

Clinical Acceptance of the Artificial Pancreas: the International Diabetes Closed Loop (*iDCL*) Trial

**A Randomized Clinical Trial to Assess the Efficacy of Adjunctive Closed Loop Control Versus
Sensor-Augmented Pump Therapy in the Management of Type 1 Diabetes**

Version 10.0
February 9, 2017

**ALL INFORMATION & ANY ATTACHMENTS CONTAINED IN THIS PROTOCOL
ARE CONFIDENTIAL INFORMATION**, in accordance with the Non-Disclosure
Agreement covering information related to the “Advanced Clinical Trials to test Artificial
Pancreas Device Systems in Type 1 Diabetes (UC4)” study.

1
2
3 **Protocol Chair**
4 Stacey Anderson, M.D., University of Virginia
5
6

7 **Participating Institutions**
8
9
10
11
12
13
14

University of Virginia, Charlottesville, Virginia
Harvard University and the Joslin Diabetes Center, Massachusetts
Sansum Diabetes Research Institute, Santa Barbara, California
Mount Sinai School of Medicine, New York City
Mayo Clinic, Rochester, Minnesota
Barbara Davis Center, University of Colorado, Colorado
Stanford University, California

15 **Coordinating Center**
16 Jaeb Center for Health Research, Tampa, FL
17

TABLE OF CONTENTS

18		
19		
20	CHAPTER 1: INTRODUCTION	8
21	1.1. Background and Rationale	8
22	1.2. Preliminary Studies	8
23	1.3. Closed-Loop Control System	12
24	1.4. Synopsis of Study Protocol	13
25	1.4.1. Study Objective.....	13
26	1.4.2. Study Design.....	13
27	1.4.3. Major Eligibility Criteria.....	13
28	1.4.4. Sample Size	13
29	1.4.5. Treatment Groups.....	14
30	1.4.6. Visit and Phone Contact Schedule.....	14
31	1.4.7. Outcomes	18
32	1.5. General Considerations	18
33	CHAPTER 2: SUBJECT SCREENING AND ENROLLMENT	19
34	2.1. Study Population.....	19
35	2.2. Eligibility and Exclusion Criteria	19
36	2.2.1. Eligibility	19
37	2.2.2. Exclusion	19
38	2.3. Authorization Procedures	20
39	2.4. Screening and Enrollment Visit Logistics.....	20
40	2.4.1. Data Collection and Testing	21
41	CHAPTER 3: CGM RUN-IN PHASE	22
42	3.1. CGM Run-in Phase Overview	22
43	3.2. Optimization of Insulin Pump Settings	23
44	3.3. Blinded CGM Use.....	23
45	3.3.1. Blinded CGM Assessment/Unblinded CGM Initiation Visit	23
46	3.3.2. Assessment of Blinded CGM	24
47	3.4. Unblinded CGM Use.....	24
48	3.4.1. Initiation of Unblinded CGM	24
49	3.4.2. Assessment of Successful Completion of the Unblinded CGM Run-in Phase	24
50	CHAPTER 4: RANDOMIZED TRIAL.....	25
51	4.1. Randomization Visit.....	25
52	4.1.1. Timing of Visit.....	25
53	4.1.2. HbA1c	25
54	4.1.3. Baseline C-Peptide Assessment	25
55	4.1.4. Randomization	25
56	4.1.5. Questionnaires.....	25
57	4.2. Procedures for the CTR Group	25
58	4.2.1. Study Pump Training and inControl Training	25
59	4.2.2. Blinded CGM Insertion	27
60	4.2.3. Home Use of inControl System	27
61	4.2.4. Study Device Data Transmission.....	28
62	4.2.5. 1-Week Phone Contact.....	28
63	4.2.6. 2-Week Visit (Training Review and Insulin Pump Optimization)	28
64	4.3. Procedures for the SAP Group	28
65	4.3.1. Study Device Data Transmission.....	28

66	4.3.2. 1-Week Phone Contact	28
67	4.3.3. 2-Week Visit (Training Review and Insulin Pump Optimization)	29
68	4.4. Follow-up Visits and Phone Contacts for Both Groups	29
69	4.4.1. Follow-up Visits	29
70	4.4.1.1. Procedures at Follow-up Visits	29
71	4.4.2. Phone Contacts	30
72	CHAPTER 5: QUESTIONNAIRES	31
73	5.1. Introduction	31
74	5.2. Diabetes Specific Personality Questionnaire	31
75	5.3. Clarke's Hypoglycemia Awareness Scale	31
76	5.4. Hypoglycemia Fear Survey (HFS-II) / Low Blood Sugar Survey	31
77	5.5. Hyperglycemia Avoidance Survey (HAS) / High Blood Sugar Survey	32
78	5.6. Hypoglycemia Confidence Scale	32
79	5.7. Diabetes Distress Scale	32
80	5.8. Technology Expectation and Technology Acceptance Surveys	32
81	5.9. INSPIRE Survey	32
82	CHAPTER 6: SAFETY MEASURES	33
83	6.1. Safety Measures	33
84	6.1.1. CGM Calibration	33
85	6.1.2. Safety Measures for Open-Loop CGM Use	33
86	6.1.2.1. Hypoglycemia Threshold Alarm and Safety Protocol	33
87	6.1.2.2. Hyperglycemia Threshold Alarm and Safety Protocol	33
88	6.1.3. Safety Measures Specific to Control-to-Range (CTR) Closed-Loop Group	33
89	6.1.3.1. Insulin Dosing	33
90	6.1.3.2. Hypoglycemia Safety Protocol	34
91	6.1.3.3. Hyperglycemia Safety Protocol	34
92	6.1.3.4. Remote Monitoring	34
93	6.1.3.5. CGM Sensor Connection Failure	35
94	6.1.3.6. Pump Connection Failure	35
95	6.1.3.7. Study System Failure	35
96	CHAPTER 7: ADVERSE EVENTS, DEVICE MALFUNCTIONS, POTENTIAL RISKS, AND STOPPING RULES.....	36
97	7.1. Definitions	36
98	7.2.1. Hypoglycemic Events	37
99	7.2.2. Hyperglycemic Events/Diabetic Ketoacidosis	37
100	7.2.3. Relationship of Adverse Event to Study Device	37
101	7.2.4. Intensity of Adverse Event	38
102	7.2.5. Coding of Adverse Events	38
103	7.2.6. Outcome of Adverse Event	38
104	7.6. Data and Safety Monitoring Board	40
105	7.7. Potential Risks and Side Effects	40
106	7.7.1. Venipuncture Risks	40
107	7.7.2. Fingerstick Risks	41
108	7.7.3. Subcutaneous Catheter Risks (CGM)	41
109	7.7.4. Risk of Hypoglycemia	41
110	7.7.5. Risk of Hyperglycemia	41
111	7.7.6. Risk of Device Reuse	41
112	7.7.7. Psychosocial Questionnaires	42

114	7.7.8. Other Risks	42
115	7.8. Risk Assessment	42
116	7.9. Study Stopping Criteria	42
117	7.9.1. Subject Discontinuation of Study Treatment	42
118	7.9.2. Criteria for Suspending/Stopping Overall Study	43
119	CHAPTER 8: MISCELLANEOUS CONSIDERATIONS.....	44
120	8.1. Benefits	44
121	8.2. Subject Compensation	44
122	8.3. Subject Withdrawal	44
123	8.4. Confidentiality	44
124	CHAPTER 9: STATISTICAL CONSIDERATIONS.....	45
125	9.1. Sample Size	45
126	9.2. Calculation of Outcome Metrics and Handling of Missing Data	45
127	9.3. Primary Analyses	46
128	9.3.1. Changes in CGM-Measured % below 70 mg/dL from Run-in to 3-Months Post- Randomization Period between the Two Treatment Arms	46
129	9.3.2. Changes in CGM-Measured % above 180 mg/dL from Run-in to 3-Months Post- Randomization Period between the Two Treatment Arms	46
130	9.4. Secondary Efficacy Analyses	47
131	9.5. Additional Treatment Group Comparisons	48
132	9.6. Quality of Life Questionnaires	48
133	9.7. Subgroup Analyses	48
134	9.8. Safety Analyses	49
135	9.9. Additional Tabulations and Plots	50
136	9.10. Tabulations in CTR Arm Only	50
137	9.11. Sensitivity Analyses	50
138	9.12. Other Analyses	50
139		
140		
141	CHAPTER 10: DATA COLLECTION AND MONITORING.....	51
142	10.1. Case Report Forms and Device Data	51
143	10.2. Quality Assurance and Monitoring	51
144	APPENDIX: SAMPLE SIZE ESTIMATION FOR THE iDCL TRIAL.....	52
145	REFERENCES	54
146		
147		

TABLE OF ACRONYMS

Acronym	Abbreviation For
ADA	American Diabetes Association
AP	Artificial Pancreas
ATTD	Advanced Technologies & Treatments for Diabetes
AUC	Area Under the Curve
BAM	Basal Attenuation Module
BG	Blood Glucose
BIM	Basal Increase Modulator
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CI	Confidence Interval
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Infusion
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
DSMB	Data and Safety Monitoring Board
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HAS	Hyperglycemia Avoidance Survey
HbA1c	Hemoglobin A1c
HCT	Helmsley Charitable Trust
HFS-II	Hypoglycemia Fear Survey
HCM	Hyperglycemia Correction Module
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
NIH	National Institutes of Health
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RCT	Randomized Controlled/Clinical Trial
RMB	Risk-Based Monitoring
SADE	Serious Adverse Device Event
SAE	Serious Adverse Event
SAP	Sensor-Augmented Pump

Acronym	Abbreviation For
SD	Standard Deviation
SFPQ	Six Factor Personality Questionnaire
SH	Severe Hypoglycemia
SMBG	Self-Monitoring of Blood Glucose
SSL	Secure Sockets Layer
TDI	Total Daily Insulin
UADE	Unanticipated Adverse Device Effect
UI	User Interface
UVA	University of Virginia

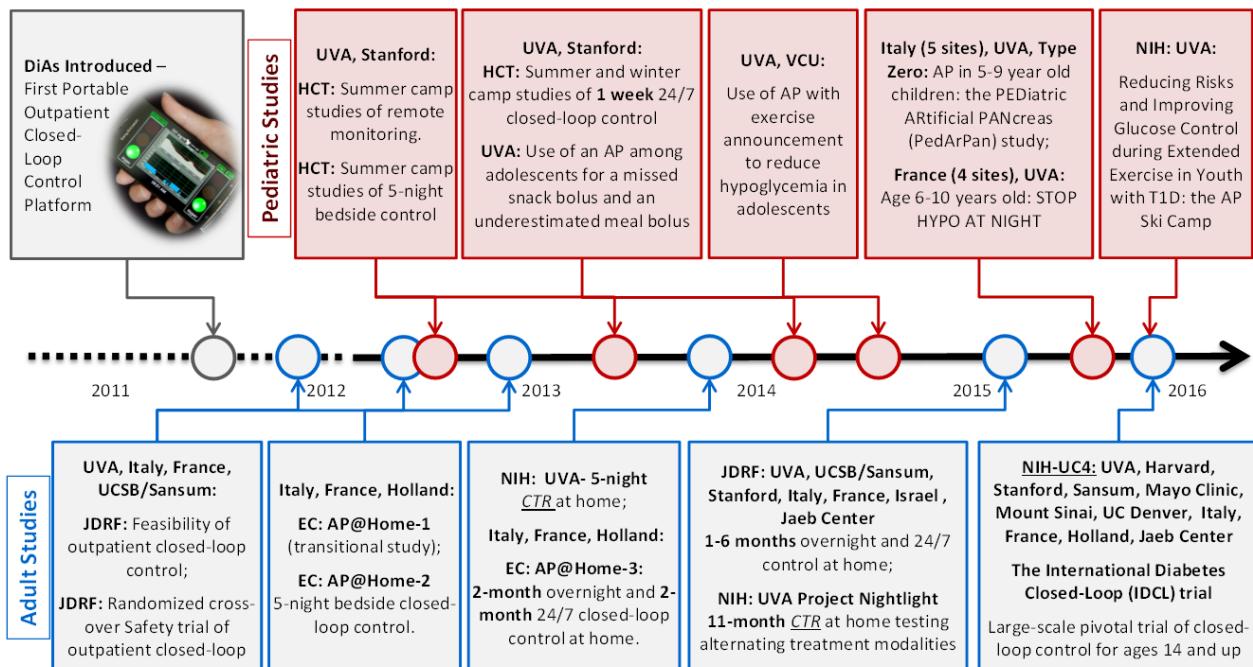
149

150

CHAPTER 1: INTRODUCTION

151

152

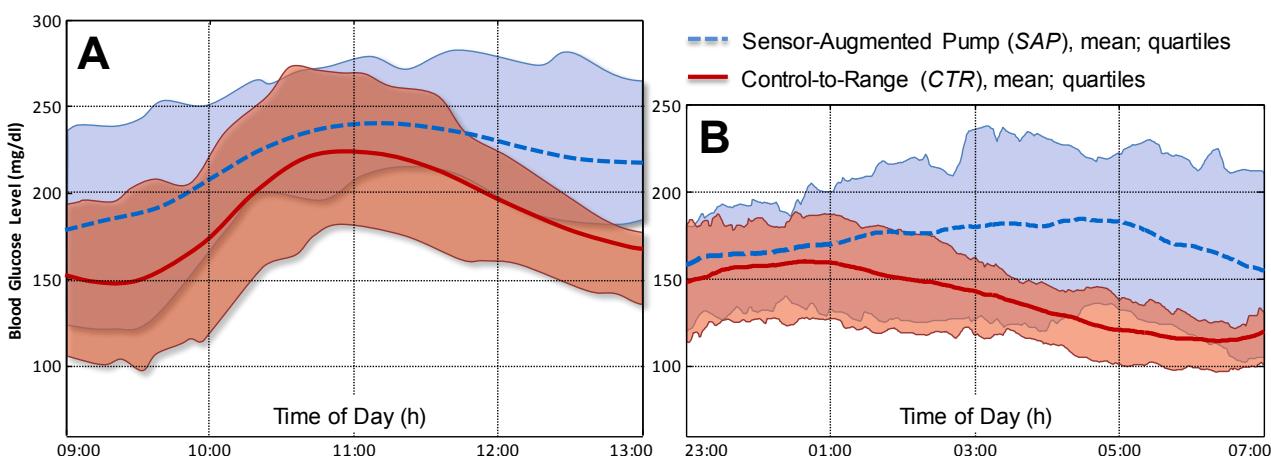

153 1.1. Background and Rationale

154 The transition of closed-loop control (CLC, known as the “artificial pancreas”) to everyday diabetes
155 therapy is contingent upon the acceptance by patients and physicians of an advanced CLC system
156 ensuring concerted work of continuous glucose monitors (CGMs), insulin pumps, and control
157 algorithms. In 2011, a new pathway towards the development of such a system was charted by the
158 Diabetes Assistant (DiAs) – a smart-phone multi-use platform designed at the University of Virginia
159 (UVA) to operate in several treatment modes ranging from CGM or insulin pump support to overnight
160 and 24/7 CLC. Since its introduction in 2011, DiAs has earned regulatory approvals in the U.S.,
161 France, Italy, Netherlands, and Israel; 3 different control algorithms have been implemented on the
162 DiAs platform and used in 18 clinical trials, including long-term studies at home. To date, over 300
163 patients with type 1 diabetes have tested DiAs for over 220,000 hours of outpatient use. We can
164 therefore affirm that reliable technology has been developed and sufficient data have been accumulated
165 to warrant a large-scale clinical trial aiming to establish the artificial pancreas as a clinically accepted
166 treatment for type 1 diabetes that is superior to the current sensor-augmented pump (SAP) therapies. A
167 key distinction of our approach is that the artificial pancreas is not considered a single-function
168 device—it is a platform for technology deployment that can run open- or closed-loop control modalities
169 depending on physician recommendation, patient preference, or signal availability. Recently, we have
170 built and tested a third-generation version of our DiAs system named inControl, as described below, to
171 support larger-scale clinical trials.

172

173 1.2. Preliminary Studies

174 Figure 1 below presents the extensive sequence of innovative outpatient clinical trials done in the past 5
175 years since the introduction of our DiAs system:



176 **Figure 1: Past, current, and upcoming outpatient studies identified by their source of funding: JDRF, NIH,
177 the Helmsley Charitable Trust (HCT), and the European Commission (EC)**

178

179
180 These studies included multi-site and international trials done at several prominent clinical centers in the
181 U.S. and overseas, ranging from early-feasibility 2-day studies in supervised outpatient environment to
182 6-months trials at home. Our overall strategy has been to test, re-test, and test again, in various
183 conditions, clinical centers, and age groups. As noted above, these studies accumulated a wealth of data
184 (*21 patient years of closed-loop control*) and AP know-how, which now allow us to transition to the
185 large-scale International Diabetes Closed-Loop pivotal trial. The upper panel of Figure 1 includes
186 pediatric studies, while the lower panel presents studies in adults.
187

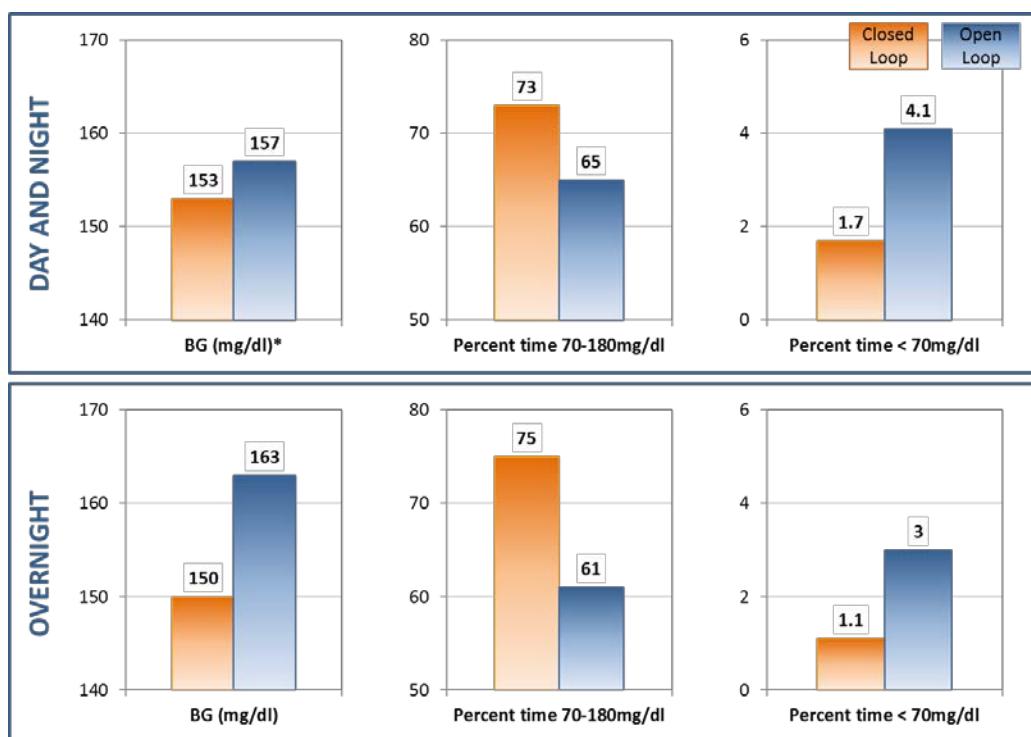
188 Briefly, in 2012/2013 we completed two international multi-site trials, which confirmed the feasibility
189 of DiAs and its efficacy to reduce hypoglycemia in the outpatient setting; both were selected for the
190 *Diabetes Care* symposiums at the 2013 and 2014 American Diabetes Association (ADA) Scientific
191 Sessions (1, 2). Three summer camp trials of remote monitoring (3), overnight CLC (4), and 24/7 CLC
192 (5) confirmed the efficacy of DiAs in children with T1D. In Europe, AP@home ran two pilot trials to
193 pave the way for the large-scale AP@Home-3 which included 2-month overnight and 2-month 24/7 CLC
194 at home (6), which was the first study to report statistically significant reduction in HbA1c with CLC
195 (7). The longest to-date (6-month) multi-center trial of 24/7 CLC at home was reported in February 2016
196 at the ATTD conference in Milan, Italy and showed very significant several-fold reduction in
197 hypoglycemia without deterioration in HbA1c (8, 9). Adult studies now continue with Project Nightlight
198 – *an 11-month trial* which compares dinner/overnight vs. 24/7 CLC in terms of glycemic outcomes and
199 patient acceptance (10), and with the International Diabetes Closed-Loop Trial. Three new exciting
200 pediatric studies complete the lineage presented in Figure 1: (i) the multi-center Italian PedArPan trial
201 recruited 5–9-year-old children and their parents from 5 sites for a summer camp (11); (ii) the French
202 Stop Hypo at Night trial compares the prevention of hypoglycemia in 7–12 year old children achieved
203 by the Safety System described in the previous section vs. threshold low glucose suspend, and (iii) *an*
204 *AP study on skis recruited 16 children at Wintergreen, Virginia in January 2016 to test the ability of the*
205 *system to cope with extreme winter conditions and prolonged vigorous physical activity (5 hours of*
206 *skiing daily for 5 days)* (12).

Figure 2: CLC in Adolescents Missing/Underestimating Pre-meal Bolus (A) and in Adults Overnight (B)

207 While our overall progress with the development and the clinical testing of a wearable artificial pancreas
208 (AP) is depicted in Figure 1, the results below are of particular relevance to the proposed Study:
209 (1) CLC Algorithm Performance: We illustrate our expectations for this project with data from two
210 studies that have tested the same CTR system we are planning to use now with adolescents missing or

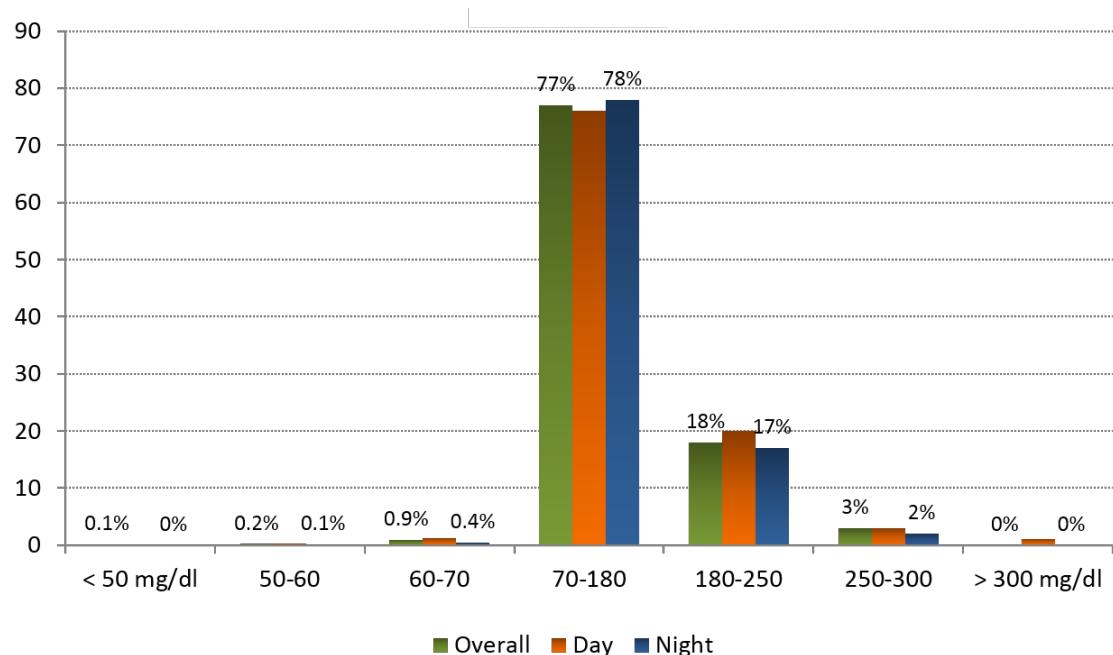
211 underestimating their pre-meal boluses (13) and with adults during overnight control (14), presented in
212 Figure 2, panels A and B:

213 In the first of these studies CLC reduced the extent and duration of postprandial BG excursions: mean
214 BG of 197 vs. 235 mg/dL ($p<0.05$) on CLC vs. SAP (13). In the second study, CLC compared to SAP
215 reduced mean BG level at 07:00h (119.3 vs. 152.9 mg/dL; $p<0.001$) and overnight (139.0 vs. 170.3
216 mg/dL; $p<0.001$) (14).


217 **(2) JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control:** In the summer of 2014, we initiated
218 a two-phase long-term (6 months) trial evaluating DiAs in the natural environment. Phase 1 (1 month)
219 recruited 30 patients with T1DM at 6 clinical centers: UVA, Stanford University, the William Sansum
220 Diabetes Center, Santa Barbara, CA, the Universities of Padua (Italy) and Montpellier (France), and the
221 Schneider Children's Medical Center of Israel (1). During Phase 1, subjects participated in 2 weeks of
222 overnight-only and 2 weeks of 24/7 CLC. Phase 2 continued with N=14 patients at 4 of these sites (UVA,
223 Stanford, Sansum, Padua), for 5 additional months of 24/7 CLC (9). The study was coordinated by the
224 Jaeb Center for Health Research.

225 Median subject characteristics: age=45 years; duration of diabetes=27 years; total daily insulin=0.54
226 (U/kg/day); basal daily insulin=0.22 (U/kg/day); 10/4 male/female.

227 **Results:**


228 Figure 3 below presents the time within target range achieved during CLC in Phase 1 of this study during
229 overnight CLC and during 24/7 CLC, compared to sensor-augmented pump. As seen in Figure 3, CLC
230 achieved over 70% time in the target range overall, accompanied by significant reduction in
231 hypoglycemia.

232

233 **Figure 3: Summary of the results from Phase 1 which included 2 weeks of overnight CLC and 2 weeks of 24/7 CLC**

234 During the 5-month Phase 2, CLC achieved over 75% time in the target range overall and separately
235 during the day and during the night. The rest of the data were primarily distributed between 180 and 250
236 mg/dL. Extreme BG excursions were rare (Figure 4):
237

Figure 4: Summary of the results from Phase 2 – additional 5 months of 24/7 CLC

238 Overall, HbA1c was reduced from 7.2% at the baseline to 7.0% (p=0.16) at the end of the
239 study. This was accompanied by a significant 3-fold reduction in the frequency of
240 hypoglycemia from baseline to the last three months of CGM monitoring 4.1% vs. 1.3%
241 (p<0.001). Improvement in HbA1c was highly correlated with the percent time of system use,
242 r=0.59; in particular those with above-median system use (>70% of the time) achieved HbA1c
243 reduction of 0.44%, from 7.19% at the baseline to 6.74% at the end of study (9).

244 Table 1 below presents a summary of the results:
245

Table 1: 6-month CLC Trial Key Results

	Baseline	End of Study	P-value
%CGM < 70 mg/dL (median (IQR))	4.1 (2.9-7.5)	1.3 (0.6-1.7)	<0.001
%CGM < 60 mg/dL (median (IQR))	2.2 (1.5-3.4)	0.3 (0.2-0.6)	<0.001
%CGM < 50 mg/dL (median (IQR))	1.0 (0.8-1.3)	0.1 (0.0-0.2)	<0.001
A1c (mean ± SD)	7.2 ± 0.6	7.0 ± 0.6	0.16
A1c for those with A1c >7.0 at baseline	7.5 ± 0.4	7.1 ± 0.7	0.12

247
248 Meta-Analysis of All DiAs Studies to Date:

249 Table 2 presents meta-analysis of 184,000 hours (21 patient years) of data from several previous
250 studies that used the DiAs artificial pancreas platform over the past 5 years. These studies were
251 conducted at several research centers in the U.S. and overseas and enrolled a total of 420 patients with
252 type 1 diabetes. Despite the geographical and patient diversity, the across-site results were consistent:
253
254

255

Table 2: CLC Meta-Analysis

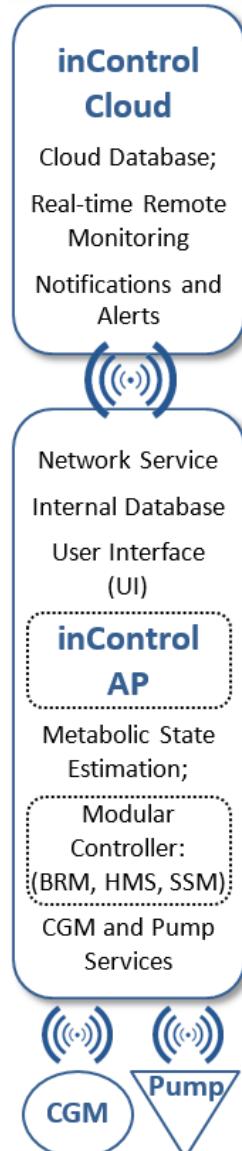
	% time within 70-180 mg/dL		Average BG (mg/dL)		% time < 70 mg/dL	
	CLC	SAP	CLC	SAP	CLC	SAP
Overall	71.7%	63.8%	152.4	158.3	2.0%	3.9%
Overnight	76.5%	60.7%	148.6	161.4	1.1%	3.1%

256

257 1.3. Closed-Loop Control System

258 inControl-AP is an “artificial pancreas” (AP) application that uses advanced
 259 closed loop control algorithms to automatically manage blood glucose levels for
 260 people with Type 1 Diabetes. The current mobile implementation of inControl-
 261 AP runs on a standard Android smartphone and uses Bluetooth (BT) and
 262 Bluetooth Low Energy (BLE) connectivity to communicate with a Continuous
 263 Glucose Monitor (CGM) and insulin pump. The system modulates insulin to
 264 keep blood glucose in a targeted range. inControl-AP runs on a modified release
 265 of the Android operating system. Modifications include the removal of
 266 unnecessary applications and functions, and fixes to the BT stack to permit
 267 communication with the insulin pump. While inControl-AP is an Android
 268 application with a JS/CSS UI, system upgrades during the study will be
 269 considered when new technology becomes available and is sufficiently tested.
 270 For example, new generations of CGM sensors or insulin pumps with embedded
 271 inControl-AP could become available for inclusion in this trial and could be used,
 272 provided that these new development do not change the core functionality of the
 273 system described below and in Figure 5.

274


275 The system services include the following processing elements:

- 276 • Core: handles timing and main loop calls, intercepts system messages and
 277 handles data changes
- 278 • Metabolic state estimation: calculates the patient’s current metabolic
 279 state, including current and predicted blood glucose and IOB, and stores
 280 values in a database
- 281 • Controller: calls the modules that calculate algorithmic and manually
 282 requested insulin delivery quantities in sequence
 - 283 • UIM – User Input Module handles the delivery of insulin requested
 284 manually by the user which includes meal and correction boluses
 - 285 • BIM – Basal Increase Module increases basal delivery in response
 286 to estimated blood glucose levels based on a circadian target profile
 - 287 • HCM – Hyperglycemic Correction Module calculates a correction
 288 bolus in response to estimated blood glucose above its target
 - 289 • BAM – Basal Attenuation Module may reduce basal insulin
 290 delivery if the system determines a risk of hypoglycemia
- 291 • Supervisor: determines which dosing algorithm outputs are valid and
 292 active based on the current operating state of the system

293

294 The inControl system operates on a 5-minute cycle based on the highest frequency of input data. There
 295 are two insulin dosing modes (pump and closed loop) and three operating modes (normal, sleep and
 296 exercise). The combination of insulin dosing mode and operating mode determines what actions
 297 inControl will perform and what options are presented to the user.

298

Figure 5: inControl-AP Schematic

299
300 **Figure 6: Schematic of inControl-AP system hardware components**
301

302 **1.4. Synopsis of Study Protocol**

303 **1.4.1. Study Objective**

304 The objective of the study is to assess the efficacy and safety of home use of a Control-to-Range
305 (CTR) closed-loop (CL) system.

306
307 **1.4.2. Study Design**

308 The protocol is a 3-month parallel group multi-center randomized trial designed to compare Control-
309 to-Range (CTR) closed-loop (CL) with sensor augmented pump therapy (SAP).

310
311 **1.4.3. Major Eligibility Criteria**

- 312 • Clinical diagnosis of type 1 diabetes, treated with insulin for at least 1 year
- 313 • Use of an insulin infusion pump for at least 6 months
- 314 • Age ≥ 14 years old
- 315 • HbA1c level $< 10.5\%$ at screening
 - 316 ○ A study goal will be to have a minimum of 50 subjects with HbA1c $\geq 7.5\%$ and 50 with
317 HbA1c $< 7.5\%$.
- 318 • No use of glucose-lowering agents other than insulin in the 3 months prior to enrollment
- 319 • Willingness to establish network connectivity on at least a weekly basis either via local Wi-Fi
320 network or via a study-provided cellular service

321
322 **1.4.4. Sample Size**

323 Approximately 126 subjects will enter into the randomized trial conducted at approximately 7 clinical
324 sites in the United States.

325

326 **1.4.5. Treatment Groups**

327 Subjects in the trial will be randomly assigned in a 1:1 ratio to the Control-to-Range (CTR) Closed-
328 Loop or sensor augmented pump therapy (SAP) groups, respectively.
329

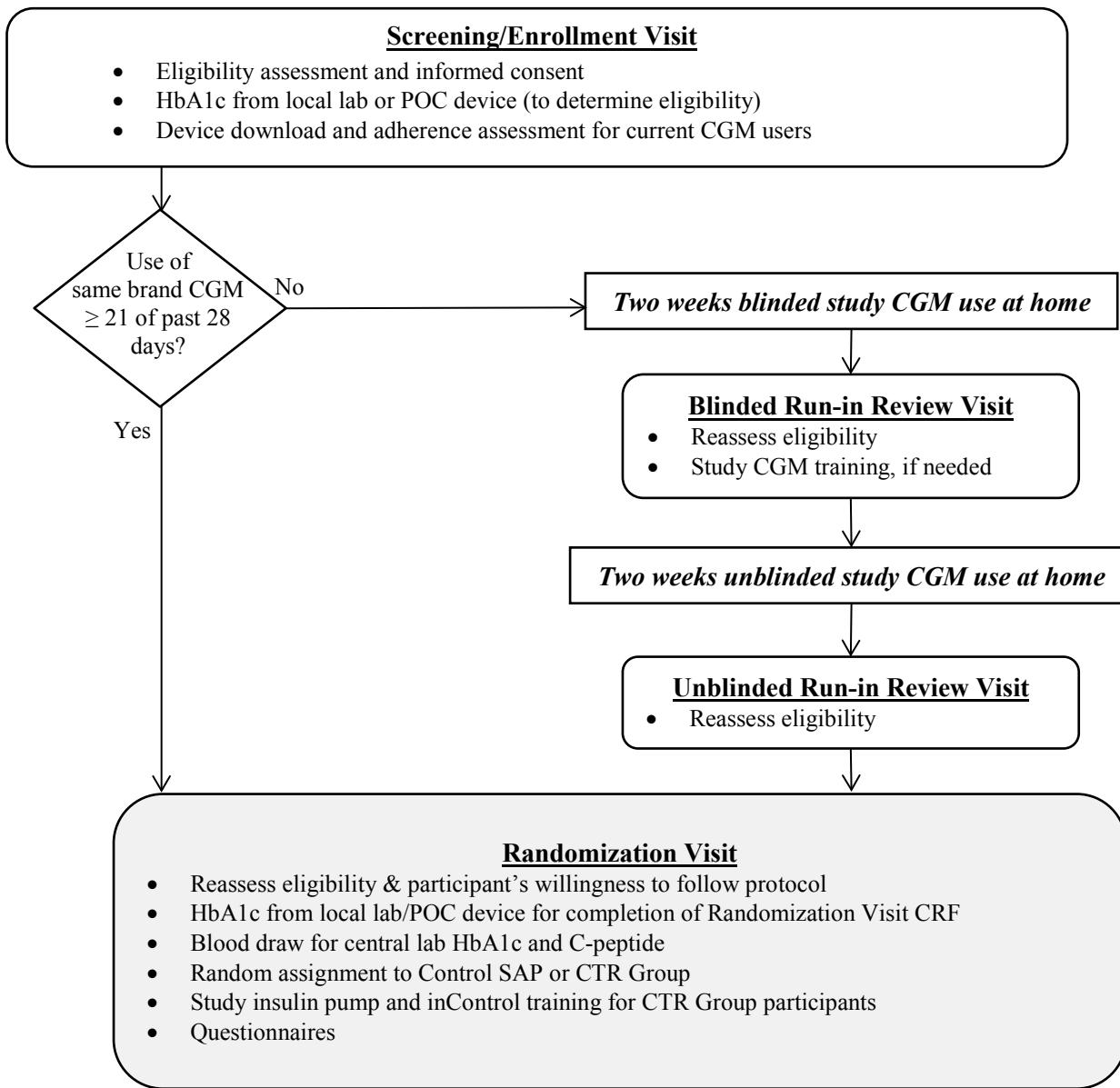
330 **1.4.6. Visit and Phone Contact Schedule**

331 Subjects who used a personal CGM that is the same brand as the study CGM prior to the study for at
332 least 21 of the prior 28 days will proceed directly to randomization. These subjects will have the
333 personal CGM downloaded for capture of the two-week baseline data.
334

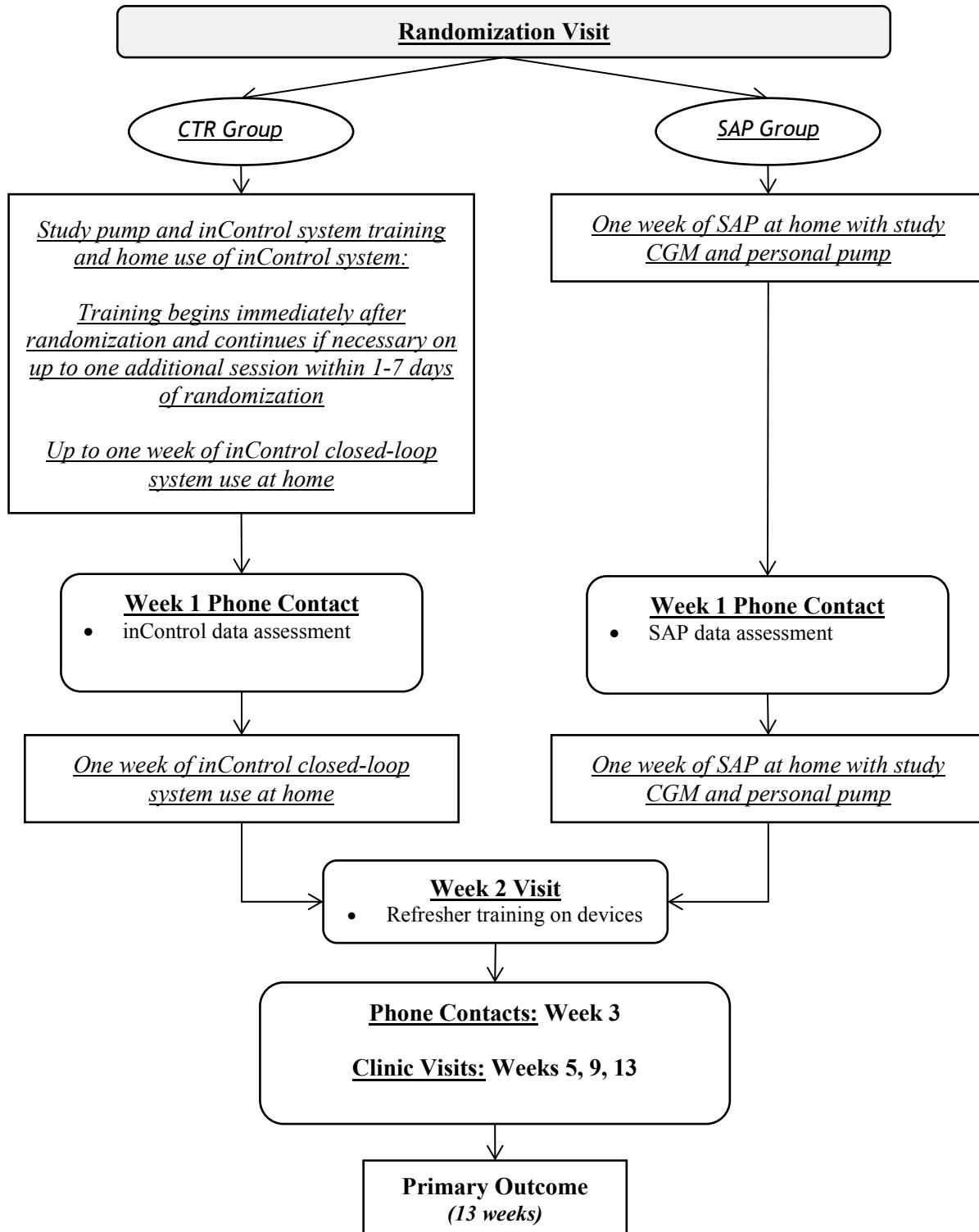
335 All other subjects will participate in the following CGM run-in phases requiring additional clinic visits
336 as shown in Figure 7:

- 337 • Two-week period of blinded study CGM use to characterize baseline glycemic control; subjects
338 using a personal CGM prior to the study will continue to use it during this period.
- 339 • Two-week period of unblinded study CGM use, with training in using CGM if necessary;
340 subjects using a personal CGM prior to the study will discontinue the personal CGM beginning
341 in this period.

342 After randomization, all subjects will have an initial two-week training period as shown in Figure 8:


- 343 • Participants in the SAP Group will use the study CGM and will continue to use their personal
344 insulin pump, with a phone contact after one week to assess usage and reinforce CGM training
345 if needed.
- 346 • Participants in the CTR Group will cease use of their personal insulin pump and will receive
347 study pump training followed by inControl training and then use the inControl system at home
348 (study pump, study CGM and inControl device). There will be a phone contact after one week
349 to assess usage and reinforce pump, CGM and/or inControl training if needed.
350

351 As shown in Table 3, all subjects have the same post-randomization clinic visit and phone contact
352 schedule, with the possible exception of an additional training session on a different day for CTR
353 Group subjects if there is insufficient time at the randomization visit to train fully on the closed-loop
354 system components. This training session will occur within one week of the Randomization Visit, and
355 the remaining schedule is as follows:
356


- 357 • Visits after: 2 weeks, 5 weeks, 9 weeks, 13 weeks
- 358 • Phone contacts after: 1 week, 3 weeks

359

360 **Figure 7: Enrollment and Pre-Randomization Flow Diagram**

362 **Figure 8: Post-Randomization Flow Diagram**

365 **Table 3: Schedule of Study Visits, Phone Contacts, and Key Procedures (Randomization at Week 0)**

Purpose	Screen/ Enroll	CGM run-in, if needed	Rand	Follow-Up						
				0	1w ±3d	2w ±3d	3w ±3d	5w ±1w	9w ±1w	13w ±1w
Timing from Randomization	0-6w prior	~2-3w prior	0							
Visit or Phone	V	V¹	V	P	V	P	V	V²	V	
Eligibility Assessment	X	X	X							
Blinded CGM (2 weeks)		X	X³						X	
HbA1c (DCA Vantage or similar point of care device, or local lab)	X		X							X
HbA1c (Central lab)			X							X
C-peptide (Central lab)			X							
Pregnancy test (female participants of child-bearing potential)	X		X							
Device data downloads	X	X	X		X		X	X	X	
Review diabetes management and AEs		X	X	X	X	X	X	X		X
Optimization of insulin pump settings	X	X	X		X					
Clarke Hypoglycemia Awareness Scale, Hyperglycemia Avoidance Scale, Fear of Hypoglycemia Survey, Hypoglycemia Confidence Scale, INSPIRE Survey, and Diabetes Distress Scale			X							X
Diabetes Specific Personality Questionnaire			X							
Technology Expectations Survey (CTR group)			X							
Technology Acceptance Survey (CTR group)										X

366

367

368

369

¹ Visit not required for all subjects—refer to Figure 7 and Figure 8 above

² Non-medical visit; insertion of blinded CGM sensor and download of study device data only

³ For CTR subjects only who are not using a CGM receiver whose data can be downloaded

370 **1.4.7. Outcomes**
371 *Primary Efficacy Outcomes:*
372 The co-primary outcomes are differences in CGM-measured metrics between baseline and 3-month post-
373 randomization period:
374 • superiority in CGM-measured time below 70 mg/dL, and
375 • non-inferiority in CGM-measured time above 180 mg/dL
376
377 The study will be declared a success if a statistically significant superiority in CGM-measured time below
378 70 mg/dL along with a non-inferiority in CGM-measured time above 180 mg/dL is observed.
379
380 *Main Safety Outcomes:*
381 • Episodes of severe hypoglycemia
382 • Episodes of diabetic ketoacidosis (DKA)
383 • Other serious adverse events
384
385 **1.5. General Considerations**
386 The study is being conducted in compliance with the policies described in the study policies document,
387 with the ethical principles that have their origin in the Declaration of Helsinki, with the protocol
388 described herein, and with the standards of Good Clinical Practice (GCP).
389
390 Data will be directly collected in electronic case report forms, which will be considered the source
391 data.
392
393 There is no restriction on the number of subjects to be enrolled by each site towards the overall
394 recruitment goal.
395
396 The protocol is considered a significant risk device study, due to the fact that the closed-loop system is
397 experimental. Therefore, an investigational device exemption (IDE) from the U.S. Food and Drug
398 Administration (FDA) is required to conduct the study.
399
400 Investigational device components may be used by study staff for the purpose of system training and
401 troubleshooting as long as there is no insulin infusion.

402 **CHAPTER 2: SUBJECT SCREENING AND ENROLLMENT**

403

404 **2.1. Study Population**

405 Enrollment will proceed with the goal of randomizing 126 subjects and having at least 110
406 subjects with sufficient data to include in the primary analysis. A maximum of 200 subjects may
407 be enrolled in the study in order to achieve the goal of randomizing 126 subjects.

408

409 In order to have a broad range of glycemic control among the subjects, a study goal will be to
410 have a minimum of 50 subjects with HbA1c $\geq 7.5\%$ and 50 with HbA1c $< 7.5\%$.

411

412 **2.2. Eligibility and Exclusion Criteria**

413

414 **2.2.1. Eligibility**

415 To be eligible for the study, a subject must meet the following criteria:

- 416 1) Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year
417 and using insulin for at least 1 year
- 418 2) Use of an insulin pump for at least 6 months
- 419 3) Age ≥ 14 years old
- 420 4) HbA1c level $< 10.5\%$ at screening
- 421 5) For females, not currently known to be pregnant
 - 422 • *If female and sexually active, must agree to use a form of contraception to prevent
423 pregnancy while a participant in the study. A negative serum or urine pregnancy test
424 will be required for all females of child-bearing potential. Subjects who become
425 pregnant will be discontinued from the study. Also, subjects who during the study
426 develop and express the intention to become pregnant within the timespan of the
427 study will be discontinued.*
- 428 6) Willingness not to add non-insulin glucose-lowering agents (such as Pramlintide, Metformin,
429 GLP-1 analogs, SGLT2 inhibitors) during the study
- 430 7) Willingness, if not assigned to the closed-loop group, to avoid use of any closed-loop control
431 system for the duration of the clinical trial
- 432 8) Willingness to suspend use of any personal CGM for the duration of the clinical trial
433 beginning with the unblinded study CGM run-in period
- 434 9) Willingness to establish network connectivity on at least a weekly basis either via local Wi-Fi
435 network or via a study-provided cellular service
- 436 10) Currently using no insulins other than one of the following rapid-acting insulins at the time
437 of enrollment: insulin lispro (Humalog), insulin aspart (Novolog), or insulin glulisine
438 (Apidra)
- 439 11) Investigator has confidence that the subject can successfully operate all study devices and is
440 capable of adhering to the protocol
- 441 12) For subjects < 18 years old, living with one or more parent/legal guardian (referred to
442 subsequently as diabetes care partner) committed to participating in study training for
443 emergency procedures for severe hypoglycemia and able to contact the subject in case of an
444 emergency.

445

446 **2.2.2. Exclusion**

447 The presence of any of the following is an exclusion for the study:

448 1) Medical need for chronic acetaminophen
449 2) Use of any glucose-lowering agent (such as Pramlintide, Metformin, GLP-1 analogs, SGLT2
450 inhibitors) in the 3 months prior to enrollment
451 3) Hemophilia or any other bleeding disorder
452 4) A condition, which in the opinion of the investigator or designee, would put the participant or
453 study at risk including any contraindication to the use of any of the study devices per FDA
454 labelling
455 • *Individuals should not be enrolled with uncontrolled thyroid disease, renal failure*
456 *(e.g., dialysis or eGFR <30), or unstable cardiovascular disease. Laboratory testing*
457 *and other work up needed to determine that an individual is a suitable candidate for*
458 *the study should be performed as part of usual care.*

459 5) Participation in another pharmaceutical or device trial at the time of enrollment or during the
460 study
461 6) Use of a closed-loop system within the last month prior to enrollment
462 7) Employed by, or having immediate family members employed by TypeZero Technologies,
463 LLC; or having a direct supervisor at place of employment who is also directly involved in
464 conducting the clinical trial (as a study investigator, coordinator, etc.); or having a first-
465 degree relative who is directly involved in conducting the clinical trial

466 **2.3. Authorization Procedures**

467 Written informed consent must be obtained prior to performing any study specific procedures
468 with the subject that are not part of the subject's routine care.

469 For eligible subjects 18 years of age or older, the study will be discussed with the subject and the
470 subject will be provided with an Informed Consent Form to read and will be given the
471 opportunity to ask questions. If the subject agrees to participate, the Informed Consent Form
472 will be signed. A copy of the consent form will be provided to the subject and another copy will
473 be added to the subject's clinic chart.

474 For eligible subjects under 18 years of age, the care partner will be provided with an Informed
475 Consent Form to read and will be given the opportunity to ask questions. Each subject will be
476 given a Child Assent Form to read and discuss with parents and study personnel. If the care
477 partner and child agree to participate, the Informed Consent Form and Child Assent Form will be
478 signed. A copy of the consent forms will be provided to the subject and his/her care partner and
479 another copy will be added to the subject's clinic chart.

480 **2.4. Screening and Enrollment Visit Logistics**

481 Potential subjects will be evaluated for study eligibility through the elicitation of a medical
482 history, performance of a physical examination by study personnel and local laboratory testing if
483 needed to screen for exclusionary medical conditions. Subject exclusion will be at the discretion
484 of the investigator based on study inclusion/exclusion criteria.

485 Subjects who do not initially meet study eligibility requirements may be rescreened once at a
486 later date per investigator discretion.

493 **2.4.1. Data Collection and Testing**

494 A standard physical exam (including vital signs and height and weight measurements) will be
495 performed by the study investigator or designee (a physician, fellow, nurse practitioner or a
496 physician assistant).

497
498 The following procedures will be performed/data collected/eligibility criteria checked and
499 documented:

- 500 • Subject, and where indicated parent/guardian fully informed about the study and informed
501 consent form/assent form signed according to IRB requirements
- 502 • Inclusion and exclusion criteria assessed
- 503 • Demographics (date of birth, gender, race and ethnicity, and socioeconomic indicators)
- 504 • Contact information
- 505 • Diabetic history
- 506 • Medical history
- 507 • Substance use history (drinking, smoking, and drug habits)
- 508 • Concomitant medications
- 509 • Physical examination to include:
 - 510 ○ Weight, height
 - 511 • Weight measurement will be repeated during the final study visit, in addition
512 to height for subjects <21 years old
 - 513 ○ Vital signs including measurement of blood pressure and pulse
 - 514 • HbA1c level measured using the DCA Vantage or similar point of care device or local lab
515 (used to assess eligibility)
 - 516 ○ Measurement performed as part of usual clinical care up to two weeks prior to
517 obtaining informed consent for participation in the trial may be used
 - 518 • Urine or serum pregnancy test for all females of child-bearing potential

520 Blood draws for any other laboratory testing needed to determine that an individual is a suitable
521 candidate for the study should be performed as part of usual care.

522 Subjects who are female and menstruating will be asked to keep a log to track menstrual cycles
523 and will be given a paper log to record this information.

524
525 526 Screening procedures will last approximately 1-2 hours.

528
529

CHAPTER 3: CGM RUN-IN PHASE

530 3.1. CGM Run-in Phase Overview

531 Concurrent with the screening and enrollment visit, the subject will be assessed for the need for
532 CGM run-in activities prior to randomization.

533

534 Subjects who used a personal CGM that is the same brand as the study CGM prior to the study
535 for at least 21 of the prior 28 days will proceed directly to randomization. These subjects will
536 have the personal CGM downloaded for capture of two-week baseline data.

537

538 All other subjects will participate in the following CGM run-in phases requiring additional clinic
539 visits as shown in Figure 7:

- 540 • Two-week period of blinded study CGM use to characterize baseline glycemic control;
541 subjects using a personal CGM prior to the study will continue to use it during this
542 period.
- 543 • Two-week period of unblinded study CGM use, with training in using CGM if necessary;
544 subjects using a personal CGM prior to the study will discontinue the personal CGM
545 beginning in this period.

546

547 Subjects participating in the CGM run-in phase will receive appropriate training on incorporating
548 CGM into their diabetes management. Training will include the hypoglycemia and
549 hyperglycemia safety protocols in section 6.1 as well as instruction that study CGM readings are
550 affected by acetaminophen use and may be inaccurate for at least 4 hours if a medication
551 containing acetaminophen is taken.

552

553 Subjects will receive supplies for blood glucose and ketone testing during this period:

- 554 • Blood glucose testing
 - 555 ○ Subjects will be provided with a study blood glucose meter, test strips, and
556 standard control solution to perform quality control (QC) testing at home per
557 manufacturer guidelines.
 - 558 ○ All study blood glucose meters will be QC tested with at least two different
559 concentrations of control solution if available during all office visits. A tested
560 meter will not be used in a study if it does not read within the target range at each
561 concentration per manufacturer labeling. The subject will be instructed to contact
562 study staff for a replacement of the meter, test strips, and control solution if a
563 meter fails QC testing at home.
 - 564 ○ Subjects will be reminded to use the study blood glucose meter for all fingerstick
565 blood glucose measurements during the run-in period.
 - 566 ○ Subjects will be given guidelines for treatment of low or high blood glucose.
- 567 • Blood ketone testing
 - 568 ○ Subjects will be provided with a study blood ketone meter, test strips, and
569 standard control solution to perform QC testing at home per manufacturer
570 guidelines.
 - 571 ○ All study blood ketone meters will be QC tested with at least two different
572 concentrations of control solution if available during all office visits. A tested
573 meter will not be used in a study if it does not read within the target range at each

574 concentration per manufacturer labeling. The subject will be instructed to contact
575 study staff for a replacement of the meter, test strips, and control solution if a
576 meter fails QC testing at home.

- 577 ○ Subjects will be instructed to perform blood ketone testing as described in Section
578 6.1.2.2.
- 579 ○ Subjects will be given guidelines for treatment of elevated blood ketones
- 580 • Subjects will be required to have a home glucagon emergency kit. Subjects who currently
581 do not have one will be given a prescription for the glucagon emergency kit.

583 **3.2. Optimization of Insulin Pump Settings**

584 Data-driven optimization of pump settings will occur at the following times:

- 585 • Prior to Randomization:
 - 586 ○ At the Enrollment Visit for study subjects that do not need to complete a CGM run-
587 in
 - 588 ○ At the Blinded CGM Run-in Review and Unblinded CGM Run-in Review Visits
589 for study subjects participating in the CGM Run-in
- 590 • Following Randomization:
 - 591 ○ At the Week 2 visit for all study subjects (both the CTR and SAP Group).
 - 592 ○ If the study subject contacts the study physician due to concerns about their pump
593 settings due to recurring hypo- or hyperglycemia.

594 Adjustments to pump settings (basal rates, correction factor, insulin-to-carbohydrate ratio, etc.)
595 will be made in response to major trends observed in the CGM data, with flexibility for clinicians
596 to adhere to guidelines and practices established at each individual practice rather than a fixed set
597 of heuristics for all sites.

600 **3.3. Blinded CGM Use**

601 At the screening visit, a CGM sensor will be placed for subjects who will complete the blinded
602 CGM phase. The CGM receiver will be blinded so that the subject is not able to see the CGM
603 glucose values. The subject will be instructed on sensor use including insertion of a new sensor
604 after 7 days (or sooner if the sensor comes out) and will be asked to wear the sensor for 14 days.
605 Additional sensors will be provided. Subjects that currently use a CGM may continue to use the
606 personal CGM in addition to the blinded study CGM.

607 Subjects will be informed that in order to be eligible for the randomized trial, the blinded CGM
608 must be used on a minimum of 11 out of 14 days.

611 **3.3.1. Blinded CGM Assessment/Unblinded CGM Initiation Visit**

612 Enrolled subjects will return 14 to 21 days after screening to assess the blinded CGM wear. The
613 purpose of the visit will include the following:

- 614 • Assessment of compliance with the use of the CGM
- 615 • Assessment of skin reaction in areas where a CGM sensor was worn
- 616 • Initiation of unblinded CGM use and instructions on its use

618 **3.3.2. Assessment of Blinded CGM**
619 The CGM data will be downloaded and reviewed to assess whether the subject has used the
620 CGM on at least 11 out of 14 days. If the subject is eligible to continue in the study, study staff
621 will follow the procedure for insulin pump optimization described above in section 3.2.
622
623 Subjects who are unable to meet the CGM compliance requirement will be withdrawn from the
624 study, unless the investigator believes that there were extenuating circumstances that prevented
625 successful completion. In such cases, the investigator will contact the protocol chair to request
626 approval to repeat this part of the run-in phase.
627

628 **3.4. Unblinded CGM Use**
629 **3.4.1. Initiation of Unblinded CGM**
630 The subject will be provided with sensors and instructed to use the CGM on a daily basis for 2
631 weeks. Training will be provided to subjects not experienced with CGM use as to how to use the
632 CGM in real-time to make management decisions and how to review the data after an upload for
633 retrospective review. Subjects using a personal CGM prior to the study will discontinue the
634 personal CGM beginning in this period.
635
636 The subject will be observed placing the sensor. The study CGM user's guide will be provided for
637 the subject to take home.
638

639 **3.4.2. Assessment of Successful Completion of the Unblinded CGM Run-in Phase**
640 Enrolled subjects will return 14 to 21 days after the initiation of the unblinded CGM visit to
641 assess the unblinded CGM wear. The purpose of the visit will include the following:
642 • Assessment of compliance with the use of the CGM
643 • Assessment of skin reaction in areas where a CGM sensor was worn
644 • Assessment of eligibility to continue to the RCT phase of the study
645
646 The CGM data will be downloaded and reviewed. To enter the randomized trial, subjects must
647 have obtained CGM readings on at least 11 out of 14 days. If the subject is eligible to continue
648 in the study, study staff will follow the procedure for insulin pump optimization described above
649 in section 3.2
650
651 The exclusion criteria from screening will be reviewed again and if the subject is no longer
652 eligible based on these criteria, he or she will be dropped from the study.
653
654 An assessment of CGM knowledge will be made and the subject must demonstrate sufficient
655 competency to proceed to the RCT.
656
657 Subjects who are unable to meet the CGM compliance requirements will be withdrawn from the
658 study, unless the investigator believes that there were extenuating circumstances that prevented
659 successful completion. In such cases, the investigator will contact the protocol chair to request
660 approval to repeat this part of the run-in phase.
661

CHAPTER 4: Randomized Trial

662
663 **4.1. Randomization Visit**
664
665 **4.1.1. Timing of Visit**
666 The randomization visit may occur concurrently with the Enrollment Visit for subjects who meet CGM
667 use requirements described above. Otherwise, the visit will be concurrent with the Unblinded CGM
668 Run-in Review Visit.
669
670 Subjects will receive supplies for blood glucose and ketone testing and associated use guidelines and a
671 prescription for a glucagon emergency kit if needed, as described above. Subjects will be advised to
672 contact the manufacturer's technical support center for technical issues with the study CGM and to call
673 the study physician for any health related issues.
674
675 A urine pregnancy test will be repeated for all females of child-bearing potential who participated in
676 the CGM run-in phase.
677
678 **4.1.2. HbA1c**
679 HbA1c will be measured using DCA Vantage or similar POC device or local lab. A blood sample will
680 also be drawn to send to the central laboratory for baseline HbA1c determination to be used in outcome
681 analyses.
682
683 **4.1.3. Baseline C-Peptide Assessment**
684 A blood sample will be drawn to send to the central laboratory for a random, non-fasting C-peptide
685 determination to characterize baseline residual insulin production.
686
687 **4.1.4. Randomization**
688 Eligible subjects will be randomly assigned to one of two treatment groups in a 1:1 ratio:
689 1. Control-to-Range (CTR) Closed-Loop Group
690 2. SAP Group
691
692 The subject's randomization group assignment is determined by completing a Randomization Visit case
693 report form on the study website. The randomization list will use a permuted block design, stratified by
694 clinical center.
695
696 *The subject will be included in the data analysis regardless of whether or not the protocol for the
697 assigned randomization group is followed. Thus, the investigator must not randomize a subject until
698 he/she is convinced that the subject/parent will accept assignment to either of the two groups.*
699
700 **4.1.5. Questionnaires**
701 Subjects will complete a set of baseline questionnaires, described in section 5.1, prior to
702 randomization. Subjects randomized into the CTR group will also complete an additional Technology
703 Expectation Survey after randomization.
704
705 **4.2. Procedures for the CTR Group**
706
707 **4.2.1. Study Pump Training and inControl Training**
708 Subjects randomized to the CTR group will receive study pump training and inControl training. These
709 training sessions can occur on the same day or extend to up to one additional day if needed within 1-7

710 days from randomization; subjects will not take the inControl system component home until training
711 has been completed.

712
713 For subjects <18 years old, the diabetes care partner will be trained on severe hypoglycemia
714 emergency procedures including removal of the study pump and administration of glucagon. The
715 diabetes care partner may also attend any/all of the other training procedures as desired.

716
717 Pump training will include:

- 718 • The subject [and care partner] will be fully instructed on the study insulin pump. A qualified
719 staff member will conduct the training and in particular discuss differences from their home
720 pump in important aspects such as calculation of insulin on board and correction boluses.
721 Additional topics not limited to but may include: infusion site initiation, cartridge/priming
722 procedures, setting up the pump, changing batteries, navigation through menus, bolus
723 procedures including stopping a bolus, etc.
- 724 • The study team will assist the subject in study pump infusion site initiation and will start the
725 subject on the study pump. The study pump will be programmed with the subject's usual
726 basal rates and pump parameters. The subject's personal pump will be removed.
- 727 • The subject will be supervised with the study pump during at least one meal or snack bolus to
728 ensure subject understanding of the pump features.
- 729 • The subject [and care partner] will be encouraged to review the literature provided with the
730 pump, infusion sets, and meter remote after the training is completed.
- 731 • Subjects will be asked to perform fingerstick blood glucose measurements in accordance
732 with the labelling of the study CGM device.

733
734 The subject [and care partner] will be trained by qualified study staff to use inControl to control the
735 study pump, including meal announcement, meal bolusing, exercise, and switching back and forth
736 between all operational modes (i.e. normal, sleep, and exercise) and insulin modes (closed-loop and
737 pump).

738
739 Training will include a series of practice challenges using the different modes of the study system.
740 Prior to initial use, the inControl system will be initialized by a study team member with each subject's
741 individual parameters, including carbohydrate ratio, correction factor, and basal rate pattern.

742
743 Subjects will be provided Hypoglycemia, Hyperglycemia and Ketone Guidelines (section 6.1.2.2) for
744 when their glucose levels are >300 mg/dL for more than one hour or >400 mg/dL at any time or <80
745 mg/dL or ketones ≥ 0.6 mmol/L.

746
747 Study team members will train the subject [and care partner] in performing specific tasks including the
748 following:

- 749 • The study team will confirm the pump parameters entered in the system with the study
750 physician.
- 751 • How to switch between Closed-Loop mode and Pump mode depending on circumstances,
752 including the need to stop closed-loop for at least 4 hours if a medication containing
753 acetaminophen is taken.
- 754 • How to calibrate the CGM unit during the study
- 755 • How to access the CGM trace from the sensor via the inControl user interface

- How to activate the “meal” screen of the inControl system any time insulin will be given with a meal and the “add correction” screen any time additional correction insulin is desired
- How to inform the system of hypoglycemia treatment via a “hypoglycemia treatment” button on the inControl user interface after glucose is consumed that is not accompanied by an insulin bolus
- What to do when exercising while using the system
- How to enable the sleep function when sleep schedule will differ from normal parameters
- How to perform blood ketone testing and perform rescue therapy actions with the glucagon kit
- The subject [and care partner] will be assessed for understanding of the system interface and how to react to safety/alert notification.
- Subjects will be reminded to perform fingerstick blood glucose measurements in accordance with the labelling of the study CGM device.
- The subject [and care partner] will be given a printed User Guide as a reference.

The subject will be instructed to use the system in closed-loop mode except when no calibrated CGM sensor is available.

The subject will also be instructed to contact study staff during periods of illness with an elevated temperature >101.5 degrees Fahrenheit (38.6 degrees Celsius), periods of significant illness, or during periods of use of medications such as epinephrine (e.g. for the emergency treatment of a severe allergic reaction or asthma attack) or oral or injectable glucocorticoids to determine if closed-loop use should be temporarily discontinued.

Subjects will be given the inControl device and will be provided with sufficient supplies to last until the subsequent clinic visit.

Subjects will be provided with technical support or manufacturer contact information for technical issues with inControl, study insulin pump or study CGM and will be asked to call the study physician for any health related issues. Subjects may use the study pump and study CGM during periods of inControl disconnections or technical difficulties. Subjects will also receive study staff contact information to ask any questions they may have during the study.

4.2.2. Blinded CGM Insertion

Subjects in the CTR group who are not using a CGM receiver whose data can be downloaded will have an additional CGM sensor and transmitter placed and will be given a blinded CGM receiver to collect data from this sensor during the first two weeks following randomization. This will allow the clinician to retrospectively assess CGM data from this period at the 2-Week visit using the exact same tool that will be used for subjects in the SAP group.

4.2.3. Home Use of inControl System

After training on the study pump and inControl system has been completed, subjects will proceed with home use (meaning free-living use at work, home, etc.) of the inControl system.

Subjects will be instructed not to use any non-study software applications that are designed to receive real-time CGM values from the study CGM transmitter.

802 **4.2.4. Study Device Data Transmission**
803 Subjects will be instructed to establish network connectivity for the inControl system on at least a
804 weekly basis throughout the remainder of the study either via local Wi-Fi network or via a study-
805 provided cellular service to allow data synchronization with study servers.
806

807 **4.2.5. 1-Week Phone Contact**
808 Study staff will perform a phone call with the subject within 7 (± 3) days following randomization.
809

810 The following will occur:
811

- 812 • Assessment of compliance with study device use by review of any available device data
- 813 • Assessment of adverse events, adverse device effects, and device issues
- 814 • Study staff will answer any questions related to device use

815 Subjects will then complete an additional week of home use with the inControl system. Subjects will
816 return to clinic 14 (± 3) days from the date of randomization.
817

818 **4.2.6. 2-Week Visit (Training Review and Insulin Pump Optimization)**
819 The subject will be offered review training to address any questions on the use of inControl and the
820 study pump, including meal announcement, meal bolusing, exercise, and switching back and forth
821 between all operational modes.
822

823 The following will occur:
824

- 825 • Assessment of compliance with study device use by review of any available device data
- 826 • Assessment of adverse events, adverse device effects, and device issues
- 827 • Study staff will answer any questions related to device use and follow the procedure for insulin
828 pump optimization described above in section 3.2 using the available downloaded CGM data
829 from the previous two weeks.
- 830 • The study blood glucose meter and study ketone meter will be downloaded and QC tested with
831 at least two different concentrations of control solution if available.

832 **4.3. Procedures for the SAP Group**
833 Subjects in the SAP Group will continue to use their personal insulin pumps in conjunction with the
834 study CGM, blood glucose meter, and ketone meter. Subjects may use commercially available
835 features of the study CGM system related to mobile data access or remote monitoring, but will be
836 instructed not to use any third-party components for this purpose.
837

838 **4.3.1. Study Device Data Transmission**
839 Subjects will be instructed to upload data from the CGM receiver prior to the 1-week phone contact
840 and prior to the 2-week clinic visit for clinician review. Subjects will be provided with any software
841 and hardware needed to perform these data uploads.
842

843 **4.3.2. 1-Week Phone Contact**
844 Study staff will perform a phone call with the subject within 7 (± 3) days following randomization.
845

846 The following will occur:
847

- 848 • Assessment of compliance with study device use by review of any available device data
- 849 • Assessment of adverse events, adverse device effects, and device issues
- 849 • Study staff will answer any questions related to device use

850
851 The subject will continue on SAP for a second week, then return to the clinic 14 (± 3) days from the
852 date of randomization.

853
854 **4.3.3. 2-Week Visit (Training Review and Insulin Pump Optimization)**

855 The subject will be offered review training on the use of SAP during the remainder of the study,
856 including meal bolus strategies and strategies related to pump use and exercise.
857

858 The following will occur:

- 859 • Assessment of compliance with study device use by review of any available device data
- 860 • Assessment of adverse events, adverse device effects, and device issues
- 861 • Study staff will review uploaded CGM data, answer any questions related to device use, and
862 follow the procedure for insulin pump optimization described above in section 3.2.
- 863 • The study blood glucose meter and study ketone meter will be downloaded and QC tested with
864 at least two different concentrations of control solution if available.

865
866 The subject will be instructed to upload data from the CGM receiver at least once every two weeks for
867 the remainder of the study.
868

869 **4.4. Follow-up Visits and Phone Contacts for Both Groups**

870 The schedule for remaining follow-up visits and phone contacts is the same for both treatment groups.
871 Study staff will discuss with the subject that periodic contact is required and will make arrangements
872 with the subject for the contacts. If the subject (or care partner, for subjects less than 18 years old)
873 cannot be reached, the subject's other contact methods will be utilized, including the emergency
874 contact.
875

876 **4.4.1. Follow-up Visits**

877 Follow-up visits will occur at:

- 878 • 5 weeks (± 1 week)
- 879 • 9 weeks (± 1 week)
- 880 • 13 weeks (± 1 week)

882 **4.4.1.1. Procedures at Follow-up Visits**

883 Procedures performed in both groups at each visit, unless otherwise specified below:

- 884 • Assessment of compliance with study device use by review of any available device data
- 885 • Assessment of adverse events, adverse device effects, and device issues
- 886 • Download of device data (study CGM, study BG meter, study ketone meter, inControl cloud
887 data, pump if supported)

888 Procedures Specific to the 9-Week Visit

889 A blinded CGM device will be inserted in subjects in both the CTR and SAP groups, to be worn for
890 the subsequent two weeks for the purpose of:

- 892 • Obtaining CGM data for outcome assessment of subjects who have become non-adherent to
893 use of the study CGM
- 894 • Obtaining CGM data from a sensor independent from closed-loop system operation to support
895 assessment of bias in CGM-measured outcomes

897 Blinded CGM devices will be physically returned to the clinic or mailed to the clinic for assessment.
898 If it is found that fewer than 14 days of data were captured, the subject may be asked to capture
899 additional blinded data prior to the 13-week visit.

900

901 **Procedures Specific to the 13-Week Visit**

902

- 903 • HbA1c determination using the DCA Vantage or similar point of care device
- 904 • Collection of a blood sample to send to the central laboratory for HbA1c determination
- 905 • Completion of end-of-study questionnaires
- 906 • Weight measurement will be repeated, in addition to height for subjects <21 years old

907 **4.4.2. Phone Contacts**

908 In addition to the 1-week phone contact described above for the respective treatment groups, the
909 following phone call will be made:

910

911 **3-Week Phone Contact**

912 A phone call will be made to the subject or care partner at 3 weeks (± 3 days) and the following
913 procedures performed in both treatment groups:

914

- 915 • Review of available CGM and/or inControl data to identify any safety issues associated with
insulin pump settings and current diabetes management approach
- 916 • Assessment of adverse events, adverse device effects, and device issues

917
918 **CHAPTER 5: QUESTIONNAIRES**

919 **5.1. Introduction**

920 The following questionnaires will be completed at the randomization visit:

921

- 922 • Diabetes Specific Personality Questionnaire
- 923 • Clarke's Hypoglycemia Awareness Scale
- 924 • Fear of Hypoglycemia Survey (HFS-II)
- 925 • Hyperglycemia Avoidance Scale
- 926 • Hypoglycemia Confidence Scale
- 927 • Diabetes Distress Scale
- 928 • INSPIRE Survey
- 929 • Technology Expectations Survey (*CTR group only*)

930 The following questionnaires will be completed at the final visit at week 13:

931

- 932 • Clarke's Hypoglycemia Awareness Scale
- 933 • Fear of Hypoglycemia Survey (HFS-II)
- 934 • Hyperglycemia Avoidance Scale
- 935 • Hypoglycemia Confidence Scale
- 936 • Diabetes Distress Scale
- 937 • INSPIRE Survey
- 938 • Technology Acceptance Survey (*CTR group only*)

939 Each questionnaire is described briefly below. The procedures for administration are described in the
940 study procedures manual.

941 **5.2. Diabetes Specific Personality Questionnaire**

942 The Diabetes Specific Personality Questionnaire (15) is based on the original Six Factor Personality
943 Questionnaire (16), a well-validated measure that was adapted for the diabetes-specific version of the
944 questionnaire. The SFPQ is a measure of six personality dimensions each consisting of three facet
945 scales, measured by 108 Likert items. The SFPQ facet scales are organized in terms of six factor
946 scales.

947 Administration time is approximately 15 minutes.

948 **5.3. Clarke's Hypoglycemia Awareness Scale**

949 The scale (17) comprises eight questions characterizing the subject's exposure to episodes of moderate
950 and severe hypoglycemia. It also examines the glycemic threshold for, and symptomatic responses to,
951 hypoglycemia. A score of four or more on a scale of 0 to 7 implies impaired awareness of hypoglycemia.

952 Administration time is approximately 5 minutes.

953 **5.4. Hypoglycemia Fear Survey (HFS-II) / Low Blood Sugar Survey**

954 The Hypoglycemia Fear Survey-II (18) was developed to measure behaviors and worries related to fear
955 of hypoglycemia in adults with type 1 diabetes. It is composed of 2 subscales, the Behavior (HFS-B)
956 and Worry (HFS-W). HFS-B items describe behaviors in which patients may engage to avoid
957 hypoglycemic episodes and/or their negative consequences (e.g., keeping blood glucose levels above
958 150 mg/dL, making sure other people are around, and limiting exercise or physical activity). HFS-W

964 items describe specific concerns that patients may have about their hypoglycemic episodes (e.g., being
965 alone, episodes occurring during sleep, or having an accident).

966
967 Administration time is approximately 10 minutes.
968

969 **5.5. Hyperglycemia Avoidance Survey (HAS) / High Blood Sugar Survey**

970 The HAS (19) reliably quantifies affective and behavioral aspects of hyperglycemia avoidance and is
971 used to assess the extent of potentially problematic avoidant attitudes and behaviors regarding
972 hyperglycemia in people with Type 1 diabetes (T1D).

973
974 Administration time is approximately 10 minutes.
975

976 **5.6. Hypoglycemia Confidence Scale**

977 The HCS (20) is a 9-item self-report scale that examines the degree to which people with diabetes feel
978 able, secure, and comfortable regarding their ability to stay safe from hypoglycemic-related problems.
979 It has been validated for use in adults with type 1 diabetes and insulin-using type 2 diabetes.

980
981 Administration time is approximately 5 minutes.
982

983 **5.7. Diabetes Distress Scale**

984 The Diabetes Distress Scale (21) is a measure of diabetes-related emotional distress and consists of a
985 scale of 28 items. These include 7 items from each of four domains central to diabetes-related
986 emotional distress. Patients rate the degree to which each item is currently problematic for them on a
987 6-point Likert scale, from 1 (no problem) to 6 (serious problem).

988
989 Administration time is approximately 10 minutes.
990

991 **5.8. Technology Expectation and Technology Acceptance Surveys**

992 The Technology Expectation and Technology Acceptance Surveys were developed for a Bionic
993 Pancreas camp study (22). The 38 items in the Questionnaire were based on interviews conducted with
994 individuals who had participated in previous Bionic Pancreas trials about their experience regarding
995 the Bionic Pancreas. It was subsequently adapted to assess these same measures for the inControl
996 closed-loop system. It assesses both positive and negative experiences with inControl, including blood
997 glucose management, device burden, and overall satisfaction. Items were rated on a 5-point scale.

998
999 Administration time is approximately 10 minutes.
1000

1001 **5.9. INSPIRE Survey**

1002 The INSPIRE (Insulin Delivery Systems: Perceptions, Ideas, Reflections and Expectations) survey was
1003 developed to assess various aspects of a user's experience regarding automated insulin delivery for
1004 both patients and family members. The surveys include various topics important to patients with type 1
1005 diabetes and their family members based upon >200 hours of qualitative interviews and focus groups.
1006 The adult survey includes 31 items; the adolescent survey includes 28 items; and the parent survey
1007 includes 30 items. Response options for all surveys include a 5-point Likert scale from strongly agree
1008 to strongly disagree, along with an N/A option.

1009
1010 Administration time is approximately 5 minutes.

1011
1012
1013 **CHAPTER 6: SAFETY MEASURES**

1014
1015 **6.1. Safety Measures**

1016
1017 **6.1.1. CGM Calibration**

1018 Throughout the study, subjects will be instructed to calibrate the study CGM in accordance with
1019 manufacturer labelling.

1020 **6.1.2. Safety Measures for Open-Loop CGM Use**

1021 These measures apply to subjects in the SAP group throughout the course of the study and also to
1022 subjects in the CTR group during periods when the closed-loop system is not being used or is not
1023 communicating with the CGM device.

1024 **6.1.2.1. Hypoglycemia Threshold Alarm and Safety Protocol**

1025 All subjects will initially be required to set the CGM hypoglycemia threshold alarm to a value no less
1026 than 60 mg/dL. During the course of the study, subjects will be permitted to change this setting, but
1027 will be instructed to choose a value no less than 60 mg/dL.

1028 If a subject receives a CGM hypoglycemia threshold alarm or notes that the CGM glucose is below the
1029 hypoglycemia threshold alarm value, confirmatory fingerstick testing will be performed if required by
1030 CGM labelling and the subject will be instructed to treat hypoglycemia with ~16 grams of fast-acting
1031 oral glucose.

1032
1033 **6.1.2.2. Hyperglycemia Threshold Alarm and Safety Protocol**

1034 All subjects will initially be required to set the CGM hyperglycemia threshold alarm to a value no
1035 greater than 300 mg/dL. During the course of the study, subjects will be permitted to change this
1036 setting, but will be instructed to choose a value no greater than 300 mg/dL.

1037 If a subject receives a CGM hyperglycemia threshold alarm or notes that the CGM glucose is above
1038 the hyperglycemia threshold alarm value, confirmatory fingerstick testing will be performed if required
1039 by CGM labelling.

1040 If a subject's CGM reading is ≥ 300 mg/dL for over 1 hour, or ≥ 400 mg/dL at any point, the subject
1041 user manual instructs the subject to take the following steps:

1042

- 1043 • Perform a blood ketone measurement with the study ketone meter. Subjects will also be
1044 encouraged to check ketones if they are clinically concerned.
- 1045 • Correction insulin may be taken per the subject's usual routine.
- 1046 • Subjects will be instructed to change their pump site and administer correction insulin via
1047 insulin syringe or pen for ketones ≥ 0.6 mmol/L and to additionally notify study staff for
1048 ketones ≥ 3.0 mmol/L.

1049
1050 **6.1.3. Safety Measures Specific to Control-to-Range (CTR) Closed-Loop Group**

1051
1052 **6.1.3.1. Insulin Dosing**

1053 In Closed-Loop mode, all dosing is supervised by a dedicated basal attenuation module. Insulin
1054 injection for meal boluses must be manually confirmed, and insulin on board (IOB) constraints avoid
1055 inappropriate insulin stacking. In the case of a system crash or any interruption of communication
1056

1058 between inControl and the insulin pump, the pump will revert to the preprogrammed basal delivery
1059 within a short period of time (maximum 30 minutes). Each bolus is checked by the algorithm to
1060 ensure that it does not exceed a maximum threshold depending on whether the bolus is for a meal, for a
1061 correction, or for usual basal delivery.
1062

1063 **6.1.3.2. Hypoglycemia Safety Protocol**

1064 The inControl system will issue a hypoglycemia alarm if the CGM is <70 mg/dL or when the system
1065 predicts BG <70 mg/dL within the next 15 to 30 minutes. The system also includes an additional
1066 threshold alarm that may be configured by study staff per subject preference.
1067

1068 If the subject receives a hypoglycemia alarm from inControl, a message appears on the UI that is
1069 accompanied by vibration and sound. This alert recurs if not acknowledged by the user. The user
1070 is prompted with a checklist to do the following:
1071

- Check blood glucose
- Treat with fast acting carbohydrates

1074 **6.1.3.3. Hyperglycemia Safety Protocol**

1075 The inControl system will issue a predictive hyperglycemia alarm if the system detects prolonged
1076 resistance to insulin treatment and the BG is estimated to be above 200 mg/dL.
1077

1078 If the subject receives a hyperglycemia alarm from inControl, a message appears on the UI that is
1079 accompanied by vibration and sound. This alert recurs if not acknowledged by the user. The user
1080 is prompted with a checklist to do the following:
1081

- Confirm hyperglycemia with a fingerstick
- Consider possible reasons including missed boluses for carbs, infusion site problems,
1083 pump occlusions, insulin degradation, sickness, and menstruation

1084 If a subject's CGM reading is ≥ 300 mg/dL for over 1 hour, or ≥ 400 mg/dL at any point, the subject
1085 user manual instructs the subject to take the following steps:
1086

- Perform a blood ketone measurement with the study ketone meter. Subjects will also be
1088 encouraged to check ketones if they are clinically concerned.
- Correction insulin may be taken per the subject's usual routine.
- Subjects will be instructed to change their pump site and administer correction insulin via
1091 insulin syringe or pen for ketones ≥ 0.6 mmol/L and to additionally notify study staff for
1092 ketones ≥ 3.0 mmol/L.

1093 **6.1.3.4. Remote Monitoring**

1094 The inControl remote monitoring portal (inControl Cloud) automatically logs system data such as
1095 CGM values, insulin delivery details, and system alarms and allows data from any inControl device to
1096 be monitored remotely in real-time, provided the device has Wi-Fi or cellular data connectivity.
1097

1098 Clinical site personnel may perform ad hoc real-time monitoring during the study in response to
1099 subject questions or to troubleshoot system problems. However, the system will not be configured to
1100 send automated notification messages regarding subject glycemic control or potential system
1101 malfunctions to these personnel.
1102

1103

1104 Technical personnel may also perform ad hoc real-time monitoring during the study to support clinical
1105 personnel with subject questions and troubleshooting. In addition, the system will log information
1106 regarding potential system malfunctions to a central location for periodic technical monitoring.
1107

1108 **6.1.3.5. CGM Sensor Connection Failure**

1109 If the CGM signal becomes unavailable for >20 minutes, Closed-Loop mode will not operate. If the
1110 pump is connected, the system will revert to Pump mode and deliver insulin with the most recent
1111 insulin dosing parameters programmed in the system for that individual. Resumption of Closed-Loop
1112 will occur automatically by the system once CGM signal is available again.
1113

1114 **6.1.3.6. Pump Connection Failure**

1115 If inControl is unable to establish required pump connectivity for >20 minutes, the system will revert
1116 to Stopped mode and display a message accompanied by vibration or sound. The insulin pump will
1117 automatically revert to preprogrammed basal insulin delivery without any need for instruction from the
1118 controller once the 0% temporary basal rate last directed by inControl times out. Alternatively, the
1119 subject can cancel the temp basal on the insulin pump and immediately resume basal insulin
1120 administration.
1121

1122 **6.1.3.7. Study System Failure**

1123 If the study system stops working for more than 30 minutes, the pump will automatically revert to
1124 preprogrammed basal insulin delivery without any need for instruction from the controller.
1125

1126 **CHAPTER 7: ADVERSE EVENTS, DEVICE MALFUNCTIONS, POTENTIAL RISKS, AND**
1127 **STOPPING RULES**

1129 **7.1. Definitions**

1130 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
1131 relationship between the adverse event and the device(s) under investigation.

1133 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 1134 • Results in death.
- 1135 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might have
1136 become life-threatening, is not necessarily considered a serious adverse event).
- 1137 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 1138 • Results in persistent or significant disability/incapacity or substantial disruption of the ability to
1139 conduct normal life functions (sight threatening).
- 1140 • Is a congenital anomaly or birth defect.
- 1141 • Is considered a significant medical event by the investigator based on medical judgment (e.g.,
1142 may jeopardize the participant or may require medical/surgical intervention to prevent one of
1143 the outcomes listed above).

1144
1145 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or any
1146 life-threatening problem or death caused by, or associated with, a device, if that effect, problem, or
1147 death was not previously identified in nature, severity, or degree of incidence in the investigational
1148 plan or application (including a supplementary plan or application), or any other unanticipated serious
1149 problem associated with a device that relates to the rights, safety, or welfare of participants (21 CFR
1150 812.3(s)).

1151
1152 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which the
1153 device may have caused or to which the device may have contributed. (Note that an Adverse Event
1154 Form is to be completed in addition to a Device Deficiency or Issue Form).

1155
1156 Device Complaints: A device complication or complaint is something that happens to a device or is
1157 related to device performance, whereas an adverse event happens to a participant. A device complaint
1158 may occur independently from an AE, or along with an AE. An AE may occur without a device
1159 complaint or there may be an AE related to a device complaint.

1160
1161 Device Malfunction: Any failure of a device to meet its performance specifications or otherwise
1162 perform as intended. Performance specifications include all claims made in the labeling for the device.
1163 The intended performance of a device refers to the intended use for which the device is labeled or
1164 marketed. (21 CFR 803.3)

1165
1166 **7.2. Reportable Adverse Events**

1167 For this protocol, a reportable adverse event includes any untoward medical occurrence that meets one
1168 of the following criteria:

1169 1) A serious adverse event
1170 2) An Adverse Device Effect as defined in section 7.1, unless excluded from reporting in
1171 section 7.3

1172 3) An Adverse Event occurring in association with a study procedure
1173 4) Hypoglycemia meeting the definition of severe hypoglycemia as defined below
1174 5) Diabetic ketoacidosis (DKA) as defined below

1175 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
1176 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement are
1177 only reportable if severe and/or required treatment.

1178
1179 Pregnancy occurring during the study will be recorded.

1180
1181 **7.2.1. Hypoglycemic Events**

1182 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
1183 when the following definition for severe hypoglycemia is met: the event required assistance of another
1184 person due to altered consciousness, and required another person to actively administer carbohydrate,
1185 glucagon, or other resuscitative actions. This means that the participant was impaired cognitively to the
1186 point that he/she was unable to treat himself/herself, was unable to verbalize his/ her needs, was
1187 incoherent, disoriented, and/or combative, or experienced seizure or coma. These episodes may be
1188 associated with sufficient neuroglycopenia to induce seizure or loss of consciousness. If plasma
1189 glucose measurements are not available during such an event, neurological recovery attributable to the
1190 restoration of plasma glucose to normal is considered sufficient evidence that the event was induced by
1191 a low plasma glucose concentration.

1192
1193 **7.2.2. Hyperglycemic Events/Diabetic Ketoacidosis**

1194 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
1195 when one of the following criteria is met: (1) the event involved DKA, as defined by the Diabetes
1196 Control and Complications Trial (DCCT) and described below, or (2) in the absence of DKA if
1197 evaluation or treatment was obtained at a health care provider facility for an acute event involving
1198 hyperglycemia or ketosis.

1199
1200 Hyperglycemic events are classified as DKA if the following are present:

1201 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
1202 • Serum ketones >1.5 mmol/L or large/moderate urine ketones;
1203 • Either arterial blood pH <7.30 or venous pH <7.24 or serum bicarbonate <15 ; and
1204 • Treatment provided in a health care facility

1205
1206 All reportable Adverse Events whether volunteered by the participant, discovered by study personnel
1207 during questioning, or detected through physical examination, laboratory test, or other means will be
1208 reported on an adverse event form online. Each adverse event form is reviewed by the Medical
1209 Monitor to verify the coding and the reporting that is required.

1210
1211 **7.2.3. Relationship of Adverse Event to Study Device**

1212 The study investigator will assess the relationship of any adverse event to be related or unrelated by
1213 determining if there is a reasonable possibility that the adverse event may have been caused by the
1214 study device.

1215
1216 To ensure consistency of adverse event causality assessments, investigators should apply the following
1217 general guideline when determining whether an adverse event is related:

1218
1219 **Yes**
1220 There is a plausible temporal relationship between the onset of the adverse event and the study
1221 intervention, and the adverse event cannot be readily explained by the participant's clinical state,
1222 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of
1223 response to the study intervention; and/or the adverse event abates or resolves upon discontinuation of
1224 the study intervention or dose reduction and, if applicable, reappears upon re-challenge.
1225
1226 **No**
1227 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
1228 preexisting medical condition, underlying disease, intercurrent illness, or concomitant medication);
1229 and/or the adverse event has no plausible temporal relationship to study intervention.
1230
1231 **7.2.4. Intensity of Adverse Event**
1232 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or (3)
1233 severe. It is emphasized that the term severe is a measure of intensity: thus a severe adverse event is
1234 not necessarily serious. For example, itching for several days may be rated as severe, but may not be
1235 clinically serious.
1236 • MILD: Usually transient, requires no special treatment, and does not interfere with the
1237 participant's daily activities.
1238 • MODERATE: Usually causes a low level of inconvenience or concern to the participant and
1239 may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.
1240 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic drug
1241 therapy or other treatment.
1242
1243 **7.2.5. Coding of Adverse Events**
1244 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review the
1245 investigator's assessment of causality and may agree or disagree. Both the investigator's and Medical
1246 Monitor's assessments will be recorded. The Medical Monitor will have the final say in determining
1247 the causality.
1248
1249 Adverse events that continue after the participant's discontinuation or completion of the study will be
1250 followed until their medical outcome is determined or until no further change in the condition is
1251 expected.
1252
1253 **7.2.6. Outcome of Adverse Event**
1254 The outcome of each reportable adverse event will be classified by the investigator as follows:
1255 • RESOLVED – The participant recovered from the AE/SAE without sequelae. Record the
1256 AE/SAE stop date.
1257 • RESOLVED WITH SEQUELAE – The event persisted and had stabilized without change in
1258 the event anticipated. Record the AE/SAE stop date.
1259 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that was
1260 the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time of
1261 death; however, were not the cause of death, will be recorded as "resolved" at the time of death.
1262 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or the
1263 participant's records to determine the outcome (for example, a participant that was lost to
1264 follow-up).

1265 • ONGOING – An ongoing AE/SAE is defined as the event was ongoing with an undetermined
1266 outcome.

1267 ○ An ongoing outcome will require follow-up by the site in order to determine the final
1268 outcome of the AE/SAE.

1269 ○ The outcome of an ongoing event at the time of death that was not the cause of death,
1270 will be updated and recorded as “resolved” with the date of death recorded as the stop
1271 date.

1272 All clinically significant abnormalities of clinical laboratory measurements or adverse events occurring
1273 during the study and continuing at study termination should be followed by the participant’s physician
1274 and evaluated with additional tests (if necessary) until diagnosis of the underlying cause, or resolution.
1275 Follow-up information should be recorded on source documents.

1276 If any reported adverse events are present when a participant completes the study, or if a participant is
1277 withdrawn from the study due to an adverse event, the participant will be contacted for re-evaluation
1278 within 2 weeks. If the adverse event has not resolved, additional follow-up will be performed as
1279 appropriate. Every effort should be made by the Investigator or delegate to contact the participant until
1280 the adverse event has resolved or stabilized.

1281 **7.3. Reportable Device Issues**

1282 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
1283 whether an adverse event occurred, except in the following circumstances.

1284 The following device issues are anticipated and will not be reported on a Device Issue Form but will
1285 be reported as an Adverse Event if the criteria for AE reporting described above are met:

- 1286 • Component disconnections
- 1287 • CGM sensors lasting fewer than 7 days
- 1288 • CGM tape adherence issues
- 1289 • Pump infusion set occlusion not leading to ketosis
- 1290 • Battery lifespan deficiency due to inadequate charging or extensive wireless communication
- 1291 • Intermittent device component disconnections/communication failures not leading to system
1292 replacement
- 1293 • Device issues clearly addressed in the user guide manual that do not require additional
1294 troubleshooting
- 1295 • Skin reactions from CGM sensor placement or pump infusion set placement that don’t meet
1296 criteria for AE reporting

1297 **7.4. Pregnancy Reporting**

1298 If pregnancy occurs, the participant will be discontinued from the study. The occurrence of pregnancy
1299 will be reported on an AE Form.

1300 **7.5. Timing of Event Reporting**

1301 Serious or unexpected device-related adverse events must be reported to the Coordinating Center
1302 within 24 hours via completion of the online serious adverse event form.

1310 Other reportable adverse events and device malfunctions (with or without an adverse event) will be
1311 reported within 3 days of the investigator becoming aware of the event by completion of an electronic
1312 case report form.

1313

1314 Device complaints not associated with device malfunction or an adverse event must be reported within
1315 7 days of the investigator becoming aware of the event.

1316

1317 The Coordinating Center will notify all participating investigators of any adverse event that is serious,
1318 related, and unexpected. Notification will be made within 10 days after the Coordinating Center
1319 becomes aware of the event.

1320

1321 Each principal investigator is responsible for reporting serious study-related adverse events and
1322 abiding by any other reporting requirements specific to his/her Institutional Review Board or Ethics
1323 Committee.

1324

1325 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report the
1326 results of the investigation to the sites' IRBs, and the FDA within ten working days of the Sponsor
1327 becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must determine if the
1328 UADE presents an unreasonable risk to participants. If so, the Medical Monitor must ensure that all
1329 investigations, or parts of investigations presenting that risk, are terminated as soon as possible but no
1330 later than 5 working days after the Medical Monitor makes this determination and no later than 15
1331 working days after first receipt notice of the UADE.

1332

1333 Device malfunctions will be handled by the Sponsor or designee as described below. In the case of a
1334 CGM transmitter or sensor device malfunction, the Coordinating Center will be contacted and the
1335 Sponsor will be notified accordingly.

1336

1337 **7.6. Data and Safety Monitoring Board**

1338 The DSMB will be informed of all serious adverse events and any unanticipated adverse device events
1339 that occur during the study and will review compiled safety data at periodic intervals. Details regarding
1340 review will be documented in standalone DSMB procedural documentation.

1341

1342 **7.7. Potential Risks and Side Effects**

1343 Loss of confidentiality is a potential risk; however, data are handled to minimize this risk.

1344 Hypoglycemia, hyperglycemia, and ketone formation are always a risk in subjects with type 1 diabetes
1345 and subjects will be closely monitored for this. When wearing sensors and insulin infusion sets there is
1346 always a risk of skin rashes, allergic reactions to the tape, or infections at the insertion site. There is
1347 always a risk for a small piece of a sensor remaining under the skin or a sensor or infusion set breaking
1348 off under the skin.

1349

1350 **7.7.1. Venipuncture Risks**

1351 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws can
1352 cause some common reactions like pain, bruising, or redness at the sampling site. Less common
1353 reactions include bleeding from the sampling site, formation of a small blood clot or swelling of the
1354 vein and surrounding tissues, and fainting.

1355

1356 **7.7.2. Fingerstick Risks**
1357 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
1358 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory
1359 tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of bleeding under
1360 the skin will produce a bruise. A small scar may persist for several weeks. The risk of local infection
1361 is less than 1 in 1000. This should not be a significant contributor to risks in this study as fingersticks
1362 are part of the usual care for people with diabetes.
1363

1364 **7.7.3. Subcutaneous Catheter Risks (CGM)**
1365 Subjects using the CGM will be at low risk for developing a local skin infection at the site of the
1366 sensor needle placement. If a catheter is left under the skin for more than 24 hours it is possible to get
1367 an infection where it goes into the skin, with swelling, redness and pain. There may be bleeding where
1368 the catheter is put in and bleeding under the skin causes a bruise (1 in 10 risk).
1369

1370 Study staff should verbally alert the subject that on rare occasions, the CGM may break and leave a small
1371 portion of the sensor under the skin that may cause redness, swelling or pain at the insertion site. The
1372 subject should be further instructed to notify the study coordinator immediately if this occurs.
1373

1374 **7.7.4. Risk of Hypoglycemia**
1375 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
1376 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
1377 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating, jitteriness,
1378 and not feeling well. Just as at home, there is the possibility of fainting or seizures (convulsions) and
1379 that for a few days the subject may not be as aware of symptoms of hypoglycemia. A CGM
1380 functioning poorly and significantly over-reading glucose values could lead to inappropriate insulin
1381 delivery.
1382

1383 **7.7.5. Risk of Hyperglycemia**
1384 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
1385 extended period or if the pump or infusion set is not working properly. A CGM functioning poorly
1386 and significantly under-reading glucose values could lead to inappropriate suspension of insulin
1387 delivery.
1388

1389 **7.7.6. Risk of Device Reuse**
1390 The study CGM system is labeled for single-patient use only. The sensor (the component of the system
1391 that enters the skin) will be single-patient use only. The transmitter and receiver may be reused during
1392 the study after cleaning the device using a hospital-approved cleaning procedure. The transmitter is
1393 attached to the sensor but does not enter the skin and the receiver is a handheld device. Subjects will be
1394 informed that FDA or relevant national authorities have approved these devices for single use and that
1395 by using them among multiple patients, bloodborne pathogens (i.e. Hepatitis B) may be spread through
1396 the use of multiple users.
1397

1398 The study insulin pump is labeled for single-patient use. During the study, this device may be reused
1399 after cleaning adhering to a hospital-approved cleaning procedure. All infusion set equipment will be
1400 single patient use only (infusion set insertion kits, tubing, cartridges etc.) Subjects will be informed
1401 that FDA or relevant national authorities have approved the insulin pump device for single use and that
1402 by using them among multiple patients, bloodborne pathogens (i.e. Hepatitis B) may be spread through
1403 the use of multiple users.

1404
1405 The study blood glucose meter and blood ketone meter are labeled for single-patient use. During the
1406 study, only one person can use each device as there are rare risks that bloodborne pathogens (i.e.
1407 Hepatitis B) may be spread through the use of multiple users.
1408
1409 **7.7.7. Psychosocial Questionnaires**
1410 As part of the study, subjects will complete psychosocial questionnaires which include questions about
1411 their private attitudes, feelings and behavior related to diabetes. It is possible that some people may
1412 find these questionnaires to be mildly upsetting. Similar questionnaires have been used in previous
1413 research and these types of reactions have been uncommon.
1414
1415 **7.7.8. Other Risks**
1416 Some subjects may develop skin irritation or allergic reactions to the adhesives used to secure the
1417 CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion. If these
1418 reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm, etc.) will be
1419 tried, sites will be rotated frequently, and a mild topical steroid cream or other medication may be
1420 required.
1421
1422 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion sites
1423 are inserted under the skin. It is possible that any part that is inserted under the skin may cause an
1424 infection. These occur very infrequently, but, if an infection was to occur, oral and/or topical
1425 antibiotics can be used. The risk of skin problems could be greater if you use a sensor for longer than
1426 it is supposed to be used. Therefore subjects will be carefully instructed about proper use of the
1427 sensor.
1428
1429 Data downloaded from the CGM, pump, and blood glucose and ketone meters will be collected for the
1430 study as measures of diabetes self-management behaviors. Some people may be uncomfortable with
1431 the researchers' having such detailed information about their daily diabetes habits.
1432
1433 **7.8. Risk Assessment**
1434 Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia and
1435 hyperglycemia frequently as a consequence of the disease and its management, (2) the study
1436 intervention involves periodic automated insulin dosing that may increase the likelihood of
1437 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the likelihood
1438 of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies using the
1439 investigational device system in the home setting, that limit the likelihood of excessive insulin dosing
1440 or prolonged withdrawal of insulin, and (4) rapid reversal of hypoglycemia and hyperglycemia can be
1441 achieved, it is the assessment of the investigators that this protocol falls under DHHS 46.405 which is
1442 a minor increase over minimal risk. In addition, it is the belief of the investigators that this study also
1443 presents the prospect of direct benefit to the subjects and general benefit to others with diabetes.
1444
1445 **7.9. Study Stopping Criteria**
1446 **7.9.1. Subject Discontinuation of Study Treatment**
1447 Rules for discontinuing closed-loop use (if randomized to CTR group) or study CGM use (if
1448 randomized to the SAP group) are as follows:
1449 1. The investigator believes it is unsafe for the subject to continue on the intervention. This could
1450 be due to the development of a new medical condition or worsening of an existing condition; or
1451 subject behavior contrary to the indications for use of the device that imposes on the subject's

1452 safety—e.g., SAP subject with recurring hypoglycemia due to large correction boluses based
1453 on CGM values without confirmatory fingerstick (assuming contraindicated by CGM
1454 labelling); or CTR subject with recurring hypoglycemia due to over-boluses in closed-loop with
1455 the expectation that the system will prevent hypoglycemia

1456 2. The subject requests that the treatment be stopped

1457 3. Subject pregnancy

1459 In addition, closed-loop use will be discontinued if either of the following occurs:

- 1460 1. Two distinct episodes of severe hypoglycemia as defined in section 7.1 related to automated
1461 insulin delivery
- 1462 2. Two distinct episodes of DKA as defined in section 7.1 related to automated attenuation of
1463 insulin delivery

1466 Even if study treatment is discontinued, the subject will remain in the study and will be encouraged to
1467 participate in study activities such as scheduled phone calls, clinic visits, device downloads, blinded
1468 CGM use, and HbA1c measurements, with priority given to trying to have the subject complete the 13-
1469 week visit.

1471 **7.9.2. Criteria for Suspending/Stopping Overall Study**

1472 In the case of a system malfunction resulting in a severe hypoglycemia or severe hyperglycemia event
1473 (as defined in Section 7.1) during closed-loop control either due to excess insulin administration or
1474 inappropriate suspension that occurs more than one time, enrollment visits, randomization visits, and
1475 all use of the closed-loop system in the study will be suspended while the problem is diagnosed. In
1476 addition, study activities could be similarly suspended if the manufacturer of any constituent study
1477 device requires stoppage of device use for safety reasons (e.g. product recall). The affected study
1478 activities may resume if the underlying problem can be corrected by a protocol or system modification
1479 that will not invalidate the results obtained prior to suspension.

1481 As stated in Section 7.6, the study DSMB will be informed of all serious adverse events and any
1482 unanticipated adverse device events that occur during the study and will review compiled safety data at
1483 periodic intervals. The DSMB will request suspension of study activities or stoppage of the study if
1484 deemed necessary based on the totality of safety data available.

CHAPTER 8: MISCELLANEOUS CONSIDERATIONS

8.1. Benefits

One purpose of this research is to reduce the frequency of hypoglycemia and severe hypoglycemic events. Hypoglycemia is the number one fear of many individuals and families with someone who has type 1 diabetes and this fear often prevents optimal glycemic control.

It is expected that this protocol will yield increased knowledge about using an automated closed-loop to control the glucose level. This research is a definitive step on the path towards development of a fully closed-loop system. In addition, it is the belief of the investigators that this study also presents prospect of direct benefit to the subjects and general benefit to others with diabetes.

8.2. Subject Compensation

Subjects will be compensated \$50 (or local equivalent) for each separate clinic visit during the study.

8.3. Subject Withdrawal

6.5. Subject Withdrawal
Participation in the study is voluntary, and a subject may withdraw at any time. For subjects who withdraw, their data will be used up until the time of withdrawal.

8.4 Confidentiality

3.4. Confidentiality
For security and confidentiality purposes, subjects will be assigned an identifier that will be used instead of their name. Protected health information gathered for this study will be shared with the coordinating center, the Jaeb Center for Health Research in Tampa, FL. De-identified subject information may also be provided to research sites involved in the study.

CHAPTER 9: STATISTICAL CONSIDERATIONS

1511
1512
1513 The approaches to sample size and statistical analyses are summarized below. A detailed statistical
1514 analysis plan will be written and finalized prior to the completion of the study.
1515
1516 The co-primary outcomes for this study are CGM-measured % below 70 mg/dL and % above 180
1517 mg/dL over a 3-month period. The intervention will be considered effective if both of the following
1518 comparisons between two treatment arms (SAP vs. CTR) are statistically significant ($p < 0.05$):
1519

- superiority test for % time CGM values below 70 mg/dL and
- non-inferiority test for % time CGM values above 180 mg/dL (non-inferiority limit = 5%).

1520
1521
1522 **9.1. Sample Size**
1523 Sample size has been computed using co-primary outcomes of time <70 mg/dL (superiority) and time
1524 >180 mg/dL (non-inferiority). Data from the CGM arm of the JDRF CGM RCT from subjects meeting
1525 the eligibility criteria for the current trial were used to project the distribution of % below 70 and above
1526 180 mg/dL over 3 months as measured by CGM for the SAP group in the proposed study.
1527
1528 The total sample size was computed to be 110 for the following assumptions: (1) 1:1 randomization,
1529 (2) 90% power, with adjustment to account for the two co-primary analyses, (3) a 50% relative
1530 reduction in time <70 mg/dL (or absolute reduction of 2.0% assuming baseline of 4.0%) with an
1531 effective SD of 2.8% and 2-sided type 1 error of 5%, and (4) a non-inferiority limit of 5% for the
1532 treatment group comparison of time >180 mg/dL and assuming there is a true difference of 2.5%
1533 favoring the CTR group, with an effective standard deviation of 11% and a 1-sided type 1 error of
1534 2.5%. The sample size was increased to 126 to account for subjects with insufficient data to include in
1535 the primary analysis (see section 9.2).
1536
1537 The Appendix provides further details of the sample size assumptions and computations.
1538
1539 **9.2. Calculation of Outcome Metrics and Handling of Missing Data**
1540 *CGM Metrics*
1541 Randomization is preceded by two weeks of blinded CGM run-in or by presenting at least three weeks
1542 of personal CGM data. The two weeks of blinded run-in or the last two weeks of personal CGM data
1543 will be used in the calculation of baseline CGM metrics.
1544
1545 Per protocol design, the first two weeks following the randomization visit involve a training schedule
1546 for both groups. CGM data during this time will not be included in the calculation of the outcome
1547 CGM metrics. Unblinded CGM data starting from Week 3 post-randomization through the 3 month
1548 visit will be included in the calculation of each CGM metric. Missing (or less than 168 hours) post-
1549 randomization unblinded sensor data will be imputed using all available post-randomization blinded
1550 data. Subjects with any amount of post-randomization unblinded or blinded data will be included in
1551 CGM analyses. Percentages <70 and >180 mg/dL will be calculated giving equal weight to each CGM
1552 point for each subject.
1553
1554 The two weeks of blinded CGM data collected after 9 weeks will not be used for the primary outcome;
1555 except for imputations as mentioned above.
1556
1557 *HbA1c*

1558 If the 3-month visit is completed but an HbA1c measurement from the central laboratory is not
1559 available, a local HbA1c measurement made at the clinical site at the 3-month visit will be used if
1560 available. In such cases the HbA1c value used in the analysis will be computed from a regression line
1561 using the available lab-local HbA1c pairs. A similar imputation will be done for any missing lab
1562 HbA1c values at baseline or other visits. If neither measurement at 3 months is available, then the
1563 HbA1c value will be considered missing and the subject will be excluded from all HbA1c analyses.
1564

1565 **9.3. Primary Analyses**

1566 The primary analysis will follow the intention-to-treat principle. It will include all randomized
1567 subjects, the data from whom will be analyzed in the group to which the subjects were assigned
1568 through randomization.

1569
1570 The intervention will be declared effective only if a statistically significant result (p-value<0.05) is
1571 obtained for both co-primary outcomes. The type 1 error is therefore not inflated by two co-primary
1572 outcomes.

1573 **9.3.1. Changes in CGM-Measured % below 70 mg/dL from Run-in to 3-Months Post- 1574 Randomization Period between the Two Treatment Arms**

1575 Summary statistics (median, quartiles) will be reported for the CGM % <70 mg/dL by treatment group.

1576 Changes from run-in pre-randomization CGM wear (data generated as described above) to the 3-month
1577 post-randomization period in CGM-measured % <70 mg/dL between two treatment arms will be
1578 compared using a linear mixed effects regression model with a $\log(x+0.005)$ transformation while
1579 adjusting for the baseline CGM % <70 mg/dL and clinical center (random effect). Residual values will
1580 be examined for an approximate normal distribution. If values are highly skewed even after the
1581 transformation, then an alternate transformation or robust statistical method (e.g., non-parametric or
1582 MM estimation) will be used instead.

1583 **9.3.2. Changes in CGM-Measured % above 180 mg/dL from Run-in to 3-Months Post- 1584 Randomization Period between the Two Treatment Arms**

1585 Summary statistics (median, quartiles) will be reported for the CGM % >180 mg/dL by treatment
1586 group.

1587 Changes from run-in pre-randomization to over 3-months post-randomization in CGM-measured %
1588 >180 mg/dL between two treatment arms will be compared using a linear mixed effects regression
1589 model; while adjusting for % >180 during run-in, and clinical center (random effect). A 2-sided 95%
1590 confidence interval for the difference between treatment arms will be generated. Separate two-sided p-
1591 values will be calculated to test non-inferiority and superiority. Since non-inferiority is often denoted
1592 in terms of a one-sided test, it is worth noting that a two-sided test at alpha = 0.05 gives the same
1593 rejection region in the right tail as a one-sided test at alpha = 0.025. It is also worth noting that the
1594 additional hypothesis test for superiority does not inflate the overall alpha since a type 1 error can only
1595 occur if the two-sided 95% confidence interval fails to contain the true difference. Residual values will
1596 be examined for an approximate normal distribution. If values are highly skewed then a
1597 transformation or robust statistical method (e.g., non-parametric or MM estimation) will be used
1598 instead.

1599
1600
1601
1602
1603

1604 **9.4. Secondary Efficacy Analyses**
1605 In secondary analyses, treatment group differences will be assessed for additional CGM metrics and
1606 HbA1c. For all secondary analyses (including sections 9.5, 9.6, and 9.7), the false discovery rate will
1607 be controlled using the adaptive Benjamini-Hochberg procedure with <0.10 as the threshold for
1608 statistical significance.

1609
1610 Secondary glycemic metrics based on CGM data will include the following outcomes:
1611

1612 **CGM Metrics Related to Overall Control**
1613 - mean glucose
1614 - % in range of 70-180 mg/dL
1615 - % in range 70-140 mg/dL
1616 - glucose variability measured with the coefficient of variation
1617

1618 **CGM Metrics Related to Hypoglycemia**
1619 - % <60 mg/dL
1620 - % <54 mg/dL
1621 - low blood glucose index
1622 - hypoglycemia events (defined as at least 15 consecutive minutes <70mg/dL)
1623

1624 **CGM Metrics Related to Hyperglycemia**
1625 - % >250 mg/dL
1626 - % >300 mg/dL
1627 - high blood glucose index
1628

1629 The analyses for the above CGM will parallel those mentioned above for the primary % below 70
1630 mg/dL outcome, with the exception that a transformation will not be used for those metrics with a
1631 distribution that is approximately normally distributed. Summary statistics will be reported mean \pm SD
1632 or median (quartiles) as appropriate to the distribution.
1633

1634 A comparison of primary and secondary results during the daytime and overnight will be made.
1635

1636 **HbA1c**
1637 Change in HbA1c from baseline to 13 weeks will be compared between the two treatment arms using a
1638 linear model while adjusting for baseline HbA1c and clinical center (random factor).
1639

1640 Several binary outcomes will be compared between treatment groups using central lab HbA1c values.
1641 • HbA1c <7.0% at 13 weeks
1642 • HbA1c <7.5% at 13 weeks
1643 • HbA1c improvement from baseline to 13 weeks \geq 0.5%
1644 • HbA1c improvement from baseline to 13 weeks \geq 1.0%
1645 • HbA1c relative improvement from baseline to 13 weeks \geq 10%
1646 • HbA1c improvement from baseline to 13 weeks \geq 1.0% or HbA1c <7.0% at 13 weeks
1647

1648 Our goal is to minimize the amount of missing data and it is worth noting that all statistical methods
1649 for handling missing data rely on untestable assumptions and there is no one correct way to handle
1650 missing data. If some HbA1c data will be missing, in addition to the completer-only analyses

1651 mentioned above, sensitivity analyses will be performed in order to confirm that the conclusions do not
1652 rely on the statistical methods employed for handling missing data. Replication of the HbA1c analyses
1653 with imputed data for subjects with missing both local and central lab HbA1c at 13 weeks will be done
1654 using two methods:

- Rubin's multiple imputation and
- Direct likelihood

1657

1658 **9.5. Additional Treatment Group Comparisons**

- Insulin
 - Total daily insulin (units/kg)
 - Basal: bolus insulin ratio
- Weight and Body Mass Index
- Clarke Hypoglycemia Awareness Scores
- INSPIRE survey scores

1665

1666 The analyses for the above metrics will parallel those mentioned above for the secondary efficacy
1667 outcomes.

1668

1669 **9.6. Quality of Life Questionnaires**

1670 The following questionnaires will be completed at baseline and at 13 weeks:

- Fear of Hypoglycemia Survey (HFS-II) – total score and 3 subscales:
 - Behavior (avoid)
 - Behavior (maintain high BG)
 - Worry
- Hyperglycemia Avoidance Scale – total score and 4 subscales:
 - Immediate action
 - Worry
 - Low BG preference
 - Avoid extremes
- Diabetes Distress Scale – total score and 4 subscales:
 - Emotional burden
 - Physician-related distress
 - Regimen-related distress
 - Interpersonal distress
- Hypoglycemia Confidence Scale – total score

1686

1687 For each questionnaire, mean \pm SD values or percentiles appropriate to the distribution will be given
1688 by randomization group for the total score and each subscale. For questionnaires administered to both
1689 randomization groups comparisons will be made using similar linear models as described above for the
1690 primary outcomes. Separate models will be run for the total score and each of the subscales listed
1691 above.

1692

1693 **9.7. Subgroup Analyses**

1694 In exploratory analyses, the two primary outcomes (% <70 and >180 mg/dL) will be assessed
1695 separately in various subgroups and for continuous variables according to the baseline value as defined
1696 below. Tests for interaction with treatment group will be performed and further explored if an
1697 interaction will be found in the first place.

1698
1699 Interpretation of subgroup analyses will depend on whether the overall analysis demonstrates a
1700 significant treatment group difference. In the absence of such an overall difference and if performed,
1701 subgroup analyses will be interpreted with caution. For continuous variables, results will be displayed
1702 in subgroups based on cutpoints although the analysis will utilize the variable as continuous, except for
1703 age which will be analyzed both as a continuous variable and in two age groups. If there is insufficient
1704 sample size in a given subgroup, the cutpoints for continuous measures may be adjusted per the
1705 observed distribution of values. Cutpoint selection for display purposes will be made masked to the
1706 outcome data.

- 1707 - Baseline HbA1c (as continuous variable and in the two subgroups $\geq 7.5\%$ and $< 7.5\%$)
- 1708 - Baseline CGM time spent < 70 mg/dL
- 1709 - Baseline CGM time spent > 180 mg/dL
- 1710 - Age: As a continuous variable and in these subgroups
 - 1711 ○ < 25
 - 1712 ○ ≥ 25
- 1713 - Gender
 - 1714 ○ Female
 - 1715 ○ Male
- 1716 - Race
 - 1717 ○ White
 - 1718 ○ Non-White (split if sample size allows)
- 1719 - Clinical site

1720
1721 Additional analyses may be performed for subgroups defined based on the following baseline
1722 demographic/clinical characteristics.

- 1723 - body mass index,
- 1724 - income, education, and/or insurance status,
- 1725 - baseline scores for quality of life, hypoglycemia awareness and fear questionnaires
- 1726 - C-peptide level

1727 **9.8. Safety Analyses**

1728 All randomized subjects will be included in these analyses and all their post-randomization safety
1729 events will be reported.

1730
1731 The circumstances of all reportable cases of the following will be summarized and tabulated by
1732 treatment group:

- 1733 - Severe hypoglycemia (as defined in Section 7.1)
- 1734 - Diabetic ketoacidosis (as defined in Section 7.1)
- 1735 - Other serious adverse events (SAE) and serious adverse device events (SADE)
- 1736 - Unanticipated adverse device effects (UADE)

1737
1738 For the following outcomes, mean \pm SD or summary statistics appropriate to the distribution will be
1739 tabulated by treatment group:

- 1740 - Number of SH events and SH event rate per 100 person-years
- 1741 - Number of DKA events and DKA event rate per 100 person-years
- 1742 - Any adverse event' rate per 100 person-years

1745 The numbers will be compared between the two treatment arms using robust Poisson regression and
1746 the percentage of subjects with at least one event will be compared using Fisher's exact test.
1747

1748 Any pre-randomization adverse events will be tabulated separately and will include subjects who were
1749 never randomized.
1750

1751 **9.9. Additional Tabulations and Plots**

1752 The following tabulations will be performed according to treatment group without statistical testing:

- 1753 - baseline demographics and clinical characteristics, including Diabetes Specific Personality
1754 Questionnaire score
- 1755 - flow chart accounting for all subjects for all visits
- 1756 - visit and phone contact completion rates for each follow-up visit
- 1757 - number and reasons for unscheduled visits and phone calls
- 1758 - number of subjects who stopped treatment and reasons
- 1759 - sensor use – hours of use and days with any sensor use per week - overall and by month
- 1760 - The daily frequency of downloaded BGM use - overall and by month
- 1761 - Sensor performance metrics (difference, absolute relative difference, and International
1762 Organization for Standardization criteria) – if applicable, by sensor version.
- 1763 - % time CGM data available
- 1764 - protocol deviations
- 1765 - device malfunctions requiring study team contact and other reported device issues
- 1766 - 24 hours plots with median line and IQR bands for % CGM <70 mg/dL, >180 mg/dL, mean,
1767 70-180 mg/dL, and coefficient of variation

1768 **9.10. Tabulations in CTR Arm Only**

1769 The following tabulations will be performed for the CTR arm only:

- 1770 - performance metrics, describing the inControl system and its components
- 1771 - % time CGM data were available to the inControl System
- 1772 - hours of different CL mode use per week - overall and by month
- 1773 - Technology Expectations Survey score at baseline and Technology Acceptance Survey score at
1774 13 weeks

1775 **9.11. Sensitivity Analyses**

1776 If more than 5% of subjects have fewer than 168 hours of post-randomization CGM data, the two co-
1777 primary analyses will be replicated excluding such subjects.
1780

1781 **9.12. Other Analyses**

1782 Additional analyses that will be detailed in the Statistical Analysis Plan will include the following:

- 1783 • Blinded CGM data
 - 1784 ○ Treatment group comparisons paralleling the unblinded CGM data analyses
 - 1785 ○ Comparison of blinded and unblinded CGM data from the same time periods
 - 1786 ○ Comparison of unblinded CGM data from the blinded time periods versus the unblinded
1787 CGM data from the rest of the follow-up period
- 1788 • Effect of menstrual cycle to glycemic control and comparison of treatment groups during
1789 different menstrual cycle periods.

1792 CHAPTER 10: DATA COLLECTION AND MONITORING

1793 1794 **10.1. Case Report Forms and Device Data**

1795 The main study data are collected through a combination of electronic case report forms (CRFs) and
1796 electronic device data files obtained from the study software and individual hardware components.
1797 These electronic device files and electronic CRFs from the study website are considered the primary
1798 source documentation.

1799 1800 **10.2. Quality Assurance and Monitoring**

1801 Designated personnel from the Coordinating Center will be responsible for maintaining quality
1802 assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is
1803 conducted and data are generated, documented and reported in compliance with the protocol, Good
1804 Clinical Practice (GCP) and the applicable regulatory requirements. Adverse events will be prioritized
1805 for monitoring.

1806 1807 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course of the
1808 study, consistent with the FDA “Guidance for Industry Oversight of Clinical Investigations — A Risk-
1809 Based Approach to Monitoring” (August 2013). Study conduct and monitoring will conform to 21
1810 Code of Federal Regulations (CFR) 812.

1811 1812 The data of most importance for monitoring at the site are subject eligibility and adverse events.
1813 Therefore, the RBM plan will focus on these areas. As much as possible, remote monitoring will be
1814 performed in real-time with on-site monitoring performed to evaluate the verity and completeness of the
1815 key site data. Elements of the RBM may include:

- 1816 • Qualification assessment, training, and certification for sites and site personnel
- 1817 • Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- 1818 • Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol review
1819 of entered data and edits, statistical monitoring, study closeout
- 1820 • On-site monitoring (site visits): source data verification, site visit report
- 1821 • Device accountability
- 1822 • Communications with site staff
- 1823 • Patient retention and visit completion
- 1824 • Quality control reports
- 1825 • Management of noncompliance
- 1826 • Documenting monitoring activities
- 1827 • Adverse event reporting and monitoring

1828 1829 Coordinating Center representatives or their designees may visit the study facilities at any time in order
1830 to maintain current and personal knowledge of the study through review of the records, comparison
1831 with source documents, observation and discussion of the conduct and progress of the study.

APPENDIX: Sample Size Estimation for the *iDCL* Trial

The objective of this clinical trial is to assess the efficacy and safety of home use of a standard Control-to-Range (sCTR) closed-loop (CL) system with minimal central safety monitoring compared with sensor augmented pump therapy (SAP) in subjects with type 1 diabetes. The CL system was primarily designed to reduce hypoglycemia while also keeping hyperglycemia under control. Given this design, a co-primary of superiority in hypoglycemia along with a non-inferiority in hyperglycemia are proposed for the study.

Major eligibility criteria are:

- Clinical diagnosis of type 1 diabetes
- Use of an insulin infusion pump for at least 6 months
- Age ≥ 14.0 years old

Primary Analyses

The primary analysis in this study will be a combination of two different hypothesis tests comparing the two treatment arms:

- CGM percent time below 70 mg/dl (superiority)
- CGM time above 180 mg/dl (non-inferiority)

1. Using JDRF CGM RCT data to estimate sample size

The JDRF CGM RCT was a parallel group 12-months randomized trial comparing open loop CGM use and self-monitoring of blood glucose (SMBG) versus SMBG alone. Data from the treatment /CGM group in the JDRF CGM RCT were used to estimate CGM data in the control group of the proposed study. CGM data for the first 2 weeks were used to simulate a mock run-in phase, the next 2 weeks were discarded, and the next 13 weeks were used to estimate time below 70 mg/dl and time above 180 mg/dl means and variances.

There were N=125 subjects randomized to open-loop CGM use who met the following criteria:

- using a pump for at least 6 months,
- age ≥ 14.0 years,
- at least 168 hours of CGM data (i.e. at least 50%) during the 2-week mock run-in phase

2. Primary Analysis

The co-primary outcomes are:

- superiority in CGM-measured time below 70 mg/dl, and
- non-inferiority in CGM-measured time above 180 mg/dl over 3 months (non-inferiority limit of 5%).

The study will be declared a success only if both tests listed above reject the null hypothesis.

CGM time below 70 mg/dl

Among all 125 subjects in the JDRF data, the mean % below 70 mg/dl over 13 weeks = 4.0%, the mean % below 70 mg/dl during the 2 weeks run-in phase = 3.7%, and the correlation between the two = 0.74. The SD for % below 70 mg/dl over 13 weeks = 3.3% (95% CI: 2.9%, 3.8%). A more conservative correlation of 0.5 was used for an effective SD = 2.8% (95% CI: 2.5%, 3.3%).

1880
1881 CGM time above 180 mg/dl
1882 Among all 125 subjects in the JDRF data, the mean % above 180 mg/dl over 13 weeks = 27%, the
1883 mean % above 180 mg/dl during the 2 weeks run-in phase = 27%, and the correlation between the two
1884 = 0.80. The SD for % above 180 mg/dl over 13 weeks = 13% (95% CI: 11%, 15%). A more
1885 conservative correlation of 0.5 was used for an effective SD = 11% (95% CI: 10%, 13%).
1886
1887 Combined inference
1888 For the primary analysis, the intervention will be considered effective only if both co-primary
1889 outcomes are found to be statistically significant. Instead of inflating the type 1 error, requiring both
1890 comparisons to be statistically significant slightly inflates type 2 error. The lower bound for the overall
1891 combined power to reject both null hypothesis will be computed using Bonferroni adjustments.
1892
1893 The total sample size was computed to be 110 for the following assumptions:
1894 - 1:1 randomization scheme,
1895 - 90% overall power that accounts for the two co-primary analyses,
1896 - A 50% relative reduction in time <70 mg/dL of (i.e., 4.0% vs. 2.0% absolute time) with an
1897 effective SD of 2.8% and 2-sided type I error of 5%,
1898 - A non-inferiority limit of 5% for the treatment group comparison of time >180 mg/dL and
1899 assuming there is a true difference of 2.5% favoring the CTR group, with an effective standard
1900 deviation of 11% and a 1-sided type I error of 2.5%.
1901
1902 The assumptions above with a sample size of N=110 give statistical power:
1903 - 96% for the hypoglycemia comparison (superiority) and
1904 - 94% power for the hyperglycemia comparison (non-inferiority).
1905
1906 Using a Bonferroni bound, the overall power that both tests will reject the null hypothesis is at least
1907 94% + 96% - 100% = 90%.
1908
1909 **4. Summary**
1910 For the primary analysis, the intervention will be considered effective if a statistically significant
1911 reduction in % below 70 mg/dl along with an equivalence in % above 180 mg/dl over 3 months (with a
1912 non-inferiority limit of 5%) will be found (co-primary outcomes). Assuming an overall power >90%,
1913 an effective SD of 2.8% and a 50% relative reduction in % below 70 mg/dl (or absolute reduction of
1914 2.0% assuming baseline of 4%) along with an effective SD of 11%, an improvement of 2.5%, and a
1915 non-inferiority limit of 5% in % above 180mg/dl, a minimum total sample size of 110 is needed.
1916
1917 The final sample size was selected to be 126 to account for possible non-compliance or dropout.

REFERENCES

1918
1919
1920 1. Kovatchev B, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM, Brown SA, Chernavsky DR, Breton MD, Farret A, Pelletier MJ, Place J, Bruttomesso D, Del Favero S, Visentin R, Filippi A, Scotton R, Avogaro A, Doyle FJ, 3rd: Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. *Diabetes Care* 36:1851-1858, 2013
1921
1922
1923
1924 2. Kovatchev BP, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM, Brown SA, Chernavsky DR, Breton MD, Mize LB, Farret A, Place J, Bruttomesso D, Del Favero S, Boscoli F, Galasso S, Avogaro A, Magni L, Di Palma F, Toffanin C, Messori M, Dassau E, Doyle FJ, 3rd: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. *Diabetes Care* 37:1789-1796, 2014
1925
1926
1927
1928
1929 3. DeSalvo DJ, Keith-Hynes P, Peyser T, Place J, Caswell K, Wilson DM, Harris B, Clinton P, Kovatchev B, Buckingham BA: Remote glucose monitoring in camp setting reduces the risk of prolonged nocturnal hypoglycemia. *Diabetes Technol Ther* 16:1-7, 2014
1930
1931
1932 4. Ly TT, Breton MD, Keith-Hynes P, De Salvo D, Clinton P, Benassi K, Mize B, Chernavsky D, Place J, Wilson DM, Kovatchev BP, Buckingham BA: Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp. *Diabetes Care* 37:2310-2316, 2014
1933
1934
1935
1936 5. Ly T, Chernavsky DR, Satin-Smith M, DeSalvo DJ, Shanmugam S, Keith-Hynes PT, Breton MD, Buckingham BA: Closed-loop control with DIAS vs. sensor-augmented pump therapy in adolescents and young adults with type 1 diabetes at camp In Advanced Technologies and Treatments for Diabetes (ATT) Paris, France, 2015, p. 99-L
1937
1938
1939
1940 6. Kropff J, Del Favero S, Place J, Toffanin C, Visentin R, Monaro M, Messori M, Di Palma F, Lanzola G, Farret A, Boscoli F, Galasso S, Magni P, Avogaro A, Keith-Hynes P, Kovatchev BP, Bruttomesso D, Cobelli C, DeVries JH, Renard E, Magni L: 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. *Lancet Diabetes Endocrinol* 3:939-947, 2015
1941
1942
1943
1944
1945 7. Renard E: Reduction of hyper- and hypoglycemia during two months with a wearable artificial pancreas from dinner to breakfast in patients with type 1 diabetes. In Boston, MA American Diabetes Association 75th Scientific Sessions, 2015, p. poster 940-P
1946
1947
1948 8. Anderson S: First New Year's Night on closed-loop control (CLC) at home: Case reports from a multi-center international trial of long-term 24/7 CLC In American Diabetes Association 75th Scientific Sessions Boston, MA, 2015, p. 223-OR
1949
1950
1951 9. Kovatchev B: JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control
1952 In Advanced Technologies and Treatments for Diabetes (ATT): Plenary Session Milan, Italy, 2016
1953
1954 10. Kovatchev B: Closed-loop control modalities in type 1 diabetes: Efficacy and system acceptance. In Advanced Technologies and Treatments for Diabetes (ATT) Paris, France, 2015
1955
1956 11. Del Favero S: A multicenter randomized cross-over Italian pediatric summer camp: AP vs SAP in 5-8 year old children
1957 In Advanced Technologies and Treatments for Diabetes (ATT): Plenary Session Milan, Italy, 2016
1958
1959 12. Chernavsky DR: Closed-loop control during extended winter-sport exercise in youth with T1DM: Results from the first AP ski camp. In Advanced Technologies and Treatments for Diabetes (ATT): Data Club Session Milan, Italy, 2016
1960
1961 13. Chernavsky DR, DeBoer MD, Keith-Hynes P, Mize B, McElwee M, Demartini S, Dunsmore SF, Wakeman C, Kovatchev BP, Breton MD: Use of an artificial pancreas among adolescents for a missed snack bolus and an underestimated meal bolus. *Pediatr Diabetes* 17:28-35, 2016
1962
1963
1964 14. Brown SA, Kovatchev BP, Breton MD, Anderson SM, Keith-Hynes P, Patek SD, Jiang B, Ben Brahim N, Vereshchtein P, Bruttomesso D, Avogaro A, Del Favero S, Boscoli F, Galasso S, Visentin
1965

1966 R, Monaro M, Cobelli C: Multinight "bedside" closed-loop control for patients with type 1 diabetes.

1967 Diabetes Technol Ther 17:203-209, 2015

1968 15. Gonder-Frederick L, Shepard J, Vajda K, Wakeman C, McElwee M, Kovatchev B: Personality

1969 traits and BG profile improvements with continuous glucose monitoring use. Diabetes 61 (Suppl
1970 1):808-P, 2012

1971 16. Jackson DN, Ashton MC, Tomes JL: The six-factor model of personality: Facets from the Big
1972 Five. *Personality & Individual Differences* 21:391-402, 1996

1973 17. Clarke WL, Cox DJ, Gonder-Frederick L, Julian D, Schlundt D, Polonsky W: Reduced Awareness
1974 of Hypoglycemia in Adults With IDDM: A prospective study of hypoglycemic frequency and
1975 associated symptoms. Diabetes Care 18:517-522, 1995

1976 18. Gonder-Frederick LA, Schmidt KM, Vajda KA, Greear ML, Singh H, Shepard JA, Cox DJ:
1977 Psychometric properties of the hypoglycemia fear survey-ii for adults with type 1 diabetes. Diabetes
1978 Care 34:801-806, 2011

1979 19. Singh H, Gonder-Frederick L, Schmidt K, Ford D, Vajda K, Hawley J, Cox DJ: Assessing
1980 Hyperglycemia Avoidance in People with type 1 Diabetes. Diabetes Management 4:263-271, 2014

1981 20. Polonsky WH, Fisher L, Hessler D, Edelman SV. Investigating Hypoglycemic Confidence in Type
1982 1 and Type 2 Diabetes. Diabetes Technol Ther. 2017;19(2):131-6.

1983 21. Polonsky WH, Fisher L, Earles J, Duml RJ, Lees J, Mullan J, Jackson RA: Assessing psychosocial
1984 distress in diabetes: development of the diabetes distress scale. Diabetes Care 28:626-631, 2005

1985 22. Weissberg-Benchell J, Hessler D, Polonsky WH, Fisher L: Psychosocial Impact of the Bionic
1986 Pancreas During Summer Camp. J Diabetes Sci Technol, 2016

1987