

Protein Supplementation in Older Adults with Sarcopenic Obesity Undergoing Caloric Restriction and Exercise.

Clinical trial registration number: **NCT04981366**

Unique Protocol ID: **04234918.1.0000.0065**

Principal Investigator

Professor, Hamilton Roschel,

Center of Lifestyle Medicine; Laboratory of Assessment and Conditioning in Rheumatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, Third Floor, 01246-903, São Paulo, São Paulo, Brazil.

Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.

Sub-investigators

PhD student, Gersiel Oliveira Junior, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil.

PhD student, Rafael Genario, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil.

PhD student, Alice Erwig Leitão, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil.

MSc student, Tathiane Franco, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil.

PhD, Saulo Gil, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil

Professor Bruno Gualano, Center of Lifestyle Medicine; Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil

Trial center:

Center of Lifestyle Medicine; Laboratory of Assessment and Conditioning in

Rheumatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, Third Floor, 01246-903, São Paulo, São Paulo, Brazil

SUMMARY

PROTOCOL	5
SUMMARY OF STUDY	5
BACKGROUND AND SIGNIFICANCE	6
STUDY HYPOTHESIS	8
AIM	8
RESEARCH DESIGN AND METHODS	8
STUDY POPULATION	9
Inclusion criteria	9
Exclusion criteria	9
Follow-up procedure:	9
STUDY DESIGN	10
RANDOMIZATION	10
EXAMINATIONS	10
Anthropometry	11
Body composition	11
Skeletal muscle size	11
Quadriceps muscular cross-sectional area	12
Rectus femoris and vastus lateralis muscular cross-sectional area	12
Visceral and subcutaneous fat areas	13
Muscle biopsies	13
Bone health	15
Bone microarchitecture	15
Bone mineral content and areal bone mineral density	16
Strength and functionality	16
Isometric strength	16
Isoinertial strength	17
Functional capacity	17
Cardiopulmonary assessments	18
Pulmonary function	18
Cardiorespiratory fitness	19
Dietary assessments	19
Biochemical analyses	20
Lipid profile	20

Glycated hemoglobin	20
Oxidative Stress markers.....	20
Gut hormones and inflammatory markers.....	21
Bon-related parameters	21
Oral glucose tolerance test (OGTT).....	21
Telomere length	22
Health-related quality of life	23
Sleep quality.....	23
Depression and anxiety	24
Cognitive processing speed	24
Cognitive executive function	25
EXPERIMENTAL INTERVENTIONS	25
Caloric restriction and dietary supplementation.....	25
Exercise training intervention.....	26
SAMPLE SIZE CALCULATION.....	27
DATA ANALYSIS.....	28
STATISTICAL ANAYSIS PLAN	28
STUDY TIME LINE	30
REFERENCES	31

PROTOCOL

Protein Supplementation in Older Adults with Sarcopenic Obesity Undergoing Caloric Restriction and Exercise.

SUMMARY OF STUDY

Sarcopenic obesity increases the risks of mortality, comorbidities, and the development of various geriatric syndromes, making it a growing concern for the older adults. However, treatment options are controversial and lack sufficient data. Combining exercise training, caloric restriction, and increased dietary protein is a potential strategy, but the long-term effects on muscle, bone health, cardiovascular function, and aging are still unclear. Therefore, this study aimed to investigate the impact of combining protein supplementation with exercise training and caloric restriction in older adults with sarcopenic obesity.

This will be a single-center, double-blinded, parallel-group, randomized, placebo-controlled trial. Older adults with sarcopenic obesity (n= 105) will be allocated to one of three groups: protein supplementation (PTN, n=35), placebo supplementation (PLA, n=35), or control (CON, n=35). The PTN and PLA groups will receive dietary supplements in addition to an exercise training and calorie restriction intervention, while the CON group will receive no intervention. Body composition, bone health, cardiorespiratory fitness, pulmonary function, functional capacity, muscle cross-sectional area, upper and lower-limb maximal dynamic strength, endothelial function, biochemical parameters, health-related quality of life, cognitive function, sleep quality, symptoms of anxiety and depression, and nutritional status will be assessed before and after a 16-week intervention period. A linear mixed model with repeated measures analysis will be conducted to assess within- and between-group effects of the intervention, using baseline values of the outcome as covariates. Whenever significant group-by-time interactions will be found, post-hoc tests on the adjusted predictions with Sidak's adjustment will be performed for multiple comparisons. Significance will be set at $p<0.05$. Data will be reported as the mean and standard deviation, along with the estimated mean difference (EMD) between groups and its 95% confidence interval (95% CI) when a main effect or interaction is observed.

BACKGROUND AND SIGNIFICANCE

The prevalence of obesity among older adults is growing worldwide (1-3). Excessive adipose tissue is linked to insulin resistance, high blood pressure, endothelial dysfunction, and dyslipidemia, obesity offers a heightened risk for developing cardiovascular and metabolic diseases, particularly among older individuals (4-6). Concurrently, aging is associated with declines in skeletal muscle mass and function (i.e., sarcopenia) (7), which can be further exacerbated by obesity (8-10). The interplay of these conditions poses an emergent public health issue termed sarcopenic obesity (11-13), a condition associated with greater risk of morbimortality and worse health-related quality of life (14, 15).

The optimal treatment approach for sarcopenic obesity in older adults is still a subject of debate. Numerous studies have highlighted the potential benefits of caloric restriction for managing obesity and mitigating its associated negative effects (16-21). However, weight loss resulting from caloric restriction may further worsen age-related declines in skeletal muscle and bone mass in older adults (20). For this reason, exercise training has been frequently recommended as a countermeasure to offset skeletal muscle and bone mass losses while potentiating weight loss (22, 23). Although previous studies partly support this idea, exercise training alone has been shown unable to fully preserve skeletal muscle and bone tissue (17, 24, 25), warranting additional strategies to counteract the adverse effects of caloric restriction on these tissues.

For instance, acute protein intake can activate anabolic pathways in skeletal muscle and stimulate the release of growth factors essential for maintaining bone structure (26, 27). Over the long term, high-protein diets may help support muscle and bone turnover, potentially reducing caloric restriction-associated adverse effects on body composition, even in older populations (28-34). Importantly, increased dietary protein intake have been demonstrated to positively impact functional capacity in older adults when combined with exercise training interventions, possibly preserving/enhancing their autonomy (35, 36).

Protein supplementation may also confer metabolic benefits on lipid metabolism, insulin resistance, endothelial function, and immune function (37-40). Indeed, protein supplementation, especially whey protein, modulates incretin hormones and is highly insulinotropic (38, 39), which may improve insulin sensitivity, glycemic variability (41, 42) and lipid profile (43). Furthermore, immunoglobins present in whey protein are

thought to possess anti-inflammatory properties (37-39), which may help reduce inflammatory status in these patients (44-46). Also, the use of whey protein has been recommended to improve endothelial function. Significant improvements in flow-mediated dilation (FMD) response, a prognostic marker of cardiovascular events (47), have been demonstrated following whey protein supplementation in different populations (40, 48, 49).

Cardiorespiratory fitness, a clinical prognostic marker that is highly responsive to exercise training, is also likely to respond positively to dietary interventions when combined with exercise training (50). Previous small-scale studies have demonstrated the benefits of protein supplementation during endurance training on cardiorespiratory fitness in both healthy individuals and clinical populations (51-53). It can be speculated that the positive effects of protein supplementation on skeletal muscle mass and mitochondrial adaptations (54) may enhance mechanical efficiency and bioenergetic metabolism, further contributing to improvements in cardiorespiratory fitness. Moreover, ventilatory inefficiency and exertional dyspnea, which are often associated with obesity, may also improve with changes in body composition and weight loss, particularly through reductions in fat mass (55, 56).

Finally, recent studies have also shown a positive association between skeletal muscle mass and leukocyte telomere length, a marker of biological aging (57, 58). A similar negative association is observed between obesity-related parameters (e.g., body mass index, fat mass, waist-to-hip ratio, etc.) and leukocyte telomere length (59-62). It is plausible to speculate that improvements in body composition (e.g., maintaining muscle mass while reducing fat mass) through interventions combining both protein supplementation and exercise training may influence the rate of telomere shortening, potentially impacting overall health.

Collectively, these positive effects of protein may be of significant clinical relevance, considering that these conditions are highly prevalent in older adults, especially among those with sarcopenic obesity (63-67). Therefore, this study aimed at investigating the impact of protein supplementation in addition to exercise training and caloric restriction on fat-free mass (as primary outcome) in older adults with sarcopenic obesity. Secondary outcomes include skeletal muscle fiber area, muscle strength and functionality, fat mass (total, visceral and subcutaneous), bone health parameters (bone mineral density, microarchitecture and bone metabolism markers). Other outcomes included cardiopulmonary capacity (cardiorespiratory fitness and pulmonary function),

glycemic control and insulin sensitivity, endothelial function, inflammation, and related cellular and molecular mechanisms (telomere length, oxidative stress, and lipid profile). We hypothesized that this integrated approach could provide substantial benefits for body composition, and various health-related outcomes crucial to managing sarcopenic obesity in this population.

STUDY HYPOTHESIS

We hypothesized that protein supplementation can provide additional benefits on body composition and bone health more than only caloric restriction and exercise training in this population. Additionally, we hypothesized that these improvements would enhance muscle function. Furthermore, we also expected that protein supplementation would enhance the effects of caloric restriction and exercise training on glycemic control, insulin sensitivity, endothelial function, inflammatory markers, lipid profile, telomere length and oxidative stress markers.

AIM

This study aimed at investigating the impact of protein supplementation in addition to exercise training and caloric restriction on fat-free mass (as primary outcome) in older adults with sarcopenic obesity. Secondary outcomes include skeletal muscle fiber area, muscle strength and functionality, fat mass (total, visceral and subcutaneous), bone health parameters (bone mineral density, microarchitecture and bone metabolism markers). In addition, this study will aim the effects of protein supplementation in other outcomes including cardiopulmonary capacity (cardiorespiratory fitness and pulmonary function), glycemic control and insulin sensitivity, endothelial function, inflammation, and related cellular and molecular mechanisms (telomere length, oxidative stress, and lipid profile).

RESEARCH DESIGN AND METHODS

This 16-week study will be a single-center, double-blinded, parallel-group, randomized, placebo-controlled trial.

STUDY POPULATION

Older adults will be recruited from the Division of Geriatrics at the School of Medicine of the University of São Paulo, as well as through advertisements on social media and in community-based centers for older adults. All participants will provide written informed consent before enrollment in the study.

Inclusion criteria

Men and women aged 65 years or older, with central obesity (waist circumference >102 cm for men and >88 cm for women), body mass index (BMI) of ≥ 30 kg/m², sarcopenia (according to the criteria set by the Foundation for the National Institutes of Health (FNIH) (68)), not engaged in an exercise training program, and with stable weight within the past 6 months will be considered eligible to participate. Reference cut-off values for sarcopenia will include a handgrip strength-to-BMI ratio of less than 1.0 kg/BMI and an appendicular fat-free mass-to-BMI ratio of less than 0.789 kg/BMI for men, and a handgrip strength-to-BMI ratio of less than 0.56 kg/BMI and an appendicular fat-free mass-to-BMI ratio of less than 0.512 kg/BMI for women (68).

Exclusion criteria

Exclusion criteria will include a history of recent malignancies (within the past 5 years); cognitive deficits or dementia that prevent the participant from reading and signing the informed consent form; and medical conditions in which physical testing or engaging in exercise training would be contraindicated (e.g., locomotor disabilities or cardiopulmonary diseases, including unstable angina, heart failure, myocardial infarction, or chronic obstructive pulmonary disease).

Follow-up procedure:

In case of drop-out, the participant will be asked to complete a full set of examinations at the time of drop out.

STUDY DESIGN

The present study will be a single-center, double-blinded, parallel-group, randomized, placebo-controlled trial. Figure 1 illustrates the study design. Initially, participants will be pre-screened through phone calls or personal interviews. Those who meet the preliminary criteria will then be further assessed for their medical condition and eligibility criteria. Eligible participants will be matched based on sex and then randomly allocated in a 1:1:1 ratio into one of the following experimental groups: (a) protein supplementation (PTN), (b) placebo supplementation (PLA), or (c) control (CON). Both the PTN and PLA groups will receive dietary supplementation, will be caloric-restricted, and will engage in an exercise training program. Participants in the CON group will receive no intervention other than general guidance on healthy eating and physical activity. All outcomes of interest will be assessed immediately before participants' randomization at baseline (PRE) and after 16 weeks of intervention (POST). Anthropometric and dietary parameters will be reassessed at weeks 4, 8, and 12. Participants will also meet with a registered dietitian from the research team every two weeks in order to ensure compliance with the dietary intervention.

RANDOMIZATION

Eligible participants will be sex-matched and then randomly allocated using a computer-generated block design in a 1:1:1 ratio into one of the following experimental groups through a specific software (<https://randomizer.org>): (a) protein supplementation (PTN), (b) placebo supplementation (PLA), or (c) control (CON). The allocation sequence will be concealed from the research staff.

EXAMINATIONS

The primary outcome will be the change from baseline in fat-free mass (total, appendicular, appendicular relative to BMI and leg). Secondary outcomes will include other measures of body composition (i.e. fat and bone density), bone microarchitecture, bone metabolism, and specific muscle functions. Other outcomes, including cardiopulmonary capacity (cardiorespiratory fitness and pulmonary function), glycemic control, insulin sensitivity, endothelial function, inflammation, cognitive function and

related cellular and molecular mechanisms (telomere length, oxidative stress, and lipid profile) will also be assessed.

Anthropometry

Body weight and height will be measured on a calibrated digital scale with a stadiometer, respectively. Also, a trained researcher will carefully measure anthropometric data, including waist (WC) and hip circumferences (HC). WC will be determined at the midpoint between the lowest rib and top of the iliac crest on the axial plane, while the HC will be measured at the widest part of the hips. All assessments will be performed with the participant standing; a plastic tape will be used for these measurements.

Body composition

Total and segmental fat-free, and fat mass parameters, and areal bone mineral density (aBMD) of the whole body, lumbar spine, femoral neck, and total hip parameters will be assessed by a whole-body dual-energy X-ray absorptiometry (DXA) using Hologic QDR 4500A densitometry equipment (Discovery Densitometer, Hologic Inc., Bedford, MA, USA). The DXA will be calibrated with phantoms as per the manufacturer's guidelines each day before measurements are taken. Assessments will be carried out in the morning, using a consistent positioning of participants on the scanning bed of the DXA equipment (36). All exams will be conducted by an experienced technologist blinded to the study protocol.

The precision errors for aBMD assessments will be determined following recommendations from the International Society for Clinical Densitometry (69).

Skeletal muscle size

Skeletal muscle size will be assessed using computed tomography (CT) and B-mode ultrasound. For both CT and ultrasound imaging exams, participants will first be positioned supine with their shoulders extended, hands placed above their heads, and knees fully extended. All muscular cross-sectional area (mCSA) images will be acquired in the right leg. Before assessments, participants will lay down for 20 minutes to allow

fluid distribution (70). During assessments, the legs will be restrained with Velcro straps to prevent internal or external hip rotation and participants will be instructed to relax as much as possible their lower limb muscles.

Quadriceps muscular cross-sectional area

Quadriceps mCSA will be evaluated through computed tomography (CT) scans (Discovery CT 750HD, GE Healthcare, Chicago, IL). PRE and POST images will be acquired by the same blinded specialized radiology technician, under medical supervision, and processed using GE Healthcare workstation. To avoid bias, both will be blinded to the participants' group assignment. Initially, an image will be captured to determine the thigh length, which will be defined as the perpendicular distance from the greater trochanter to the inferior border of the lateral epicondyle of the femur. Quadriceps mCSA images will be acquired at 50% of the segment and processed using GE Healthcare workstation. Image acquisition parameters will be as follows: slice thickness = 10 mm; table increment = 10 mm, 0.70 rev/s, 120 kV, 68 mAs per slice, and field of view = 500. Density values used will range from 30–100 HU. Quadriceps mCSA will be determined using computerized planimetry through the 'freehand region of interest (ROI)' tool of the image analysis software Isite PACS 4.1 (Philips Healthcare Informatics, 4100 East Third Ave., Suite 101 Foster City, CA, USA).

Rectus femoris and vastus lateralis muscular cross-sectional area

Rectus femoris and vastus lateralis mCSA will be assessed by a B-mode ultrasound with a 7.5-MHz linear-array probe (LOGIQ e PRO – GE Healthcare, Chicago, IL, US) as previously described (71). Similarly to CT scans, images will be obtained at 50% of the segment. This anatomical point will be transversally marked every 2 cm with semipermanent ink and used as a reference for the probe displacement. Sequential images will be acquired, aligning the superior edge of the probe with each mark on the skin following a middle-to-lateral direction. To avoid pressure on the muscle tissue, which could result in image distortion, a generous amount of conductive gel will be used. After the data collection, the muscle images will be reconstructed in PowerPoint (Microsoft, Redmond, WA, USA). mCSA will then be measured using computerized planimetry (i.e., by contouring following the muscle fascia using an 800-dpi mouse) (Madena 3.2.5; Eye-

Physics, Los Alamitos, CA, USA). The planimetry software (ImageJ, NIH, USA) will be calibrated with fixed distance scales displayed in the US images. A single investigator, blinded to the participants' group assignment, will perform the analyses.

Visceral and subcutaneous fat areas

Visceral (VAT) and subcutaneous adipose tissue (SAT) areas will be measured by CT scans (Discovery CT 750HD, GE Healthcare, Chicago, IL). Similarly, the same blinded specialized radiology technician will acquire the images at PRE and POST under medical supervision and process them using the GE Healthcare workstation. First, an image will be initially obtained to determine the umbilical scar, which will allow the delineation of total and visceral adipose tissue areas (72).

VAT will be assessed using the following procedures: (i) the technician will manually draw a line below the skin to obtain the total adipose tissue, which will be defined as the sum of adipose tissue hounsfield units (HU) inside this line, and (ii) VAT will be segmented by drawing a line, which begins at the abdominal linea alba, bisects the rectus abdominis, the internal oblique, the iliocostalis, and laterally around the peritoneum surrounding the vertebral body to join at the midline anterior to the vertebral body. All HU inside this line that meet the criteria for adipose tissue X-ray density will be counted as visceral adipose tissue (73).

Abdominal SAT area will be determined by the difference between VAT and total abdominal fat, by using computerized planimetry through the 'freehand ROI' tool of the image analysis software Isite PACS 4.1 (Philips Healthcare Informatics, 4100 East Third Ave., Suite 101 Foster City, CA, USA). Image acquisition parameters will be as follows: slice thickness = 10 mm; table increment = 10 mm, 0.70 rev/s, 120 kV, 68 mAs per slice and field of view = 500. Density values used will range from -30 to -190 HU.

Muscle biopsies

Prior to tissue extraction, the area will be cleansed with an antiseptic solution. Subsequently, the selected site will be anesthetized with a subcutaneous injection of 3 mL of 2% lidocaine. Following local anesthesia, a small incision (~5 cm) will be made down to the muscle fascia using a surgical scalpel. A Bergström biopsy needle will then be inserted into the lateral portion of the vastus lateralis at a depth of approximately 4 cm, adjusted based on the thickness of subcutaneous fat (74). Suction will be applied to the

outer end of the needle using a 120 mL syringe, allowing a small muscle tissue sample to be excised by the needle's internal blade (75). After the needle is withdrawn, pressure will be applied to the incision site to prevent bleeding, and the incision will be closed and covered with sterile bandages (76).

Immediately after extraction (~150 mg), visible adipose or connective tissue fragments will be carefully removed under a standard dissection microscope (Quimis Q7740SZ, Quimis, Brazil). Aliquots will then be separated for subsequent analyses. Following separation, the samples will be rapidly frozen in liquid nitrogen and stored at -80 °C until further examination. For immunofluorescence assays, a small fragment (~20 mg) will be embedded in optimal cutting temperature (OCT) medium (Tissue-Tek, Sakura Finetek Europe B.V., Zoeterwoude, Netherlands) with muscle fibers oriented transversely. These fragments will be rapidly frozen, initially in isopentane cooled with liquid nitrogen, and subsequently immersed in liquid nitrogen.

Assessment of cross-sectional area, myonuclei count, myonuclear domain, capillarization, and satellite cell content

Immunofluorescence techniques will be employed to assess the muscle fiber cross-sectional area (CSA), the number of myonuclei, satellite cells, capillaries, and myonuclear domain. Seven-micrometer transverse sections will be prepared from OCT-embedded samples, brought to room temperature, and fixed in chilled methanol for 10 minutes. The sections will then be washed and blocked for 60 minutes in phosphate-buffered saline containing 5% goat serum and 0.3% Triton X-100.

For quantification, the sections will be incubated with primary antibodies against MHCI, Laminin, Pax7, and CD31, followed by appropriate secondary antibodies. Nuclei will be visualized using a fluorescent mounting medium containing 4',6-diamidino-2-phenylindole (DAPI; Abcam, Mounting Medium With DAPI - Aqueous, Fluoroshield, ab104139), and coverslips will be applied to the slides.

Images will be captured with an Olympus BX51 Fluorescence microscope with a magnification of $\times 200$. A minimum of 120 fibers will be analyzed for CSA, myonuclei count, myonuclear domain, and satellite cells, as recommended by Mackey et al. (2009) (77). For capillarization assessment, a minimum of 50 fibers will be evaluated following Hepple et al. (1997) (78). Parameters analyzed will include the capillary count (CC, the number of capillaries surrounding a fiber), the capillary-to-fiber ratio (C/Fi), and the

capillary index per fiber perimeter. All images will be analyzed by a single researcher in a blinded manner.

Bone health

Bone microarchitecture

Bone microarchitecture [volumetric bone mineral density (vBMD) and structural parameters of trabecular and cortical bones] will be assessed at the distal region of the radius of the non-dominant limb using High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT), in accordance with previously established guidelines (79). Specifically, the following parameters will be obtained: total vBMD; trabecular vBMD, cortical vBMD, trabecular bone volume fraction, trabecular number, trabecular thickness, trabecular separation, cortical thickness (Ct.Th), diameter and relative cortical porosity (Ct. Po), and stiffness and failure load of the finite element (FE).

During the scan, the participant's limb will be immobilized in a carbon fiber shell. The procedure allows the simultaneous acquisition of approximately 110 parallel slices with a resolution of 82 μ m, corresponding to a 9.02 mm section along the axial direction, starting 9.5 mm proximal to the reference line, which will be defined as the region of interest (ROI) for data evaluation. All HR-pQCT measurements and analysis will be performed by the same experienced evaluator, blinded to the participants' experimental group. All images will be acquired using the following settings: effective energy of 60 kVp, X-ray, tube current of 95 mAs, and matrix of 1536 x 1536. Quality control will be monitored through daily examinations of a Phantom standard, which contains hydroxyapatite sticks (HA) embedded in a resin fabric (QRM, Moehrendorf, Germany). Test-retest coefficient of variation (CV) in our laboratory is 0.93%-1.41% for volumetric bone mineral density measurements, and 1.49-7.59% for structural parameters (80).

For morphological analyses, except for cortical parameters, the standard analysis method will be used. The technician will perform a semi-automatic contouring process slice by slice to identify the periosteal limit of the bone, thus extracting the bone region of the surrounding soft tissue. The bone region will be extracted using a Laplace-Hamming filter (ϵ 0.5, cut-off 0.4, respectively) and a global cut-off threshold of 400 permille (%) to generate the segmented bone volume. This method will be used to perform the morphological analysis [81]. Due to limitations in the standard method (e.g.,

insufficient extraction of the cortex, which may be thin and/or highly porous, or when the trabecular structure is rich and well connected to the cortex), the advanced analysis method, also known as the extended analysis, will be used for the determination of cortical parameters (cortical vBMD, Ct.Th, and Ct. Po) (79).

For the analyses of volumetric density and structural parameters, the analysis of FE models of the distal radius will be carried out based on images obtained directly from HR-pQCT, with the aim of evaluating the biomechanical parameters of the bone and, therefore, estimate tissue susceptibility to fractures. For FE analysis, the software provided by the equipment manufacturer will be used (Finite Element Software, v.1.13, Scanco Medica AG, Switzerland, January 2009, Manufacturer's Guide). The vector information obtained from the models will be converted into blocks called voxels, which comprise the smallest unit that makes up the image of the analyzed material and have a cubic format. In FE analysis, the software will estimate and analyze the behavior of bone tissue when it is subjected to a force along its axis.

Bone mineral content and areal bone mineral density

Bone mineral content (BMC) and areal bone mineral density (aBMD) will be assessed by whole-body DXA using a Hologic QDR 4500A densitometry equipment (Discovery Densitometer, Hologic Inc., Bedford, MA, USA). The aBMD will be measured at the following sites: lumbar spine (L1 to L4), femoral neck, total hip, and whole body in accordance with the recommendations from the International Society for Clinical Densitometry (81).

Strength and functionality

Isometric strength

Isometric handgrip strength will be obtained using a handgrip dynamometer (Jamar®, Sammons Preston Rolyan, USA). The test will be conducted with the participant seated, shoulders adducted, and in a neutral rotation with their elbow bent at a 90° angle (82). They will perform three maximum effort attempts, each lasting 5 seconds, with a 1-minute rest interval between each attempt. The best result will be recorded for analysis.

Isoinertial strength

The maximal amount of weight that can be lifted in a single repetition will be measured using the one-repetition maximum (1RM) strength test, following widely used and well-established recommendations (83). The test will be performed in the inclined leg-press 45° (Nakagym, São Paulo, Brazil) and bench-press machines (Nakagym, São Paulo, Brazil) for lower body and upper body strength assessments, respectively. The same testing protocol will be followed for both machines. Briefly, participants will complete a 5-minute general warm-up on a treadmill at 3 km·h⁻¹, followed by a specific warm-up consisting of one set of eight repetitions at 50% of their estimated 1RM and one set of three repetitions at 70% of their estimated 1RM, with a 1-minute rest between sets. After that, participants will have up to five attempts to achieve their 1RM, with a 3-minute rest between each attempt. The 1RM will be considered the higher load at which the participant can perform a full eccentric-concentric movement through a 90° range of motion. Importantly, before the baseline assessments, participants will perform two familiarization sessions spaced at least 72 hours apart. If the variation between familiarization and testing sessions is higher than 5%, which is acknowledged as the normal interday variation in strength assessments (84, 85), an additional testing session will be performed respecting the same time interval between sessions.

Functional capacity

Functional capacity will be measured through the 30-s sit-to-stand test, the timed-up-and-go test, and the short physical performance battery (SPPB) (86-88). These tests are widely used to evaluate functional status across various clinical (89-91), including older adults and frail participants (86, 92), due to its ease of application. They are considered valid instruments and present excellent reliability (93).

The 30-s sit-to-stand test will evaluate the maximum number of stands that an individual can perform from a standard-height armless-chair (i.e., 45 cm) in 30 seconds, whereas the timed-up-and-go test will register the minimal time (in seconds) required to rise from a standard chair, walk to a line on the floor 3 meters away, turn around, and sit back down again. Before the test, the investigator will verbally explain and demonstrate how to perform each test correctly. Participants will then practice each test once to

familiarize themselves. A 1-minute rest will be provided between familiarization and testing. Then, two new attempts will be allowed for each test. All tests will be conducted by the same investigator to avoid bias.

The SPPB consists of a static standing balance test, habitual gait speed, and lower limb muscle strength (assessed through an adapted timed-stands test) (92). For the balance test, the participant must be able to maintain each position (i.e., side-by-side, semi-tandem stand, tandem stand) for 10 s. The score is zero for participant who are unable to maintain balance in the first position for 10 s. If the participant can stay in the first position for 10 s but cannot maintain the second position for 10 s, the score is 1 point. A score of 2 is assigned to participants who can remain in the second position for 10 s but cannot sustain the third position for more than 3 s. A score of 3 is assigned to participants who can remain in the third position for 3 to 9 s, and the maximum score (4 points) is given if they can stay in the third position for 10 s. For the gait speed test over a distance of 4 m, a score of zero is assigned to participants unable to complete the test. A score of 1 is given to participants who complete the course in more than 8.70 s (i.e., 0.46 m/s); a score of 2 for a time between 6.21 to 8.70 s (i.e., 0.47 to 0.64 m/s); a score of 3 for a time between 4.82 to 6.20 s (i.e., 0.65 to 0.82 m/s); and the maximum score, 4 points, for a time less than 4.82 s (i.e., 0.83 m/s). In the timed-stands test, the participant must sit and stand from a chair 5 times consecutively as quickly as possible. A score of zero is given when the participant cannot perform 5 repetitions. A score of 1 is given for a time greater than 16.7 s; a score of 2 for a time between 13.7 to 16.6 s; a score of 3 for a time between 11.2 to 13.6 s; and the maximum score, 4 points, for a time less than 11.1 s (92). The total SPPB score is calculated by adding the scores from each test, with individual test scores ranging from zero (worst performance) to four points (best performance); the highest possible SPPB total score is 12 points.

Cardiopulmonary assessments

Pulmonary function

Forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), FEV1/FVC ratio, forced mid-expiratory flow, and both peak inspiratory and expiratory flow will be evaluated through a pulmonary function test (PFT). The PFT will be conducted in the upright position, without the use of bronchodilators, following

established recommendations (94, 95). The system (Cortex, Germany) will be calibrated immediately before each test following the manufacturer's specifications.

Cardiorespiratory fitness

Classical cardiorespiratory fitness-related variables, including measured and percent-predicted values for oxygen uptake at peak ($\dot{V}O_2\text{peak}$) and at ventilatory threshold ($\dot{V}O_2\text{VT}$), oxygen pulse ($\dot{V}O_2/\text{HR}$), respiratory exchange ratio (RER), and HR responses will be assessed during a maximal graded cardiopulmonary exercise test (CPX) and recovery. Pulmonary ventilation ($\dot{V}E$), breathing reserve [$\dot{V}E$ -to-maximum voluntary ventilation ratio ($\dot{V}E/\text{MVV}$)], ventilatory equivalent for carbon dioxide ($\dot{V}E/\text{VCO}_2$), and the end-tidal carbon dioxide pressure (PETCO₂) will also be evaluated.

CPX will be performed on a treadmill (Centurion C200, Micromed, Brazil) using an individualized modified Balke protocol to the limit of tolerance (95). All tests will be conducted in the same intrahospital laboratory under controlled room temperature (20-23°C). The system will be calibrated immediately before each test using standard calibration gases (12% O₂, 5% CO₂, and balanced in N₂) and a 3-L calibration gas syringe (Cortex, Germany) following the manufacturer's specifications. Gas exchange will be assessed breath-by-breath by continuous sampling using a facemask coupled to a gas analyzer (Metalyzer 3B, Cortex, Germany). Ventilatory parameters will be measured by a turbine (Cortex, Germany) with a volume transducer (flow sensor). Outlying values (greater than ± 2 SD from the mean rolling averages) will be automatically identified and excluded by the analytic software (MetaSoft Studio, Cortex, Germany). Background noise will be smoothed from the breath-by-breath data by using a 30-second rolling average. HR will be continuously recorded beat-by-beat from the R-R interval using a 12-lead electrocardiograph. (ErgoPC Elite, Micromed, Brazil).

Dietary assessments

Dietary parameters, including caloric intake and macronutrient and micronutrient content, will be determined using a specific software based on the USDA (United States Department of Agriculture) food database (Nutritionist Pro® v.7.3, Axxya Systems, Woodinville, WO, USA). Initially, a trained dietitian will provide oral and written

instructions on how to complete 3-day food records (two from non-consecutive weekdays and one from a weekend day), including guidance on timing and estimation of portion sizes using household measures. All 3-day food records will be individually reviewed in-person through structured interviews with the same trained dietitian using the USDA Automated Multiple-Pass Method, which is a standardized validated method that includes five memory cues (1: quick list; 2: forgotten foods list; 3: time and occasion; 4: detail and review; and 5: final probe) to avoid recording errors and ensure comprehensive recall of all possible foods consumed. (96). This double-checking strategy will be implemented in order to reduce recall bias and enhance data collection accuracy. During interviews, portion size aids will be further clarified using food booklets with household measures (97, 98) and real-size food pictures (99).

Biochemical analyses

All blood-related biochemical analyses will be carried out in an accredited laboratory at our Clinical Hospital. Initially, blood samples (15 mL) will be collected between 08:00 and 10:00 hours, after a 12-hour overnight fast from the median or cephalic basilic vein. Samples will be processed and stored at -80° C until analysis.

Lipid profile

Lipid profile, including triglycerides, total cholesterol and its subfractions (i.e., VLDL-C, LDL-C, HDL-C, non-HDL-C), will be evaluated via colorimetric enzymatic methods.

Glycated hemoglobin

Glycated hemoglobin will be assessed via high-performance liquid chromatography performance by ion exchange as a surrogate marker of long-term blood glucose levels.

Oxidative Stress markers

Enzymatic antioxidant assays for catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) will be performed on plasma samples centrifuged at 10,000 g for 10min at 4°C. CAT activity will be measured using Fossati et al.'s modified method, where H₂O₂ is dismutated into water and oxygen, followed by a peroxidase-catalyzed reaction with o-dianisidine. SOD activity will be evaluated using a colorimetric assay kit (Sigma Aldrich). GPx and GR activities will be determined by tracking NADPH oxidation at 340nm, as previously described (100). GST activity was measured by GSH catalysis and CDNB complex formation. Lipid peroxidation was assessed through malondialdehyde levels, following the TBARS method described by Conti et al. (101)..

Gut hormones and inflammatory markers

Gut hormones [ghrelin, gastric inhibitory peptide (GIP), pancreatic polypeptide (PP) and peptide YY (PYY)], inflammatory markers, including pro- and anti-inflammatory cytokines (TNF- α , IL-6, IL-10, IL-1ra, IL-1B, and IL-4) will be assessed using Luminex xMAP technology, except for C-reactive protein which will be assessed via an immunoturbidimetric assay.

Bon-related parameters

Bone turnover markers, including Collagen type I C-telopeptide (CTX) and procollagen type I N-propeptide (P1NP), will be measured by automated electrochemiluminescence methods following recommendations of the International Osteoporosis Foundation and International Federation of Clinical Chemistry (102). Serum levels of 25-hydroxyvitamin D, intact PTH, total and ionized calcium, will be determined using chemiluminescent immunoassay, electrochemiluminescence, enzymatic colorimetric assay, and ion-selective electrodes methods, respectively.

Oral glucose tolerance test (OGTT)

To assess insulin sensitivity and glucose metabolism, a 2-h oral glucose tolerance test will be conducted. Blood samples will be collected at 0 (i.e., after a 12-h overnight fast), 30, 60, 90, and 120 minutes following the ingestion of a 75 g glucose bolus. Serum

glucose levels will be measured using a colorimetric enzymatic assay, insulin levels will be quantified using a human-specific radioimmunoassay, and C-peptide levels will be determined through a chemiluminescent immunometric assay. Area under the curve (AUC), along with the Matsuda index (103), homeostatic model assessment-insulin resistance (HOMA-IR) and homeostatic model assessment of β -cell function cell function (HOMA-B) (104) will be calculated.

Telomere length

Particularly for telomere length (TL) analysis, blood samples will be collected using ethylenediaminetetraacetic acid (EDTA) tubes and stored at -80°C until analysis. DNA will be extracted using the PureLink™ Genomic DNA Mini Kit (Thermo Fisher Scientific) following the manufacturer's instructions. DNA will be quantified using the NanoVue Plus spectrophotometer (General Electric), and its integrity will be evaluated via gel electrophoresis technique (105, 106). TL analysis will be measured in accordance with the modified protocol described by Cawthon and colleagues (107). The relative average of telomeres will be quantified via Real-Time Polymerase Chain Reaction (RT-qPCR) technique. RT-qPCR reactions will be conducted in 96-well plates using the StepOnePlus™ Real-Time PCR System (Applied Biosystems®). All samples and reference DNA will be analyzed in duplicates using 25 ng of DNA. Three wells for internal control will be included in each run. For the reaction, the SYBR® Green PCR Mastermix kit (PureLink™) will be used with a final volume of 25 μ L. The specific primer sequences used for telomeres are presented in Table 2. The 36B4 reaction will include 12.5 μ L of SYBR Green (PureLink™), 0.03 μ L of forward primer, 0.05 μ L of reverse primer, and 11.42 μ L of ultrapure water. For the telomere reaction, 12.5 μ L of SYBR Green, 0.03 μ L of forward primer, 0.03 μ L of reverse primer, and 11.44 μ L of ultrapure water will be used. The RT-qPCR run will consist of four distinct steps: first, an initial step at 50°C for 2 minutes. Second, 40 amplification cycles at 95°C for 2 minutes each. Third, a step at 55°C for 15 seconds. Finally, a step at 60°C for 1 minute.

Table 2. Primer sequences and concentrations for telomere and 36B4 gene amplification in RT-qPCR Assay

Primer	Sequence (5' -> 3')	Concentration (nM)
Tel 1 Forward	GGT TTT TGA GGG TGA GGG TGA GGG TGA GGG TGA GGG T	300
Tel 2 Reverse	TCC CGA CTA TCC CTA TCC CTA TCC CTA TCC CTA TCC CTA	300
36B4u Forward	CAG CAA GTG GGA AGG TGT AAT CC	300
36B4d Reverse	CCC ATT CTA TCA TCA ACG GGT ACA A	500

The relative quantification of TL will be determined using the telomere to single-copy gene ratio (T/S) by calculating the delta values (Δ) of cycle threshold (Ct) [Ct (telomeres) - Ct (reference gene)]. Following the parameters previously described (108), the ratio of T/S for each sample will be calculated using the equation:

$$2 - \Delta\Delta CT = 2 - \Delta CT(\text{a target sample}) - \Delta CT(\text{a reference sample})$$

Health-related quality of life

Health-related quality of life (HRQoL) will be evaluated through the Medical Outcomes Study 36 – Item Short-Form Health Survey (SF-36) (109). The SF-36 provides scores across eight domains: physical functioning, role-physical, bodily pain, general health, vitality, social functioning, role-emotional, and mental health. Additionally, physical and mental component summary scores will be calculated. Scores will range from 0 to 100, with lower scores indicating worse HRQoL.

Sleep quality

Sleep quality will be assessed using the Portuguese version of the Pittsburgh Sleep Quality Index (PSQI) (110). In brief, the PSQI assesses sleep quality over a 1-month period by means of a questionnaire involving 19 self-rated questions and 5 questions answered by bedmates/roommates. The latter questions are used only for clinical information, and thus, will not be used in the current study. The 19 questions are categorized into 7 components, graded on a score that ranges from 0 to 3. The PSQI

components are as follows: subjective sleep quality (C1), sleep latency (C2), sleep duration (C3), habitual sleep efficiency (C4), sleep disturbances (C5), use of sleeping medication (C6) and daytime dysfunction (C7). The sum of scores for these 7 components will yield one global score, which will range from 0 to 21, in which the highest score indicates worst sleep quality. Participants will be classified as good sleepers in case of PSQI ≤ 5 and poor sleepers for PSQI > 5 .

Depression and anxiety

Depression will be assessed using the short form of the Geriatric Depression Scale (GDS) with 15 items (GDS-15), which is specifically designed for screening depression in older adults (111). This shortened version offers very similar sensitivity and specificity compared to the original 30-item scale (112). Each item on the abbreviated scale will be scored as either 0 or 1, resulting in a total score range from 0 to 15. A cutoff score between 5 and 6 will be used to differentiate between non-cases and cases of depression.

Anxiety will be assessed using the Geriatric Anxiety Inventory (GAI), a self-administered tool comprising 20 questions with dichotomous responses (agree/disagree) (113). This brief questionnaire will be easy to use even in cases of fatigue, lower education levels, or mild cognitive impairment. The GAI will employ a cutoff score system where scores between 0 and 10 will indicate absence of anxiety, scores between 11 to 15 will denote mild to moderate anxiety, and scores between 16 to 20 will be suggestive of severe anxiety.

Cognitive processing speed

Cognitive processing speed will be assessed utilizing the Trail Making Test (TMT). The most widely employed version of the TMT comprises parts A and B. In part A, the subject utilizes a pencil to connect a series of 25 encircled numbers in numerical order. In part B, the subject connects 25 encircled numbers and letters in numerical and alphabetical order, alternating between the numbers and letters. For instance, the first number "1" is followed by the first letter "A," followed by the second number "2" then second letter "B" and so forth. The numbers and letters are positioned in a semi-random fixed order, in such a manner as to prevent overlapping lines being drawn by the

examinee. The primary variables of interest are the total time to completion for parts A and B. A cutoff time of 300 s is generally employed to discontinue test administration and is therefore the typical maximum score (114).

Cognitive executive function

Cognitive executive function will be assessed by Stroop Test (ST) (Victoria version). The ST will follow the guideline specifications suggested by Duncan 2006 (115). Three cards, each containing 24 stimuli against a white background, will be used. Card A will consist of rectangles printed randomly in green, pink, blue, and brown. Card B will be organized similarly to Card A but will have rectangles replaced by unrelated words to concepts of color (each, never, today, and all) printed in uppercase in the four colors mentioned. Card C will also be organized similarly to Card A, representing the interference card where the written stimuli will be the names of the colors (brown, blue, pink, and green) printed in the same colors, ensuring that the ink color and the color name never match (e.g., the word "brown" printed in pink, green, or blue). For the first card, participants will state the colors of the rectangles as quickly as possible. For cards B and C, subjects will state the color of the printed words instead of reading the words themselves. The criterion score will be the time taken to perform the task for each card, and all errors will be corrected promptly without stopping the chronometer (116).

EXPERIMENTAL INTERVENTIONS

Caloric restriction and dietary supplementation

Participants allocated to the intervention groups (PTN and PLA) received individual meal plans to induce a caloric deficit of 300-500 kcal/day from their habitual energy intake assessed at baseline. Habitual intake values were contrasted with total energy requirements individually estimated by FAO/WHO equation for older adults, applying a sedentary activity factor at baseline and an active factor for later time points (differences between calculation methods were <1% throughout the study). The caloric deficit was maintained based on regular reassessment of dietary parameters every four weeks. In addition, participants met biweekly with registered dietitians for individual

behavioral therapy involving nutritional education in order to enhance adherence to the caloric restriction protocol.

Participants from PTN and PLA will be provided, on a weekly basis, with unlabeled dietary supplement bottles to be consumed daily at breakfast. The PTN group will receive 40g of whey protein (Nutrata®, São Paulo, Brazil), while the PLA group will receive an isocaloric non-nitrogenous placebo (Nutrata®, São Paulo, Brazil), consisting of a carbohydrate blend (isomaltulose, waxy maize, maltodextrin), with the same flavor (natural chocolate) and texture. They will be asked to record their supplement intake (time and day) and return the bottles (empty or not) weekly to monitor adherence. To ensure a daily intake of 1500mg of calcium and 1000IU of vitamin D, calcium and vitamin D supplements will also be provided to prevent deficiencies associated with caloric restriction, as previously recommended (117).

The research team will be available to answer any questions about the supplementation protocol throughout the trial.

Exercise training intervention

Participants from both PTN and PLA groups will engage in a three-times-a-week exercise training program for 16 weeks. The program will include resistance and endurance exercises. Resistance training will consist of six exercises targeting major muscle groups: incline leg press 45°, leg extension, leg curl, calf raise, horizontal bench press, and lat pull-down. Endurance training will involve walking and/or running. The exercise training protocol's periodization will follow recommendations from widely accepted position stands for older adults (118, 119) (Table 3). For each exercise, resistance training will progress from 1 set of 15-20 repetition maximum (RM) in the first week to 3 sets of 10-12 RM in the final four weeks of training. Whenever a participant exceeds the upper limit of the repetition range for two consecutive sets, the intensity will be adjusted by increasing the exercise load. Similarly, endurance exercise will progress from 30 minutes at 55–65% of heart rate maximum (HRmax) during the first four weeks to 40 minutes at 70–80% HRmax during the last four weeks of training. Borg's Rating of Perceived Exertion (RPE) scale (120) will be used as an auxiliary tool for monitoring exercise intensity and training progression. In these cases, the targeted intensity will range from 'very light'/'fairly light' (Borg's RPE score 9–11 a.u.) to 'somewhat hard'/'hard'

(Borg's RPE score 13–15 a.u.). All training sessions will be supervised by an experienced exercise physiologist blinded to the participants' group assignment. A training log will be maintained for each session to monitor adherence and control the training load.

Table 3. Exercise training prescription.

Type of exercise	Weeks	Volume	Intensity	Borg's RPE
Resistance training	1	1 set	15-20 RM	NA
	2-4	2 sets	15-20 RM	NA
	5-8	3 sets	15-20 RM	NA
	9-12	3 sets	12-15 RM	NA
	13-16	3 sets	10-12 RM	NA
Endurance training	1-4	30 min	55-65% HR _{max}	9-11 a.u.
	5-8	35 min	55-65% HR _{max}	9-11 a.u.
	9-12	40 min	60-70% HR _{max}	11-13 a.u.
	13-16	40 min	70-80% HR _{max}	13-15 a.u.

Abbreviations: RM: repetition maximum, HR_{max}: maximum heart rate, RPE: rating of perceived exertion, a.u.: arbitrary units, NA: Not applicable.

To address the higher prevalence of comorbidities in this population, additional precautions will be implemented. All participants will have their resting blood pressure measured by an automatic monitor (SPACELABS, São Paulo, Brazil) immediately before each training session, and sessions will be suspended if systolic or diastolic blood pressure readings are ≥ 160 mmHg or ≥ 105 mmHg, respectively (121, 122). Likewise, blood glucose levels will be measured before training sessions for participants with type-2 diabetes, with acceptable values considered to be between 90 and 250 mg/dL (123). Additionally, heart rate (HR) and peripheral oxygen saturation (SpO₂) will be continuously monitored during endurance exercise. Whenever necessary, participants will receive outpatient care and consultation with our medical staff.

The CON group will receive one-on-one guidance and behavioral orientations focusing on a healthy lifestyle, including nutritional education and physical activity at PRE, and every four weeks throughout the trial.

SAMPLE SIZE CALCULATION

Sample size was determined a priori using the G-Power software (Version 3.1.9.2, University of Kiel, Germany). The analysis was conducted by inputting α error (0.05), power ($1 - \beta$ error = 0.95), and effect size (Hedges' g = 0.61), considering previous data indicating a lower loss of fat-free mass in individuals undergoing caloric restriction who had an increase in protein intake compared to their counterparts who maintained their usual protein intake (31). Calculations were based on an ANOVA with repeated measures (within-between interactions) and the total sample size was determined to be 81 individuals. To account for midtrial withdrawals, the sample will be increased by ~30% (i.e. 105 participants).

DATA ANALYSIS

Data will be presented as mean \pm standard deviation (SD), estimated mean difference between groups (EMD) at POST (only in the presence of group x time interaction), 95% confidence interval (95%CI), unless otherwise indicated. Baseline characteristics will be compared between groups using either Fisher exact test or generalized linear model with Sidak post hoc adjustment whenever necessary. Data will be analyzed using an intention-to-treat (ITT) approach to preserve the integrity of randomization. Before inferential analysis, outliers will be identified, and the data will be tested for homogeneity of variance and sphericity. Dependent variables will be analyzed by a linear mixed model analysis for repeated measures (assuming time [PRE and POST] and group [PTN, and PLA] with baseline values as covariate. The restricted maximum likelihood method, compound symmetry covariance structure, and Kenward-Roger degrees of freedom approximation will be applied for all models. In order to maintain the overall significance level at 0.05, the primary endpoints will be assessed using Hochberg's procedure (124). For all secondary outcomes the significance level will be set at $p \leq 0.05$. Whenever significant group-by-time interactions are identified, post-hoc tests on the adjusted predictions with Sidak's adjustment will be performed for multiple comparisons.

All analyses will be performed in the statistical environment R (version 3.5.3; R Core Team 2020).

STATISTICAL ANALYSIS PLAN

All analyses will be performed in the statistical environment R (version 3.5.3; R Core Team 2020). We will perform all the comparisons using two-sided significance tests. Intention-to-treat analyses will be performed by analyzing data from all participants originally randomized to preserve the integrity of randomization. The longitudinal analysis of all outcomes will be performed using a linear mixed model for repeated measures, assuming 'group' (PTN, and PLA) and 'time' (pre-intervention and post-intervention) as fixed factors, and 'subjects' as a random factor, with an interaction between 'group' and 'time' added to the model; baseline values of the outcome will be used as covariates. For all models, maximum restricted likelihood and Kenward-Roger degrees of freedom will be used for model fit and estimation. We will adjust for testing of the four primary outcomes, total fat-free mass, appendicular fat-free mass, appendicular fat-free mass relative to body mass index, and leg fat-free mass, using Hochberg's procedure in order to maintain the overall significance level at 0.05. Since the other hypothesis tests (for the secondary outcomes) will be more exploratory in nature, the Hochberg's correction will not be used, and two-sided p-values less than 0.05 will be considered to indicate statistical significance. For both primary and secondary outcomes, whenever significant group-by-time interactions are identified, post-hoc tests on the adjusted predictions with Sidak's adjustment will be performed for multiple comparisons.

Mixed model analyses will be used instead of standard repeated measures analysis of variance because of the likelihood that there will be dropouts and missed visits that preclude the use of the classical approach (125, 126). The mixed model approach we will employ fits a linear regression model to each subject and assumes that both error terms and regression coefficients are normally distributed in these lines. It then uses the EM algorithm to combine the individual lines and to generate empirical Bayes, maximum likelihood, and restricted maximum likelihood estimates of model parameters. Because lines are generated for individuals, the model is more general than standard repeated measures analysis of variance in that it has no requirements about common measurement times between subjects and can deal easily with missing data. In all analyses, careful attention will be given to ensuring that the conditions that are required of a particular statistical method are satisfied. We will assess the normality of regression residuals and ensure the homogeneity of variances when analyzes of variance and covariance are performed. When required assumptions are not satisfied, data transformations will be explored and utilized as appropriate.

STUDY TIME LINE

July 2021 – August 2023

REFERENCES

1. Roh E, Choi KMJFie. Health consequences of sarcopenic obesity: a narrative review. 2020;11:530178.
2. Wannamethee SG, Atkins JLJCDR. Sarcopenic obesity and cardiometabolic health and mortality in older adults: a growing health concern in an ageing population. 2023;23(11):307-14.
3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. *Cell*. 2013;153(6):1194-217.
4. Powell-Wiley TM, Poirier P, Burke LE, Despres JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. *Circulation*. 2021;143(21):e984-e1010.
5. Piche ME, Tchernof A, Despres JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. *Circulation research*. 2020;126(11):1477-500.
6. Conway B, Rene A. Obesity as a disease: no lightweight matter. *Obesity reviews* : an official journal of the International Association for the Study of Obesity. 2004;5(3):145-51.
7. Morgan PT, Smeuninx B, Breen L. Exploring the Impact of Obesity on Skeletal Muscle Function in Older Age. *Frontiers in nutrition*. 2020;7:569904.
8. Lang IA, Llewellyn DJ, Alexander K, Melzer D. Obesity, physical function, and mortality in older adults. *Journal of the American Geriatrics Society*. 2008;56(8):1474-8.
9. Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. *Obesity reviews* : an official journal of the International Association for the Study of Obesity. 2010;11(8):568-79.
10. Rolland Y, Lauwers-Cances V, Cristini C, Abellán van Kan G, Janssen I, Morley JE, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study. *The American journal of clinical nutrition*. 2009;89(6):1895-900.
11. Zhang X, Xie X, Dou Q, Liu C, Zhang W, Yang Y, et al. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: a updated meta-analysis. *BMC geriatrics*. 2019;19(1):183.
12. Wannamethee SG, Atkins JL. Sarcopenic Obesity and Cardiometabolic Health and Mortality in Older Adults: a Growing Health Concern in an Ageing Population. *Current diabetes reports*. 2023;23(11):307-14.
13. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. *Nat Rev Endocrinol*. 2018;14(9):513-37.
14. Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. *Nat Rev Endocrinol*. 2024;20(5):261-77.
15. Benz E, Pinel A, Guillet C, Capel F, Pereira B, De Antonio M, et al. Sarcopenia and Sarcopenic Obesity and Mortality Among Older People. *JAMA Netw Open*. 2024;7(3):e243604.
16. Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. *Nutrition reviews*. 2010;68(7):375-88.
17. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. Weight loss, exercise, or both and physical function in obese older adults. *N Engl J Med*. 2011;364(13):1218-29.

18. Miller GD, Nicklas BJ, Davis C, Loeser RF, Lenchik L, Messier SP. Intensive weight loss program improves physical function in older obese adults with knee osteoarthritis. *Obesity (Silver Spring)*. 2006;14(7):1219-30.
19. Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. *Arthritis and rheumatism*. 2005;52(7):2026-32.
20. Papageorgiou M, Kerschan-Schindl K, Sathyapalan T, Pietschmann P. Is Weight Loss Harmful for Skeletal Health in Obese Older Adults? *Gerontology*. 2019;1-13.
21. Waters DL, Ward AL, Villareal DT. Weight loss in obese adults 65years and older: a review of the controversy. *Experimental gerontology*. 2013;48(10):1054-61.
22. Armamento-Villareal R, Aguirre L, Waters DL, Napoli N, Qualls C, Villareal DT. Effect of Aerobic or Resistance Exercise, or Both, on Bone Mineral Density and Bone Metabolism in Obese Older Adults While Dieting: A Randomized Controlled Trial. *Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research*. 2019.
23. Shah K, Armamento-Villareal R, Parimi N, Chode S, Sinacore DR, Hilton TN, et al. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. *Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research*. 2011;26(12):2851-9.
24. Mesinovic J, Jansons P, Zengin A, de Courten B, Rodriguez AJ, Daly RM, et al. Exercise attenuates bone mineral density loss during diet-induced weight loss in adults with overweight and obesity: A systematic review and meta-analysis. *Journal of sport and health science*. 2021;10(5):550-9.
25. Frimel TN, Sinacore DR, Villareal DT. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. *Med Sci Sports Exerc*. 2008;40(7):1213-9.
26. Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. *Bone*. 2015;80:79-88.
27. Dolan E, Sale C. Protein and bone health across the lifespan. *The Proceedings of the Nutrition Society*. 2019;78(1):45-55.
28. Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, et al. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. *Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research*. 2011;26(6):1339-48.
29. Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM. Diets higher in dairy foods and dietary protein support bone health during diet- and exercise-induced weight loss in overweight and obese premenopausal women. *The Journal of clinical endocrinology and metabolism*. 2012;97(1):251-60.
30. Skov AR, Toubro S, Rønn B, Holm L, Astrup A. Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity*. 1999;23(5):528-36.
31. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. *The American journal of clinical nutrition*. 2012;96(6):1281-98.
32. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves

muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. *The American journal of clinical nutrition*. 2015;101(2):279-86.

33. Kim JE, O'Connor LE, Sands LP, Sledodenik MB, Campbell WW. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. *Nutrition reviews*. 2016;74(3):210-24.

34. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. *The American journal of clinical nutrition*. 2008;87(1):150-5.

35. Liao CD, Wu YT, Tsauo JY, Chen PR, Tu YK, Chen HC, et al. Effects of Protein Supplementation Combined with Exercise Training on Muscle Mass and Function in Older Adults with Lower-Extremity Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Trials. *Nutrients*. 2020;12(8).

36. Liao CD, Lee PH, Hsiao DJ, Huang SW, Tsauo JY, Chen HC, et al. Effects of Protein Supplementation Combined with Exercise Intervention on Frailty Indices, Body Composition, and Physical Function in Frail Older Adults. *Nutrients*. 2018;10(12).

37. Stevenson EJ, Allerton DM. The role of whey protein in postprandial glycaemic control. *The Proceedings of the Nutrition Society*. 2018;77(1):42-51.

38. Sousa GT, Lira FS, Rosa JC, de Oliveira EP, Oyama LM, Santos RV, et al. Dietary whey protein lessens several risk factors for metabolic diseases: a review. *Lipids in health and disease*. 2012;11:67.

39. Adams RL, Broughton KS. Insulinotropic Effects of Whey: Mechanisms of Action, Recent Clinical Trials, and Clinical Applications. *Ann Nutr Metab*. 2016;69(1):56-63.

40. Fekete AA, Giromini C, Chatzidiakou Y, Givens DI, Lovegrove JA. Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: results from the chronic Whey2Go randomized controlled trial. *The American journal of clinical nutrition*. 2016;104(6):1534-44.

41. Tettamanzi F, Bagnardi V, Louca P, Nogal A, Monti GS, Mambrini SP, et al. A High Protein Diet Is More Effective in Improving Insulin Resistance and Glycemic Variability Compared to a Mediterranean Diet-A Cross-Over Controlled Inpatient Dietary Study. *Nutrients*. 2021;13(12).

42. Sun Y, Ling C, Liu L, Zhang J, Wang J, Tong X, et al. Effects of Whey Protein or Its Hydrolysate Supplements Combined with an Energy-Restricted Diet on Weight Loss: A Randomized Controlled Trial in Older Women. *Nutrients*. 2022;14(21).

43. Pal S, Ellis V, Dhaliwal S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. *The British journal of nutrition*. 2010;104(5):716-23.

44. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. *The American journal of clinical nutrition*. 2016;103(3):830-40.

45. Nabuco HCG, Tomeleri CM, Fernandes RR, Sugihara Junior P, Cavalcante EF, Cunha PM, et al. Effect of whey protein supplementation combined with resistance training on body composition, muscular strength, functional capacity, and plasma-metabolism biomarkers in older women with sarcopenic obesity: A randomized, double-blind, placebo-controlled trial. *Clinical nutrition ESPEN*. 2019;32:88-95.

46. Liberman K, Njemini R, Luiking Y, Forti LN, Verlaan S, Bauer JM, et al. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: the PROVIDE study. *Aging clinical and experimental research*. 2019;31(6):845-54.

47. Thijssen DHJ, Bruno RM, van Mil A, Holder SM, Faita F, Greyling A, et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. *European heart journal*. 2019;40(30):2534-47.

48. Hajizadeh-Sharafabad F, Sharifi Zahabi E, Tarighat-Esfanjani A. Role of whey protein in vascular function: a systematic review and meta-analysis of human intervention studies. *The British journal of nutrition*. 2022;128(4):659-72.

49. Ballard KD, Bruno RS, Seip RL, Quann EE, Volk BM, Freidenreich DJ, et al. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. *Nutrition journal*. 2009;8:34.

50. Lin YN, Tseng TT, Knuiman P, Chan WP, Wu SH, Tsai CL, et al. Protein supplementation increases adaptations to endurance training: A systematic review and meta-analysis. *Clinical nutrition*. 2021;40(5):3123-32.

51. Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF. Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. *FASEB J*. 2011;25(9):3240-9.

52. Ferguson-Stegall L, McCleave E, Ding Z, Doerner Iii PG, Liu Y, Wang B, et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. *Journal of nutrition and metabolism*. 2011;2011:623182.

53. Cheng YH, Wei L, Chan WP, Hsu CY, Huang SW, Wang H, et al. Effects of protein supplementation on aerobic training-induced gains in cardiopulmonary fitness, muscle mass, and functional performance in chronic stroke: A randomized controlled pilot study. *Clinical nutrition*. 2020;39(9):2743-50.

54. Margolis LM, Pasiakos SM. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis. *Adv Nutr*. 2013;4(6):657-64.

55. Brock JM, Billeter A, Muller-Stich BP, Herth F. Obesity and the Lung: What We Know Today. *Respiration; international review of thoracic diseases*. 2020;99(10):856-66.

56. Bernhardt V, Babb TG. Exertional dyspnoea in obesity. *Eur Respir Rev*. 2016;25(142):487-95.

57. Meyer A, Salewsky B, Spira D, Steinhagen-Thiessen E, Norman K, Demuth I. Leukocyte telomere length is related to appendicular lean mass: cross-sectional data from the Berlin Aging Study II (BASE-II). *The American journal of clinical nutrition*. 2016;103(1):178-83.

58. Chen L, Shivappa N, Dong X, Ming J, Zhao Q, Xu H, et al. Association between appendicular skeletal muscle index and leukocyte telomere length in adults: A study from National Health and Nutrition Examination Survey (NHANES) 1999-2002. *Clinical nutrition*. 2021;40(5):3470-8.

59. Njajou OT, Cawthon RM, Blackburn EH, Harris TB, Li R, Sanders JL, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. *Int J Obes (Lond)*. 2012;36(9):1176-9.

60. Rode L, Nordestgaard BG, Weischer M, Bojesen SE. Increased body mass index, elevated C-reactive protein, and short telomere length. *The Journal of clinical endocrinology and metabolism*. 2014;99(9):E1671-5.

61. Mundstock E, Sarria EE, Zatti H, Mattos Louzada F, Kich Grun L, Herbert Jones M, et al. Effect of obesity on telomere length: Systematic review and meta-analysis. *Obesity (Silver Spring)*. 2015;23(11):2165-74.
62. Aguiar SS, Rosa TS, Sousa CV, Santos PA, Barbosa LP, Deus LA, et al. Influence of Body Fat on Oxidative Stress and Telomere Length of Master Athletes. *J Strength Cond Res*. 2021;35(6):1693-9.
63. Kim TN, Park MS, Lim KI, Choi HY, Yang SJ, Yoo HJ, et al. Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: the Korean Sarcopenic Obesity Study. *Clinical endocrinology*. 2013;78(4):525-32.
64. Batsis JA, Mackenzie TA, Jones JD, Lopez-Jimenez F, Bartels SJ. Sarcopenia, sarcopenic obesity and inflammation: Results from the 1999-2004 National Health and Nutrition Examination Survey. *Clinical nutrition*. 2016;35(6):1472-83.
65. Liu C, Wong PY, Chung YL, Chow SK, Cheung WH, Law SW, et al. Deciphering the "obesity paradox" in the elderly: A systematic review and meta-analysis of sarcopenic obesity. *Obesity reviews : an official journal of the International Association for the Study of Obesity*. 2023;24(2):e13534.
66. Dutra MT, Avelar BP, Souza VC, Bottaro M, Oliveira RJ, Nobrega OT, et al. Relationship between sarcopenic obesity-related phenotypes and inflammatory markers in postmenopausal women. *Clinical physiology and functional imaging*. 2017;37(2):205-10.
67. Pinel A, Guillet C, Capel F, Pouget M, De Antonio M, Pereira B, et al. Identification of factors associated with sarcopenic obesity development: Literature review and expert panel voting. *Clinical nutrition*. 2024;43(6):1414-24.
68. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. *2014;69(5):547-58*.
69. Shepherd JA, Lu Y, Wilson K, Fuerst T, Genant H, Hangartner TN, et al. Cross-calibration and minimum precision standards for dual-energy X-ray absorptiometry: the 2005 ISCD Official Positions. *Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry*. 2006;9(1):31-6.
70. Berg HE, Tedner B, Tesch PA. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. *Acta physiologica Scandinavica*. 1993;148(4):379-85.
71. Lixandrao ME, Ugrinowitsch C, Bottaro M, Chacon-Mikahil MP, Cavaglieri CR, Min LL, et al. Vastus lateralis muscle cross-sectional area ultrasonography validity for image fitting in humans. *J Strength Cond Res*. 2014;28(11):3293-7.
72. Benatti F, Solis M, Artioli G, Montag E, Painelli V, Saito F, et al. Liposuction induces a compensatory increase of visceral fat which is effectively counteracted by physical activity: a randomized trial. *The Journal of clinical endocrinology and metabolism*. 2012;97(7):2388-95.
73. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. *Metabolism*. 2001;50(4):425-35.
74. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. *Scandinavian journal of clinical and laboratory investigation*. 1975;35(7):609-16.
75. Neves M, Jr., Barreto G, Boobis L, Harris R, Roschel H, Tricoli V, et al. Incidence of adverse events associated with percutaneous muscular biopsy among healthy and

diseased subjects. Scandinavian journal of medicine & science in sports. 2012;22(2):175-8.

76. Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergstrom muscle biopsy technique: experience with 13,500 procedures. Muscle & nerve. 2011;43(5):717-25.

77. Mackey AL, Kjaer M, Charifi N, Henriksson J, Bojsen-Moller J, Holm L, et al. Assessment of satellite cell number and activity status in human skeletal muscle biopsies. Muscle & nerve. 2009;40(3):455-65.

78. Hepple RT. A new measurement of tissue capillarity: the capillary-to-fibre perimeter exchange index. Canadian journal of applied physiology = Revue canadienne de physiologie appliquée. 1997;22(1):11-22.

79. Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2020;31(9):1607-27.

80. Murai IH, Roschel H, Dantas WS, Gil S, Merege-Filho C, de Cleva R, et al. Exercise Mitigates Bone Loss in Women With Severe Obesity After Roux-en-Y Gastric Bypass: A Randomized Controlled Trial. The Journal of clinical endocrinology and metabolism. 2019;104(10):4639-50.

81. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry. 2019;22(4):453-71.

82. MacDermid J, Solomon G, Valdes K. Clinical Assessment Recommendations: American Society of Hand Therapists; 2015.

83. Brown LE, Weir JP. Asep procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology Online. 2001;4(3).

84. Schroeder ET, Wang Y, Castaneda-Sceppa C, Cloutier G, Vallejo AF, Kawakubo M, et al. Reliability of maximal voluntary muscle strength and power testing in older men. J Gerontol A Biol Sci Med Sci. 2007;62(5):543-9.

85. Salem GJ, Wang M-Y, Sigward S. Measuring Lower Extremity Strength in Older Adults: The Stability of Isokinetic versus 1RM Measures. Journal of Aging and Physical Activity. 2002;10(4):489-503.

86. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Journal of gerontology. 1994;49(2):M85-94.

87. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society. 1991;39(2):142-8.

88. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research quarterly for exercise and sport. 1999;70(2):113-9.

89. Martinez-Velilla N, Casas-Herrero A, Zambom-Ferraresi F, Saez de Asteasu ML, Lucia A, Galbete A, et al. Effect of Exercise Intervention on Functional Decline in Very

Elderly Patients During Acute Hospitalization: A Randomized Clinical Trial. *JAMA Intern Med.* 2019;179(1):28-36.

90. Kortebéin P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. *J Gerontol A Biol Sci Med Sci.* 2008;63(10):1076-81.

91. Onder G, Penninx BW, Ferrucci L, Fried LP, Guralnik JM, Pahor M. Measures of physical performance and risk for progressive and catastrophic disability: results from the Women's Health and Aging Study. *J Gerontol A Biol Sci Med Sci.* 2005;60(1):74-9.

92. Guralnik JM, Winograd CH. Physical performance measures in the assessment of older persons. *Aging.* 1994;6(5):303-5.

93. Ostir GV, Volpato S, Fried LP, Chaves P, Guralnik JM, Women's H, et al. Reliability and sensitivity to change assessed for a summary measure of lower body function: results from the Women's Health and Aging Study. *Journal of clinical epidemiology.* 2002;55(9):916-21.

94. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. *Am J Respir Crit Care Med.* 2019;200(8):e70-e88.

95. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. *Am J Respir Crit Care Med.* 2003;167(2):211-77.

96. Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV, et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. *The American journal of clinical nutrition.* 2008;88(2):324-32.

97. Polacow VO, Scagliusi FB, Lancha Junior AH. Validation of a portion-size measurement aid in a brazilian sample. *International Conference on Dietary Assessment Methods - Expanding the Horizon: Dietary Assessment in a Multi-Cultural World: Institute of Nutrition;* 2003.

98. Scagliusi FB, Polacow VO, Artioli GG, Benatti FB, Lancha AH, Jr. Selective underreporting of energy intake in women: magnitude, determinants, and effect of training. *Journal of the American Dietetic Association.* 2003;103(10):1306-13.

99. Hess MA. Portion photos of popular foods: American Dietetic Association; 1997.

100. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. *J Lab Clin Med.* 1967;70(1):158-69.

101. Conti M, Morand P, Levillain P, Lemonnier AJCc. Improved fluorometric determination of malonaldehyde. 1991;37(7):1273-5.

102. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. *Clinical chemistry and laboratory medicine.* 2011;49(8):1271-4.

103. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. *Diabetes care.* 1999;22(9):1462-70.

104. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia.* 1985;28(7):412-9.

105. Voytas D. Agarose gel electrophoresis. *Current protocols in neuroscience.* 2001;Appendix 1:Appendix 1N.

106. Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. *Journal of visualized experiments : JoVE*. 2012;62.

107. Cawthon RM. Telomere measurement by quantitative PCR. *Nucleic acids research*. 2002;30(10):e47.

108. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. *JAMA*. 2010;304(12):1358-64.

109. Ware JEJHI. SF-36 health survey: manual and interpretation guide. 1993.

110. Bertolazi AN, Fagondes SC, Hoff LS, Dartora EG, Miozzo IC, de Barba ME, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. *Sleep medicine*. 2011;12(1):70-5.

111. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. *Journal of psychiatric research*. 1982;17(1):37-49.

112. Burke WJ, Roccaforte WH, Wengel SP. The short form of the Geriatric Depression Scale: a comparison with the 30-item form. *Journal of geriatric psychiatry and neurology*. 1991;4(3):173-8.

113. Pachana NA, Byrne GJ, Siddle H, Koloski N, Harley E, Arnold E. Development and validation of the Geriatric Anxiety Inventory. *International psychogeriatrics*. 2007;19(1):103-14.

114. Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. *Nature protocols*. 2006;1(5):2277-81.

115. Duncan MT. Obtenção de dados normativos para desempenho no teste de Stroop num grupo de estudantes do ensino fundamental em Niterói. [Assessment of normative data of Stroop test performance in a group of elementary school students in Niterói.]. *Jornal Brasileiro de Psiquiatria*. 2006;55(1):42-8.

116. Campanholo KR, Romao MA, Machado MAR, Serrao VT, Coutinho DGC, Benute GRG, et al. Performance of an adult Brazilian sample on the Trail Making Test and Stroop Test. *Dementia & neuropsychologia*. 2014;8(1):26-31.

117. Villareal DT, Apovian CM, Kushner RF, Klein S, American Society for N, Naaso TOS. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. *The American journal of clinical nutrition*. 2005;82(5):923-34.

118. American College of Sports M, Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. *Med Sci Sports Exerc*. 2009;41(7):1510-30.

119. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. *J Strength Cond Res*. 2019;33(8):2019-52.

120. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc*. 1982;14(5):377-81.

121. Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandao AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension - 2020. *Arquivos brasileiros de cardiologia*. 2021;116(3):516-658.

122. Pelliccia A, Sharma S, Gati S, Back M, Borjesson M, Caselli S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. *European heart journal*. 2021;42(1):17-96.

123. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. *Diabetes care*. 2016;39(11):2065-79.
124. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1995;57(1):289-300.
125. Ugrinowitsch C, Fellingham GW, Ricard MD. Limitations of ordinary least squares models in analyzing repeated measures data. *Med Sci Sports Exerc*. 2004;36(12):2144-8.
126. Gadbury GL, Coffey CS, Allison DB. Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF. *Obesity reviews : an official journal of the International Association for the Study of Obesity*. 2003;4(3):175-84.