

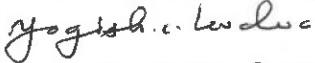
**Automated Insulin Delivery in Elderly (AIDE):
A Randomized Cross-over Trial Evaluating Automated
Insulin Delivery Technologies on Hypoglycemia and Quality
of Life in Elderly Adults with Type 1 Diabetes**

Primary Study Phase

Statistical Analysis Plan

Version 1.3

September 6, 2023


Version History

The following table outlines changes made to the Statistical Analysis Plan.

Version Number	Protocol Version	Author	Approver	Effective Date	Study Stage
1.0	2.0	Lauren Kanapka	Craig Kollman	4/20/20	Enrollment has not started.
1.1	4.1	Lauren Kanapka	Craig Kollman	5/14/21	Enrolling
1.2	5.0	Lauren Kanapka	Craig Kollman	8/19/22	Enrolling
1.3	5.0	Lauren Kanapka	Craig Kollman	9/6/23	Follow-up. No data have been shared with the study group.

Version Number	Revision Description
1.0	Original Version
1.1	Safety analysis section was modified to specify how adverse events that occur between treatment periods will be handled.
1.2	The section describing the analysis windows for HbA1c was reformatted to be clearer and the analysis window for HbA1c at baseline was updated to be wider.
1.3	<ul style="list-style-type: none"> • The section describing the analysis of the questionnaires was modified to say that the technology acceptance questionnaire will not be formally compared between treatment groups. • The tabulations that will be performed for sleep and exercise mode use have been edited.

Approvals

Role	Digital Signature or Handwritten Signature/Date
Author: Lauren Kanapka	<p>Lauren Kanapka I agree to the terms defined by the placement of my signature in this document 2023-09-06 12:08-04:00</p>
Senior Statistician: Craig Kollman	<p>Craig Kollman I am electronically signing this document 2023-09-07 10:54-04:00</p>
JCHR Coordinating Center Director: Robert Henderson	<p>Robert Henderson</p> <div style="font-size: small; margin-left: 200px;"> Digitally signed by Robert Henderson DN: cn=Robert Henderson ou=South Wing Reason: I have reviewed this document Location: Date: 2023-09-06 15:39-04:00 </div>
Principal Investigator: Yogish Kudva	 06 - SEP - 2023

1 **1. Study Overview**

2 This document outlines the statistical analysis to be performed for the randomized trial phase of
3 the AIDE T1D study. The approach to sample size and statistical analyses for this study are
4 summarized below.

5 This is a multicenter, randomized, three period crossover study to assess the effectiveness and
6 safety of both hybrid closed loop control (HCL) technology and predictive low-glucose insulin
7 suspension (PLGS) compared to sensor-augmented pump (SAP) therapy in older adults >65
8 years with type 1 diabetes. Eligible participants will receive all three interventions and the order
9 of receiving them will be randomized on a 1:1:1:1:1:1 ratio.

10 Randomization will be preceded by a run-in period where participants must demonstrate
11 competency and compliance in using the study insulin pump and CGM device. After
12 randomization, the subjects will enter the three 12 week study periods and will test one
13 intervention per study period.

14 **2. Comparison to Protocol**

15 The author of this SAP has verified that the analyses described in this document are consistent
16 with the version of the protocol listed in the version history table above except for the following:

- Removed tabulation of percent of time spent in sleep mode outside of nighttime hours
- Added tabulation of days per week of sleep mode use and exercise mode use

19 **3. Statistical Hypotheses**

20 A. *Null hypothesis*: There will be no difference in percentage of CGM-measured glucose
21 values <70 mg/dL between PLGS vs SAP.

22 *Alternate hypothesis*: There is a non-zero difference in the percentage of CGM-measured
23 glucose values <70 mg/dL between PLGS vs SAP.

24 B. *Null hypothesis*: There will be no difference in percentage of CGM-measured glucose
25 values <70 mg/dL between HCL vs. SAP.

26 *Alternate hypothesis*: There is a non-zero difference in the percentage of CGM-measured
27 glucose values <70 mg/dL between HCL vs. SAP.

28 **4. Sample Size**

29 Data from the CGM group in the WISDM randomized clinical trial of older adults ≥ 60 years of
30 age were used to estimate the standard deviation and frequency of time <70 mg/dL in the SAP
31 control period. Data from the two weeks prior to the 4 week visit were used to mimic the run-in
32 period in this study where the minimum hypoglycemia eligibility criteria will be assessed. Only
33 WISDM CGM group participants who had $\geq 2\%$ of time <70 mg/dL at the 4 week time point
34 were included. Data from the two weeks prior to the 26-week visit for these participants were
35 then used to estimate standard deviation and frequency of time <70 mg/dL. N=50 WISDM
36 participants were included of which 28 were injection users and 22 were pump users.

37 The point estimate for the simple standard deviation was 2.24%. Percent time <70 mg/dL was
38 skewed, so a robust estimate of the mean, 3.14%, was used to calculate the size of a 33% and
39 50% relative reduction in hypoglycemia.

40 Since the primary outcome of the study involves two comparisons, the sample size calculations
41 assume an alpha of 0.025 in order to control the overall type 1 error rate at 0.05. In addition, a
42 two-tailed test and 90% power are assumed. We assume the standard deviation is 2.24% in all
43 three periods.

44 **Table 1: Sample Size (Alpha=0.025, Power=90%, SD=2.24%)**

Correlation between Periods	Relative Reduction in Hypoglycemia	
	33%	50%
0	119	54
0.3	84	38
0.5	61	28

45 The Tandem pivotal PLGS study, which was a 3 week period crossover of PLGS and SAP,
46 observed a correlation of about 0.8 between the treatment arms (unpublished data). However,
47 since the periods in this study are longer, we assume a lower correlation of 0.3 to estimate
48 sample size. A sample size of 84 will give us 90% power to detect a 33% reduction in % time
49 <70 mg/dL. This is increased to 90 to account for 5% loss to follow-up. Loss to follow-up and
50 missing data is expected to be minimal in this population as the retention rate in the WISDM
51 study was 99% at 6 months.

52 **5. Outcome Measures**

53 Primary Efficacy Endpoint:

54 • CGM % time <70 mg/dL

55 Secondary Efficacy Endpoints:

56 *Hypoglycemia*

- 57 • CGM % time <54 mg/dL
- 58 • Frequency of CGM-measured hypoglycemic events (see definition below)

59 *Glucose Control*

- 60 • CGM mean glucose
- 61 • CGM % time in range 70 to 180 mg/dL
- 62 • Coefficient of variation (CV)

63 *Hyperglycemia*

- 64 • CGM % time >180 mg/dL
- 65 • CGM % time >250 mg/dL

66 *HbA1c*

- 67 • HbA1c

68 *Hypoglycemia Unawareness*

- 69 • Gold survey

70 *Patient-reported Outcomes*

- 71 • Hypoglycemia Fear Survey (HFS-II)
 - 72 ○ Total score
 - 73 ○ Worry subscale

74 • Hypoglycemia confidence
 75 • Diabetes Distress Scale (DDS)
 76 • Technology acceptance
 77 • System usability

78 **5.1. CGM Outcomes**

79 Baseline

80 Participants will complete a CGM training period and/or SAP training period as necessary prior
 81 to randomization. All participants will wear the study pump and CGM for at least 14 days prior
 82 to randomization even if they do not require any device training. Therefore, the last 14 days of
 83 CGM data prior to randomization will be used in the calculation of baseline CGM metrics. If
 84 <24hr of CGM data are available for any reason (e.g., lost data or device failure), then the
 85 baseline metrics will not be calculated and will be set to missing.

86 Follow-up

87 The first 4 weeks of CGM data in each period will be excluded to reduce the chance of a
 88 carryover effect since there is no washout period. Therefore, CGM metrics will be calculated for
 89 each period by pooling all sensor readings between midnight on the date of the treatment
 90 initiation visit + 29 days and midnight on the date of the end of treatment visit. If a participant
 91 drops out before completing the period, all data between midnight on the date of the treatment
 92 initiation visit + 29 days and midnight on the dropout date will be included. A minimum of 168
 93 hours of CGM data will be required to calculate CGM metrics.

94 Hypoglycemic Events

95 A CGM-measured hypoglycemic event will be defined as at least 2 sensor values <54 mg/dL that
 96 are 15 or more minutes apart plus no intervening values >54 mg/dL; at least 2 sensor values >70
 97 mg/dL that are 15 or more minutes apart with no intervening values <70 mg/dL are required to
 98 define the end of an event, at which point the study participant becomes eligible for a new event.

99 Daytime vs. Nighttime

100 Each of the CGM metrics listed will be calculated over 24 hours and separately for daytime
 101 (6am-<12am) and nighttime (12am-<6am). Daytime and nighttime versions of CGM % time <70
 102 mg/dL will be considered secondary. Minimum 126 hours of CGM data will be required to
 103 calculate daytime metrics and minimum 42 hours of CGM data will be required to calculate
 104 nighttime metrics.

105 **5.2. HbA1c**

106 The analysis windows for HbA1c at each time point are given in the table below:

Visit	Target Date	Window
Baseline	Randomization date	Screening visit date to randomization date +7 days
End of period 1	Period start date + 84 days	±21 days from target date. Values collected >7 days after the start of period 2 will be excluded.

End of period 2	Period start date + 84 days	±21 days from target date. Values collected >7 days after the start of period 3 will be excluded.
End of period 3	Period start date + 84 days	±21 days from target date. Values collected >7 days after the start of the extension period will be excluded.

107 The measurement within the analysis window that is closest to the indicated target date will be
 108 used for analysis. If no measurement is available within the analysis window, the endpoint will
 109 be treated as missing.

110 **5.3. Questionnaires**

111 The hypoglycemia fear, hypoglycemia confidence, and diabetes distress surveys will be
 112 administered online or on paper at the screening visit and at the end of each treatment period.
 113 The technology acceptance survey and system usability scale will be administered at the end of
 114 each treatment period. Only responses obtained within ±21 days of the end of period target visit
 115 dates will be included in the analyses. Questionnaires collected >7 days after start of next period
 116 will not be included for the previous period. The baseline questionnaires must be completed
 117 prior to the initiation of period 1 visit. Participants can skip specific questionnaires or items
 118 within a questionnaire. All questionnaires will be scored according to the instructions given in
 119 the manual. In case no manual exists for a given questionnaire or the manual does not provide
 120 guidance on how to handle missing data, then the following criteria will be applied:

- 121 • At least 75% of the questions must be completed to be included in the analysis.
- 122 • This 75% rule will be applied separately for the total score and each subscale so it is
 123 possible the sample size will be different for some subscales.
- 124 • The 75% rule will not include any questions marked as “N/A”
- 125 • The score used for analysis will be based on the average among the questions that were
 126 answered.

127 **6. Analysis Datasets and Sensitivity Analysis**

128 All analysis will follow the intention-to-treat principle with each period analyzed according to
 129 the treatment assigned by randomization regardless of actual system utilization. The Intention-to-
 130 Treat (ITT) Analysis Dataset will include all randomized participants for any period in which
 131 they meet the minimum data requirement (≥ 168 hours of CGM data after excluding the first 4
 132 weeks for CGM metrics, non-missing for all other outcomes).

133 The Safety Analysis Dataset will include all enrolled participants, irrespective of whether the
 134 participant was randomized or the study was completed.

135 **6.1. Per-protocol Analysis**

136 The Per-Protocol Analysis Dataset will include participants for any period in which they meet
 137 the following criteria after excluding the first 4 weeks:

- 138 • ≥ 168 hours of CGM data

139 • CGM use $\geq 80\%$
140 • Control-IQ active $\geq 80\%$ for the HCL period
141 • Basal-IQ active $\geq 80\%$ for the PLGS period
142 • SAP active (Control-IQ and Basal-IQ not active) $\geq 80\%$ for the SAP period

143 A per-protocol analysis will be performed for the primary outcome to provide additional
144 information regarding the magnitude of treatment effect. The per-protocol analysis will only be
145 performed if at least 10% of participants in any period would be excluded by these criteria.

146 The intent-to-treat analysis is considered primary and if the results of the per-protocol analysis
147 and intent-to-treat analysis differ, the per-protocol analysis will be interpreted with caution.

148 **6.2. Other Sensitivity Analysis**

149 Missing Data

150 It is worth emphasizing that any statistical method for handling missing data makes a number of
151 untestable assumptions. The goal will be to minimize the amount of missing data in this study so
152 that results and conclusions will not be sensitive to which statistical method is used. To that end,
153 sensitivity analyses will be performed to explore whether results are similar for the primary
154 analysis when using different methods. The following methods will be applied:

- 155 • Direct likelihood (primary analysis described below)
- 156 • Rubin's multiple imputation
- 157 • Available cases only

158 Carryover

159 A period by treatment interaction will be added to the primary analysis model to assess for the
160 presence of a carryover effect. We do not expect a carryover effect to be present because we
161 expect the effect of the treatment administered in the prior period to wear off during the first 4
162 weeks, which are not included in the calculation of CGM metrics.

163 **7. Analysis of the Primary Efficacy Endpoint**

164 The primary analysis for CGM % time < 70 mg/dL will involve two comparisons: PLGS vs.
165 SAP and HCL vs. SAP. Control of the type 1 error for multiple treatment group comparisons will
166 be handled as described in section 16.

167 Participants will be included for any period in which they have at least 168 hours of CGM data in
168 the last 8 weeks.

169 Summary statistics appropriate to the distribution will be calculated for % time < 70 mg/dL
170 separately by treatment arm. A repeated measures regression model with an unstructured
171 covariance will be fit including data from baseline and all three treatment periods. The model
172 will adjust for period as a covariate. It is expected that % time < 70 mg/dL will have a skewed
173 distribution. Therefore, values will be winsorized at the 10th and 90th percentiles. If winsorization
174 is not sufficient, other transformations will be explored.

175 There will be no imputation of missing data in the primary analysis. Missing data will be handled
176 by using a direct likelihood approach which will allow participants to be included even if they
177 only have baseline and no follow-up data.

178 **8. Analysis of the Secondary Endpoints**

179 **8.1. Secondary Hypoglycemia CGM Endpoints**

180 Summary statistics appropriate to the distribution will be given by treatment group for the
181 secondary hypoglycemia CGM endpoints (time <54 mg/dL and rate of hypoglycemic events).
182 The primary hypoglycemia endpoint and the secondary hypoglycemia outcomes will be
183 evaluated in a hierarchical approach to control the type 1 error (see section 16 below for details).
184 If the endpoint is to be formally compared between treatment groups, analysis will parallel that
185 of the primary outcome. It is also expected that time <54 mg/dL and rate of hypoglycemic events
186 will have a skewed distribution. Therefore, values will be winsorized at the 10th and 90th
187 percentile. If winsorization is not sufficient, other transformations will be explored.

188 Separate day and night versions of all three hypoglycemia CGM endpoints will be summarized
189 by treatment group but will only be formally compared between groups in a secondary analysis if
190 the overall version of the endpoint was formally compared and was statistically significant.

191 **8.2. Additional CGM Endpoints**

192 Summary statistics appropriate to the distribution will be given by treatment group for time in
193 range 70-180 mg/dL, mean glucose, time >180mg/dL, and time >250 mg/dL. These metrics will
194 be evaluated overall and separately for daytime and nighttime. Analysis will parallel the analysis
195 of the primary endpoint above. The outcomes will be winsorized at the 10th and 90th percentile if
196 they appear to be skewed. If winsorization is not sufficient, other transformations will be
197 explored.

198 **8.3. HbA1c**

199 HbA1c will be measured by central lab at baseline and following each 12 week period. Summary
200 statistics appropriate to the distribution for HbA1c will be reported by treatment group. A
201 repeated measures regression model with an unstructured covariance will be fit including the
202 data from baseline and all three treatment periods. The model will adjust for period as a
203 covariate. HbA1c will be winsorized at the 10th and 90th percentile if the residuals from the
204 model fit on the un-transformed outcome appear to be skewed. If winsorization is not sufficient,
205 other transformations will be explored.

206 **8.4. Questionnaires**

207 For each patient-reported outcome, summary statistics appropriate to the distribution will be
208 given by treatment group and at baseline (if applicable). The technology acceptance
209 questionnaire will not be formally compared between treatment groups. All other patient-
210 reported outcomes will be compared between treatment groups using a model similar to the
211 primary outcome model described above. The outcomes will be winsorized at the 10th and 90th
212 percentile if the residuals from the model fit on the un-transformed outcome appear to be
213 skewed. If winsorization is not sufficient, other transformations will be explored.

214 **9. Safety Analyses**

215 Details of all reportable adverse events will be provided in a listing by treatment group. Adverse
216 events that occur pre-randomization or between treatment periods will be listed separately and
217 will not be included in any treatment group comparisons. It is intended that a period will usually
218 end and the next one will start on the same day. The situation where the start of the next period is
219 delayed and an AE occurs between periods is expected to be rare. Each treatment period will
220 inclusively consist of all days in between the treatment initiation visit and the end of treatment
221 visit. If an adverse event occurs on a border day (including the randomization date, treatment
222 initiation visit dates, and end of treatment visit dates), the site staff or medical monitor will
223 review the event details and determine which treatment period the event occurred in. This
224 determination will be documented in the study database. In the unlikely situation where it is not
225 possible to tell which period the event occurred in, the event will be excluded from treatment
226 arm comparisons but will be included in the listing with treatment arm specified as
227 “undetermined”. If the subject withdraws from the study in the middle of a period and the end of
228 treatment visit for that particular period does not occur, then the later of the last visit date, last
229 AE date or final status date (if known) will be used as the last day of the period for the purpose
230 of calculating event rates.

231 For the following outcomes, summary statistics appropriate to the distribution will be tabulated
232 by treatment arm.

- 233 • Number of adverse events
- 234 • Number of serious adverse events
- 235 • Number of unexpected device events
- 236 • Number of SH events and SH incidence rate per 100 person-years
- 237 • Number of hospitalizations related to a SH event
- 238 • Number of ER visits related to a SH event
- 239 • Number of fractures related to a SH event
- 240 • Number of falls related to a SH event
- 241 • Number of DKA events and DKA incidence rate per 100 person-years
- 242 • Number of hospitalizations related to a DKA event or severe hyperglycemia
- 243 • Number of ER visits related to a DKA event or severe hyperglycemia

244 If there are at least 5 SH events across treatment arms, the SH incidence rate will be compared
245 pairwise between all treatment arms using a repeated measures Poisson regression model
246 adjusting for period and whether the subject had an event in the 12 months prior to the study as a
247 covariate. If there are zero events in one treatment arm, Poisson regression will not converge and
248 so the number of events will be compared pairwise using Barnard's test instead. A similar
249 analysis will be done for DKA events if there are at least 5 events across the treatment arms.

250 **10. Protocol Adherence and Retention**

251 The following will be performed according to treatment arm:

- 252 • A flow chart accounting for all participants for all visits
- 253 • Tabulation of visit completion rates for each follow-up visit

254 • Tabulation of protocol deviations
255 • Tabulation of number and reasons for unscheduled visits and phone calls
256 • Tabulation of device issues

257 **11. Baseline Descriptive Statistics**

258 The following baseline demographic and clinical characteristics will be summarized in a table:

259 • Age
260 • Gender
261 • Race/ethnicity
262 • Income, education, employment, and/or insurance status
263 • Diabetes duration
264 • Age at diagnosis
265 • Insulin method before enrollment (pump vs. MDI)
266 • CGM use before enrollment
267 • AID use before enrollment
268 • HbA1c
269 • BMI
270 • C-peptide
271 • Participant reported number of SH and DKA 12 months prior to the start of the study
272 • MoCA total score
273 • WAIS-IV Processing Speed Index
274 • FAQ score
275 • Frailty walk time
276 • Baseline CGM metrics including:
277 ○ % time <70 mg/dL
278 ○ % time <54 mg/dL
279 ○ % in range 70-180 mg/dL
280 ○ % time >180 mg/dL
281 ○ Coefficient of variation

282 For continuous variables, summary statistics appropriate to the distribution will be given. For
283 discrete variables, number and percentage will be reported for each category.

284 **12. Planned Interim Analyses**

285 No formal interim efficacy analysis is planned for this study. Safety data tabulations will be
286 performed at least every 6 months for review by the Data and Safety Monitoring Board (DSMB).

287 **13. Subgroup Analyses**

288 Subgroup analyses/assessments of effect modification (interaction) will be conducted for the
289 primary outcome. These analyses will be considered exploratory. Additionally, interpretation of
290 the analyses will depend on whether the overall analysis demonstrates a significant treatment
291 group difference; in the absence of such an overall difference, subgroup analyses will be
292 interpreted with caution. The general approach for these exploratory analyses will be to add an

293 interaction term for the subgroup factor by treatment into the models used for the primary
294 analyses.

295 The baseline factors listed below will be assessed:

296 • Race/Ethnicity
297 • Gender
298 • Baseline % time <70 mg/dL
299 • Age
300 • Education (\leq Bachelor's vs. >Bachelor's)
301 • Employment (Retired vs. not retired)
302 • Duration of Diabetes
303 • Hypoglycemia Unawareness
304 • MoCA total score
305 • WAIS-IV Processing Speed Index
306 • Functional activities questionnaire
307 • Frailty
308 • Prior CGM experience
309 • Prior Insulin Delivery Method
310 • C-peptide

311 **14. Exploratory Analyses**

312 All of the primary and secondary outcomes will be compared between PLGS and HCL in an
313 exploratory analysis that parallels the analysis described above. A difference, if any, in the
314 hypoglycemia outcomes between PLGS and HCL is expected to be small, so the power will be
315 low.

316 **15. Additional Tabulations and Analysis**

317 **15.1. Device use**

318 The percent of time in each system control mode and the percent of time using CGM will be
319 tabulated by treatment arm overall between treatment initiation and the end of treatment visit and
320 by 4-week intervals. These tabulations will be repeated separately over 24-hours, daytime, and
321 nighttime. Dropouts will be counted as zero use for the remainder of any period that was initiated
322 but not completed and will be counted as missing use for any periods that were never started.

323 Overall 24-hour CGM use will be compared pairwise between all treatment arms using the same
324 model described for the primary outcome.

325 In addition, we will tabulate the following for the HCL period overall between treatment
326 initiation and the end of treatment visit and by 4-week intervals:

327 • Percent of time spent in sleep mode
328 • Average days per week with any sleep mode use
329 • Average days per week with any exercise mode use

331 **15.2. Insulin**

332 Average total daily insulin per kg, basal insulin per kg, and bolus insulin per kg will be tabulated
333 at baseline and by treatment arm. Pump download data in the 2 weeks prior to the baseline/end
334 of treatment visit will be used where available. If pump download data is not available for at
335 least 7 out of 14 days, data reported on the CRF will be used instead. Insulin metrics will be
336 compared pairwise between all treatment arms using the same model described above for the
337 primary outcome.

338 **15.3. Pump Alert and Alarms**

339 The number and rate per 24 hours of different alerts and alarms from the Tandem pump will be
340 tabulated by treatment arm between treatment initiation and the end of treatment visit.

341 **15.4. BMI**

342 Height and weight will be measured at baseline and the end of each period. BMI will be
343 tabulated at baseline and by treatment arm.

344 **15.5. BG Checks**

345 Average blood glucose checks per day will be reported on the CRF at baseline and the end of
346 each period. BG checks per day will be tabulated at baseline and by treatment arm. Download
347 data will be used where available, otherwise we will use self-report.

348 **16. Multiple Comparison/Multiplicity**

349 **16.1. Primary Analysis and Other Key Hypoglycemia Outcomes**

350 For the primary comparisons of interest, PLGS vs. SAP and HCL vs. SAP, the three CGM-
351 measured hypoglycemia metrics will be evaluated in a hierarchical approach to control the type 1
352 error at 0.05. Each comparison will be allocated alpha 0.025. The outcomes will be evaluated in
353 the following order:

- 354 • % time <70 mg/dL
- 355 • % time <54 mg/dL
- 356 • Rate of hypoglycemic events

357 The process moves to the next variable down on the list until a non-significant result ($p \geq 0.025$)
358 is observed, or all outcomes have been tested. If a non-significant result is encountered, then
359 formal statistical hypothesis testing is terminated and any comparisons below on the list are not
360 formally tested. If for either comparison of interest, PLGS vs. SAP or HCL vs. SAP, all three
361 outcomes are rejected at the level of 0.025, the alpha can be recycled and the other comparison can
362 be tested down the hierarchy at an alpha level of 0.05 rather than 0.025.

363 See the next page for examples of possible scenarios.

364 **16.2. Other Secondary and Exploratory Analysis**

365 For all other secondary and exploratory outcomes, the false discovery rate will be controlled using
366 the Benjamini-Hochberg procedure method adapted using the two-stage test. For these analyses,

367 the adjusted p-value and 95% confidence interval will be reported. The categories for FDR
368 correction will be:

369 • HCL vs. SAP and PLGS vs. SAP

370 1. Glycemic control outcomes (overall, daytime, and nighttime CGM metrics and
371 HbA1c), CGM use, and insulin metrics

372 2. Patient-reported outcomes

373 3. Subgroups

374 • HCL vs. PLGS

375 4. Glycemic control outcomes (overall, daytime, and nighttime CGM metrics and
376 HbA1c), CGM use, and insulin metrics

377 5. Patient-reported outcomes

378 There will be no adjustment for safety outcomes.

379 *Example 1*

380 All tests for the PLGS vs. SAP comparison are significant, so we can recycle the alpha 0.025 and use it for the HCL vs. SAP
381 comparisons.

HIERARCHICAL ORDER	OUTCOME VARIABLE	HCL VS. SAP				PLGS VS. SAP			
		ALPHA	P-VALUE	SIGNIFICANT?	ACTION	ALPHA	P-VALUE	SIGNIFICANT?	ACTION
1 st	% time <70 mg/dL	0.05	0.04	Yes	Test next variable	0.025	0.001	Yes	Test next variable
2 nd	% time <54 mg/dL	0.05	0.06	No	Stop formal testing	0.025	0.02	Yes	Test next variable
3 rd	Rate of hypoglycemic events	0.05	Not tested	Unknown	N/A	0.025	0.007	Yes	Recycle alpha to HCL vs. SAP

382

383 *Example 2*

HIERARCHICAL ORDER	OUTCOME VARIABLE	HCL VS. SAP				PLGS VS. SAP			
		ALPHA	P-VALUE	SIGNIFICANT?	ACTION	ALPHA	P-VALUE	SIGNIFICANT?	ACTION
1 st	% time <70 mg/dL	0.025	0.04	No	Stop formal testing	0.025	0.001	Yes	Test next variable
2 nd	% time <54 mg/dL	0.025	Not tested	Unknown	N/A	0.025	0.02	Yes	Test next variable
3 rd	Rate of hypoglycemic events	0.025	Not tested	Unknown	N/A	0.025	0.07	No	Stop formal testing

384