings with a self-monitored blood glucose measurement (fingerstick) if
202 the sensor readings appear out of the expected range.

203
204 **Risks of Questionnaires**

205 As part of the study, participants will complete psychosocial questionnaires which include
206 questions about their private attitudes, feelings and behavior related to diabetes. It is possible
207 that some people may find these questionnaires to be mildly upsetting. Similar questionnaires
208 have been used in previous research and these types of reactions have been uncommon. Patients
209 are reminded that they can refuse to answer questions that they do not wish to answer. Brief
210 cognitive performance assessment will be completed at baseline and at the end of the extension
211 phase. These measures may cause transient anxiety or distress, although the selected measures
212 are commonly encountered in the context of routine medical care for older adults.

213
214 **Other Risks**

215 There is a possible risk of unsecured communication during the phone or telehealth contacts. In
216 our experience with AP studies, this has not happened.

217
218 The study may include other risks that are unknown at this time.

219 **1.3.2 Risk Assessment**

220 Risk will be minimized by having participants be well informed about how to use the study
221 devices and how to avoid hypoglycemia and hyperglycemia. A procedure manual including
222 guidelines for risk management of hypoglycemia and hyperglycemia with each technology will
223 be developed prior to the start of the trial.

225 The protocol risk assessment for this study has been categorized as minor increase over minimal
226 risk. The Tandem t:slim X2 with Basal IQ technology and the Tandem t:slim X2 with Control IQ
227 technology are FDA approved.

228 An investigational device exemption (IDE) from the U.S. Food and Drug Administration (FDA)
229 is not required to conduct this study in the US. For these reasons, this study is being considered a
230 non-significant risk device study.

231

232 **1.3.3 Known Potential Benefits**

233 It is expected that CGM has an important role in the management of diabetes in older adults with
234 T1D. It is hoped that the HCL or PLGS technologies will reduce hypoglycemia more than just
235 CGM alone. Therefore, the results of this study are likely to be beneficial for older patients with
236 diabetes.

237

238 It is possible that participants will not directly benefit from being a part of this study. However,
239 it is also possible that the glucose information from the CGM and automated suspension of
240 insulin delivery will provide a direct benefit.

241

242 **1.4 General Considerations**

243 The study is being conducted in compliance with the policies described in the study policies
244 document, with the ethical principles that have their origin in the Declaration of Helsinki, with
245 the protocol described herein, and with the standards of Good Clinical Practice (GCP).

246 When feasible, data will be directly collected in electronic case report forms, which will be
247 considered the source data.

248 **1.5 Virtual Visits**

249 Due to the highly vulnerable nature of this patient population in relation to the COVID-19 virus,
250 there is the option of virtual visit completion for certain visits. Virtual visits will take place using
251 the institution's approved software for telehealth/telemedicine or via phone call when video is
252 not possible. The procedures for virtual study visits that cannot be done virtually (such as height,
253 weight and blood pressure) will be missing. Height, weight and blood pressure during follow-up
254 is not considered to be key data but will be obtained when possible for exploratory analysis.
255 Weight from baseline data collection may be used for calculation of total daily insulin.

256

257

Chapter 2: Study Enrollment and Screening

258 **2.1 Participant Recruitment and Enrollment**

259 Enrollment will proceed with the goal of at least 90 participants completing the crossover trial.
260 A maximum of 150 individuals may be enrolled in the study in order to achieve this goal. It is
261 expected that about 40 participants may be excluded based on eligibility criteria during the
262 screening/run-in period. Participants who have signed consent and started the screening process
263 may be permitted to continue into the trial, if eligible, even if the randomization goal has been
264 reached.

265

266 Study participants will be recruited from 3 to 5 clinical centers in the United States of America.
267 All eligible participants will be included without regard to gender, race, or ethnicity.

268

269 The recruitment goal for each site is the same (approximately 30 participants per site); however,
270 certain sites may recruit additional participants to meet the overall recruitment goal. Each site
271 will aim to have at least 33% of their enrolled participants not currently using CGM, at least 33%
272 using multiple daily injections and at least 33% using insulin pump at the time of enrollment.
273 Across all sites the study will aim to enroll approximately 30% of participants with mild to
274 moderate cognitive impairment.

275

276 **2.1.1 Informed Consent and Authorization Procedures**

277 Potential eligibility may be assessed as part of a routine-care examination. Before completing
278 any procedures or collecting any data that are not part of usual care, written informed consent
279 will be obtained.

280 The study protocol will be discussed with the potential study participant by study staff. The
281 potential study participant will be given the Informed Consent Form to read. Potential study
282 participants will be encouraged to discuss the study with family members and their personal
283 physicians(s) before deciding whether to participate in the study.

284 Participants who lack capacity, such that they would require the use of a legally authorized
285 representative, shall not be enrolled in this study due to the level of self-management required by
286 the participants including device set-up and use and questionnaire completion.

287 A consent understanding assessment consisting of 5 true/false questions about content in the
288 consent will be given to the participant to confirm understanding of the informed consent and
289 study procedures. Patients who do not answer 4 out of 5 questions correctly will have the consent
290 form reviewed with them again and will repeat the understanding assessment. Patients who are
291 not able to successfully complete the understanding assessment after two attempts will not sign
292 consent and not be enrolled in the study.

293 As part of the informed consent process, each participant will be asked to sign an authorization
294 for release of personal information. The investigator, or his or her designee, will review the
295 study-specific information that will be collected and to whom that information will be disclosed.
296 After speaking with the participant, questions will be answered about the details regarding
297 authorization.

298 A participant is considered enrolled when the informed consent form has been signed. A copy of
299 the informed consent form will be provided to the participant and another copy will be added to
300 the participant's study record.

301 As an option, study staff can orally present the consent to potential participants over the phone
302 rather in person due to the highly vulnerable nature of this patient population in relation to the
303 COVID-19 virus. The procedures for administration are described in the study procedures
304 manual.

305 **2.2 Participant Inclusion Criteria**

306 Individuals must meet all the following inclusion criteria in order to be eligible to participate in
307 the study.

- 308 1) Clinical diagnosis of type 1 diabetes
- 309 2) Age \geq 65 years old
- 310 3) T1D Duration of at least 1 year
- 311 4) HbA1c $<$ 10.0% from point of care or local lab within the past 6 months
- 312 5) Insulin regimen involves basal/bolus insulin via insulin pump or multiple daily injections
- 313 6) Most recent GFR \geq 30 ml/min/m² from local lab within the past 6 months
- 314 7) Willingness to use a rapid acting insulin compatible with the Tandem t:slim X2 pump
(currently aspart and lispro; other rapid acting insulins likely to be approved for pump use
prior to study initiation such as Fiasp)
- 317 8) Familiarity with and willingness to use a carbohydrate ratio for meal boluses
- 318 9) Willing to use study devices and automated insulin delivery features
- 319 10) Ability to download study devices at home or if not able to download at home willing to
320 come into clinic to bring devices for download of data at visits and as needed for safety
- 321 11) Participant is independently managing his/her diabetes with respect to insulin administration
322 and glucose monitoring (*may include assistance from spouse or other caregiver*)
- 323 12) Participant understands the study protocol, agrees to comply with it and is able to
324 successfully pass the consent understanding assessment with no more than 2 attempts.
- 325 13) Participant comprehends written and spoken English
- 326 14) At least 240 hours of CGM readings available during the end of run-in assessment
- 327 15) At least 1.5% of time with CGM glucose levels $<$ 70 mg/dL prior to SAP initiation
- 328 16) Active prescription for glucagon and willing and able to have glucagon available

329 **2.3 Participant Exclusion Criteria**

330 Individuals meeting any of the following exclusion criteria at baseline will be excluded from
331 study participation.

- 332 1) Use of PLGS technology or HCL insulin delivery in the past 1 month
- 333 2) History of 1 or more Diabetic Ketoacidosis episodes in the previous 6 months

334 3) Clinical diagnosis by a primary care provider, neurologist or psychiatrist of dementia, in the
335 investigator's opinion a suspected severe cognitive impairment such that it would preclude
336 ability to understand the study or use devices, or a score of 6 or less out of 15 on the 5 min
337 MoCA (5-min T MoCA Version 2.1) (mild cognitive impairment is not an exclusion)

338 4) A condition, which in the opinion of the investigator or designee, would put the participant or
339 study at risk, including severe vision or hearing impairment and any contraindication to the
340 use of any of the study devices per FDA labeling

341 5) Known adhesive allergy or skin reaction during the run-in pre-randomization phase or previous
342 difficulty with pump and CGM insertions that would preclude participation in the randomized
343 trial

344 6) Concurrent use of any non-insulin glucose-lowering agent other than metformin (including
345 GLP-1 agonists, Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, sulfonylureas)

346 7) Stage 4 or 5 renal disease

347 8) The presence of a significant medical or psychiatric condition or use of a medication that in
348 the judgment of the investigator may affect completion of any aspect of the protocol, or is
349 likely to be associated with life expectancy of <1 year

350 **2.4 Screening Procedures**

351 After the informed consent or short form has been fully signed, a potential participant will be
352 evaluated for study eligibility through the elicitation of a medical history, performance of a
353 physical examination by study personnel (when possible) and local laboratory testing if needed
354 to screen for exclusionary medical conditions. The screening visit should take place within 30
355 days of obtaining informed consent. A local HbA1c measurement will be obtained if not already
356 obtained as part of usual care within the prior 6 months of the screening visit. A serum creatinine
357 for estimation for GFR will be obtained if one is not available within the previous 6-months. The
358 5-min MoCA should be completed prior to performing any other screening procedures to
359 confirm eligibility.

361 **2.4.1 Data Collection and Testing**

362 The following procedures will be performed/data collected/eligibility criteria checked and
363 documented:

- 364 • Inclusion and exclusion criteria assessed
- 365 • Demographics (socioeconomic status, date of birth, sex, race and ethnicity)
- 366 • Contact information (retained at the site and not entered into study database)
- 367 • Medical history
- 368 • Diabetes history
- 369 • Concomitant medications
- 370 • Fingerstick or blood draw for:

371 ○ HbA1c level measured using a point-of-care device or local lab will be used to assess
372 eligibility unless a historical value is available within 6 months of enrollment
373 ○ GFR if not available in medical record in previous 6 months
374 • Testing and Assessments will include the following:
375 ○ 5-min T MoCA – perform as first screening procedure
376 ○ Hypoglycemic Awareness
377 ○ Patient Reported Outcome Questionnaires completed online (or paper if online not
378 possible); May be completed at time of screening visit or any time at home prior to
379 randomization.
380 ■ Functional Activities Questionnaire
381 ■ Hypoglycemia Fear Survey (HFS-II)
382 ■ Hypoglycemia Confidence Scale
383 ■ T1D Diabetes Distress Scale (DDS)
384 ■ Prospective Retrospective Memory
385 ■ Barkley Deficits in Executive Function Scale (BDEFS)

386 Screening procedures will last approximately 1-2 hours.

388 **2.5 Screen Failures**

389 Participants determined to be ineligible during screening visit, with lab values out of range
390 (HbA1c or GFR if done at screening visit) or who score a 6 or less on the 5-min T MoCA will
391 be withdrawn from the study.

392 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
393 date per investigator discretion.

395 **2.6 Eligible Participants**

396 Individuals who meet eligibility criteria will proceed to the Run-In Phase.

Chapter 3: Run-in Training Phase

3.1 Introduction

There are four parts of the run-in phase:

- 1) Start of Run-In – takes place on same day as screening or within 14 days
- 2) CGM Training Period – consists of a training visit and repeat training as needed
- 3) SAP Training Period – consists of SAP initiation visit and contacts with additional visits for training as needed
 - a. If the participant is a CGM user the screening, start of run-in and SAP initiation visits can take place on the same day if able to be in clinic to complete all procedures
- 4) SAP Evaluation – use of devices will be evaluated prior to initiating cross-over trial. May be repeated if additional training needed.

The length of the run-in phases may vary depending on prior experience with devices. Eligible participants may complete the CGM training period and the SAP training period or may skip one or both based on the participants' device use at the time of enrollment, as described below.

Table 3. CGM and SAP Training Periods Criteria

CGM Use (Real-time CGM only, does not include flash monitoring)	Use of Tandem t:slim X2 pump	CGM Training Period: 10-30 days (Includes 10-day CGM training visit and re- training as needed)	SAP Training Period: 14-28 days (Includes SAP initiation visit and training phone calls with additional training as needed)	SAP Evaluation (Repeated if additional SAP training needed)
Device Use	YES	YES	Skip per investigator's discretion	Required
	YES	NO	Skip per investigator's discretion	Required
	NO	YES	Required	Required
	NO	NO	Required	Required

415

416 **3.2 Start of Run-In Visit (Same day as screening or within 14 days) (virtual or in-clinic)**

417 **3.2.1 Participants using CGM at Screening**

- 418 • If the CGM device is able to be downloaded study personnel will assess whether the
419 participant has at least 1.5% of sensor glucose values <70 mg/dL (average of ~30 minutes
420 per day).
 - 421 ○ **Participants with < 1.5% of time spent with glucose levels < 70 mg/dL will be
422 excluded in order to ensure all participants have the possibility to reduce
423 hypoglycemia during the intervention periods.**
- 424 • The study Dexcom G6 CGM will be given to the participant and they will receive
425 training on the study device similar to what is described below for those not using CGM.
- 426 • Participant will proceed to SAP initiation visit (see section 3.4) which may take place on
427 same day if screening/start of run-in visit is in-clinic or within 14-days.

428 **3.2.2 Participants not using CGM at screening/start of run-in**

- 429 • Participants will initiate using the study CGM and will receive initial training on its use.
- 430 • Standardized CGM training will be provided using a training checklist and training
431 materials will be provided to study participants. The study team will assist the participant
432 with sensor insertion and calibration (as needed). Each participant will be asked to use a
433 CGM sensor on a daily basis, inserting a new sensor as needed. Participants will be
434 instructed to use the sensor according to FDA labeling. In addition, participants will be
435 provided guidelines for when to confirm the CGM reading with a home BGM value
436 including when hypo/hyperglycemia symptoms are discrepant from the CGM reading or
437 if there are other reasons to doubt the CGM reading.
- 438 • A second CGM training visit will occur in approximately 10 days and may be repeated if
439 additional training needed prior to proceeding with SAP initiation.

441 **3.3 CGM Training Visit (virtual or in-clinic)**

- 442 • Additional CGM training will take place using standardized materials.
- 443 • A skin assessment (via virtual video when possible) will be made where sensors were
444 worn to be sure that the participant tolerates the sensor well enough to enter the
445 randomized trial.
- 446 • The participant will be provided with additional sensors to wear at home for up to 20
447 days
- 448 • Next visit is the SAP Initiation Visit

449 **3.4 SAP Initiation Visit (Required In-clinic Visit)**

- 451 • Participants who haven't been evaluated for minimum hypoglycemia requirement (non-
452 CGM users at start of run-in) will be evaluated at the beginning of this visit. Study
453 personnel will assess whether the participant has at least 1.5% of sensor glucose values
454 <70 mg/dL (average of ~30 minutes per day).

455 ○ **Participants with < 1.5% of time spent with glucose levels < 70 mg/dL will be**
456 **excluded in order to ensure all participants have the possibility to reduce**
457 **hypoglycemia during the intervention periods.**

458 ● Participants will be provided with the Tandem t:slim X2 Basal-IQ study pump integrated
459 with the study Dexcom G6 CGM with Basal-IQ feature turned OFF

460 ● Participants will be provided the Abbott Precision Xtra Meter and blood ketone strips to
461 measure blood ketone levels as indicated.

462 ○ Participants will be instructed on how to perform blood ketone testing per
463 manufacturer guidelines.

464 ○ Participants will be given a handout outlining when to check ketones and
465 treatment action plan for elevated blood ketones.

466 ● Standardized device training will be provided using a training checklist and training
467 materials will be provided to study participants.

468 ○ For participants currently on insulin pump therapy, the Tandem SAP will be
469 programmed so that basal insulin delivery and other settings match the
470 participant's personal pump settings. If appropriate, the pump settings will be
471 optimized based on study investigator review of downloaded SAP data.

472 ○ For participants not currently on insulin pump therapy, an initial basal insulin
473 profile will be customized on a per-participant basis. Total daily insulin dose will
474 be reduced by approximately 20% as a general rule, with a recommended method
475 outlined in a separate procedure manual.

476 ○ Further adjustments to total daily dose and intraday basal rate profile may be
477 made during the course of the SAP Training Period.

478 ○ Participants will be provided with a study account for t:connect and trained on
479 how to upload the devices.

480 ● A standard physical exam will be performed by the study investigator or designee (a
481 physician, fellow, nurse practitioner or a physician assistant).

482 ○ Can be performed by clinic staff:
483 ■ Weight, height
484 ■ Vital signs including measurement of blood pressure and pulse

485 ● A blood draw for measurement of central lab HbA1c and C-peptide will be performed.

486 ● Frailty assessment using 10-foot timed walk

487 ● Cognitive Assessment (See Chapter 8)

488 ● Participants will be contacted 1 (± 1 day) and 7 (± 3 days) days following initiation of
489 SAP.

490 ● A SAP Evaluation Visit will occur 14 -21 days following initiation of SAP
491 ○ The SAP training contacts and SAP evaluation visit may be repeated if needed for
492 additional training on study devices prior to initiating cross-over trial

493
494 **3.5 SAP Evaluation Visit (virtual or in-clinic)**

495 ● The CGM data will be downloaded to assess whether the participant has at least 240
496 hours of sensor data during the run-in.
497 ○ Participants not meeting the CGM compliance requirement may be given a
498 second opportunity to be evaluated.

499 ■ Participants who are unable to meet the CGM usage requirements after the
500 second opportunity will be dropped from the study and not enter the
501 randomized trial.

502 • Participants needing additional training should receive training at the SAP Evaluation
503 visit and then repeat the SAP run-in period with a contact 7 days later and SAP
504 Evaluation Repeat Visit in ~ 14 days

505

506 **3.6 Device Data Uploads**

507 Device data will be downloaded at each visit. Participants will be trained on how to upload
508 devices from home. Participants who are unable to download devices from home will need to
509 come to clinic to have device downloaded at study visits/contacts or as needed for safety reasons.

510

Chapter 4: Randomization & Start of Period 1 Visit

Once a study participant is randomized, that participant will be counted regardless of whether the assigned treatment is received. Thus, the investigator must not proceed to randomize an individual until he/she is convinced that the individual is eligible and willing to follow the study period order and comply with each treatment arm.

4.1 Randomization

- Randomization on the study website will take place after the SAP Evaluation visit and may occur on the same day or within 7 days.
- Eligibility criteria from screening will be reviewed again and if the participant is no longer eligible based on these criteria, the participant will be dropped from the study prior to randomization.
- ***Investigators will be responsible for signing off on all CRFs and edits that occurred prior to randomization BEFORE the randomization form is submitted.***

The main phase of the study, a 36-week randomized crossover trial, will consist of three 12-week periods. The three treatment periods consist of HCL, PLGS and SAP.

Participant randomization assignment is determined after the Randomization Prompt is submitted on the study website. The data from this visit and where applicable, prior visits, are assessed to verify eligibility prior to the randomization process being completed.

Following confirmation of eligibility and successful completion of run-in participants will be randomly assigned with equal probability (stratified by clinical site) to one of the following treatment period orders:

- (A) HCL in period 1, PLGS in period 2, SAP in period 3
- (B) HCL in period 1, SAP in period 2, PLGS in period 3
- (C) PLGS in period 1, HCL in period 2, SAP in period 3
- (D) PLGS in period 1, SAP in period 2, HCL in period 3
- (E) SAP in period 1, HCL in period 2, PLGS in period 3
- (F) SAP in period 1, PLGS in period 2, HCL in period 3

The following devices will be used for each period:

- During the HCL period participants will use the Tandem t:slim X2 pump with Control IQ
- During the PLGS period participants will use the Tandem t:slim X2 pump with Basal IQ
- During the SAP period participants will use the Tandem t:slim X2 pump with Basal IQ feature turned OFF

4.2 Start of Period 1

The Start of Period 1 visit should take place on same day as randomization.

552

553

Chapter 5: Crossover Trial

554 **5.1 Start of Period Visit**

555 The Start of Period 1 visit should take place on same day as randomization. The Start of Period 2
556 and Period 3 visits should take place on same day as End of Period visit for previous period. See
557 windows in 5.1.2.

558 **5.1.1 HCL or PLGS System Training**

559 Potential participants will be encouraged to involve a significant other in their care/training or
560 invite anyone who is currently involved in their diabetes care. The participant and
561 partner/caregiver (if warranted) will be trained by qualified staff on user interface, alarms, meal
562 blousing, and exercise using standardize training materials and checklists. Training on severe
563 hypoglycemia emergency procedures including removal of the study pump and administration of
564 glucagon also will be provided following standard clinic practices.

565

566 Participants will be provided with a handout summarizing tips and guidelines for use of the
567 devices and safety measures.

568

569 Study team members will train the participant and care partner on specific tasks including the
570 following:

- 571 • The study team will confirm the pump and sensor parameters entered in the system
- 572 • CGM calibration instructions (as needed)
- 573 • Meal bolus procedures
- 574 • What to do when exercising while using the system
- 575 • The participant and care partner will be assessed for understanding how to react to
576 safety/alert notifications
- 577 • Device data upload instructions
- 578 • Participants will be reminded to perform fingerstick blood glucose measurements in
579 accordance with the labeling of the study CGM device
- 580 • Participants will be instructed when to contact study staff and provided with contact
581 information to ask any questions they may have during the study

582

583 Study staff will discuss the visit schedule with the participant and will make arrangements with
584 the participant for each visit. If the participant cannot be reached, the participant's other contact
585 methods will be utilized. Participants will be trained on how to upload devices to be able to do
586 this from home for study contacts and virtual visits. Participants who are not able to upload
587 device data from home will need to come to the clinic for the device download for each visit and
588 as needed for safety reasons.

589

590 **5.1.2 Study Visits and Contacts for Periods 1, 2 and 3**

591 During each period a virtual or in-clinic visit will occur at 4 weeks with an end of period/start of
592 new period virtual or in-clinic visits occurring at 12 weeks. Study contacts (via phone or
593 telehealth) will occur at 2 and 8 weeks. The study contacts and visits may be completed remotely
594 (phone call or virtual visit) or in person at participant, investigator and study coordinator

595 discretion. Virtual visits will take place using the institution's approved software for
596 telehealth/telemedicine when possible or by phone if video not feasible. Additional contacts or
597 visits may occur as needed:

598

Visit	Target Day/Week	Target Window (around Target Day/Week)	Allowable Window (around Target Day/Week)
Start of Period (1, 2, 3)	Randomization or End of Previous Period	N/A	+ 7 days
2-week contact	Randomization Visit Date + 14 days or End of Previous Period Date + 14 days	±4 days	± 7 days
4-week visit	Randomization Visit Date + 28 days or End of Previous Period Date + 28 days	± 7 days	± 14 days
8-week contact	Randomization Visit Date + 56 days or End of Previous Period Date + 56 days	± 7 days	± 21 days
End of Period 1, 2, 3 12-week visit	Randomization Visit Date + 84 days or End of Previous Period Date + 84 days	± 7 days	± 21 days

599

600 The goal will be for all participants to complete all scheduled visits. However, participants who
601 (because of unforeseen circumstances) are unable or unwilling to return for all follow-up visits
602 will be permitted to return for key visits only as an alternative to withdrawal from the study.
603 When a participant is placed into this status, missed visits will not be recorded as protocol
604 deviations (since they would not be recorded as protocol deviations if the participant was
605 dropped from the study).

606

607 **5.1.3 Procedures during Study Periods**

608 **5.1.3.1 Procedures Performed during Each Contact and 4-week period visits**

- 609 • The participant will be asked to upload device data for study staff review (participants not
610 able to upload may be asked to come to the study clinic for a device download)
- 611 • Assessment of compliance with study device use
- 612 • Answer questions about using the system
- 613 • Assessment of adverse events, adverse device effects, and device issues
- 614 • Review of glycemic control

615

616 **5.1.3.2 Procedures Performed during Each End of Study Period Follow-up Visit**

617 Procedures listed below should be completed at the end of Periods 1, 2 and 3 (prior to start of
618 next period):

619

- Assessment of compliance with study device use

- 620 • Retraining on system use as needed
- 621 • Assessment of adverse events, adverse device effects, and device issues
- 622 • Download of system data
- 623 • Capillary or venous collection of a blood sample to send to the central laboratory for
- 624 HbA1c determination (completed in-clinic or at home for virtual visits)
 - 625 ◦ Clinical site will provide at home HbA1c kits to participants
- 626 • Assessment of hypoglycemia unawareness
- 627 • Completion of Questionnaires -electronically or on paper if needed
 - 628 ◦ Hypoglycemia Fear Survey (HFS-II)
 - 629 ◦ Hypoglycemia Confidence Scale
 - 630 ◦ T1D Diabetes Distress Scale (DDS)
 - 631 ◦ System Usability Scale
 - 632 ◦ AIDE Technology Acceptance

633 Following the completion of the end of period visit procedures, participants will be trained on the
634 PLGS or HCL user interface if initiating during the next study period as part of the Start of
635 Period visit.

636 **5.1.3.3 Device Data Uploads During the Crossover Trial**

637 Device data will be downloaded during each follow-up visit. Participants will upload devices
638 from home for study contacts and virtual visits. Participants without access to a computer or who
639 in the study staff opinion would struggle with the upload of the device may need to come to the
640 clinic for the study contacts and virtual visits to have devices downloaded.

641 **5.1.4 Early Termination Visit**

642 If a participant discontinues the study early, an attempt will be made to have the participant
643 complete an end of study visit to record any adverse events or device issues that have occurred,
644 complete final questionnaires, and collect a final HbA1c. Study devices should be returned to the
645 clinic.

646 Every effort will be made to keep all participants in the trial through each 12-week period.
647 Participants who discontinue device use or initiate non-study treatment will be encouraged to
648 remain in the study.

649 **5.1.5 Unscheduled Visits**

650 An Unscheduled Visit Form will be completed for any contact or visit the participant has with
651 the site for significant protocol-related issues/questions outside the visit and contact schedule.

652

658

Chapter 6: Extension Study

659 **6.1 Study Procedures During the Extension Study**

660 Following the completion of the last study period, participants will enter a 3-month extension
661 phase where they will be given the opportunity to choose to use either HCL, PLGS or SAP.
662 Participants will be asked to choose their preferred technology at the start of the extension phase
663 and will be permitted to change the technology being used at any time during the 3-month
664 period.

665

666 **6.1.1 End of Study Visit (Required In-clinic Visit)**

667 At the end of the 3-month period, an end of study visit will occur.

668

669 Procedures listed below will be completed at the end of study visit:

- 670 • Venous or capillary collection of a blood sample to send to the central laboratory for
671 HbA1c determination
- 672 • Download of system data
- 673 • Assessment of hypoglycemia unawareness
- 674 • Completion of Patient Reported Outcome Questionnaires
 - 675 ○ Hypoglycemia Fear Survey (HFS-II)
 - 676 ○ Hypoglycemia Confidence Scale
 - 677 ○ T1D Diabetes Distress Scale (DDS)
 - 678 ○ System Usability Scale
 - 679 ○ AIDE Technology Acceptance
 - 680 ○ Functional Activities Questionnaire
 - 681 ○ Prospective Retrospective Memory
 - 682 ○ Barkley Deficits in Executive Function Scale (BDEFS)
- 683
- 684 • Completion of cognitive assessments
- 685 • Assessment of adverse events, adverse device effects, and device issues

686

687 Additional unscheduled visits and contacts can be made.

688

689

Chapter 7: Study Devices and Safety

690 **7.1 Description of the Study Devices**

691 **7.1.1 Insulin Pump**

692 The system proposed for use in this study is comprised of a CGM sensor and transmitter along
693 with an insulin pump with user interface (UI) for display of system information.

694

695 The insulin pump used in the study is the Tandem t:slim X2 pump, which is an FDA-approved
696 device with no changes to its hardware or firmware components. The SAP/control arm will
697 utilize the Tandem t:slim X2 pump without HCL or PLGS features activated.

698 The PLGS intervention arm will utilize the Tandem t:slim X2 pump with Basal-IQ Technology.

699 The HCL intervention arm will utilize the Tandem t:slim X2 with Control-IQ Technology. The
700 tandem t:connect software will be used to obtain device data. Each participant will have a study
701 specific t:connect account created.

702

703 **7.1.1.1 Tandem t:slim X2 pump with Basal-IQ Technology**

704 The Basal IQ System (PLGS) is able to stop and resume basal insulin delivery automatically in
705 response to predicted or low sensor glucose values, thereby reducing the incidence and duration
706 of hypoglycemic episodes. The pump includes the hypoglycemia minimization strategy that will
707 issue insulin delivery commands. The algorithm looks ahead 30 minutes and suspends insulin
708 when glucose is predicted to drop below 80 mg per dL or if glucose is currently below 70 mg per
709 dL and falling. The system resumes basal insulin delivery once glucose values start to rise and
710 are above 70 mg per dL or 2.5 hours have elapsed. Basal IQ works silently in the background
711 and users can choose whether or not to receive alerts when insulin is suspended/resumed. Users
712 can also choose to resume insulin delivery at any time when insulin is suspended.

713

714 **7.1.1.2 Tandem t:slim X2 pump with Control-IQ Technology**

715 The Control IQ uses advanced HCL algorithms that modulate insulin to keep CGM glucose
716 within a targeted range, with meal time insulin boluses delivered by the user. The system
717 components include the t:slim X2 with integrated Control-IQ Technology and the Dexcom CGM
718 G6. During wakeful hours, Control-IQ modulates insulin to maintain CGM glucose within 112.5
719 to 160 mg/dL. While asleep, the targeted CGM glucose range is 112.5 to 120 mg/dL. During
720 exercise, Control-IQ modulates insulin to maintain CGM glucose within 140 mg/dL to 160
721 mg/dL.

722 Control IQ uses the following algorithm:

- 723 • Insulin is decreased when a CGM reading of ≤ 112.5 mg/dL is predicted 30 minutes in
724 the future. (≤ 140 mg/dL with exercise).
- 725 • Insulin is set to 0 units/hour when a CGM reading ≤ 70 mg/dL (≤ 80 mg/dL during
726 exercise) is predicted 30 minutes in the future.
- 727 • Insulin is increased when a CGM reading of ≥ 160 mg/dL (awake), ≥ 120 mg/dL
728 (asleep), or >160 mg/dL (exercise) is predicted 30 minutes in the future.
- 729 • Correction boluses (60% of the total correction bolus calculated based on correction
730 factor and CGM reading) are delivered when a CGM reading > 180 mg/dL is predicted
731 30 minutes in the future.

732

733 **7.1.2 Continuous Glucose Monitoring**

734 The study CGM is the Dexcom G6. This is an FDA-approved device system with no changes to
735 its hardware or firmware components. The sensor probe is inserted subcutaneously and transmits
736 data every 5 minutes to the pump via the transmitter. The CGM sensor will be replaced in
737 accordance with manufacturer labeling (e.g. at least once every ten days). A study specific
738 Dexcom Clarity account will be created for each participant.

739 **7.1.3 Ketone Meters and Strips**

740 Blood ketone levels will be measured using the Abbott Precision Xtra meter and blood ketone
741 strips as indicated. Blood glucose meter strips for the Precision Xtra device will not be provided.

742 **7.1.4 Study Device Accountability Procedures**

743 Good clinical research practice requires that investigators and research teams ensure accurate
744 accountability for any investigational device used in a research trial. It is expected that all
745 investigational devices or approved devices used outside their approved intended use will be
746 used in the manner intended during the study, that they will be stored under appropriately
747 controlled conditions, and that they will be used by (on) participants who have consented to
748 participate in the research study.

749 Any investigational device or approved devices used outside their approved intended use in
750 clinical research must be strictly accounted for and will not be shipped to any site unless all of
751 the necessary approvals (e.g. Regulatory, IRB/EC) have been received. This includes keeping
752 records of:

- 753 1. Center receipt and inventory management
- 754 2. Storage
- 755 3. Participant Disbursement
- 756 4. Return (by Participants and Center) and/or disposal

757 During the conduct of the study the investigational center staff will account for and document the
758 device accountability procedures as detailed in the site procedures manual.

759 **7.2 Safety Measures**

760 **7.2.1 CGM Calibration**

761 Throughout the study, participants will be instructed to calibrate the study CGM in accordance
762 with manufacturer labelling. The Dexcom G6 does not require calibration with the exception of
763 certain circumstances outlined in the user manual.

764 **7.2.2 Pump System Failure**

765 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
766 Basal-IQ will not operate to automatically adjust or suspend insulin. If the CGM is not
767 connected, the system will revert to usual function of the pump and deliver insulin with the
768 insulin dosing parameters programmed in the system for that individual. Resumption of each
769 algorithm will occur automatically once CGM signal is available again. Participants will be
770 instructed to keep the alarms for CGM data loss turned on whenever possible.

771 If the study system is unable to activate Control-IQ for any reason, the pump will automatically
772 revert to preprogrammed basal insulin delivery without any need for instruction from the user.

779 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
780 Alarm will display and the participant will be instructed to contact the study team.
781

782 **7.2.3 Hypoglycemia Threshold Alarm and Safety Protocol**

783 During the course of the study, participants will be permitted to change the CGM low glucose
784 threshold alert setting on their device or mobile app, but will be instructed to choose a value no
785 less than 70 mg/dL. The severe low alert in the Dexcom software is set to < 55 mg/dL and cannot
786 be turned off. If the participant receives a predictive Low Alert or low alert, a message appears
787 on the user interface (UI) that is accompanied by vibration followed by vibrations and/or sound
788 if not acknowledged by the user in 5 minutes. This alert remains on the screen until
789 acknowledged by the user.
790

791 If a participant receives a CGM low glucose alert or notes that the CGM glucose is below the
792 low glucose threshold alert value, confirmatory fingerstick testing will be recommended and the
793 participant will be instructed to treat hypoglycemia with ~16 grams of fast-acting oral glucose.
794

795 The t:slim X2 with Control-IQ will suspend insulin when the system predicts BG < 70mg/dL
796 within 30 minutes or if in exercise mode < 80mg/dL within 30 minutes. The t:slim X2 with
797 Basal-IQ will suspend insulin when the system predicts BG <80 mg/dL within the next 30
798 minutes or passes a threshold of < 70 mg/dL.
799

800 **7.2.4 Hyperglycemia Threshold Alarm and Safety Protocol**

801 During the course of the study, participants will be permitted to change the CGM high glucose
802 threshold alert setting on their device or mobile app but will be instructed to choose a value no
803 greater than 300 mg/dL. This feature is common for the SAP and PLGS treatment arms.
804 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alert (Control-IQ
805 High Alert) when the system has increased insulin delivery, but detects a CGM value above 200
806 mg/dL and does not predict the value will decrease in the next 30 minutes.
807

808 If the participant receives a Control-IQ High Alert, a message appears on the UI that is
809 accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user
810 in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
811 prompted to check the site for occlusion and test blood glucose.
812

813 If a participant's CGM reading is >300 mg/dL for over 2 hours or ≥ 400 mg/dL at any point, the
814 participant will be instructed to take the following steps:
815

- 816 • Perform a blood glucose meter check.
- 817 • If the blood glucose is >300 mg/dL, participants will be encouraged to perform ketone
818 testing using their study ketone meter
- 819 • If the ketone level is >0.6 mmol/L, take correction insulin, change insulin (pump)
820 infusion site and contact study staff.
- 821 • During the Control-IQ period, if a participant administers correction insulin via insulin
822 syringe, participants will be instructed to turn Control-IQ off for approximately four
823 hours.

824 **7.3 Participant Access to Study Device at Study Closure**

825 Participants who complete the study will return the study pump and may be able to keep the
826 other supplies assuming they are functioning at the end of the study.

827

828 **7.4 Cognitive Assessment after SAE Occurrence**

829 Following the occurrence of an SAE, participants will be administered the 5-min MoCA at the
830 earliest reasonable opportunity following recovering of the event to ensure the participant is not
831 cognitively impaired to a level that may impact the safety of using study devices. The same
832 criteria for baseline eligibility of major cognitive impairment will be used to determine if
833 continuing to use study device is a safety concern. Investigators may refer a study participant
834 with evidence of major cognitive impairment for services in accordance with their practice
835 standards.

836

Chapter 8: Testing Procedures and Questionnaires

837 8.1 Testing Procedures

838

- 839 • HbA1c:
 - 840 ◦ Performed locally at the Screening visit. This may be done within 6 months prior to
 - 841 ◦ enrollment.
 - 842 ◦ Collected via blood draw for central lab analysis at SAP Initiation, at the end of each
 - 843 ◦ period and at the end of extension phase. Final HbA1c may also be collected for
 - 844 ◦ participants who withdraw from the study.
- 845
- 846 • C-peptide:
 - 847 ◦ Collected via blood draw at SAP Initiation and stored for central lab analysis.
- 848
- 849 • Frailty 10-foot walk:
 - 850 ◦ Performed locally at the SAP Initiation visit.
 - 851 ◦ This test will measure the time it takes for a participant to walk 10 feet, to obtain an
 - 852 ◦ estimate of frailty. Administration time is approximately 10 minutes (43).
- 853
- 854 • Brief Cognitive Screening
 - 855 ◦ 5-min T Montreal Cognitive Assessment (MoCA)(44): Must be completed as the first
 - 856 ◦ screening visit procedure either over the phone or in person in order to exclude those
 - 857 ◦ with severe cognitive impairment and after an SAE occurrence to ensure the
 - 858 ◦ participant is not cognitively impaired to a level that may impact safety of using study
 - 859 ◦ devices. There are 15 total points: Verbal fluency (4), delayed recall (5) and
 - 860 ◦ orientation (6). Participants who obtain a total score of 6 or less will be withdrawn
 - 861 ◦ from the study. Investigators may refer a study participant for services in accordance
 - 862 ◦ with their practice standards.
- 863 • Cognitive Measures
 - 864 ◦ Performed locally at the SAP Initiation visit and at the end of extension phase.
 - 865 ◦ Measured for cohort description, sub group analysis, and prediction of system
 - 866 ◦ preference during extension phase. Each measure is described briefly below. The
 - 867 ◦ procedures for administration are described in the study procedures manual.
 - 868 ▪ Total score = 30. The Montreal Cognitive Assessment (MoCA); (45) –
 - 869 ◦ Performance-based assessment of general mental status consisting of several short
 - 870 ◦ tasks (executive function, visual spatial skills, naming, attention, language, verbal
 - 871 ◦ memory and orientation).
 - 872 ▪ WAIS-IV Digit Symbol Coding Test (46)– Performance-based assessment of
 - 873 ◦ psychomotor processing speed. Using a key, participants copy symbols that are
 - 874 ◦ paired with numbers. Total score is the number correctly completed within a 120
 - 875 ◦ second time limit.

876 ■ WAIS-IV Symbol Search Test (46)- Performance-based assessment of visual
877 processing speed. Participants scan a search group and indicate whether one of
878 the symbols in the target group matches. Total score is the number correctly
879 completed, minus the number of errors, within a 120 second time limit.

880
881 Local laboratory testing will be performed if needed to screen for exclusionary medical
882 conditions.

883 **8.2 Questionnaires**

884 Each questionnaire is described briefly below. The procedures for administration are described
885 in the study procedures manual.

886 **1. Diabetes Distress Scale (DDS)(48)**

887 *The DDS is a 28-item survey that assesses seven sources of diabetes distress for type 1
888 adults. It captures feelings of powerlessness; management distress; hypoglycemia distress;
889 negative social perceptions by others; eating distress; physician (health care) distress; and
890 friend/family distress. Items are scored on a 6-point scale from not a problem to a very
891 serious problem. The scale is valid and reliable, and has been shown to be sensitive to
892 change over time. Administration time is 5 minutes. Completed at baseline, end of each
893 period and end of extension phase.*

894 **2. Hypoglycemia Fear Survey (HFS)(48)**

895 *The HFS measures several dimensions of fear of hypoglycemia among adults with type 1
896 diabetes. It consists of 33 items and produces two sub-scale scores; a Behavior sub-scale
897 that measures behaviors involved in avoidance and/or over-treatment of hypoglycemia and a
898 Worry sub-scale that measures anxiety and fear surrounding hypoglycemia. All versions of
899 the HFS are valid and reliable. Administration time is 5-10 minutes. Completed at baseline,
900 end of each period and end of extension phase.*

901 **3. Hypoglycemia Confidence Scale (HCS)(49)**

902 *The HCS (20) is a 9-item self-report scale that examines the degree to which people with
903 diabetes feel able, secure, and comfortable regarding their ability to stay safe from
904 hypoglycemic-related problems. It has been validated for use in adults with type 1 diabetes
905 and insulin-using type 2 diabetes. Administration time is approximately 5 minutes.
906 Completed at baseline, end of each period and end of extension phase.*

907 **4. System Usability Scale (50)**

908 *A 10-item questionnaire that measures the overall usability of a system. It is a valid and
909 reliable measure of the perceived usability of a system and is technology-agnostic.
910 Administered at the end of each period only.*

911 **5. AIDE Technology Acceptance Questionnaire Post Device (51)**

914 *This diabetes technology specific questionnaire based on the Technology Acceptance Model,*
915 *assesses perceived system usefulness, ease of use and trust in the system. Administered at the*
916 *end of each period only*

917 **6. Prospective and Retrospective Memory Questionnaire (52)**

918 *Self-report measure containing items asking participants how often they have difficulty*
919 *remembering to do things in the future, as well as forgetting past events in their daily lives.*
920 *Completed at baseline and end of extension phase.*

921 **7. Barkley Deficits in Executive Function Scale (53)**

922 *Self-report measure containing items asking participants how often they have difficulty with*
923 *planning, problem solving, impulsivity, and inattention in their daily lives. Completed at*
924 *baseline and end of extension phase.*

925 **8. Functional Activities Questionnaire (54)**

926 *Self-report measure of instrumental activities of daily living. Completed at baseline and end*
927 *of extension phase.*

928

929 **Chapter 9: Adverse Events, Device Issues and Stopping Rules**

930 **9.1 Adverse Events**

931 **9.1.1 Definitions**

932 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
933 relationship between the adverse event and the device(s) under investigation.

934 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 935 • Results in death.
- 936 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might
937 have become life-threatening, is not necessarily considered a serious adverse event).
- 938 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 939 • Results in persistent or significant disability/incapacity or substantial disruption of the
940 ability to conduct normal life functions (sight threatening).
- 941 • Is a congenital anomaly or birth defect.
- 942 • Is considered a significant medical event by the investigator based on medical judgment
943 (e.g., may jeopardize the participant or may require medical/surgical intervention to
944 prevent one of the outcomes listed above).

945 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
946 any life-threatening problem or death caused by, or associated with, a device, if that effect,
947 problem, or death was not previously identified in nature, severity, or degree of incidence in the
948 investigational plan or application (including a supplementary plan or application), or any other
949 unanticipated serious problem associated with a device that relates to the rights, safety, or
950 welfare of participants (21 CFR 812.3(s)).

951 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which
952 the device may have caused or to which the device may have contributed (Note that an Adverse
953 Event Form is to be completed in addition to a Device Deficiency or Issue Form, unless excluded
954 from reporting as defined in section 8.2).

955 Device Complaints and Malfunctions: A device complication or complaint is something that
956 happens to a device or related to device performance, whereas an adverse event happens to a
957 participant. A device complaint may occur independently from an AE, or along with an AE. An
958 AE may occur without a device complaint or there may be an AE related to a device complaint.
959 A device malfunction is any failure of a device to meet its performance specifications or
960 otherwise perform as intended. Performance specifications include all claims made in the
961 labeling for the device. The intended performance of a device refers to the intended use for
962 which the device is labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, sites will
963 not be asked to distinguish between device complaints and malfunctions.

964 **9.1.2 Reportable Adverse Events**

965 For this protocol, a reportable adverse event includes any untoward medical occurrence that
966 meets one of the following criteria:

- 967 1. An SAE

968 2. An ADE as defined in section 9.1.1, unless excluded from reporting in section 9.2
969 3. An AE as defined in 9.1.1 occurring in association with a study procedure
970 4. An AE as defined in 9.1.1 not related to a device issue which leads to temporary or
971 permanent discontinuation of a study device
972 5. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
973 6. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, hyperglycemia
974 or ketosis event meeting the criteria defined below
975 7. Falls and fractures
976 8. Emergency room visits

977
978 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
979 events unless associated with an Adverse Device Effect. Skin reactions from sensor adhesive
980 placement are only reportable if severe and/or required treatment.

981 All reportable AEs—whether volunteered by the participant, discovered by study personnel
982 during questioning, or detected through physical examination, laboratory test, or other means—
983 will be reported on an AE form online. Each AE form is reviewed by the Medical Monitor to
984 assess safety and to verify the coding and the reporting that is required.

985 **9.1.2.1 Hypoglycemic Events**

986 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse
987 event when the following definition for severe hypoglycemia is met: the event required
988 assistance of another person due to altered consciousness, and required another person to actively
989 administer carbohydrate, glucagon, or other resuscitative actions. This means that the participant
990 was impaired cognitively to the point that he/she was unable to treat himself/herself, was unable
991 to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure
992 or loss of consciousness. These episodes may be associated with sufficient neuroglycopenia to
993 induce seizure or loss of consciousness. If blood glucose measurements are not available during
994 such an event, neurological recovery attributable to the restoration of blood glucose to normal is
995 considered sufficient evidence that the event was induced by a low blood glucose concentration.

996 Severe hypoglycemia events should be considered to be serious adverse events with respect to
997 reporting requirements. When a hypoglycemic event meets the criteria for severe hypoglycemia ,
1000 a Hypoglycemia Form should be completed in addition to the Adverse Event Form.

1001 **9.1.2.2 Hyperglycemic/Ketosis Events**

1002 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
1003 event when one of the following 4 criteria is met:

1004 • the event involved DKA, as defined by the Diabetes Control and Complications Trial
1005 (DCCT) and described below
1006 • evaluation or treatment was obtained at a health care provider facility for an acute event
1007 involving hyperglycemia or ketosis, or the participant contacted the site and received
1008 guidance on how to manage the hyperglycemia/ketosis

1009 • blood ketone level ≥ 1.0 mmol/L and communication occurred with a health care provider
1010 at the time of the event
1011 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
1012 provider

1013
1014 Hyperglycemic events are classified as DKA if the following are present:

1015 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
1016 • Serum ketones >1.5 mmol/L or large/moderate urine ketones;
1017 • Either arterial blood pH <7.30 or venous pH <7.24 or serum bicarbonate <15 ; and
1018 • Treatment provided in a health care facility

1019 Events meeting DKA criteria should be considered to be serious adverse events with respect to
1020 reporting requirements. Hyperglycemia events not meeting criteria for DKA generally will not
1021 be considered as serious adverse events unless one of the SAE criterion in section 9.2.1 is met.
1022 When a hyperglycemia/ketosis event meets the criteria for an SAE, a Hyperglycemia/DKA Form
1023 should be completed in addition to the Adverse Event Form.

1024
1025 **9.1.3 Relationship of Adverse Event to Study Investigational Device**

1026 The study investigator will assess the relationship of any adverse event to be related or unrelated
1027 by determining if there is a reasonable possibility that the adverse event may have been caused
1028 by the study device. Note that this assessment will be made for the Tandem t:slim X2 with
1029 Control-IQ Technology, the Tandem t:slim X2 pump with Basal-IQ Technology (with or without
1030 Basal-IQ feature), and the Dexcom CGM.

1031 To ensure consistency of adverse event causality assessments, investigators should apply the
1032 following general guideline when determining whether an adverse event is related:

1033 **Unrelated:** The AE is clearly not related to a study drug/device and a likely alternative etiology
1034 exists such as an underlying disease, environmental or toxic factors or other therapy.

1035 **Unlikely Related:** The AE does not follow a reasonable temporal sequence during or after use of
1036 study drug/device and a more likely alternative etiology exists such as an underlying disease,
1037 environmental or toxic factors, or other therapy.

1038 **Possibly Related:** The AE occurred in a reasonable time during or after use of study
1039 drug/device; but could be related to another factor such as an underlying disease, environmental
1040 or toxic factors, or other therapy; and there is a possible, though weak, scientific basis for
1041 establishing a causal association between the AE and the study drug/device.

1042 **Probably Related:** The AE occurred in a reasonable time during or after use of study
1043 drug/device; is unlikely to be related to another factor such as an underlying disease,
1044 environmental or toxic factors, or other therapy; and there is a plausible, though not strong,
1045 scientific basis for establishing a causal association between the AE and the study drug/device.

1046 **Definitely Related:** The AE occurred in a reasonable time during or after use of study
1047 drug/device; cannot be explained by another factor such as an underlying disease, environmental

1048 or toxic factors, or therapy; and there is a strong scientific basis for establishing a causal
1049 association between the AE and the study drug/device.

1050 **Not Assessable:** Causality of an adverse event cannot be judged because information is
1051 insufficient or contradictory, and which cannot be supplemented or verified.
1052

1053 **9.1.4 Severity (Intensity) of Adverse Events**

1054 The severity (intensity) of an adverse event will be rated on a three point scale: (1) mild, (2)
1055 moderate, or (3) severe. A severity assessment is a clinical determination of the intensity of an
1056 event. Thus, a severe adverse event is not necessarily serious. For example, itching for several
1057 days may be rated as severe, but may not be clinically serious.

- 1058 • **MILD:** Usually transient, requires no special treatment, and does not interfere with the
1059 participant's daily activities.
- 1060 • **MODERATE:** Usually causes a low level of inconvenience, discomfort or concern to the
1061 participant and may interfere with daily activities, but is usually ameliorated by simple
1062 therapeutic measures and participant is able to continue in study.
- 1063 • **SEVERE:** Interrupts a participant's usual daily activities, causes severe discomfort, may
1064 cause discontinuation of study device, and generally requires systemic drug therapy or
1065 other treatment.

1066 **9.1.5 Expectedness**

1067 For a serious adverse event that is considered possibly related to study device, the Medical
1068 Monitor will classify the event as unexpected if the nature, severity, or frequency of the event is
1069 not consistent with the risk information previously described in approved labeling.
1070

1071 **9.1.6 Coding of Adverse Events**

1072 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor at the
1073 Coordinating Center will review all adverse events using a web-based procedure. When a
1074 serious adverse event is entered by the site, an email is triggered to prompt immediate review.
1075 All other adverse events are reviewed by the Medical Monitor within one week. The Medical
1076 Monitor will review the investigator's assessment of causality and may agree or disagree. Both
1077 the investigator's and Medical Monitor's assessments will be recorded. The Medical Monitor
1078 will have the final say in determining the causality.
1079

1080 **9.1.7 Outcome of Adverse Events**

1081 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 1082 • **RECOVERED/RESOLVED** – The participant recovered from the AE/SAE without
1083 sequelae. Record the AE/SAE stop date.
- 1084 • **RECOVERED/RESOLVED WITH SEQUELAE** – The event persisted and had
1085 stabilized without change in the event anticipated. Record the AE/SAE stop date.
- 1086 • **FATAL** – A fatal outcome is defined as the SAE that resulted in death. Only the event
1087 that was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at
1088 the time of death; however, were not the cause of death, will be recorded as “resolved” at
1089 the time of death.

1090 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined
1091 as the event was ongoing with an undetermined outcome.
1092 ○ An ongoing outcome will require follow-up by the site in order to determine the final
1093 outcome of the AE/SAE.
1094 ○ The outcome of an ongoing event at the time of death that was not the cause of death,
1095 will be updated and recorded as “resolved” with the date of death recorded as the stop
1096 date.
1097 • UNKNOWN – An unknown outcome is defined as an inability to access the participant
1098 or the participant’s records to determine the outcome (for example, a participant that was
1099 lost to follow-up).

1100 If any reported adverse events are ongoing when a participant completes the study (or
1101 withdraws), adverse events classified UADEs will be followed until they are either resolved, or
1102 have no prospect of improvement or change, even after the participant has completed all
1103 applicable study visits/contacts. For all other adverse events, data collection will end at the time
1104 the participant completes the study. Note: participants should continue to receive appropriate
1105 medical care for an adverse event after their participation in the study ends.

1106 **9.2 Reportable Device Issues**

1107 All UADEs and ADEs as defined in section 9.1.1 will be reported on both a device issue form
1108 and AE form, except for skin reactions from CGM sensor placement or pump infusion set
1109 placement that do not require pharmacologic treatment.

1110 Device complaints and device malfunctions will be reported except in the following
1111 circumstances. These occurrences are expected and will not be reported on a Device Issue Form
1112 assuming criteria for a UADE or ADE have not been met:

1113 • Component disconnections
1114 • CGM sensor lasting fewer than the number of expected days per CGM labeling
1115 • CGM tape adherence issues
1116 • Pump infusion set occlusion (including tubing and cartridge) not leading to ketosis ≥ 0.6
1117 mmol/L or in the absence of checking for blood ketones, blood glucose > 350 mg/dL
1118 (19.4 mmol/L); and not requiring an intervention other than replacing the tubing and/or
1119 cartridge
1120 • Battery lifespan deficiency due to inadequate charging or extensive wireless
1121 communication
1122 • Intermittent device component disconnections/communication failures not requiring
1123 system replacement or workaround/resolution not specified in user guide/manual.
1124 • Device issues clearly addressed in the user guide manual that do not require additional
1125 troubleshooting
1126 • Skin reactions from CGM sensor placement or pump infusion set placement that do not
1127 meet criteria for AE reporting

1128 **9.3 Timing of Event Reporting**

1129 SAEs possibly related to a study device or study participation and UADEs must be reported to
1130 the Coordinating Center within 24 hours of the site becoming aware of the event. This can occur
1131 via phone or email, or by completion of the online serious adverse event form and device issue
1132 form if applicable. If the form is not initially completed, it should be completed as soon as
1133 possible after there is sufficient information to evaluate the event. All other reportable ADEs and
1134 other reportable AEs should be submitted by completion of the online form within 7 days of the
1135 site becoming aware of the event.

1136 The Coordinating Center will notify all participating investigators of any adverse event that is
1137 serious, related, and unexpected. Notification will be made within 10 days after the Coordinating
1138 Center becomes aware of the event.

1139 Each principal investigator is responsible for reporting serious study-related adverse events and
1140 abiding by any other reporting requirements specific to his/her Institutional Review Board or
1141 Ethics Committee.

1142 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report
1143 the results of the investigation to the sites' IRBs, and the FDA within 10 working days of the
1144 Sponsor becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must
1145 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor
1146 must ensure that all investigations, or parts of investigations presenting that risk, are terminated
1147 as soon as possible but no later than 5 working days after the Medical Monitor makes this
1148 determination and no later than 15 working days after first receipt notice of the UADE.

1149 Device malfunctions will be handled by the Coordinating Center.

1150 **9.4 Stopping Criteria**

1151 **9.4.1 Participant Discontinuation of Study Phase**

1152 Rules for discontinuing study device use are described below.

- 1154 • The investigator believes it is unsafe for the participant to continue on the intervention.
1155 This could be due to the development of a new medical condition or worsening of an
1156 existing condition; or participant behavior contrary to the indications for use of the device
1157 that imposes on the participant's safety
- 1158 • The participant requests that the treatment be stopped
- 1159 • Two distinct episodes of DKA (as defined in section 9.1.2) unrelated to infusion set
1160 failure
- 1161 • Greater than two distinct severe hypoglycemia events as defined in section 9.1.2.1
- 1162 • Participants who obtain a total score of 6 or less on the 5-min MoCA administered after
1163 an SAE occurrence.

1164 Even if the study device system is discontinued, the participant will be encouraged to remain in
1165 the study through the final study visit.

1166

1167 **9.4.2 Criteria for Suspending or Stopping Overall Study**

1168 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
1169 hyperglycemia event (as defined in Section 9.1.1), use of the study device system will be
1170 suspended while the problem is diagnosed.

1171 In addition, study activities could be similarly suspended if the manufacturer of any constituent
1172 study device requires stoppage of device use for safety reasons (e.g. product recall). The
1173 affected study activities may resume if the underlying problem can be corrected by a protocol or
1174 system modification that will not invalidate the results obtained prior to suspension.

1175 The study Medical Monitor will review all adverse events and adverse device events that are
1176 reported during the study typically on a weekly basis and will review compiled safety data at
1177 periodic intervals (generally timed to the review of compiled safety data by the DSMB). The
1178 Medical Monitor may request suspension of study activities or stoppage of the study if deemed
1179 necessary based on the totality of safety data available.

1180 **9.5 Independent Safety Oversight**

1181 A Data and Safety Monitoring Board (DSMB) will be formed according to NIDDK requirements
1182 to review compiled safety data at periodic intervals (typically every 6 months). The DSMB may
1183 request to review certain serious adverse events (including UADEs) at the time of occurrence.
1184 The DSMB also will be informed of any ADEs not meeting criteria for a UADE if the Medical
1185 Monitor requests the DSMB review. The DSMB can request modifications to the study protocol
1186 or suspension or outright stoppage of the study if deemed necessary based on the totality of
1187 safety data available. Details regarding DSMB review will be documented in a separate DSMB
1188 document.

1190

1191

1192

Chapter 10: Miscellaneous Considerations

1193 **10.1 Drugs Used as Part of the Protocol**

1194 Rapid acting insulins approved for the study pump will be used during the study. Insulins will
1195 not be provided by the study.

1196

1197 **10.2 Collection of Medical Conditions and Medications**

1198 Pre-Existing Condition: Any medical condition that is either present at screening, a chronic
1199 disease, or a prior condition that could impact the participant's health during the course of the
1200 study (e.g., prior myocardial infarction or stroke).

1201 Medical Conditions during the study: In addition to conditions meeting the reporting
1202 requirements for an adverse event or device issue as described in Section 9.1 and Section 9.2, the
1203 following medical conditions should also be reported: (1) new diagnosis of a chronic disease
1204 (i.e., not present at the time of enrollment), and (2) any medical condition that could affect the
1205 participant's ability to carry out any aspect of the protocol or could affect an outcome
1206 assessment.

1207 Medications: All medication for the treatment of chronic pre-existing conditions, medical
1208 conditions (including medical conditions that do not require recording), and/or adverse events
1209 that the participant is currently taking at screening and during the course of the study should be
1210 recorded. Nutraceuticals and preventative treatment also should be recorded. Medications only
1211 taken as needed either can be recorded when prescribed or only recorded if used during the
1212 study. Glucagon prescription will be confirmed as part of eligibility criteria but should only be
1213 recorded for treatment of severe hypoglycemia if used during the study.

1214 **10.3 Participant Compensation**

1215 Participant compensation will be specified in the informed consent form.

1216

1217 **10.4 Participant Withdrawal**

1218 Participation in the study is voluntary, and a participant may withdraw at any time. For
1219 participants who withdraw, their data will be used up until the time of withdrawal. An early
1220 termination visit may be completed to collect final study data.

1221

1222 If participants wish to discontinue using the study device without withdrawing, participants will
1223 be encouraged to remain in the study through the end of study visit.

1224

1225 **10.5 Confidentiality**

1226 For security and confidentiality purposes, participants will be assigned an identifier that will be
1227 used instead of their name. Protected health information gathered for this study will be shared
1228 with the coordinating center, the Jaeb Center for Health Research in Tampa, FL. De-identified
1229 participant information may also be provided to research sites involved in the study.

1230 Chapter 11: Statistical Considerations

1231 11.1 Statistical and Analytical Plans

1232 The approach to sample size and statistical analyses are summarized below. A detailed statistical
1233 analysis plan will be written and finalized prior to the completion of the study.

1234 11.2 Statistical Hypotheses

1235 A. *Null hypothesis*: There will be no difference in percentage of CGM-measured glucose
1236 values <70 mg/dL between PLGS vs SAP.

1237 *Alternate hypothesis*: There is a non-zero difference in the percentage of CGM-measured
1238 glucose values <70 mg/dL between PLGS vs SAP.

1239 B. *Null hypothesis*: There will be no difference in percentage of CGM-measured glucose
1240 values <70 mg/dL between HCL vs. SAP.

1241 *Alternate hypothesis*: There is a non-zero difference in the percentage of CGM-measured
1242 glucose values <70 mg/dL between HCL vs. SAP.

1243 11.3 Sample Size

1244 Data from the CGM group in the WISDM randomized clinical trial of older adults ≥ 60 years of
1245 age were used to estimate the standard deviation and frequency of time <70 mg/dL in the SAP
1246 control period. Data from the two weeks prior to the 4 week visit were used to mimic the run-in
1247 period in this study where the minimum hypoglycemia eligibility criteria will be assessed. Only
1248 WISDM CGM group participants who had $\geq 2\%$ of time <70 mg/dL at the 4 week time point
1249 were included. Data from the two weeks prior to the 26-week visit for these participants were
1250 then used to estimate standard deviation and frequency of time <70 mg/dL. N=50 WISDM
1251 participants were included of which 28 were injection users and 22 were pump users.

1252 The point estimate for the simple standard deviation was 2.24%. Percent time <70 mg/dL was
1253 skewed, so a robust estimate of the mean, 3.14%, was used to calculate the size of a 33% and
1254 50% relative reduction in hypoglycemia.

1255 Since the primary outcome of the study involves two comparisons, the sample size calculations
1256 assume an alpha of 0.025 in order to control the overall type 1 error rate at 0.05. In addition, a
1257 two-tailed test and 90% power are assumed. We assume the standard deviation is 2.24% in all
1258 three periods.

1259 **Table 1: Sample Size (Alpha=0.025, Power=90%, SD=2.24%)**

Correlation between Periods	Relative Reduction in Hypoglycemia	
	33%	50%
0	119	54
0.3	84	38
0.5	61	28

1260 The Tandem pivotal PLGS study, which was a 3 week period crossover of PLGS and SAP,
1261 observed a correlation of about 0.8 between the treatment arms (unpublished data). However,

1262 since the periods in this study are longer, we assume a lower correlation of 0.3 to estimate
1263 sample size. A sample size of 84 will give us 90% power to detect a 33% reduction in % time
1264 <70 mg/dL. This is increased to 90 to account for 5% loss to follow-up. Loss to follow-up and
1265 missing data is expected to be minimal in this population as the retention rate in the WISDM
1266 study was 99% at 6 months.

1267 **11.4 Outcome Measures**

1268 Primary Efficacy Endpoint:

1269 • CGM % time <70 mg/dL

1270 Secondary Efficacy Endpoints:

1271 *Hypoglycemia*

- CGM % time <54 mg/dL
- Frequency of CGM-measured hypoglycemic events (see definition below)

1274 *Glucose Control*

- CGM mean glucose
- CGM % time in range 70 to 180 mg/dL
- Coefficient of variation (CV)

1278 *Hyperglycemia*

- CGM % time >180 mg/dL
- CGM % time >250 mg/dL

1281 *HbA1c*

- HbA1c

1283 *Hypoglycemia Unawareness*

- Gold survey(55)

1285 *Patient-reported Outcomes*

- Hypoglycemia Fear Survey (HFS-II)
 - Total score
 - Worry subscale
- Hypoglycemia confidence
- Diabetes Distress Scale (DDS)
- Technology acceptance
- System usability

1293 Each of the CGM metrics listed will be calculated over 24 hours and separately for daytime and
1294 nighttime. Daytime and nighttime versions of CGM % time <70 mg/dL will be considered
1295 secondary. All sensor readings excluding the first 4 weeks will be pooled to calculate CGM
1296 metrics for that period.

1297 A CGM-measured hypoglycemic event will be defined as at least 2 sensor values <54 mg/dL that
1298 are 15 or more minutes apart plus no intervening values >54 mg/dL; at least 2 sensor values >70
1299 mg/dL that are 15 or more minutes apart with no intervening values <70 mg/dL are required to
1300 define the end of an event, at which point the study participant becomes eligible for a new

1301 event. HbA1c and patient-reported outcomes will be collected at baseline and following each 12
1302 week period.

1303 **11.5 Analysis Datasets and Sensitivity Analysis**

1304 All analysis will follow the intention-to-treat principle with each period analyzed according to
1305 the treatment assigned by randomization regardless of actual system utilization. The Intention-to-
1306 Treat (ITT) Analysis Dataset will include all randomized participants for any period in which
1307 they meet the minimum data requirement (≥ 168 hours of CGM data after excluding the first 4
1308 weeks for CGM metrics, non-missing for all other outcomes).

1309 The Safety Analysis Dataset will include all enrolled participants, irrespective of whether the
1310 participant was randomized or the study was completed.

1311 **11.5.1 Per-protocol Analysis**

1312 The Per-Protocol Analysis Dataset will include participants for any period in which they meet
1313 the following criteria after excluding the first 4 weeks:

- 1314 • ≥ 168 hours of CGM data
- 1315 • CGM use $\geq 80\%$
- 1316 • Control-IQ active $\geq 80\%$ for the HCL period
- 1317 • Basal-IQ active $\geq 80\%$ for the PLGS period
- 1318 • SAP active (Control-IQ and Basal-IQ not active) $\geq 80\%$ for the SAP period

1319 A per-protocol analysis will be performed for the primary outcome to provide additional
1320 information regarding the magnitude of treatment effect. The per-protocol analysis will only be
1321 performed if at least 10% of participants in any period would be excluded by these criteria.

1322 The intent-to-treat analysis is considered primary and if the results of the per-protocol analysis
1323 and intent-to-treat analysis differ, the per-protocol analysis will be interpreted with caution.

1324 **11.5.2 Other Sensitivity Analysis**

1325 Missing Data

1326 It is worth emphasizing that any statistical method for handling missing data makes a number of
1327 untestable assumptions. The goal will be to minimize the amount of missing data in this study so
1328 that results and conclusions will not be sensitive to which statistical method is used. To that end,
1329 sensitivity analyses will be performed to explore whether results are similar for the primary
1330 analysis when using different methods. The following methods will be applied:

- 1331 • Direct likelihood (primary analysis described below)
- 1332 • Rubin's multiple imputation
- 1333 • Available cases only

1334 Carryover

1335 A period by treatment interaction will be added to the primary analysis model to assess for the
1336 presence of a carryover effect. We do not expect a carryover effect to be present because we

1337 expect the effect of the treatment administered in the prior period to wear off during the first 4
1338 weeks which are not included in the calculation of CGM metrics.

1339 **11.6 Analysis of the Primary Efficacy Endpoint**

1340 The primary analysis for CGM % time <70 mg/dL will involve two comparisons: PLGS vs. SAP
1341 and HCL vs. SAP. Each comparison will be allocated alpha 0.025 to control the family-wise type
1342 1 error at 0.05.

1343 Participants will be included for any period in which they have at least 168 hours of CGM data in
1344 the last 8 weeks.

1345 Summary statistics appropriate to the distribution will be calculated for % time <70 mg/dL
1346 separately by treatment arm. A repeated measures regression model with an unstructured
1347 covariance will be fit including data from baseline and all three treatment periods. The model
1348 will adjust for period as a covariate. If residual values from the regression model have a skewed
1349 distribution then an appropriate transformation, truncation, or a nonparametric analysis based on
1350 ranks will be performed.

1351 There will be no imputation of missing data in the primary analysis. Missing data will be handled
1352 by using a direct likelihood approach which will allow participants to be included even if they
1353 only have baseline and no follow-up data.

1354 **11.7 Analysis of the Secondary Endpoints**

1355 **11.7.1 Secondary Hypoglycemia CGM Endpoints**

1356 Summary statistics appropriate to the distribution will be given by treatment group for the
1357 secondary hypoglycemia CGM endpoints (time <54 mg/dL and rate of hypoglycemic events). The
1358 primary hypoglycemia endpoint and the secondary hypoglycemia outcomes will be evaluated in a
1359 hierarchical approach to control the type 1 error (see the multiple comparisons section below for
1360 details). If the endpoint is to be formally compared between treatment groups, analysis will parallel
1361 that of the primary outcome.

1362 Separate day and night versions of all three hypoglycemia CGM endpoints will be summarized
1363 by treatment group but will only be formally compared between groups in a secondary analysis if
1364 the overall version of the endpoint was formally compared and was statistically significant.

1365 **11.7.2 Additional CGM Endpoints**

1366 Summary statistics appropriate to the distribution will be given by treatment group for time in
1367 range 70-180 mg/dL, mean glucose, time >180mg/dL, and time >250 mg/dL. These metrics will
1368 be evaluated overall and separately for daytime and nighttime. Analysis will parallel the analysis
1369 of the primary endpoint above.

1370 **11.7.3 HbA1c**

1371 HbA1c will be measured by central lab at baseline and following each 12-week period. Summary
1372 statistics appropriate to the distribution for HbA1c will be reported by treatment group. A
1373 repeated measures regression model with an unstructured covariance will be fit including the
1374 data from baseline and all three treatment periods. The model will adjust for period as a

1375 covariate. If residual values from the regression model have a skewed distribution then an
1376 appropriate transformation, truncation, or a nonparametric analysis based on ranks will be
1377 performed.

1378 **11.7.4 Questionnaires**

1379 Summary statistics appropriate to the distribution will be given by treatment group for each
1380 patient-reported outcome. Analysis outcomes will parallel the analysis of the primary endpoint
1381 described above.

1382 **11.8 Safety Analyses**

1383 Details of all reportable adverse events will be provided in a listing by treatment group. Pre-
1384 randomization adverse events will be listed separately and will not be included in any treatment
1385 group comparisons. Each period will inclusively consist of all days in between the treatment
1386 initiation visit and the end of treatment visit. If the subject drops out of the study in the middle of
1387 a period and the end of treatment visit for that particular period does not occur, then the dropout
1388 date will be used as the last day of the period.

1389 For the following outcomes, summary statistics appropriate to the distribution will be tabulated by
1390 treatment arm.

- 1391 • Number of adverse events
- 1392 • Number of serious adverse events
- 1393 • Number of unexpected device events
- 1394 • Number of SH events and SH incidence rate per 100 person-years
- 1395 • Number of hospitalizations related to a SH event
- 1396 • Number of ER visits related to a SH event
- 1397 • Number of fractures related to a SH event
- 1398 • Number of falls related to a SH event
- 1399 • Number of DKA events and DKA incidence rate per 100 person-years
- 1400 • Number of hospitalizations related to a DKA event or severe hyperglycemia
- 1401 • Number of ER visits related to a DKA event or severe hyperglycemia

1402 If there are enough events for statistical analysis, the SH and DKA incidence rates will be
1403 compared between treatment arms using a repeated measures Poisson regression model adjusting
1404 for period and whether the subject had an event in the 12 months prior to the study as a covariate.
1405 If there are zero events in one treatment arm, Poisson regression will not converge and so the
1406 number of events will be compared pairwise using Barnard's test instead.

1407 **11.9 Protocol Adherence and Retention**

1408 The following will be performed according to treatment arm:

- 1409 • A flow chart accounting for all participants for all visits
- 1410 • Tabulation of visit completion rates for each follow-up visit
- 1411 • Tabulation of protocol deviations

1412 • Tabulation of number and reasons for unscheduled visits and phone calls
1413 • Tabulation of device issues

1414 **11.10 Baseline Descriptive Statistics**

1415 Baseline demographic and clinical characteristics will be summarized in a table. For continuous
1416 variables, summary statistics appropriate to the distribution will be given. For discrete variables,
1417 number and percentage will be reported for each category.

1418 **11.11 Planned Interim Analyses**

1419 No formal interim efficacy analysis is planned for this study. Safety data tabulations will be
1420 performed at least every 6 months for review by the Data and Safety Monitoring Board (DSMB).

1421 **11.12 Sub-Group Analyses**

1422 Subgroup analyses/assessments of effect modification (interaction) will be conducted for the
1423 primary outcome. These analyses will be considered exploratory. Additionally, interpretation of
1424 the analyses will depend on whether the overall analysis demonstrates a significant treatment
1425 group difference; in the absence of such an overall difference, subgroup analyses will be
1426 interpreted with caution. The general approach for these exploratory analyses will be to add an
1427 interaction term for the subgroup factor by treatment into the models used for the primary
1428 analyses.

1429 The baseline factors listed below will be assessed:

1430 • Race/Ethnicity
1431 • Gender
1432 • Baseline % time <70 mg/dL
1433 • Age
1434 • Education
1435 • Employment Status
1436 • Duration of Diabetes
1437 • Hypoglycemia Unawareness
1438 • Cognition
1439 • Functional activities questionnaire
1440 • Frailty
1441 • Prior CGM experience
1442 • Prior Insulin Delivery Method
1443 • Previous history of SH event in past 12 months
1444 • C-peptide

1445 **11.13 Exploratory Analyses**

1446 All of the primary and secondary outcomes will be compared between PLGS and HCL in an
1447 exploratory analysis that parallels the analysis described above. A difference, if any, in the
1448 hypoglycemia outcomes between PLGS and HCL is expected to be small, so the power will be
1449 low.

1450 **11.14 Additional Tabulations and Analysis**

1451 Device Use

1452 The percent of time in each system control mode and the percent of time using CGM will be
1453 tabulated by treatment arm overall and by 4-week intervals. These tabulations will be repeated
1454 separately over 24-hours, daytime, and nighttime. Overall 24-hour CGM use will be compared
1455 pairwise between all treatment arms using the same model described for the primary outcome.

1456 In addition, we will tabulate the following for the HCL period overall between treatment
1457 initiation and the end of treatment visit and by 4-week intervals:

- 1458 • Percent of time spent in sleep mode
- 1459 • Percent of time spent in sleep mode outside of nighttime hours
- 1460 • Percent of time spent in exercise modes

1461 Insulin

1462 Average total daily insulin per kg, basal insulin per kg, and bolus insulin per kg will be tabulated
1463 at baseline and by treatment arm using pump download data. Insulin metrics will be compared
1464 pairwise between all treatment arms using the same model described above for the primary
1465 outcome.

1466 Pump Alert and Alarms

1467 The number and rate per 24 hours of different alerts and alarms from the Tandem pump will be
1468 tabulated by treatment arm.

1469 BMI

1470 Height and weight will be measured at baseline and the end of each period when possible. BMI
1471 will be tabulated at baseline by treatment arm.

1472 BG Checks

1473 Average BG checks per day will be tabulated at baseline and by treatment arm.

1474 **11.15 Multiple Comparison/Multiplicity**

1475 For the primary comparisons of interest, PLGS vs. SAP and HCL vs. SAP, the three CGM-
1476 measured hypoglycemia metrics will be evaluated in a hierarchical approach to control the type 1
1477 error at 0.05. Each comparison will be allocated alpha 0.025. The outcomes will be evaluated in
1478 the following order:

- 1479 • % time <70 mg/dL
- 1480 • % time <54 mg/dL
- 1481 • Rate of hypoglycemic events

1482 The process moves to the next variable down on the list until a non-significant result ($p \geq 0.025$)
1483 is observed, or all outcomes have been tested. If a non-significant result is encountered, then
1484 formal statistical hypothesis testing is terminated and any comparisons below on the list are not
1485 formally tested. If for either comparison of interest, PLGS vs. SAP or HCL vs. SAP, all three
1486 outcomes are rejected at the level of 0.025, the alpha can be recycled and the other comparison can
1487 be tested down the hierarchy at an alpha level of 0.05 rather than 0.025.

1488 For all other secondary and exploratory outcomes the false discovery rate will be controlled using
1489 the Benjamini-Hochberg procedure adapted using the two-stage test. There will be no adjustment
1490 for safety outcomes.

1491 **11.16 Extension Phase**

1492 Exploratory analysis for the extension phase will be detailed in a separate document.

1493

Chapter 12: Data Collection and Monitoring

1494 12.1 Case Report Forms and Other Data Collection

1495 The main study data are collected on electronic case report forms (CRFs) and electronic device
1496 data files obtained from the study software and individual hardware components. These
1497 electronic device files and electronic CRFs from the study website are considered the primary
1498 source documentation.

1499

1500 When data are directly collected in electronic case report forms, this will be considered the
1501 source data. For any data points for which the eCRF is not considered source (e.g. lab results that
1502 are transcribed from a printed report into the eCRF), the original source documentation must be
1503 maintained in the participant's study chart or medical record. This source must be readily
1504 verifiable against the values entered into eCRF. Even where all study data are directly entered
1505 into the eCRFs at office visits, evidence of interaction with a live subject must be recorded (e.g.,
1506 office note, visit record, etc.).

1507 Each participating site will maintain appropriate medical and research records for this trial, in
1508 compliance with ICH E6 and regulatory and institutional requirements for the protection of
1509 confidentiality of participants.

1510 12.2 Study Records Retention

1511 Study documents should be retained for a minimum of 2 years after the last approval of a
1512 marketing application in an ICH region and until there are no pending or contemplated marketing
1513 applications in an ICH region or until at least 2 years have elapsed since the formal
1514 discontinuation of clinical development of the investigational product. These documents should
1515 be retained for a longer period, however, if required by local regulations. No records will be
1516 destroyed without the written consent of the sponsor, if applicable. It is the responsibility of the
1517 sponsor to inform the investigator when these documents no longer need to be retained.

1518

1519 12.3 Quality Assurance and Monitoring

1520 Designated personnel from the Coordinating Center will be responsible for maintaining quality
1521 assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is
1522 conducted and data are generated, documented and reported in compliance with the protocol,
1523 Good Clinical Practice (GCP) and the applicable regulatory requirements, as well as to ensure
1524 that the rights and wellbeing of trial participants are protected and that the reported trial data are
1525 accurate, complete, and verifiable. Adverse events will be prioritized for monitoring.

1526 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course
1527 of the study, consistent with the FDA "Guidance for Industry Oversight of Clinical
1528 Investigations — A Risk-Based Approach to Monitoring" (August 2013). Study conduct and
1529 monitoring will conform with 21 Code of Federal Regulations (CFR) 812. This plan describes in
1530 detail who will conduct the monitoring, at what frequency monitoring will be done, at what level
1531 of detail monitoring will be performed, and the distribution of monitoring reports.

1532 The data of most importance for monitoring at the site are participant eligibility and adverse
1533 events. Therefore, the RBM plan will focus on these areas. As much as possible, remote
1534 monitoring will be performed in real-time with on-site monitoring performed to evaluate the
1535 verity and completeness of the key site data. Elements of the RBM may include:

- Qualification assessment, training, and certification for sites and site personnel
- Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol review of entered data and edits, statistical monitoring, study closeout
- On-site monitoring (site visits): source data verification, site visit report
- Device accountability
- Communications with site staff
- Patient retention and visit completion
- Quality control reports
- Management of noncompliance
- Documenting monitoring activities
- Adverse event reporting and monitoring

Coordinating Center representatives or their designees may visit the study facilities at any time in order to maintain current and personal knowledge of the study through review of the records, comparison with source documents, observation and discussion of the conduct and progress of the study. The investigational site will provide direct access to all trial related sites, source data/documents, and reports for the purpose of monitoring and auditing by the sponsor, and inspection by local and regulatory authorities.

12.4 Protocol Deviations

A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure requirements. The noncompliance may be either on the part of the participant, the investigator, or the study site staff. As a result of deviations, corrective actions are to be developed by the site and implemented promptly.

The site PI/study staff is responsible for knowing and adhering to their IRB requirements. Further details about the handling of protocol deviations will be included in the monitoring plan.

1562

Chapter 13: Ethics/Protection of Human Participants

1563 **13.1 Ethical Standard**

1564 The investigator will ensure that this study is conducted in full conformity with Regulations for
1565 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50,
1566 21 CFR Part 56, and/or the ICH E6.

1567

1568 **13.2 Institutional Review Boards**

1569 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1570 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1571 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1572 require review and approval by the IRB before the changes are implemented to the study. All
1573 changes to the consent form will be IRB approved; a determination will be made regarding
1574 whether previously consented participants need to be re-consented.

1575

1576 **13.3 Informed Consent Process**

1577 **13.3.1 Consent Procedures and Documentation**

1578 Informed consent is a process that is initiated prior to the individual's agreeing to participate in
1579 the study and continues throughout the individual's study participation. Extensive discussion of
1580 risks and possible benefits of participation will be provided to the participants and their families.
1581 Consent forms will be IRB-approved and the participant will be asked to read and review the
1582 document. The investigator will explain the research study to the participant and answer any
1583 questions that may arise. All participants will receive a verbal explanation in terms suited to
1584 their comprehension of the purposes, procedures, and potential risks of the study and of their
1585 rights as research participants. Participants will have the opportunity to carefully review the
1586 written consent form and ask questions prior to signing.

1587 The participants should have the opportunity to discuss the study with their surrogates or think
1588 about it prior to agreeing to participate. The participant will sign the informed consent document
1589 prior to any procedures being done specifically for the study. The participants may withdraw
1590 consent at any time throughout the course of the trial. A copy of the informed consent document
1591 will be given to the participants for their records. The rights and welfare of the participants will
1592 be protected by emphasizing to them that the quality of their medical care will not be adversely
1593 affected if they decline to participate in this study.

1594 **13.3.2 Participant and Data Confidentiality**

1595 Participant confidentiality is strictly held in trust by the participating investigators, their staff,
1596 and the sponsor(s) and their agents. This confidentiality is extended to cover testing of
1597 biological samples and genetic tests in addition to the clinical information relating to
1598 participants. Therefore, the study protocol, documentation, data, and all other information
1599 generated will be held in strict confidence. No information concerning the study or the data will
1600 be released to any unauthorized third party without prior written approval of the sponsor.

1601 The study monitor, other authorized representatives of the sponsor, representatives of the IRB,
1602 regulatory agencies or company supplying study product may inspect all documents and records
1603 required to be maintained by the investigator, including but not limited to, medical records
1604 (office, clinic, or hospital) and pharmacy records for the participants in this study. The clinical
1605 study site will permit access to such records.

1606 The study participant's contact information will be securely stored at each clinical site for
1607 internal use during the study. At the end of the study, all records will continue to be kept in a
1608 secure location for as long a period as dictated by the reviewing IRB, institutional policies, or
1609 sponsor requirements.

1610 Study participant research data, which is for purposes of statistical analysis and scientific
1611 reporting, will be transmitted to and stored at the Jaeb Center for Health Research (JCHR) in
1612 Tampa, FL. This will not include the participant's contact or identifying information. Rather,
1613 individual participants and their research data will be identified by a unique study identification
1614 number. The study data entry and study management systems used by clinical sites and by the
1615 JCHR research staff will be secured and password protected. At the end of the study, all study
1616 databases will be de-identified and archived at the JCHR in Tampa, FL.

1617 To further protect the privacy of study participants, a Certificate of Confidentiality will be
1618 obtained from the NIH. This certificate protects identifiable research information from forced
1619 disclosure. It allows the investigator and others who have access to research records to refuse to
1620 disclose identifying information on research participation in any civil, criminal, administrative,
1621 legislative, or other proceeding, whether at the federal, state, or local level. By protecting
1622 researchers and institutions from being compelled to disclose information that would identify
1623 research participants, Certificates of Confidentiality help achieve the research objectives and
1624 promote participation in studies by helping assure confidentiality and privacy to participants.

1625

Chapter 14: References

1. Graham C, Waldo D: Type 1 Diabetes in Medicare: Use of Services & Program Expenditures in 2010. *Diabetes* 2013;62:A332
2. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L: Changes in diabetes-related complications in the United States, 1990-2010. *N Engl J Med* 2014;370:1514-1523
3. Ioacara S, Lichiardopol R, Ionescu-Tirgoviste C, Cheta D, Sabau S, Guja C, Farcasiu E, Tiu C: Improvements in life expectancy in type 1 diabetes patients in the last six decades. *Diabetes Res Clin Pract* 2009;86:146-151
4. Lawrence JM, Imperatore G, Dabelea D, Mayer-Davis EJ, Linder B, Saydah S, Klingensmith GJ, Dolan L, Standiford DA, Pihoker C, Pettitt DJ, Talton JW, Thomas J, Bell RA, D'Agostino RB, Jr.: Trends in Incidence of Type 1 Diabetes Among non-Hispanic White Youth in the United States, 2002-2009. *Diabetes* 2014;
5. Geller AI, Shehab N, Lovegrove MC, Kegler SR, Weidenbach KN, Ryan GJ, Budnitz DS: National estimates of insulin-related hypoglycemia and errors leading to emergency department visits and hospitalizations. *JAMA Intern Med* 2014;174:678-686
6. Lipska KJ, Ross JS, Wang Y, Inzucchi SE, Minges K, Karter AJ, Huang ES, Desai MM, Gill TM, Krumholz HM: National trends in US hospital admissions for hyperglycemia and hypoglycemia among Medicare beneficiaries, 1999 to 2011. *JAMA Intern Med* 2014;174:1116-1124
7. Stahn A, Pistrosch F, Ganz X, Teige M, Koehler C, Bornstein S, Hanefeld M: Relationship between hypoglycemic episodes and ventricular arrhythmias in patients with type 2 diabetes and cardiovascular diseases: silent hypoglycemas and silent arrhythmias. *Diabetes Care* 2014;37:516-520
8. Lu CL, Shen HN, Hu SC, Wang JD, Li CY: A Population-Based Study of All-Cause Mortality and Cardiovascular Disease in Association With Prior History of Hypoglycemia Among Patients With Type 1 Diabetes. *Diabetes Care* 2016;39:1571-1578
9. American DA: 6. Glycemic Targets. *Diabetes Care* 2015;38:S33-S40
10. Chiang JL, Kirkman MS, Laffel LM, Peters AL: Type 1 Diabetes Through the Life Span: A Position Statement of the American Diabetes Association. *Diabetes Care* 2014;37:2034-2054
11. Weinstock RS, Xing D, Maahs DM, Michels A, Rickels MR, Peters AL, Bergenstal RM, Harris B, Dubose SN, Miller KM, Beck RW: Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry. *J Clin Endocrinol Metab* 2013;98:3411-3419
12. Weinstock RS, DuBose SN, Bergenstal RM, Chaytor NS, Peterson C, Olson BA, Munshi MN, Perrin AJ, Miller KM, Beck RW, Liljenquist DR, Aleppo G, Buse JB, Kruger D, Bhargava A, Goland RS, Edelen RC, Pratley RE, Peters AL, Rodriguez H, Ahmann AJ, Lock JP, Garg SK, Rickels MR, Hirsch IB, Group TDESHiOAWTDS: Risk Factors Associated With Severe Hypoglycemia in Older Adults With Type 1 Diabetes. *Diabetes Care* 2016;39:603-610
13. Martyn-Nemeth P, Schwarz Farabi S, Mihailescu D, Nemeth J, Quinn L: Fear of hypoglycemia in adults with type 1 diabetes: impact of therapeutic advances and strategies for prevention - a review. *J Diabetes Complications* 2016;30:167-177
14. Strandberg RB, Graue M, Wentzel-Larsen T, Peyrot M, Wahl AK, Rokne B: The relationships among fear of hypoglycaemia, diabetes-related quality of life and psychological well-being in Norwegian adults with Type 1 diabetes. *Diabetes Res Clin Pract* 2017;124:11-19

1671 15. Jorgensen HV, Pedersen-Bjergaard U, Rasmussen AK, Borch-Johnsen K: The impact of
1672 severe hypoglycemia and impaired awareness of hypoglycemia on relatives of patients with type
1673 1 diabetes. *Diabetes Care* 2003;26:1106-1109

1674 16. Laiteerapong N, Karter AJ, Liu JY, Moffet HH, Sudore R, Schillinger D, John PM, Huang
1675 ES: Correlates of quality of life in older adults with diabetes: the diabetes & aging study.
1676 *Diabetes Care* 2011;34:1749-1753

1677 17. Sturt J, Dennick K, Due-Christensen M, McCarthy K: The detection and management of
1678 diabetes distress in people with type 1 diabetes. *Curr Diab Rep* 2015;15:101

1679 18. Forlenza GP, Messer LH, Berget C, Wadwa RP, Driscoll KA: Biopsychosocial Factors
1680 Associated With Satisfaction and Sustained Use of Artificial Pancreas Technology and Its
1681 Components: a Call to the Technology Field. *Curr Diab Rep* 2018;18:114

1682 19. Naranjo D, Suttipatana SC, Iturralde E, Barnard KD, Weissberg-Benchell J, Laffel L, Hood
1683 KK: What End Users and Stakeholders Want From Automated Insulin Delivery Systems.
1684 *Diabetes Care* 2017;40:1453-1461

1685 20. Chaytor NS, Barbosa-Leiker C, Ryan CM, Germine LT, Hirsch IB, Weinstock RS: Clinically
1686 significant cognitive impairment in older adults with type 1 diabetes. *J Diabetes Complications*
1687 2018;

1688 21. Biessels GJ, Despa F: Cognitive decline and dementia in diabetes mellitus: mechanisms and
1689 clinical implications. *Nat Rev Endocrinol* 2018;14:591-604

1690 22. Chaytor NS, Riddleworth TD, Bzdick S, Odegard PS, Gray SL, Lock JP, DuBose SN, Beck
1691 RW, Group TDESHiOAwTDS: The relationship between neuropsychological assessment,
1692 numeracy, and functional status in older adults with type 1 diabetes. *Neuropsychol Rehabil*
1693 2017;27:507-521

1694 23. Santos T, Lovell J, Shiell K, Johnson M, Ibrahim JE: The impact of cognitive impairment in
1695 dementia on self-care domains in diabetes: A systematic search and narrative review. *Diabetes*
1696 *Metab Res Rev* 2018;34:e3013

1697 24. Davis EA, Keating B, Byrne GC, Russell M, Jones TW: Hypoglycemia: incidence and
1698 clinical predictors in a large population-based sample of children and adolescents with IDDM.
1699 *Diabetes Care* 1997;20:22-25

1700 25. The Diabetes Control and Complications Trial Research Group: Hypoglycemia in the
1701 Diabetes Control and Complications Trial. *Diabetes* 1997;46:271-286

1702 26. Buckingham B, Block J, Burdick J, Kalajian A, Kollman C, Choy M, Wilson DM, Chase P,
1703 Diabetes Research in Children N: Response to nocturnal alarms using a real-time glucose sensor.
1704 *Diabetes Technol Ther* 2005;7:440-447

1705 27. Buckingham BA, Cameron F, Calhoun P, Maahs DM, Wilson DM, Chase HP, Bequette BW,
1706 Lum J, Sibayan J, Beck RW, Kollman C: Outpatient safety assessment of an in-home predictive
1707 low-glucose suspend system with type 1 diabetes subjects at elevated risk of nocturnal
1708 hypoglycemia. *Diabetes Technol Ther* 2013;15:622-627

1709 28. Buckingham BA, Raghinaru D, Cameron F, Bequette BW, Chase HP, Maahs DM, Slover R,
1710 Wadwa RP, Wilson DM, Ly T, Aye T, Hramiak I, Clarson C, Stein R, Gallego PH, Lum J,
1711 Sibayan J, Kollman C, Beck RW, In Home Closed Loop Study G: Predictive Low-Glucose
1712 Insulin Suspension Reduces Duration of Nocturnal Hypoglycemia in Children Without
1713 Increasing Ketosis. *Diabetes Care* 2015;38:1197-1204

1714 29. Maahs DM, Calhoun P, Buckingham BA, Chase HP, Hramiak I, Lum J, Cameron F,
1715 Bequette BW, Aye T, Paul T, Slover R, Wadwa RP, Wilson DM, Kollman C, Beck RW, In

1716 Home Closed Loop Study G: A randomized trial of a home system to reduce nocturnal
1717 hypoglycemia in type 1 diabetes. *Diabetes Care* 2014;37:1885-1891

1718 30. Choudhary P, Olsen BS, Conget I, Welsh JB, Vorrink L, Shin JJ: Hypoglycemia Prevention
1719 and User Acceptance of an Insulin Pump System with Predictive Low Glucose Management.
1720 *Diabetes Technol Ther* 2016;18:288-291

1721 31. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg
1722 RL, Ilany J, Slover RH, Anderson SM, Bergenstal RM, Grosman B, Roy A, Cordero TL, Shin J,
1723 Lee SW, Kaufman FR: Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop
1724 Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes. *Diabetes Technol Ther*
1725 2017;19:155-163

1726 32. Tauschmann M, Thabit H, Bally L, Allen JM, Hartnell S, Wilinska ME, Ruan Y, Sibayan J,
1727 Kollman C, Cheng P, Beck RW, Acerini CL, Evans ML, Dunger DB, Elleri D, Campbell F,
1728 Bergenstal RM, Criego A, Shah VN, Leelarathna L, Hovorka R, Consortium AP: Closed-loop
1729 insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised
1730 trial. *Lancet* 2018;392:1321-1329

1731 33. Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, Dalla Man C, Place J,
1732 Demartini S, Del Favero S, Toffanin C, Hughes-Karvetski C, Dassau E, Zisser H, Doyle FJ, 3rd,
1733 De Nicolao G, Avogaro A, Cobelli C, Renard E, Kovatchev B, International Artificial Pancreas
1734 Study G: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose
1735 control maintains near normoglycemia. *Diabetes* 2012;61:2230-2237

1736 34. Anderson SM, Raghinaru D, Pinsker JE, Boscoli F, Renard E, Buckingham BA, Nimri R,
1737 Doyle FJ, 3rd, Brown SA, Keith-Hynes P, Breton MD, Chernavsky D, Bevier WC, Bradley PK,
1738 Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT,
1739 Shanmugham S, Phillip M, Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW,
1740 Kovatchev B, Control to Range Study G: Multinational Home Use of Closed-Loop Control Is
1741 Safe and Effective. *Diabetes Care* 2016;39:1143-1150

1742 35. Kovatchev B, Patek S, Dassau E, Doyle FJ, 3rd, Magni L, De Nicolao G, Cobelli C, Juvenile
1743 Diabetes Research Foundation Artificial Pancreas C: Control to range for diabetes: functionality
1744 and modular architecture. *J Diabetes Sci Technol* 2009;3:1058-1065

1745 36. Zisser H, Renard E, Kovatchev B, Cobelli C, Avogaro A, Nimri R, Magni L, Buckingham
1746 BA, Chase HP, Doyle FJ, 3rd, Lum J, Calhoun P, Kollman C, Dassau E, Farret A, Place J,
1747 Breton M, Anderson SM, Dalla Man C, Del Favero S, Bruttomesso D, Filippi A, Scotton R,
1748 Phillip M, Atlas E, Muller I, Miller S, Toffanin C, Raimondo DM, De Nicolao G, Beck RW,
1749 Control to Range Study G: Multicenter closed-loop insulin delivery study points to challenges
1750 for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with
1751 type 1 diabetes from various sites. *Diabetes Technol Ther* 2014;16:613-622

1752 37. Brown SA, Kovatchev BP, Raghinaru D, Lum JW, Buckingham BA, Kudva YC, Laffel LM,
1753 Levy CJ, Pinsker JE, Wadwa RP, Dassau E, Doyle FJ, 3rd, Anderson SM, Church MM, Dadlani
1754 V, Ekhlaspour L, Forlenza GP, Isganaitis E, Lam DW, Kollman C, Beck RW, i DCLTRG: Six-
1755 Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. *N Engl J
1756 Med* 2019;381:1707-1717

1757 38. Messer LH: Why Expectations Will Determine the Future of Artificial Pancreas. *Diabetes
1758 Technol Ther* 2018;20:S265-S268

1759 39. Weissberg-Benchell J, Hood K, Laffel L, Heinemann L, Ball D, Kowalski A, Peters A,
1760 Damiano E, Schiller M, Davis A, Beck S, Barnard K: Toward Development of Psychosocial
1761 Measures for Automated Insulin Delivery. *J Diabetes Sci Technol* 2016;10:799-801

1762 40. Farrington C: Psychosocial impacts of hybrid closed-loop systems in the management of
1763 diabetes: a review. *Diabet Med* 2018;35:436-449

1764 41. Adams RN, Tanenbaum ML, Hanes SJ, Ambrosino JM, Ly TT, Maahs DM, Naranjo D,
1765 Walders-Abramson N, Weinzimer SA, Buckingham BA, Hood KK: Psychosocial and Human
1766 Factors During a Trial of a Hybrid Closed Loop System for Type 1 Diabetes Management.
1767 *Diabetes Technol Ther* 2018;20:648-653

1768 42. Miller KM, Kanapka LG, Pratley RE. Continous glucose monitoring reduces hypoglycemia
1769 and improves glycemic control among older adults with type 1 diabetes. In *European Society for
1770 the Study of Diabetes (EASD)*. Barcelona, Spain,

1771 43. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A: A
1772 global clinical measure of fitness and frailty in elderly people. *CMAJ* 2005;173:489-495

1773 44. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings
1774 JL, Chertkow H: The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild
1775 cognitive impairment. *J Am Geriatr Soc* 2005;53:695-699

1776 45. Wechsler D: *Wechsler Adult Intelligence Scale-Revised*. New York, Psychological
1777 Corporation, 1981

1778 46. Barkley R: *Barkley Deficits in Executive Functioning Scale (BDEFS for Adults)*. New York,
1779 Guilford Press, 2011

1780 47. Smith G, Della Sala S, Logie RH, Maylor EA: Prospective and retrospective memory in
1781 normal ageing and dementia: a questionnaire study. *Memory* 2000;8:311-321

1782 48. Fisher L, Polonsky WH, Hessler DM, Masharani U, Blumer I, Peters AL, Strycker LA,
1783 Bowyer V: Understanding the sources of diabetes distress in adults with type 1 diabetes. *J
1784 Diabetes Complications* 2015;29:572-577

1785 49. Cox DJ, Irvine A, Gonder-Frederick L, Nowacek G, Butterfield J: Fear of hypoglycemia:
1786 quantification, validation, and utilization. *Diabetes Care* 1987;10:617-621

1787 50. Polonsky WH, Fisher L, Hessler D, Edelman SV: Investigating Hypoglycemic Confidence in
1788 Type 1 and Type 2 Diabetes. *Diabetes Technol Ther* 2017;19:131-136

1789 51. Brooke J: SUS-A quick and dirty usability scale. Usability evaluation in industry
1790 1996;189:4-7

1791 52. van Bon AC, Kohinor MJ, Hoekstra JB, von Basum G, deVries JH: Patients' perception and
1792 future acceptance of an artificial pancreas. *J Diabetes Sci Technol* 2010;4:596-602

1793 53. Gold AE, MacLeod KM, Frier BM: Frequency of severe hypoglycemia in patients with type
1794 I diabetes with impaired awareness of hypoglycemia. *Diabetes Care* 1994;17:697-703

1795