

Clinical Development

INFIGRATINIB

Protocol CBGJ398X2204 Version 6 (Amendment 5)

A phase II multicenter, single arm study of oral BGJ398 in adult patients with advanced or metastatic cholangiocarcinoma with FGFR2 gene fusions or other FGFR genetic alterations who failed or are intolerant to platinum-based chemotherapy

STATISTICAL ANALYSIS PLAN (SAP)

Amendment 2

Author:

PI

Version:

V3.0 (13 May 2020)

Supersedes:

V2.0 (26 March 2020)

Property of QED Therapeutics
For business use only

May not be used, divulged, published, or otherwise disclosed
without the consent of QED Therapeutics

TABLE OF CONTENTS

STATISTICAL ANALYSIS PLAN (SAP)	1
SUMMARY OF CHANGES (V1.0)	4
SUMMARY OF CHANGES (V2.0, AMENDMENT 1)	7
SUMMARY OF CHANGES (V3.0, AMENDMENT 2)	10
LIST OF ABBREVIATIONS	11
1 INTRODUCTION	12
1.1 Study Design	12
1.2 Study Objectives and Endpoints.....	15
2 STATISTICAL METHODS	16
2.1 Data Analysis General Information	16
2.1.1 General Definitions	17
2.2 Analysis Sets	19
2.2.1 Full Analysis Set.....	19
2.2.2 Interim Efficacy Analysis Set 1 for Cohort 1	20
2.2.3 Interim Analysis Set 2 for Cohort 1	20
2.2.4 Sensitivity Analysis Set for Cohort 1	20
2.2.5 Interim Analysis Set for Cohort 3	20
2.2.6 Per-Protocol Set	21
2.2.7 Pharmacokinetic analysis set	21
2.2.8 Subgroups of interest.....	21
2.3 Subject Disposition, Demographics and Other Baseline Characteristics	22
2.3.1 Subject disposition	22
2.3.2 Demographics.....	22
2.3.3 Medical History	22
2.3.4 Prior Antineoplastic Therapy	22
2.3.5 Diagnosis and Extent of Cancer.....	23
2.4 Protocol Deviations	23
2.5 Treatments (Study Treatment, Concomitant Therapies, Compliance)	23
2.5.1 Study Treatment	23
2.5.2 Prior, Concomitant and Post Therapies	25
2.5.3 Compliance	25
2.6 Analysis of the primary objective	25
2.6.1 Variable.....	25
2.6.2 Statistical Hypothesis, Model, and Method of Analysis	26
2.7 Analysis of Secondary Objective(s)	26
2.7.1 Secondary Efficacy Objectives.....	26
2.7.2 Safety Objectives	28
2.7.3 Other Safety Data	34
2.7.4 Pharmacokinetics.....	37
2.8 Exploratory Analyses.....	39
2.8.1 Biomarkers	40
2.9 Interim Analysis	41
3 SAMPLE SIZE CALCULATION.....	42
3.1 Cohort 1	42

3.2 Cohort 2 and Cohort 3.....	42
4 CHANGE TO PROTOCOL SPECIFIED ANALYSES.....	43
5 APPENDIX.....	43
5.1 Imputation Rules.....	43
5.1.1 AE, CM, and Safety Assessment Date Imputation	43
5.1.2 Death Date Imputation	44
5.2 Table of Adverse Events of Special Interest, Search Strategies, and Rationales for Sponsor-Defined Search Strategies	45
5.3 AESI: Calcium-Phosphate Homeostasis – Hypercalcaemia, Hyperphosphataemia, and Hypophosphataemia.....	46
5.4 AESI: Eye Disorder of Central Serous Retinopathy/Retinal Pigment Epithelium Detachment.....	46
5.5 AESI: Pathological Fracture.....	47
5.6 AESI: Tissue Calcification	48
5.7 AESI: Vascular/intravascular Mineralization	49
5.8 AESI: Eye Disorder: SOC Eye Disorders (Excluding 9 PTs Used to Characterize CSR/RPED).....	50
5.9 Minimum Critical Toxicities	59
5.10 CYP3A4 Inhibitors and Inducers.....	60
5.11 Phosphate Binders	63
6 REFERENCE.....	63

LIST OF TABLES

Table 1: Objectives and Related Endpoints for Cohort 1 and Overall Study	15
Table 2: Objectives and Related Endpoints for Cohort 2 and 3.....	16
Table 3: Dose and Treatment Schedule	17
Table 4: Example of Laboratory Parameters for Which CTCAE Grades are Defined	34
Table 5: Examples of Laboratory Parameters (Without CTCAE Grades) for Which Lab Reference Ranges Are Defined	34
Table 6: Criteria for Notable Vital Sign Values	37
Table 7: Non-compartmental Pharmacokinetic Parameters	38
Table 8: 95% CI Examples Corresponding to Observed Numbers of Subjects Considered to Have Benefited From Treatment (Cohorts 2 and 3)	43
Table 9: Imputation of Start Dates (AE, CM).....	43
Table 10: Imputation of End Dates (AE, CM)	44
Table 11: Table of Minimal Critical Toxicities and SMQ Search Strategies	60

LIST OF FIGURES

Figure 1: Study Design (Applied to Protocol Version 6 (Amendment 5))	14
---	-----------

SUMMARY OF CHANGES (V1.0)

This Summary of Change summarized the change of the Statistical Analysis Plan for Study CBGJ398X2204 based on the SAP developed by Novartis dated on 09-Nov-2017.

Rationale for Change

The primary purpose of the changes is to:

- Revise the SAP to be consistent with the Protocol Version 5 (Amendment 4) (24-Apr-2019)
- Clarify some statistical analysis details

Major Changes

Global changes

- Editorial and format changes
- Change the term of 'patient' to 'subject' as appropriate
- Change the term of 'BGJ398' to infigratinib as appropriate
- Change the term of FMI v1 and FMI v3 to FMI I and FMI III, respectively
- Update the Protocol table/section numberings cited in this SAP to match with the corresponding tables/sections in the protocol
- Remove all the analyses related to the Bayesian approaches.

Changes to specific sections

- Title page: update SAP version set to Final V1.0 and update the date
- Study design, Study objectives and endpoints: updated to match with the protocol amendment 4 (24-Apr-2019)
- Data analysis general information: updated to match with the protocol on the scope and timing for the interim, primary and final analyses
- Investigational drug and study treatment: updated to match with the protocol on the introduction of new formulation of FMI IV; indicate that the analysis by treatment/formulation is determined by formulation a subject first received if a subject switches formulation during the study as required per the Protocol
- Analysis sets: clarify how analysis will be organized within Full Analysis Set (by treatment, by FGFR2 fusion/translocations status, etc); remove the Safety Set since it is overlapped with

the Full Analysis Set; clarify the definition of Per-Protocol Set; remove the section of Patient Classification; add Interim Analysis Set for Cohort 1 and Interim Analysis Set for Cohort 3; remove the section of Withdrawal of Informed Consent since it is not an analysis set; provide details on Subgroup of interest

- Subject disposition: clarify the summaries which will be provided for subject disposition.
- Demographic: The category of ‘18 - <65 years, 65 - <85 years and \geq 85 years’ is replaced with ‘<65 years vs \geq 65 years’
- Prior antineoplastic therapy: clarify the summaries which will be provided for prior antineoplastic therapy
- Protocol deviations: clarify the categories of protocol deviations
- Study Treatment: indicate that no study treatment permanent discontinuation will be discussed in this section; remove several sections which provide too detailed programming specification; clarify the definition of treatment duration and relative dose intensity; specify that no summary will be provided for planned dose intensity and actual dose intensity; simply the algorithm for the summary of dose reductions and interruptions
- Prior, concomitant and post therapies: specify only on-treatment concomitant medication will be summarized; no general listing for concomitant will be provided.
- Compliance: the category of ‘< 0.5, \geq 0.5 - < 0.75, \geq 0.75 - < 0.9, \geq 0.9 - < 1.1 and \geq 1.1’ is replaced with ‘< =0.5, > 0.5 - <= 0.75, > 0.75 - <= 0.9, > 0.9 - <= 1.0 and >1.0’
- Analysis of the primary objective: specify that ORR per central review imaging will be the primary endpoint; clarify the timing for the interim and primary analysis for Cohort 1; delete all the analyses using Bayesian approaches; delete the subsection of Supportive analyses
- Analysis of secondary objective(s): update to be consistent with the Protocol Amendment 4; add the description on best tumor burden change; provide details on the PFS censoring specification; provide the details on PFS sensitivity analysis; introduce the definition of PFS > 16 weeks for Cohort 2 and Cohort 3;
- Safety objectives: specify ‘In general, summary will be provided only for the on-treatment safety assessments, which are the assessments occurring or taken during the on-treatment period’
- Adverse Events: emphasize that only TEAEs will be summarized; removed the summary tables related to TEAEs leading to study discontinuation; added some summary tables for TEAE; add the description of Adverse Events of Special Interest for this study
- Laboratory data: minor update on Table 2-3 and 2-4 and indicate the laboratory tests in those two tables are just examples; clarify the details on how laboratory data will be analyzed

- Other safety data: Add sections on Ophthalmologic assessment and Left ventricular ejection fraction (LVEF); clarify the analyses of ECG and cardiac imaging data and vital signs and ECOG performance status; for tolerability, the category of ‘<0.5, ≥0.5 - <0.75, ≥0.75 - <0.9, ≥0.9 - <1.1 and ≥1.1’ is replaced with ‘<=0.5, >0.5 - <=0.75, >0.75 - <=0.9, >0.9 - <=1.0 and >1.0’
- Pharmacokinetics: update to indicate FMI IV will be used; Clarify that the sections on the PK analysis is intended to provide general principle for the PK analysis. Additional details of the analysis approaches will be provided in a separate PK analysis plan
- Exploratory analyses: indicate that the exploratory analyses will be conducted if there are sufficient data available
- Interim Analysis: specify the interim analysis for Cohort 1 and the interim analysis for Cohort 3
- Sample size calculation: update the rationale for Cohort 1 sample size based estimation precision (the Bayesian approach is removed); add the rationale for Cohort 2 and Cohort 3 sample size
- Imputation rules: Clarify the imputation rules for AE and CM start/end partial/complete missing date and the scope of the application of the imputation rules

SUMMARY OF CHANGES (V2.0, Amendment 1)

This Summary of Change summarized the change of the Statistical Analysis Plan Version 2.0 for Study CBGJ398X2204 from Version 1.0 (29 May 2019).

Rationale for Change

The primary purpose of the changes is to:

- Revise the SAP to be consistent with the Protocol Version 6 (Amendment 5) (15-Jan-2020)

Global Changes

- Change the term of 'BGJ398' to infigratinib as appropriate

Description of Changes

- Title page: update SAP version and date and the corresponding protocol version and date
- Approval signature page: removed and a separate signature page will be used for approval
- List of Abbreviations: Add CSR/RPED
- 1 Introduction: update the corresponding protocol version and date
- 1.1 Study design: update to match with the current protocol
- Table 1-1: update to match the protocol
- Figure 1-1: replace with the one in the current protocol and the main change is from 'Cohort 1: ~120 patients, 108 with FGFR2' to 'Cohort 1: ~120 patients, 106 with FGFR2'
- 2.1 Data Analysis General Information: replace 'QED personnel' with 'QED Therapeutics'; indicate that one additional interim analysis will be added for Cohort 1; add details of the data review for Cohort 2 and Cohort 3
- 2.1.1.1 Investigational Drug and Study Treatment: add 'if subjects without FGFR2 fusion/translocation are included in the analysis' to clarify analysis details since only subjects with FGFR2 fusion/translocation will be included for the second formal interim analysis for Cohort 1.
- 2.2 Analysis Sets: update analysis sets used for the analyses mainly due to the change of adding the second interim analysis for Cohort 1
- 2.2.8 Subgroups of Interest: clarify the subgroups related to CYP3A4 inhibitors

- 2.3.3 Medical History: indicates a summary table of medical history will be provided instead of a listing.
- 2.4 Protocol Deviation: add ‘Unless otherwise specified’ since FAS will not be used for the second interim analysis for Cohort 1 after amendment 3
- 2.6 Analysis of Primary Objective: remove ‘using FAS, or Interim Efficacy Analysis Set for Cohort 1’ since different analysis sets will be used for different interim/primary/final analyses
- Best Overall Response and Disease Control in 2.7.1: add ‘as specified by Cohort (Section 2.1)’
- 2.7.2 Safety Objectives: clarify the analysis sets which will be used for safety summary and listings.
- Deaths in 2.7.2.1.2: remove ‘for the full analysis set’ since the details on which analysis sets should be used for death listings have been clarified in the section of ‘Safety Objective’
- Adverse Events of Special Interest in 2.7.2.1.2: to match the program wide definition: update the adverse events of special interest; add the section for ‘Minimum Critical Toxicities’; add the section of ‘phosphate binders medication’
- 2.7.2.2.1 CTC Grading for Laboratory Parameters: add details to clarify how grade 0 will be assigned.
- 2.7.2.2.1 Imputation Rules: clarify the algorithm of corrected calcium
- 2.7.2.2.3. Data Analysis: add ‘as discussed in Minimum Critical Toxicities in Section 2.7.2.1.2’ to provide analysis reference
- Table 2-3 Example of Laboratory Parameters for Which CTCAE Grades are Defined: update the table to be consistent with the analysis approaches
- Table 2-4 Examples of Laboratory Parameters (Without CTCAE Grades) for Which Lab Reference Ranges are Defined: update the table to be consistent with the analysis approaches
- 2.7.3 Other Safety Data: add a paragraph to provide overall guidance on the analysis
- 2.7.3.4 Vital Signs and ECOG Performance Status: clarify the summary of ECOG
- 2.7.4 Pharmacokinetics: replace “pre-dose and 2-hr post-dose” with “trough and 2-hour or 4-hour”; change ‘Table 9 of CSP Amendment 4’ to ‘Table 10 of CSP Amendment 5’
- 2.7.4.3 Analysis Sets: Details added to match with the protocol
- 2.7.4.4 Basic Tables, Figures and Listings: Details added to match with the protocol

- Table 2-6 Non-compartmental pharmacokinetic parameters: update the table to match the protocol amendment 5
- 3.8.1.3.1 Analysis Sets: the section numbering is corrected to be 2.8.1.3.1; add ‘unless otherwise specified’
- 2.9 Interim Analysis: update the details of the interim analyses to match with the protocol amendment 5
- 3.1 Cohort 1: Two subjects who were considered previously as FGFR2 fusion/translocation subjects do not actually have FGFR2 fusion/translocation. Therefore, the number ‘74’ is changed to ‘72’ and ‘108’ is changed to ‘106’
- 5 Appendix: Add the following contents
- Table of Adverse Events of Special Interest, Search Strategies, and Rationales for Sponsor-Defined Search Strategies
- AESI: Calcium-phosphate homeostasis – hypercalcaemia, hyperphosphataemia and hypophosphataemia
- AESI: Eye Disorder of Central Serious Retinopathy/Retinal Pigment Epithelium Detachment
- AESI: Pathological Fracture
- AESI: Tissue Calcification
- AESI: Vascular Calcification / Mineralization
- AESI: Eye Disorder: SOC Eye Disorders (Excluding 9 PTs Used to Characterize CSR/RPED)
- Minimum Critical Toxicities
- CYP3A4 Inhibitors and Inducers
- Phosphate Binders
- 6 Reference: add one more reference

SUMMARY OF CHANGES (V3.0, Amendment 2)

This Summary of Changes summarized the change of the Statistical Analysis Plan Version 3.0 for Study CBGJ398X2204 from Version 2.0 (26 March 2020).

Rationale for Change

The primary purpose of the changes is to:

- More precisely specify analysis methods for overall response rate (ORR), time to response (TTR), and duration of response (DOR).

Description of Changes

- Title page: updated SAP version, amendment number, and date; replaced ^{PI} with ^{PI}
- Summary of Changes: Added version and amendment numbers for clarity, as appropriate.
- Section 2.6.1: Added paragraph to specify analysis methods.
- Section 2.6.2: Removed the last sentence (related to Section 2.6.1 change above).
- Section 2.7.1: Added paragraph to specify analysis methods and deleted last sentence.
- Throughout: Reformatted to be in the current QED template and style guide, including revising table and figure numbers, adding appropriate headings to appear in the Table of Contents (eg, List of Abbreviations, Summary of Changes), completing the List of Abbreviations, defining abbreviations on first use only, appropriately referring to sections, and other minor editorial/administrative changes.

LIST OF ABBREVIATIONS

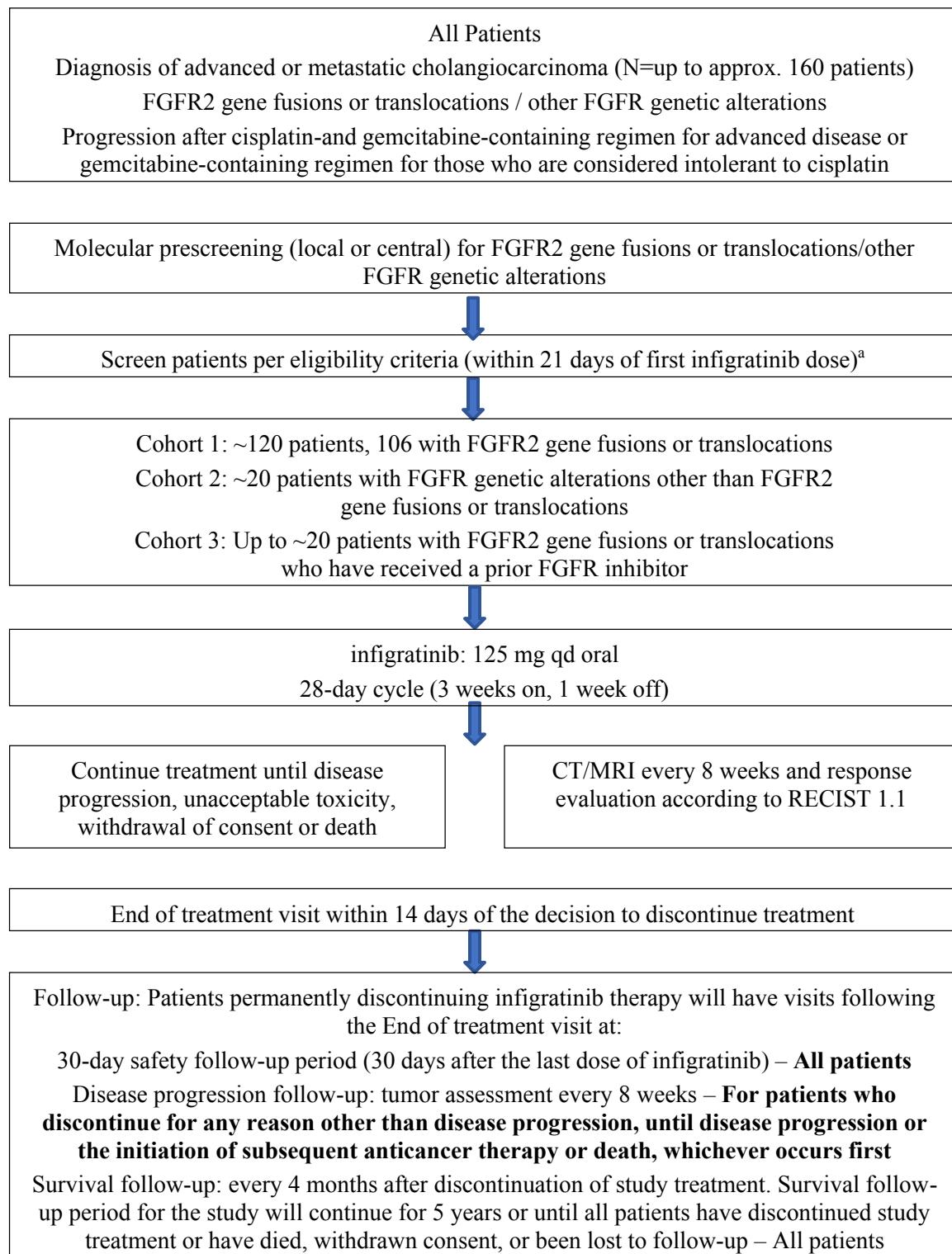
AE	adverse event
AESI	adverse event of special interest
ATC	Anatomical Therapeutic Chemical
AUC	area under the curve
bid	bis in diem/twice a day
BLQ	below the limit of quantitation
BOR	best overall response
cfDNA	cell-free DNA
CI	confidence interval
CR	complete response
CSR	Clinical Study report
CSR/RPED	central serious retinopathy/retinal pigment epithelium detachment
CTC	Common Toxicity Criteria
CTCAE	Common Terminology Criteria for Adverse Events
DOT	duration of response
FAS	full analysis set
eCRF	electronic Case Report Form
LVEF	left ventricular ejection fraction
MedDRA	Medical Dictionary for Drug Regulatory Affairs
NCI	National Cancer Institute
o.d.	once daily
ORR	overall response rate
OS	overall survival
PD	pharmacodynamics
PFS	progression-free survival
PK	pharmacokinetics
PPS	per-protocol set
PR	partial response
PT	Preferred Term
qd	qua'que di'e / once a day
RECIST	Response Evaluation Criteria in Solid Tumors
SAE	serious adverse event
SAP	Statistical Analysis Plan
SD	standard deviation
SOC	System Organ Class
SMQ	Standardized MedDRA Queries
TEAE	treatment-emergent adverse event
TFLs	tables, figures, listings
TTR	time to response
WHO	World Health Organization

1 INTRODUCTION

This Statistical Analysis Plan (SAP) provides detailed statistical methodology for the analysis of data from study CBGJ398X2204 that will be presented in the Clinical Study Report (CSR). The output shells (in-text and post-text) accompanying this document can be found in the Tables, Figures and Listings (TFL) shells document. The specifications for derived variable and datasets can be found in the ADaM Reviewer's Guide. This version of the SAP is based on the Clinical Study Protocol (CSP) CBGJ398X2204 Version 6 (Amendment 5) dated on 15-Jan-2020.

All changes to the planned analysis described in this document required before or after database lock will be made through an amendment or addendum, respectively. Note that obvious corrections will be made at the time of analysis to address minor formatting or spelling mistakes present in the TFL shells document without the need to amend.

The SAP, TFL shells, and ADaM Reviewer's Guide documents may also serve as a reference for the creation of any outputs required outside of the CSR, eg, IB updates, abstracts, posters, presentations, manuscripts, and management updates. Data used for these analyses will have a status aligned to the database lock guidance.


The purpose of sections 1.1 to 1.2 is to make the SAP a standalone document and to be more specific on endpoints as required. No clinical background information needs to be included, as this is already provided in the CSP; only information relevant to the analyses is to be included.

1.1 Study Design

This is a multi-center, open label, phase II study evaluating infigratinib anti-tumor activity in advanced or metastatic cholangiocarcinoma patients with FGFR genetic alterations. All patients will receive infigratinib once daily on a three week on (21 days), 1 week off (7 days) schedule in 28-day cycles. Approximately 120 patients in total will be enrolled into Cohort 1 on the study. As of Amendment 2, only patients with advanced or metastatic cholangiocarcinoma with FGFR gene fusions/translocation will be enrolled into Cohort 1. As of Amendment 4, two new cohorts, Cohort 2 and Cohort 3, were added to this study. Cohort 2 is planned to enroll approximately 20 patients with FGFR genetic alterations other than FGFR2 gene fusions or translocations and Cohort 3 is planned to enroll up to approximately 20 patients with FGFR2 gene fusions or translocations who have received a prior FGFR inhibitor other than infigratinib. According to Amendment 2, the final market image version 3 (FMI III) formulation of infigratinib replaced FMI I. According to amendment 4, the final market image version 4 (FMI IV) formulation of infigratinib will be used for patients in Cohort 2 and 3. Patients who started treatment prior to the implementation of amendment 2 should continue to receive the formulation of infigratinib that they received at the initiation of treatment until FMI IV is available at the study site. Pharmacokinetics, safety, and tolerability data from all available patients enrolled in either Cohort 2 or Cohort 3 treated with FMI IV up to the end of cycle 1 of treatment will be assessed and compared with the historical data from patients treated with FMI III.

In order to assess the antitumor activity of infigratinib, patients in all cohorts will be evaluated for tumor response radiographically every 8 weeks until disease progression or discontinuation from study using RECIST 1.1 criteria.

Figure 1: Study Design (Applied to Protocol Version 6 (Amendment 5))

^a Screening assessments are to be completed within 21 days prior to the first dose of treatment, except for the radiological tumor assessment, which can be performed within 28 days prior to the first dose.

1.2 Study Objectives and Endpoints

Objectives and related endpoints are described in Table 1 below.

Table 1: Objectives and Related Endpoints for Cohort 1 and Overall Study

Objective	Endpoint
Primary (Cohort 1)	
To evaluate the efficacy of single agent infiratinib in patients with advanced or metastatic cholangiocarcinoma with FGFR2 gene fusions/translocations or other FGFR genetic alterations	Overall response rate (ORR) assessed by central imaging review as per RECIST v1.1
Secondary	
Cohort 1: To further evaluate the efficacy of single agent infiratinib	Overall response rate assessed by investigator; progression free survival, best overall response, and disease control rate assessed by investigator and by central imaging review as per RECIST 1.1; and overall survival
Cohort 1: To characterize the safety and tolerability of single agent infiratinib	Safety: Type, frequency, and severity of AEs and SAEs; Tolerability: dose interruptions, reductions and dose intensity
Overall study:	
To determine selected trough and 2-hr or 4-hr plasma concentrations of infiratinib and its metabolites	Selected trough and 2-hr or 4-hr plasma concentration profile and derived PK parameters of infiratinib and its metabolites
To characterize the pharmacokinetic profile of infiratinib FMI III and FMI IV formulations	For FMI III and FMI IV: Plasma concentration profile and derived PK parameters of FMI III and FMI IV
Exploratory (Overall Study)	
To assess markers that may correlate with genetic alterations in tumor tissue at baseline, predictions of response and/or resistance (e.g. gene mutations, amplifications, deletion and/or altered protein expression or activation)	DNA sequencing of paired biopsies (tumor tissue) from patients who progressed and analysis of cell free tumor DNA
	Serial serum CA19-9 levels

Table 2: Objectives and Related Endpoints for Cohort 2 and 3

Exploratory Objectives	Endpoint
To characterize the safety and tolerability of infigratinib in patients with advanced or metastatic cholangiocarcinoma with... Cohort 2: ...FGFR genetic alterations other than FGFR2 gene fusions or translocations Cohort 3: ...FGFR2 gene fusions or translocations who have received prior FGFR inhibitors	Safety: Type, frequency, and severity of AEs and SAEs; Tolerability: dose interruptions, reductions, and dose intensity
To evaluate the efficacy of single agent infigratinib in patients with advanced or metastatic cholangiocarcinoma with... Cohort 2: ...FGFR genetic alterations other than FGFR2 gene fusions or translocations Cohort 3: ...FGFR2 gene fusions or translocations who have received prior FGFR inhibitors	Progression free survival, overall response, best overall response, response onset, and disease control assessed by investigator as per RECIST v1.1, and overall survival

2 STATISTICAL METHODS

2.1 Data Analysis General Information

Study data will be analyzed by QED Therapeutics and/or designated CRO(s) using the most updated SAS® version in the statistical computing environment. PK parameters will be calculated using non-compartmental methods available in Phoenix WinNonlin version 7.0 or higher.

Two formal interim analyses for Cohort 1 are planned after Amendment 3 as described in Section 2.9. The first formal interim analysis will include all patients in Cohort 1 who receive study treatment before the interim analysis cutoff date. The efficacy analysis for the first formal interim analysis for Cohort 1 will be focused on the population as described in Section 2.2.2 below. The second formal interim analysis will be conducted on all the subjects with FGFR2 fusions or translocations in Cohort 1. The primary analysis for Cohort 1 will be conducted when all patients in Cohort 1 have the potential to be followed for at least 10 months after their initial exposure to study treatment. For the interim and primary analyses for Cohort 1, patients will be grouped by fusion status (if subjects without FGFR2 fusions or translocations are included) and formulation. Here, the formulation refers to the first formulation a subject received if a subject switched formulation during the study as described in Section 1.1.

For Cohorts 2 and 3, review of data will be performed after a total of 15 patients in either Cohort 2 or 3 have been treated with FMI IV for at least one cycle. Primary analysis will be conducted when all patients in the cohorts have the potential to be followed for at least 10 months after their initial exposure to study treatment. Additionally, for Cohort 3, one interim analysis will be conducted after the first 10 dosed patients in this cohort have the potential to complete their second scheduled scans (approximately 16 weeks from their first dose) to determine if the cohort will be expanded.

The additional data for patients continuing to receive study treatment or remain in study past the data cutoff date of the primary analysis, as allowed by the protocol, will be reported in a final CSR that will be prepared at the end of the study. In the final CSR, analyses will be done for each cohort, for patients enrolled in Cohort 1 who do not have FGFR2 fusions or translocations, data may be combined and summarized with Cohort 2.

Data from participating centers in this study protocol will be combined, so that an adequate number of patients will be available for analysis. No center effect will be assessed. The data will be summarized with respect to demographic and baseline characteristics, efficacy observations and measurements, safety observations and measurements, and all relevant pharmacokinetic (PK) and pharmacodynamics (PD) measurements using descriptive statistics (n, mean, standard deviation, median, minimum, and maximum) for quantitative data and contingency tables (frequencies and percentages) for qualitative data.

Additional data for which there is a separate informed consent, eg, PK, biomarker etc., collected in the clinical database without having obtained that consent will not be included in the analysis.

Qualitative data (eg, gender, race, etc.) will be summarized by means of contingency tables; a missing category will be included as applicable. Percentages will be calculated using the number of patients in the relevant population or subgroup as the denominator.

Quantitative data (eg, age, body weight, etc.) will be summarized by appropriate descriptive statistics (ie, mean, standard deviation, median, Q1, Q3, minimum, and maximum).

2.1.1 General Definitions

2.1.1.1 Investigational Drug and Study Treatment

Investigational drug will refer to infirgratinib as an oral formulation. The terms investigational drug and study drug/treatment are used interchangeably. For consistency across studies, the term study treatment will be used throughout this document.

Table 3: Dose and Treatment Schedule

Study treatment	Formulation	Pharmaceutical form and route of administration	Dose	Frequency and/or Regimen
infirgratinib	FMI I	Capsule(s) for oral use	125 mg (administered as one 100 mg capsule and one 25 mg capsule)	Daily (3 weeks on, 1 week off schedule in 28-day cycles)
	FMI III			
	FMI IV			

A **treatment** is defined by the dose formulation (FMI I, FMI III and FMI IV). The treatment formulation is determined by the formulation a subject first received if a subject switches formulation during the study as described in Section 1.1.

Unless otherwise specified, all efficacy related analyses will be done separately for all patients, patients with baseline FGFR2 gene fusion/translocation, and patients with other FGFR genomic

alterations if subjects without FGFR2 fusion/translocation are included in the analysis. In addition, within patients who had baseline FGFR2 gene fusion/translocation, the data will be summarized by treatment. Unless otherwise specified, for all other analyses, including safety, disposition, demographic/baseline disease characteristics, study drug exposure and prior/concomitant/post therapy related analyses, will be done separately for all subjects, all subjects by FGFR status (FGFR2 gene fusion/translocation vs. other FGFR genomic alterations) if subjects without FGFR2 fusion/translocation are included in the analysis, and all subjects by treatment.

Note that reporting by treatment is equivalent to reporting by formulation, and “by treatment” will be used throughout this document.

2.1.1.2 *Date of First/Last Administration of Study Treatment*

In the single agent arm, the date of first (last) administration of study treatment is derived as the first (last) date when a non-zero dose of infigratinib was administered and recorded on the Dosage Administration Record (DAR) eCRF. If a subject has not ended treatment at data cut-off date for an analysis, the subject is considered ongoing at the last dosing record.

2.1.1.3 *Study Day*

The study day *for safety assessments* (eg, adverse event onset, laboratory abnormality occurrence, vital sign measurement, dose interruption, etc.) that are after the start of study treatment will be calculated as the difference between the date of the event (onset date of an event, assessment date etc.) and the start of study treatment plus 1. The first day of study treatment is therefore study Day 1. Example: if start of study treatment is on 05-Jan-2014 and start date of an adverse event is on 09-Jan-2014 then the study day of the adverse event onset is 5. For safety assessments before start of study treatment, the study day is negative and derived by (date of event – start date of study treatment). For example: if start of study treatment is on 05-Jan-2014 and date of lab measurement is on 02-Jan-2014 then the study day of the laboratory abnormality is -3. Note, the day of start of study treatment is Day 1, and the day before the date of first study treatment is Day -1, not Day 0.

2.1.1.4 *Baseline*

Baseline is the result of an investigation describing the “true” state of the subject before start of study treatment administration.

For safety evaluations, the last available assessment on or before the date of start of study treatment is taken as “baseline” assessment. In case time of assessment and time of treatment start is captured (eg, pre-dose ECG), the last available assessment before the treatment start date/time is used for baseline.

For safety parameters (eg, ECGs or vital signs), where study requires multiple replicates per time point, the average of these measurements would be calculated for baseline (if not already available in the database).

In rare cases where multiple measurements meet the baseline definition, with no further flag or label that can identify the chronological order, then the following rule should be applied: If values are from central and local laboratories, the value from central assessment should be considered as baseline; if multiple values are from the same laboratory (local or central) or collected for ECGs or vital signs, then the average value should be considered as baseline while for the grade of laboratory tests the worst grade will be considered as baseline. For this study, safety laboratory testing is per local site laboratory.

If subjects have no value as defined above, the baseline result will be missing.

2.1.1.5 *On-treatment Assessment/Event and Observation Periods*

The overall observation period will be divided into three mutually exclusive segments:

pre-treatment period: from day of subject's first informed consent to the day before first administration of study treatment

on-treatment period: from date of first administration of study treatment to 30 days after date of last actual administration of any study treatment (including start and stop date).

post-treatment period: starting at Day 31 after last administration of study treatment in the single arm.

If dates are incomplete in a way that clear assignment to pre-, on-, post-treatment period cannot be made, then the respective data will be assigned to the on-treatment period.

Safety summaries (tables, figures) include only data from the on-treatment period with the exception of baseline data which will also be summarized where appropriate (eg, change from baseline summaries). In addition, a separate summary for death including on-treatment and post treatment deaths will be provided. Summary tables for adverse events (AEs) will summarize only on-treatment events, with a start date during the on-treatment period (***treatment-emergent AEs***).

2.1.1.6 *Handling of Missing Values/Censoring*

Subjects who are of unknown clinical response or not assessed will be treated as nonresponders in the analyses of overall response rate (ORR).

Subjects who haven't experienced the specified event at the time of analysis will have time-to-event data (eg, progression-free survival, overall survival, etc.) censored at the time of last measurement prior to the data cut-off point used in the report.

2.2 *Analysis Sets*

2.2.1 *Full Analysis Set*

The Full Analysis Set (FAS) includes all subjects who received at least one dose of infigratinib. Unless otherwise specified, all the analyses will be done separately for each cohort.

Unless otherwise specified, all the analyses will be conducted on FAS. All efficacy related analyses will be done separately for all subjects, subjects with baseline FGFR2 gene fusions or translocations and subjects with only other FGFR genomic alterations. In addition, for subjects with baseline FGFR2 gene fusions or translocations, the data will be summarized by treatment (formulation FMI I vs FMI III vs FMI IV). The analyses, including safety, disposition, demographic/baseline disease characteristics, study drug exposure and prior/concomitant/post therapy related analyses, will be done separately for all subjects, all subjects by FGFR status (FGFR2 gene fusion/translocation vs. only other FGFR genomic alterations) and all subjects by treatment.

Unless otherwise specified, the FAS will be used for all listings of raw data.

2.2.2 Interim Efficacy Analysis Set 1 for Cohort 1

The Interim Efficacy Analysis Set 1 for Cohort 1 includes all subjects with planned extensive PK sample collection in Cohort 1 (regardless of whether extensive PK samples were actually collected) and all patients enrolled prior to Amendment 2. Unless otherwise specified, the Interim Efficacy Analysis Set 1 will be used as the primary efficacy analysis set for the first formal interim analysis for Cohort 1 after Amendment 3. Patients will be classified according to their baseline genetic status (FGFR2 gene fusions or translocations vs only other FGFR genetic alterations).

2.2.3 Interim Analysis Set 2 for Cohort 1

The Interim Analysis Set 2 for Cohort 1 includes patients in Cohort 1 with FGFR2 gene fusions or translocations who have received at least one dose of infiratinib. Interim Analysis Set 2 for Cohort 1 will be used as the primary analysis set for the second formal interim analysis for Cohort 1 after Amendment 3.

2.2.4 Sensitivity Analysis Set for Cohort 1

The Sensitivity Analysis Set for Cohort 1 includes patients with FGFR2 gene fusions or translocations who received infiratinib at the time of the first formal interim analysis and patients who have disease progression according to central imaging review or ended treatment by the cutoff date for the second formal interim analysis for Cohort 1 after Amendment 3. The cutoff date for the second formal interim analysis is planned so that all the patients with FGFR2 gene fusions or translocations who received infiratinib at the time of the first formal interim analysis have 10 months follow-up after their initial exposure to infiratinib. The Sensitivity Analysis Set for Cohort 1 will be used for supportive sensitivity analyses for the second formal interim analysis for Cohort 1. Some analyses, including summary of demographic, baseline characteristics and disposition, and some key efficacy and safety analyses, will be repeated on the Sensitivity Analysis Set.

2.2.5 Interim Analysis Set for Cohort 3

The Interim Analysis Set for Cohort 3 will include the first 10 dosed subjects who have the potential to complete second scheduled post baseline scan.

2.2.6 *Per-Protocol Set*

The Per-Protocol Set (PPS) will consist of a subset of patients in the FAS who are compliant with requirements of the CSP in the following ways:

- Patient had an adequate tumor assessment at baseline
- Patient is evaluable for efficacy
- Patient had no CSR-reportable protocol deviations that may affect efficacy evaluation.

Subjects will be evaluable for efficacy if they have at least one post-baseline response assessed differently from 'unknown' or 'not assessed' as per RECIST v1.1. All CSR-reportable protocol deviations leading to exclusion from the PPS will be provided in a listing.

If more than 10% of FAS subjects were excluded from PPS, key efficacy analysis may be repeated on PPS.

2.2.7 *Pharmacokinetic analysis set*

The Pharmacokinetic analysis set (PAS) includes all patients who (a) receive the planned treatment, (b) provide at least one evaluable PK concentration, and (c) do not vomit within 4 hours after the dosing of infigratinib.

Subjects will be removed from the estimation of certain PK parameters on an individual basis depending on the number of available blood samples and whether the PK parameters can be reliably estimated based on the available blood samples. These patients will be identified at the time of the analyses.

2.2.8 *Subgroups of interest*

The summaries of the efficacy variables may be repeated for the following subgroups:

- Lines of prior therapy (<=1 vs >1)
- Gender (male vs female)
- Age >=65 vs <65
- Region (North America vs Western Europe vs Asia)

Summaries for TEAEs will be repeated for the following subgroups:

- Gender (male vs female)
- Age group (>=65 vs <65)
- Region group (North America vs Western Europe vs Asia)
- BMI (<18.5 vs. >=18.5)
- Subjects who received strong CYP3A4 inhibitors vs moderate CYP3A4 inhibitors vs none (Section 5.10)

- Subjects who received strong CYP3A4 inducers vs moderate CYP3A4 inducers vs none (Section 5.10)

The list of strong CYP3A4 inhibitors and inducers is documented in Section 5.10.

2.3 Subject Disposition, Demographics and Other Baseline Characteristics

Unless noted otherwise, summaries and listings described in this section will be based on the FAS.

2.3.1 Subject disposition

The following will be tabulated:

- Number (%) of patients treated;
- Number (%) of patients who are still on-treatment at the time of cut-off;
- Number (%) of patients who discontinued treatment and primary reasons for discontinuation.

A listing of disposition will be produced.

2.3.2 Demographics

All demographic and baseline disease characteristics data will be summarized and listed. Categorical data, eg, gender, age groups: <65 years vs ≥65 years, race, ECOG performance status, will be summarized by frequency counts and percentages; the number and percentage of patients with missing data will be provided. Continuous data, eg, age, weight, height will be summarized by descriptive statistics (N, mean, median, standard deviation, Q1, Q3, minimum and maximum).

2.3.3 Medical History

Summary of medical history will be provided by SOC and PT, using the Medical Dictionary for Regulatory Activities (MedDRA) (version 21.0 or later) terminology available at the time of reporting.

2.3.4 Prior Antineoplastic Therapy

The number (%) of patients who received any prior anti-neoplastic medication, radiotherapy or surgery will be summarized. The summary will include only the prior antineoplastic therapy after or on the date of the initial diagnosis of cholangiocarcinoma.

The summary of prior anti-neoplastic medications will include the total number of regimens (note: there can be more than one medication per regimen) and the total number of lines (excluding adjuvant or neoadjuvant regimens), setting at last treatment, best response at last treatment (defined to be the best response during the last treatment regimens recorded), best response during treatment with gemcitabine and cisplatin. For this analysis, gemcitabine and gemcitabine hydrochloride will be grouped to define prior treatment with gemcitabine. Prior

antineoplastic medications will also be summarized by Anatomical Therapeutic Chemical (ATC) class, and preferred term. The summary of the efficacy endpoints, including response assessment, duration of response and time to progression, on the 1st line of gemcitabine base therapy will also be provided.

The summary of prior anti-neoplastic radiotherapy will include the total number of subjects who received prior anti-neoplastic radiotherapy, the radiotherapy locations, (including all locations recorded for each patient), setting at last radiotherapy.

The summary of prior anti-neoplastic surgery will include the time (in months) between the last surgery (non-biopsy procedure) to start of study treatment, procedure at last surgery and residual disease at last surgery.

2.3.5 *Diagnosis and Extent of Cancer*

The summary and listing of diagnosis and extent of cancer (disease history) will include primary site of cancer, details of tumor histology/cytology, histologic grade, stage at initial diagnosis, time (in months) since initial diagnosis of primary site to treatment start, time (in months) from initial diagnosis to first recurrence/relapse, time (in months) since most recent recurrence/relapse to treatment start, current extent of disease (metastatic sites).

2.4 Protocol Deviations

Unless otherwise specified, the FAS will be used for the protocol deviation summary tables and listing. The number (%) of patients with any CSR-reportable protocol deviation will be tabulated by the deviation category as listed below:

- Subject enrolled and did not satisfy the entry criteria
- Subject developed study/treatment withdrawal criteria during the study, but was not withdrawn
- Subject received the wrong treatment or incorrect dose
- Subject took a prohibited concomitant medication
- Major procedural or other GCP deviation that potentially affects patient safety or efficacy data interpretation

2.5 Treatments (Study Treatment, Concomitant Therapies, Compliance)

2.5.1 *Study Treatment*

Unless otherwise specified, the full analysis set will be used for all summaries and listings of study treatment.

2.5.1.1 *Data Analysis*

Duration of exposure, actual cumulative dose, relative dose intensity (RDI) will be summarized in the full analysis set. Duration of exposure will be categorized into time intervals; frequency counts and percentages will be presented for the number (%) of subjects in each interval. The number (%) of subjects who have dose reductions or interruptions, and the reasons, will be summarized by treatment.

Subject level listings of all doses administered on treatment along with dose change reasons will be produced.

2.5.1.2 *Duration of Exposure to Study Treatment*

$$\text{Duration of exposure (day)} = (\text{end date of infigratinib}) - (\text{start date of infigratinib}) + 1,$$

End date of infigratinib refers to the end date of last non-zero dose record with the exception for subjects who are still on treatment. For subjects who are still on treatment, the end date of infigratinib refers to the end date of last dose record.

Then,

$$\text{Duration of exposure (month)} = \text{Duration of exposure (day)} / 30.4375.$$

The duration of exposure to study treatment will be determined by the number of months exposed to infigratinib. Duration of exposure will be summarized using descriptive statistics.

Summary of duration of exposure of study drug will include categorical summaries (based on clinically meaningful time intervals) and continuous summaries (ie, mean, standard deviation etc.) using appropriate units of time.

2.5.1.3 *Cumulative Dose*

Cumulative dose of study treatment is defined as the total dose given during the study treatment exposure and will be summarized.

The **planned cumulative dose** for study treatment refers to the total planned dose as per the protocol up to the last date of investigational drug administration. The **actual cumulative dose** refers to the total actual dose administered, over the duration for which the subject is on the study treatment as documented in the Dose Administration eCRF.

2.5.1.4 *Relative Dose Intensity*

Relative dose intensity (RDI) is defined as the ratio of actual cumulative dose to the planned cumulative dose. For example, a subject take study drug from day 1 to day 21 at 125 mg/day; then from day 29 to day 30 at 100mg/day, and end treatment afterward. The cumulative actual dose = $21*125+100*2=2825$ mg; the planned cumulative dose = $21*125+125*2=2875$ mg. The relative dose intensity = $2825/2875=98.3\%$.

RDI will be summarized. Summary of RDI will include categorical summaries based on the following categories: ≤ 0.5 , $>0.5 - \leq 0.75$, $>0.75 - \leq 0.9$, $>0.9 - \leq 1.0$ and >1.0 .

2.5.1.5 *Dose Reductions, Interruptions*

The number of subjects who have dose reductions, or interruptions, and the reasons, will be summarized separately for the study treatment.

Dose reductions will be summarized by the lowest non-zero dose level. Note that planned 1 week off in dosing schedule will not be collected or counted as dose interruption.

The corresponding fields 'Reason for dose change/dose interrupted' and 'Reason for permanent discontinuation' will be used to summarize the reasons.

2.5.2 *Prior, Concomitant and Post Therapies*

Concomitant therapies are defined as any medications (excluding study treatment, prior antineoplastic treatments) and significant non-drug therapies (including physical therapy and blood transfusions) administered in the study and are recorded in the Prior and Concomitant Medications eCRF. These therapies will be coded using the WHO Drug Reference Listing (WHO DRL) dictionary that employs the WHO Anatomical Therapeutic Chemical (WHO ATC) classification system. Only on-treatment (treatment-emergent) concomitant medication (CM) will be summarized. On-treatment (treatment-emergent) concomitant medication refers to the concomitant medication taken on or after the first administration day of study drug and up to last study administration day of study drug +30 days. Some groups of concomitant medication may also be summarized separately, for example, phosphate-binders.

The imputation of a concomitant medication start date and end date will follow the same conventions as for an AE start date if needed for analyses.

The post antineoplastic medication will be listed.

Prior, concomitant and post therapies may be listed as needed.

2.5.3 *Compliance*

Compliance to the study treatment will be summarized in terms of the RDI or percentage of patients who took a predefined percentage of the number of prescribed. The predefined RDI categories are ≤ 0.5 , $>0.5 - \leq 0.75$, $>0.75 - \leq 0.9$, $>0.9 - \leq 1.0$ and >1.0 . The number and proportion of patients falling in each category will be presented. Details are provided in Section [2.5.1](#).

2.6 *Analysis of the primary objective*

2.6.1 *Variable*

For Cohort 1, the primary objective of the study is to assess anti-tumor activity of infigratinib using overall response rate assessed by central imaging review.

Best overall response (BOR) is the best overall response a subject ever achieves during the study prior to any subsequent anti-cancer therapy. Overall response rate (ORR) is defined as the proportion of patients with a best overall response of confirmed Complete Response (CR) or Partial Response (PR), as per RECIST version 1.1, among the corresponding analysis set.

ORR (central imaging assessment) is the primary efficacy endpoint, and its analysis consists of a Clopper-Pearson 95% CI accompanied by a characterization of time to response (TTR) and duration of response (DOR) to allow for a more complete characterization of the beneficial effect Infigratinib may have in the principal analysis population. The Brookmeyer-Crowley method will be used to construct the 95% CI for each of TTR and DOR.

2.6.2 *Statistical Hypothesis, Model, and Method of Analysis*

For Cohort 1, the primary analysis of the primary endpoint (ORR assessed by central imaging review) should occur when all subjects in Cohort 1 have the potential to be followed for at least 10 months after their initial exposure to study treatment. The formal interim analysis for Cohort 1 will be conducted when all patients in the interim efficacy analysis set have been followed for at least 10 months after their initial exposure to the study treatment. Any confirmed PR or CR until the data cut-off date and any subsequent anti-cancer therapy will be considered as a responder for ORR, irrespective of when it occurred.

2.7 *Analysis of Secondary Objective(s)*

This section describes analyses of secondary objectives for Cohort 1. The same endpoints will be analyzed for Cohorts 2 and 3 as exploratory, so the approaches described in this section also apply to Cohort 2 and 3.

2.7.1 *Secondary Efficacy Objectives*

Overall Response Rate Per Investigator

ORR per investigator is among the secondary endpoints. The estimated ORR will be presented with the corresponding 95% confidence interval based on exact binomial distribution using the corresponding analysis set.

Overall Survival

Overall Survival (OS) is defined as the time from the date of start of treatment to the date of death due to any cause. The survival time for subjects without documentation of death prior to the data cutoff will be censored at the last date the subject was known to be alive prior to the cutoff date. Survival time for subjects with no post-baseline survival information will be censored at the date of start of treatment.

OS will be analyzed using the Kaplan-Meier method. Survival rate at 4, 6, 8, 12, 18, 24 months (and every 6 months thereafter as reported in database) with median OS will be estimated along with 95% confidence intervals.

Progression Free Survival

Progression free survival (PFS) is defined as the date of the start of treatment to the date of the event defined as the first documented progression or death due to any cause, whichever is earlier. If subject has not had an event, progression-free-survival is censored at date of last valid tumor assessment or start of study treatment if there is no valid tumor assessment available. For subjects who had an event after two or more missed visits, the subject will be censored at the last adequate tumor assessment. The PFS analyses will be done based on central and local assessments separately. Kaplan-Meier analysis of PFS will be provided.

The primary PFS will be derived based on all the tumor assessments and death including any after a subsequent anti-cancer therapy. A sensitivity analysis will also be conducted on PFS excluding the tumor assessments and death after any subsequent anti-cancer therapies. If the event (the first progressive disease or death) is after a subsequent anti-cancer therapy, the PFS for the sensitivity analysis will be censored at the last valid tumor assessment prior to all subsequent anti-tumor therapies or first dose date if there is no valid tumor assessment prior to all subsequent anti-tumor therapies.

For Cohorts 2 and 3, the percentage of subjects who are progression-free at the second scheduled scan (approximately 16 weeks from treatment initiation) or later will be analyzed using 95% exact binomial confidence interval. Patients who do not have scans to show that they are progression-free at the second scheduled scan or later will be considered as not benefiting from the study treatment. Sensitivity analysis will be done by estimating PFS >16 weeks using K-M estimate.

Best Overall Response and Disease Control Rate

Overall lesion assessments will be listed by subject. BOR will be summarized for the rate of best overall response of progressive disease, stable disease, confirmed partial response (PR), and confirmed complete response (CR) separately; it will also be summarized for the Disease Control Rate which are the proportion of subjects having respectively a best overall response of confirmed PR or CR, or stable disease. The estimates will be presented along with the corresponding 95% exact confidence interval. Best overall response will be provided for investigator assessment and central assessment as specified by cohort (Section 1.2). In addition, the concordance of best overall response based on central assessment and local assessment will be assessed.

Best tumor burden change (maximum tumor burden reduction from baseline or minimum tumor burden increase from baseline if tumor burden has never reduced prior to any anti-cancer therapy) will be presented graphically.

Response Onset and Duration of Response

Response onset will be estimated using Kaplan-Meier product limit method to analyze TTR based on ORR central imaging assessment. The Brookmeyer-Crowley method will be used to construct the 95% CI for TTR. DOR will be further summarized by length of exposure to

infigratinib using the following exposure cut-off lengths: at least 6 months, at least 9 months, at least 12 months.

Response onset and duration of response (DOR) will be summarized for confirmed responders only, based on local and central assessments separately. Response onset is defined as the time from the first study drug administration date to the initial response date. DOR is defined as the time from the initial response to the date of the event defined as the first documented progression or death due to any cause, whichever is earlier. The same event/censoring rule applied to PFS will be applied to DOR.

2.7.2 *Safety Objectives*

The FAS will be used for summaries and listings of safety data except for the second formal interim analysis for Cohort 1 after amendment 3 where the Interim Analysis Set 2 for Cohort 1 will be used. In general, summaries will be provided only for the on-treatment safety assessments, which are the assessments occurring or taken during the on-treatment period.

2.7.2.1 *Adverse Events (AEs)*

2.7.2.1.1 Data Handling

Adverse events will be coded using the Medical Dictionary for Regulatory Activities (MedDRA) version 21.0 and assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.03, respectively.

The CTCAE represents a comprehensive grading system for reporting the acute and late effects of cancer treatments. CTCAE grading is by defining a 5-point scale generally corresponding to mild, moderate, severe, life threatening, and death. This grading system inherently places a value on the importance of an event, although there is not necessarily proportionality among grades (a Grade 2 is not necessarily twice as bad as a Grade 1).

If CTCAE grading does not exist for an AE, Grades 1, 2, 3, or 4 corresponding to the severity of mild, moderate, severe, and life-threatening, respectively, will be used. CTCAE Grade 5 (death) will not be used in this study. Death information will be collected on the “Death” eCRF pages.

2.7.2.1.2 Data Analysis

AE Summaries

AE summaries will include all AEs occurring during on-treatment period, i.e. treatment emergent AEs. Treatment emergent AEs (TEAEs) include all AEs that started on or after the first administration day of study treatment and up to last study administration day of study treatment +30 days. All AEs collected in the AE (e)CRF page will be listed along with the information collected on those AEs, eg, AE relationship to study drug, AE outcome, etc. Treatment-emergent AEs will be flagged in the listings.

TEAEs will be summarized by number and percentage of subjects having at least one TEAE, having at least one TEAE in each primary system organ class (SOC) and for each preferred term (PT) using MedDRA coding. A subject with multiple occurrences of an AE will be counted only once in the respective AE category. A subject with multiple CTCAE grades for the same preferred term will be summarized under the maximum CTCAE grade recorded for the event. AE with missing CTCAE grade will be included in the 'All grades' column of the summary tables.

In TEAE summaries the primary system organ class will be presented alphabetically, and the preferred terms will be sorted within primary SOC in descending frequency. The sort order for the preferred term will be based on their frequency in FAS. The following TEAE summaries will be produced by treatment and by FGFR2 fusion/translocation status:

- Overview of TEAEs and deaths (number and % of subjects who died from fatal TEAE, number and % of subjects with any TEAE, any treatment emergent serious AE, any TEAE leading to dose reductions/interruptions, TEAE leading to discontinuation of study treatment)
- All TEAEs by SOC and PT and worst grade
- Treatment related TEAEs by SOC and PT and worst grade
- Grade 3 or 4 TEAEs by SOC and PT and worst grade
- Treatment emergent serious AEs (SAEs) by SOC and PT and worst grade
- Treatment emergent serious treatment-related AEs by SOC and PT and worst grade
- TEAE with fatal outcome by SOC and PT and worst grade
- TEAE leading to study treatment discontinuation by SOC, PT and grade
- TEAE leading to dose interruption/adjustment by SOC, PT and grade
- TEAE leading to treatment discontinuation by SOC and PT and worst grade
- TEAE requiring additional medication or therapies by SOC and PT and worst grade
- All TEAEs by PT by descending order of frequency
- Treatment related TEAEs by PT by descending order of frequency
- All TEAEs occurred in $\geq 10\%$ subjects by PT by descending order of frequency
- Grade 3 or 4 TEAEs by PT by descending order of frequency
- Treatment related Grade 3 or 4 TEAEs by PT by descending order of frequency
- Treatment emergent serious AEs (SAEs) by PT by descending order of frequency
- Treatment emergent serious treatment-related AEs by PT by descending order of frequency
- TEAE leading to treatment discontinuation by PT by descending order of frequency
- TEAE requiring additional medication or therapies by descending order of frequency

The following listings will be produced:

- All adverse events
- All serious adverse events

Deaths

Primary reason for on-treatment, post-treatment and all deaths will be summarized for the full analysis set. Treatment-emergent AE with fatal outcome will be summarized by SOC and PT. On-treatment death will also be summarized by SOC and PT.

All deaths will be listed and on-treatment death will be flagged.

Adverse Events of Special Interest

Adverse events of special interest (AESI) will be considered. Each AESI consists of one or more well-defined safety events which are similar in nature and for which there is a specific clinical interest in connection with the study treatment(s) (Section 5.2 to Section 5.8). For each specified AESI, number and percentage of patients with at least one event within the AESI will be reported. The following AESI will be considered for this study:

- Calcium phosphate homeostasis, including the subcategories of hypercalcemia, hyperphosphatemia, and hypophosphatemia
- Eye disorder
- Central Serious Retinopathy/Retinal Pigment Epithelium Detachment (CSR/RPED)
- Cardiac disorder
- Acute pancreatitis
- Tissue calcification
- Pathological fracture
- Vascular calcification/mineralization

For each AESI (or its subcategory), the overall summary of the characteristics will be provided. In addition, each AESI will also be summarized by subcategory (as applicable), preferred term and worst grade. The current search strategy for each AESI is documented in Section 5.2.

Minimum Critical Toxicities

Minimal critical toxicities are toxicities that should always be explicitly considered during the planning for the development of every new medicinal product (Section 5.9). Analyses of these are based on FDA guidance as applicable (ie, Drug Induced Liver Injury using Hy's Law per FDA guidance).

Minimal critical toxicities to be analyzed under this statistical analysis plan include the following categories:

- Cardiac toxicity including QT prolongation and other ECG abnormalities
- Hepatotoxicity
- Nephrotoxicity
- Hematologic toxicity

Subject incidence of TEAEs indicative of potential cases of the toxicities will be summarized for each of the categories.

For hepatotoxicity, in addition, abnormalities in liver function tests will be summarized. Subject incidence of the following will be provided:

- $3\times$ -, $5\times$ -, $10\times$ -, and $20\times$ upper limit of normal (ULN) elevations of aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT).
- Any elevations of bilirubin; elevated total bilirubin to $\geq 2\times$ ULN.
- Any elevations of alkaline phosphatase (ALP) $>1.5\times$ ULN.
- Elevation of “ALT or AST” ($>3\times$ ULN) accompanied by elevated total bilirubin ($>1.5\times$ ULN, $\geq 2\times$ ULN) and ALP $<2\times$ ULN.

In addition, a listing of potential Hy’s Law cases identified will be provided. Potential hepatotoxicity is identified by the Hy’s Law (FDA Guidance for Industry Drug Induced Liver Injury: Pre-marketing Clinical Evaluation, July 2009) as: ALT or AST $>3.0\times$ ULN; total bilirubin $\geq 2.0\times$ ULN, ALP $<2.0\times$ ULN; and no other confounding factors including preexisting or acute liver disease.

For cardiac toxicity, ECG findings will also be summarized as specified in Section [2.7.3.3](#).

Phosphate Binder Medication

Number of subjects who have taken phosphate binder medication (Section [5.11](#)) and the types of medication will be summarized by the formulation. Of these patients who have taken phosphate binder, number (percentage) of subjects who had a Grade 3/4 hypophosphatemia AE (including preferred terms hypophosphatemia and blood phosphorus decrease) will be summarized.

2.7.2.2 *Laboratory Data*

2.7.2.2.1 CTC Grading for Laboratory Parameters

Grade categorization of lab values will be assigned programmatically as per NCI Common Terminology Criteria for Adverse Events (CTCAE) version 4.03. The calculation of laboratory CTC grades will be based on the observed laboratory values only; clinical assessments will not be taken into account.

For laboratory tests where grades are not defined by CTCAE v4.03, results will be graded by the low/normal/high (or other project-specific ranges, if more suitable) classifications based on laboratory normal ranges.

A severity grade of 0 will be assigned for all non-missing lab values not graded as 1 or higher for CTCAE parameters that are unidirectional. For CTCAE parameters that are bidirectional non-gradable values which are beyond the normal range will be left missing while Grade 0 will be assigned to the value within the normal range. Grade 5 is not applicable.

2.7.2.2.2 Imputation Rules

CTC grading for blood differentials is based on absolute values.

If laboratory values are provided as ' $<X$ ' (ie, below limit of detection) or ' $>X$ ', prior to conversion of laboratory values to SI unit, these numeric values are set to X.

The following rules will be applied to derive the WBC differential counts when only percentages are available for a xxx differential

$$\text{xxx count} = (\text{WBC count}) * (\text{xxx \%value} / 100)$$

Corrected calcium can be derived using the reported total calcium value and albumin at the same assessment. The adjustment is done on calcium where albumin is less than 40 g/L and doesn't adjust when albumin ≥ 40 g/L because it can lead to underestimation. The formula for adjustment based on SI unit is:

When Albumin ≥ 40 g/L, then Corrected Calcium (mmol/L) = Calcium (mmol/l);

When non-missing Albumin <40 g/L, Corrected Calcium (mmol/L) = Calcium (mmol/L) + 0.02 \times (40-Albumin(g/L))

In the formula above, SI unit mmol/L and g/L for Calcium and Albumin are used, respectively. The normal range of corrected calcium is same as the calcium's.

CTC grades for the derived absolute WBC differential counts (neutrophils, lymphocytes) and corrected calcium are as defined in the previous section.

2.7.2.2.3 Data Analysis

The laboratory summaries will include all assessments available for the lab parameter collected no later than 30 days after the last study treatment administration date. Laboratory parameters for hematology and blood chemistry will be summarized at baseline, each post-baseline visit (based on the visit schedule defined in the protocol along with a window), the maximum and minimum observed post-baseline values, and last observed value, along with the change from baseline.

For laboratory tests where grades are defined by CTCAE 4.03:

- Worst post-baseline CTCAE grade (regardless of the baseline status). Each subject will be counted only once for the worst grade observed post-baseline.
- Shift tables using CTCAE 4.03 grades to compare baseline to the worst on-treatment value

For laboratory tests where grades are not defined by CTCAE 4.03, the summary will be based on normal range:

- Worst post-baseline abnormal value (regardless of the baseline status). Each subject will be counted only once for the high/low category.
- Shift tables to compare baseline to worst on-treatment values using the low/normal/high/ (low and high)

For laboratory tests that are graded for both low and high directions, the shift tables and summary of post-baseline abnormal results will be done separately and labeled by direction.

As discussed in ‘Minimum Critical Toxicities’ in Section [2.7.2.1.2](#), incidence of potential drug-induced liver injury based AST, ALT, TBL, ALP will be presented and potential Hy’s law cases will also be listed.

[Table 4](#) provides an example of laboratory parameters for which CTCAE grades are defined, [Table 5](#) provides an example of laboratory parameters for which shift tables were based upon the local lab normal range

Table 4: Example of Laboratory Parameters for Which CTCAE Grades are Defined

Hematology and Coagulation	Biochemistry	
White Blood Cells (WBC)	↑ ↓	Creatinine ↑
Hemoglobin	↑ ↓	Sodium ↑ ↓
Platelets counts	↓	Potassium ↑ ↓
Absolute Neutrophils	↓	Corrected Calcium ↑ ↓
Absolute Lymphocytes	↑ ↓	Magnesium ↑ ↓
APTT	↑	Albumin ↓
INR	↑	AST (SGOT) ALT (SGPT) ↑
		Total Bilirubin ↑
		Phosphate ↓
		amylase ↑
		lipase ↑
		Alkaline phosphatase ↑
		Total Cholesterol ↑
		Triglycerides ↑
		Urate ↑

↑ Indicates that CTC grade increases as the parameter increases.

↓ Indicates that CTC grade increases as the parameter decreases.

Table 5: Examples of Laboratory Parameters (Without CTCAE Grades) for Which Lab Reference Ranges Are Defined

Hematology and Coagulation	Biochemistry
Prothrombin time (PT)	Blood urea nitrogen (BUN)
Hematocrit	Urea
Absolute Basophils,	Total protein
Absolute Eosinophils	Direct Bilirubin
Absolute Monocytes	Indirect Bilirubin
	Chloride
Red Blood Cells (RBC)	

2.7.3 Other Safety Data

The FAS will be used for summaries and listings of other safety data discussed in this section except for the second formal interim analysis for Cohort 1 after Amendment 3 where the Interim

Analysis Set 2 for Cohort 1 will be used. In general, summaries will be provided only for the on-treatment safety assessments, which are the assessments occurring or taken during the on-treatment period.

2.7.3.1 *Ophthalmologic Assessment*

Both visual acuity score (logMAR) and tonometry will be summarized at baseline, each post-baseline visit (based on the visit schedule defined in the protocol along with a window), the maximum and minimum observed post-baseline values, and last observed value, along with the change from baseline.

Along with the summary described above, the number (percentage) of clinically significant changes in visual acuity score (logMAR) will be also summarized:

- <0.1 logMAR
- 0.1 - <0.2 logMAR
- 0.2 - <0.3 logMAR
- ≥ 0.3 logMAR

In addition, the number (percentage) of clinically significant values in tonometry will be summarized by visit:

- ≤ 21 mmHg
- > 21 mmHg

Number (%) of clinically significant abnormalities will also be summarized by visit for slit lamp, OCT, and fundoscopy exams.

2.7.3.2 *Left Ventricular Ejection Fraction*

Left ventricular ejection fraction (LVEF) will be summarized for baseline, each post-baseline visit (based on the scheduled defined in the protocol along with a window), minimum post-baseline, along with the changes from baseline. Shift tables of the minimum post-baseline LVEF ($<40\%$, 40% to 50% , $\geq 50\%$) with baseline LVEF status ($\geq 50\%$, $<50\%$) will be provided.

Clinically significant changes of LVEF defined below will also be presented:

1. Absolute decrease from baseline $>10\%$ but $<20\%$ and LVEF $\geq 40\%$ to $<50\%$
2. Absolute decrease from baseline $\geq 20\%$ and LVEF $\geq 20\%$ to $<40\%$
3. LVEF $<20\%$

2.7.3.3 *ECG and Cardiac Imaging Data*

The ECG analysis will be performed on all subjects who have received at least one dose of infigratinib with the baseline and at least one on-treatment post-baseline ECG assessment.

The average of the ECG parameters at each assessment should be used in the analyses. 12-lead ECGs including PR, QRS, QT, QTcF, QTcB, and HR intervals will be obtained central/local for each subject during the study. ECG data will be read and interpreted centrally. The ECG summaries will include all assessments available for the ECG parameter collected no later than 30 days after the last study treatment administration date.

ECG parameters will be summarized at baseline, each post-baseline visit (based on the nominal visit as collected from eCRF), the maximum and minimum observed post-baseline values, and last observed value, along with the change from baseline. For the maximum/minimum/last observed value, both scheduled and unscheduled assessments will be considered.

The number and percentage of subjects with notable ECG values will be presented.

- QT
 - New value of >500 ms
- QT, or QTcF
 - New value of >450 ms
 - New value of >480 ms
 - New value of >500 ms
 - Increase from baseline of >30 ms to ≤60 ms
 - Increase from baseline of >60 ms
- HR
 - Increase from baseline >25% and to a value >100 bpm
 - Decrease from baseline >25% and to a value <50 bpm
- PR
 - Increase from baseline >25% and to a value >200 ms
- QRS
 - Increase from baseline >25% and to a value >100 ms

A listing of all ECG assessments will be produced and notable values will be flagged. In the listing, the on-treatment assessments will be flagged. In addition, a shift table baseline to worst on-treatment result for overall assessments will also be produced.

In addition to the ECG analysis in CSR, a separate report on cardiac safety evaluation including QTc/PK modeling will be provided, based on a separate cardiac safety analysis plan.

2.7.3.4 *Vital Signs and ECOG Performance Status*

ECOG performance status will be summarized at baseline, each post-baseline visit (based on the visit schedule defined in the protocol along with a window), and the last observed value.

Vital sign assessments are performed in order to characterize basic body function. The following parameters were collected: height (cm), weight (kg), body temperature (°C), pulse rate (beats per minute), systolic and diastolic blood pressure (mmHg).

Vital signs (except height) collected during on-treatment will also be summarized using the same approach as for ECOG. The number and percentage of subjects with notable vital sign values (high/low) will be presented.

Table 6: Criteria for Notable Vital Sign Values

Vital sign (unit)	Notable high value	Notable low value
Systolic blood pressure (mmHg)	≥180 and increase from baseline of ≥20	≤90 and decrease from baseline of ≥20
Diastolic blood pressure (mmHg)	≥105 and increase from baseline of ≥15	≤50 and decrease from baseline of ≥15
Pulse rate (bpm)	≥100 and increase from baseline of >25%	≤50 and decrease from baseline of >25%
Body temperature (°C)	≥39.1	--

2.7.3.5 *Supportive Analyses for Secondary Objectives*

Not applicable.

2.7.3.6 *Tolerability*

Tolerability of study drug will be assessed by summarizing the number of dose interruptions and dose reductions. Reasons for dose interruption and dose reductions will be listed by subject and summarized. Cumulative dose, dose intensity and relative dose intensity of infigratinib will be listed by subject and summarized. Categories for relative dose intensity of infigratinib will be specified as ≤0.5, >0.5 - ≤0.75, >0.75 - ≤0.9, >0.9 - ≤1.0, and >1.0. The number and proportion of subjects within each category will be presented.

2.7.4 *Pharmacokinetics*

Subjects treated with FMI I and some subjects treated with FMI III (sparse PK group) will have limited PK collected as indicated in Table 10 of [CSP Amendment 5](#). For these subjects, only trough and 2-hr or 4-hr plasma concentration data will be collected. No PK parameters can be calculated for these subjects, but the concentration data may be used in the population PK modeling.

A secondary objective of this study is to characterize the single and multiple doses PK of infigratinib FMI III and FMI IV formulations. Data as per Table 11 of [CSP Amendment 5](#) will be available for about 20 subjects treated with FMI III and for all subjects enrolled in either Cohort 2 or Cohort 3 and treated with FMI IV. For these subjects, PK parameters as listed in [Table 7](#), may be determined from PK profiles after the first dose on Day 1 of Cycle 1 and Day 15

of Cycle 1 after repeated daily dosing using non-compartmental method(s) of WinNonlin (Pharsight, Mountain View, CA).

The sections below on the PK analysis are intended to provide general principle for the PK analysis. Additional details of the analysis approaches will be provided in a separate PK analysis plan.

Table 7: Non-compartmental Pharmacokinetic Parameters

Term	Definition
C_{\max}	Maximum observed plasma concentration after drug administration [mass \times volume $^{-1}$]
C_{trough}	Measured concentration at the end of a dosing interval (taken directly before next administration) [mass \times volume $^{-1}$]
T_{\max}	Time to reach C_{\max} [time]
AUC_{0-24}	Area under the concentration-time curve from 0 to 24 hours [mass \times time \times volume $^{-1}$]
$T_{1/2}$	Elimination half-life associated with the terminal slope (λ_z) of a semi-logarithmic concentration-time curve [time]
AUC_{inf}	Area under the concentration-time curve from 0 to infinity [mass \times time \times volume $^{-1}$]
CL/F	Apparent clearance [dose/AUC]
V_z/F	Apparent volume of distribution [dose/AUC \times λ_z]
R_{acc}	Accumulation ratio calculated as AUC_{0-24} of C1D15/ AUC_{0-24} of C1D1 and C_{\max} of C1D15/ C_{\max} of C1D1

2.7.4.1 *Data Handling Principles*

Only PK blood samples with the date and time and for which the last prior dose dates and times are adequately recorded will be included in the PK analyses. Missing concentration values will be reported as is in data listings. Missing values for any PK parameters or concentrations will not be imputed and will be treated as missing. Below the limit of quantitation (BLQ) values will be displayed in the listings as is. BLQ values will be treated as zero for the calculation of the geometric means and geometric CV%.

At the time of analysis, concentration data from subjects may be removed from the estimation of certain PK parameters depending on the number of available blood samples, concomitant medications, vomiting, etc. Specific time points might be removed from the analysis set if technical issues with the sample are reported (eg, sampling issues, missing information). These data points will be identified at the time of analysis

2.7.4.2 *Data Analysis Principles*

Exploratory PK analysis may be conducted based on preliminary data prior to data base lock, and nominal time and dose information may be used.

PK data generated from this study may be used in conjunction with PK data from other clinical studies for population PK and PK/PD assessment. These assessments will be reported separately. If possible, exploratory comparisons will be made to historical pharmacokinetic data. Available PK data from this study may be modeled using a population pharmacokinetic data analysis approach in order to characterize the population pharmacokinetics of infigratinib. Any population PK data generated will be reported separate from the CSR.

All analyses will refer to infigratinib and its metabolites. Infigratinib and its metabolites concentration vs time data will be reported.

Analysis will be done separately for the three formulations. In addition, analyses that require derived PK parameters will be applicable to subjects treated with FMI III and FMI IV who have provided PK parameters based on extensive PK sampling as indicated in Table 11 of [CSP Amendment 5](#).

2.7.4.3 *Analysis Sets*

Only PK blood samples with the date and time and for which the last prior dose dates and times are adequately recorded will be included in the PK analyses. Samples taken from patients who vomited within 4 hours of dosing will be excluded from the analysis. The PAS will be used.

2.7.4.4 *Basic Tables, Figures, and Listings*

The PK concentration and PK parameters (when available for subjects treated with FMI III or FMI IV), will be summarized and listed using relevant statistics by treatment, and study day. Descriptive statistics (mean, SD, CV%, geometric mean, geometric CV%, median, and range) will be presented. Median, minimum and maximum will be calculated based on collected samples. When a geometric mean is presented, it will be stated as such. Only median values and ranges will be presented for T_{max} .

Graphical plots of individual and mean plasma concentration-time data will be generated for infigratinib and its metabolites. This graphical presentation will be applicable to subjects who are treated with FMI III and have PK profile collected as per Table 11 of [CSP Amendment 5](#). Further graphical exploratory analysis will be carried out if deemed appropriate.

Median, minimum and maximum will be calculated based on collected samples. All analyses will refer to infigratinib and its metabolites. Infigratinib and its metabolites concentration vs time data will be reported. Exploratory PK analysis may be conducted based on preliminary data prior to data base lock and nominal time and dose information may be used.

2.8 **Exploratory Analyses**

The exploratory analyses described below will be conducted if there are sufficient data available.

2.8.1 Biomarkers

Sequencing analyses of cell-free DNA (cfDNA) isolated from the plasma of a subset of subjects who have progressed through treatment with Infigratinib are performed in order to detect genetic alterations from baseline.

2.8.1.1 *Outline of the Data Analysis*

Since the clinical trial was not designed to address specific hypotheses related to subject pre-selection or resistance markers, the analysis of this data should be viewed as exploratory. Analytical results from such analyses may be used to generate additional hypotheses that must then be verified with data derived from subsequent clinical trials. No adjustment for multiple comparisons is planned.

If the number of samples is inadequate to perform a rigorous data analysis, then the available data will only be listed. Additional analyses that may be performed after the completion of the end-of-study clinical study report will be documented in separate reports. These analyses may include but are not limited to the meta-analysis of data from this study combined with data from other studies or the analysis of subject pre-selection or PD markers generated from samples collected during the study but analyzed after the database lock and completion of the clinical study report. Any additional data analysis will be described in an addendum of the SAP or in a stand-alone analysis plan document, as appropriate.

2.8.1.2 *Data Handling Principles*

All measurements below their respective LLOQs or missing data will be labeled as such in the concentration data listings. Measurements below the LLOQ will be treated as zero in summary statistics. Change from baseline analyses will only be performed on subjects with measurable samples and pre- and post-treatment time points.

2.8.1.3 *Data Analysis Principles*

2.8.1.3.1 Analysis Sets

The FAS will be used for all analyses unless otherwise specified. The number of subjects with measurable samples will be identified in the summaries and relevant proportions will be calculated against this number of subjects.

2.8.1.3.2 Basic Tables, Figures, and Listings

Change from baseline for markers measured pre and post baseline to assess the effect on FGFR pathway will be listed by subject and may be summarized by means of descriptive statistics.

Individual CA19-9 serum levels (or change from baseline) will be listed as well as presented as line plots over time. If enough data is available, statistical analysis will be performed in order to assess the relationship between anti-tumor activity (BOR and OS) and CA19-9 levels (or change

from baseline). Best percent change in the sum of longest tumor diameters and the percent change in CA19-9 concentration from baseline will be plotted together in a bar graph.

Subject's FGFR2 gene fusion status in DNA from non-tumor tissue (cell free DNA data) will be listed and compared to the FGFR2 gene fusion status in tumor tissue at baseline; a contingency table will be presented. Genetic alterations detected in cell free tumor DNA will be summarized and presented graphically for subjects with both baseline and post-baseline samples. If there is enough data, change from baseline expression levels will be correlated with efficacy data. Further exploratory analyses will be performed if feasible.

2.9 Interim Analysis

Safety and efficacy data will be continuously monitored by QED Therapeutics in conjunction with the investigators for decision-making purposes.

For Cohort 1, one analysis was performed before Amendment 2 based on the 61 patients enrolled in the study (30 Jun 2016). Protocol amendment 2 restricted enrollment to patients with FGFR2 fusions or translocations, and the formulation was changed from FMI I to FMI III.

After 20 subjects had been treated with FMI III (for at least one cycle) based on Amendment 2, a comprehensive review of all relevant data such as PK, safety, dose interruptions/reductions, and available efficacy was performed. PK, safety, and tolerability data from the first 20 subjects treated with FMI III up to the end of cycle 1 of treatment were assessed and compared with the historical data from subjects treated with FMI I. Upon review of the data, it was decided to continue dosing all subsequent patients treated with FMI III at 125 mg on a 3 weeks on, 1 week off schedule.

In addition, two formal interim analyses for Cohort 1 are planned after Amendment 3:

- The first formal interim analysis for Cohort 1 was conducted when all patients in the Interim Efficacy Analysis Set 1 have been followed for at least 10 months after their initial exposure to the study treatment. This interim analysis will be done using only patients in Cohort 1. Efficacy analysis for this interim analysis will be based on the Interim Efficacy Analysis Set 1 and some key efficacy analyses may be repeated in the FAS. All the other analyses will be conducted on FAS unless otherwise specified.
- The second will be conducted when all the patients who received infiratinib at the time of the first formal interim analysis have at least 10 months follow-up after their initial exposure to infiratinib.

Additionally, for Cohorts 2 and 3, review of data will be performed after a total of 15 patients in either Cohort 2 or 3 have been treated with FMI IV for at least one cycle. A formal interim analysis will be conducted for Cohort 3 when the first dosed 10 patients in Cohort 3 have the potential to complete the second scheduled scan. This interim analysis will only include data from Cohort 3. This is to determine if an additional 10 patients will be added to Cohort 3.

3 SAMPLE SIZE CALCULATION

3.1 Cohort 1

At the time of the first formal interim analysis after amendment 3, the interim efficacy analysis set 1 will include 72 patients with FGFR2 gene fusions or translocations. The half-width of the exact 95% confidence interval for ORR will not exceed 12%.

With at least 106 subjects with FGFR2 gene fusions or translocation will result in the exact 95% confidence interval half-width of ORR less than 10%.

3.2 Cohort 2 and Cohort 3

In Cohorts 2 and 3, patients who are progression-free at the second scheduled post-baseline scan (approximately 16 weeks from treatment initiation) or later will be considered to be benefiting from study treatment. If the lower bound of the patients who are progression-free at the second scheduled post-baseline scan (approximately 16 weeks) or later excludes 20%, the treatment will be considered as benefiting the patients.

For Cohort 2, the percentage of patients who are progression-free at the second scheduled post-baseline scan (approximately 16 weeks) or later will be estimated with 95% exact confidence interval. There will be approximately 20 patients in total. A sample size of 20 will result in the exact 95% confidence interval half width of less than 23%. Patients who withdraw from the study for any reason before the second scheduled scan will be considered as not benefiting from study treatment. Sensitivity analysis will be conducted using the K-M method to estimate PFS >16 weeks.

[Table 8](#) provides some examples of CIs corresponding to observed numbers of patients considered to have benefited from treatment. For example, if 9 of 20 patients are progression-free at the second scheduled post-baseline scan or later, then the lower bound of the 95% exact confidence interval (CI) will exclude 20%.

In Cohort 3, the same definition of benefit rate as for Cohort 2 (the percentage of patients who are progression-free at the second scheduled post-baseline scan [approximately 16 weeks] or later) will be applied. The benefit rate will be estimated with 95% exact confidence interval. The planned enrollment for Cohort 3 is a maximum of 20 patients. With 20 patients, the exact 95% confidence interval half width is <23%. One interim analysis is planned when 10 patients have been dosed and have the potential to be followed up for response for at least 2 scheduled post-baseline scans. If at the interim analysis, ≥ 4 patients are progression-free at the second scheduled post-baseline scan (after approximately 16 weeks) or later, the cohort will continue to enroll the additional 10 patients; otherwise, enrollment will stop at 10 patients. If $\leq 20\%$ patients are benefiting from the study treatment, there is <12.1% chance that the decision after the interim analysis will lead to continuing enrollment.

The percentage of patients considered to have benefited from treatment will be estimated with 95% exact binomial CI. If all 20 patients are enrolled, the exact 95% CI half width will not exceed 23%. [Table 8](#) provides some examples of CIs corresponding to observed numbers of

subjects considered to have benefited from treatment. At the final analysis, if 9 of 20 subjects who are progression-free at the second scheduled post-baseline scan or later, the lower bound of the 95% exact CI will exclude 20%.

Table 8: 95% CI Examples Corresponding to Observed Numbers of Subjects Considered to Have Benefited From Treatment (Cohorts 2 and 3)

Number of subjects considered to have benefited from treatment	95% Exact CI
4	(0.057, 0.437)
8	(0.191, 0.640)
9	(0.231, 0.685)
10	(0.272, 0.728)
12	(0.361, 0.809)

CI=confidence interval

4 CHANGE TO PROTOCOL SPECIFIED ANALYSES

None.

5 APPENDIX

5.1 Imputation Rules

5.1.1 *AE, CM, and Safety Assessment Date Imputation*

Table 9: Imputation of Start Dates (AE, CM)

Missing Element	Rule
day, month, and year	<ul style="list-style-type: none">• No imputation will be done
day, month	<ul style="list-style-type: none">• No imputation will be done
day	<ul style="list-style-type: none">• If available month and year = month and year of study treatment start date then<ul style="list-style-type: none">◦ If stop date contains a full date and stop date is earlier than study treatment start date then set start date= 01MONYYYY.◦ Else set start date = study treatment start date.• If available month and year > month and year of study treatment start date then 01MONYYYY• If available month and year < month year of study treatment start date then 01MONYYYY

Table 10: Imputation of End Dates (AE, CM)

Subject EOT (Y/N)	Missing Element	Rule (* = min (last treatment date plus 30 days, death date, cut-off date, withdrawal of consent date))
N	day, month, and year	<ul style="list-style-type: none">• Data cutoff date
Y	day, month, and year	<ul style="list-style-type: none">• Completely missing end dates will be imputed by the end date of the on-treatment period*
	day, month	<ul style="list-style-type: none">• If partial end date contains year only, set end date = earliest of 31DecYYYY or end date of the on-treatment period *
	day	<ul style="list-style-type: none">• If partial end date contains month and year, set end date = earliest of last day of the month or end date of the on-treatment period*

Any AEs and CMs with partial/missing dates will be displayed as such in the data listings.

There should be no cases where AE or CM end dates are partial missing (year is available but month or day or both are missing) if a subject has not ended study treatment (EOT). The above imputations are only used for the calculation of time to and duration of AEs and concomitant medications.

5.1.2 *Death Date Imputation*

If day is missing, then impute to the 1st of the month unless last known to be alive date is greater than the 1st of the month, in that case, set the death date to the last known to be alive date.

5.2 Table of Adverse Events of Special Interest, Search Strategies, and Rationales for Sponsor-Defined Search Strategies

Adverse Event of Special Interest	Search Strategy
Calcium-phosphate homeostasis ¹ <ul style="list-style-type: none">• Hypercalcaemia• Hyperphosphataemia• Hypophosphataemia	Sponsor-defined grouped PTs
Eye disorder ²	Sponsored-defined PTs in SOC Eye disorder: CSR/RPED Eye disorder other than RPED
Central serous retinopathy/retinal pigment epithelium detachment (CSR/RPED) ³	Subset of PTs from SOC Eye disorders
Cardiac disorder*	Cardiac failure SMQ [narrow, broad] Myocardial infarction SMQ [narrow, broad] Other ischaemic heart disease SMQ [narrow, broad] Cardiac arrhythmia terms, nonspecific SMQ [narrow] Bradyarrhythmia terms, nonspecific SMQ [narrow] Tachyarrhythmia terms, nonspecific SMQ [narrow] Arrhythmia related investigations, signs and symptoms SMQ [narrow, broad]
Acute pancreatitis	Acute pancreatitis SMQ [narrow, broad]
Pathological fracture ⁴	Sponsor-defined PTs
Tissue calcification ⁵	Sponsor-defined PTs
Vascular/intravascular mineralization ⁶	Sponsor-defined Grouped PTs

* Note: SMQs relating to Torsade de Pointes / QT prolongation and cardiac arrhythmias are part of Minimum Critical Toxicity: Cardiac toxicity Rationales for Sponsor-defined grouped terms:

¹ Sponsor-defined PTs capture the medical concept of hypercalcaemia, hyperphosphataemia, and hypophosphataemia. No SMQs available for these terms.

² Sponsor-defined PTs in the SOC Eye Disorders, including 9 PTs used to characterize CSR/RPED, broadly capture eye related events. No SMQ available for this medical concept.

³ A narrow subset of PTs from SOC Eye Disorder (as selected by an ophthalmologist) are grouped to capture the medical concept of RPED. No SMQ available for this medical concept.

⁴ Sponsor-defined PTs include PTs with 'fracture', which capture the broad medical concept of fractures, recognizing that any fracture could be pathological in nature for the population under study. No SMQ available for this medical concept.

⁵ Sponsor-defined PTs include PTs with 'calcification' and 'calcinosis' which capture the broad medical concept of tissue calcification. No SMQ available for this medical concept.

⁶ Sponsor-defined PTs include PTs with targeted root words (athero, arterio, and sclerosis) and words (arterial, artery, calcification, insufficiency, mineralization, peripheral, and venous) with medical judgement to refine on terms which capture the broad medical concept of vascular calcification/mineralization. No SMQ available for this medical concept.

5.3 AESI: Calcium-Phosphate Homeostasis – Hypercalcaemia, Hyperphosphataemia, and Hypophosphataemia

AESI	Sponsor-Defined Grouped PTs
Hypercalcaemia	Adjusted calcium increased Blood calcium abnormal Blood calcium increased Calcium ionised abnormal Calcium ionised increased Calcium phosphate product increased Hypercalcaemia
Hyperphosphataemia	Blood phosphorus abnormal Blood phosphorus increased Hyperphosphataemia
Hypophosphataemia	Blood phosphorus decreased Hypophosphataemia

5.4 AESI: Eye Disorder of Central Serous Retinopathy/Retinal Pigment Epithelium Detachment

AESI of Eye disorder is characterized by PTs from SOC Eye disorders. CSR/RPED terms are listed below and remaining eye disorders (excluding PTs used to characterize CSR/RPED) are listed in Section 5.8.

AESI	Sponsor-Defined Grouped PTs
Central serous retinopathy/retinal pigment epithelium detachment (CSR/RPED)	Chorioretinopathy Detachment of macular retinal pigment epithelium Detachment of retinal pigment epithelium Macular detachment Retinal detachment Serous retinal detachment Subretinal fluid MEK inhibitor-associated serous retinopathy Retinopathy

5.5 AESI: Pathological Fracture

Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs
Fracture	Fracture nonunion	Osteochondral fracture
Acetabulum fracture	Fracture of clavicle due to birth trauma	Osteophyte fracture
Ankle fracture	Fracture of penis	Osteoporotic fracture
Atypical femur fracture	Fracture pain	Patella fracture
Atypical fracture	Fracture reduction	Pathological fracture
Avulsion fracture	Fracture treatment	Pelvic fracture
Cervical vertebral fracture	Fractured coccyx	Periprosthetic fracture
Chance fracture	Fractured ischium	Pseudofracture
Clavicle fracture	Fractured maxilla elevation	Pubis fracture
Closed fracture manipulation	Fractured sacrum	Radius fracture
Comminuted fracture	Fractured skull depressed	Rib fracture
Complicated fracture	Fractured zygomatic arch elevation	Sacroiliac fracture
Compression fracture	Greenstick fracture	Scapula fracture
Costal cartilage fracture	Hand fracture	Skull fracture
Craniofacial fracture	Hip fracture	Skull fractured base
Elevation skull fracture	Humerus fracture	Spinal compression fracture
Epiphyseal fracture	Ilium fracture	Spinal fracture
External fixation of fracture	Impacted fracture	Spinal fusion fracture
Facial bones fracture	Internal fixation of fracture	Sternal fracture
Femoral neck fracture	Jaw fracture	Stress fracture
Femur fracture	Limb fracture	Subchondral insufficiency fracture
Fibula fracture	Lisfranc fracture	Surgical fixation of rib fracture
Foot fracture	Loss of anatomical alignment after fracture reduction	Thoracic vertebral fracture
Forearm fracture	Lower limb fracture	Tibia fracture
Fracture blisters	Lumbar vertebral fracture	Tooth fracture
Fracture debridement	Metaphyseal corner fracture	Torus fracture
Fracture delayed union	Multiple fractures	Traumatic fracture
Fracture displacement	Open fracture	Ulna fracture
Fracture infection	Open reduction of fracture	Upper limb fracture
Fracture malunion	Open reduction of spinal fracture	Wrist fracture

5.6 AESI: Tissue Calcification

Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs
Administration site calcification	Infusion site calcification	Splenic calcification
Adrenal calcification	Injection site calcification	Tendon calcification
Application site calcification	Intervertebral disc calcification	Thyroid calcification
Articular calcification	Intestinal calcification	Tracheal calcification
Bladder wall calcification	Ligament calcification	Vaccination site calcification
Bone decalcification	Lymph node calcification	Calcinosis
Breast calcifications	Medical device site calcification	Chondrocalcinosis
Bursa calcification	Myocardial calcification	Chondrocalcinosis pyrophosphate
Calcification metastatic	Ovarian calcification	Gastric mucosal calcinosis
Calcification of muscle	Pancreatic calcification	Nephrocalcinosis
Catheter site calcification	Pericardial calcification	
Cerebral calcification	Pleural calcification	
Cutaneous calcification	Postoperative heterotopic calcification	
Dystrophic calcification	Primary familial brain calcification	
Hepatic calcification	Prostatic calcification	
Implant site calcification	Pulmonary calcification	

5.7 AESI: Vascular/intravascular Mineralization

Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs	Sponsor-Defined Grouped PTs
Acute vascular insufficiency of intestine	Coeliac artery occlusion	Peripheral artery restenosis
Aortic arteriosclerosis	Coeliac artery stenosis	Peripheral artery stenosis
Aortic valve calcification	Coronary artery disease	Peripheral vascular disorder
Arterial insufficiency	Coronary artery insufficiency	Precerebral arteriosclerosis
Arterial insufficiency coronary	Coronary artery occlusion	Precerebral artery occlusion
Arterial insufficiency peripheral	Coronary artery reocclusion	Pulmonary artery occlusion
Arteriosclerosis	Coronary artery restenosis	Pulmonary artery stenosis
Arteriosclerosis coronary artery	Coronary artery stenosis	Pulmonary valve calcification
Arteriosclerotic retinopathy	Heart valve calcification	Renal arteriosclerosis
Atherosclerotic plaque rupture	Hepatic artery flow decreased	Renal artery arteriosclerosis
Basilar artery occlusion	Hepatic artery occlusion	Renal artery occlusion
Basilar artery stenosis	Hepatic artery stenosis	Renal artery restenosis
Basilar insufficiency	Iliac artery disease	Renal artery stenosis
Brachiocephalic arteriosclerosis	Iliac artery occlusion	Retinal artery occlusion
Brachiocephalic artery occlusion	Inner ear vascular insufficiency	Retinal artery stenosis
Brachiocephalic artery stenosis	Insufficiency cerebrovascular	Splenic artery stenosis
Carotid arteriosclerosis	Insufficiency coronary artery	Subclavian artery occlusion
Carotid artery insufficiency	Intraoperative cerebral artery occlusion	Subclavian artery stenosis
Carotid artery occlusion	Mesenteric arteriosclerosis	Tricuspid valve calcification
Carotid artery restenosis	Mesenteric artery stenosis	Unspecified vascular insufficiency of intestine
Carotid artery stenosis	Mesenteric vascular insufficiency	Vascular calcification
Cerebellar artery occlusion	Microvascular coronary artery disease	Vascular insufficiency
Cerebral arteriosclerosis	Mitral valve calcification	Vascular insufficiency of intestine
Cerebral artery occlusion	Penile artery occlusion	Vascular insufficiency of intestine, unspecified
Cerebral artery restenosis	Peripheral arterial occlusive disease	Vertebral artery occlusion
Cerebral artery stenosis	Peripheral arterial reocclusion	Vertebral artery stenosis
Cerebrovascular insufficiency	Peripheral artery occlusion	Vertebrobasilar insufficiency
Chronic vascular insufficiency of intestine		

5.8 AESI: Eye Disorder: SOC Eye Disorders (Excluding 9 PTs Used to Characterize CSR/RPED)

There are two subcategories in the eye disorder AESI summary table, one for CSR/RPED which included 9 PTs described in Section 5.4, the other is Eye Disorder SOC Other than CSR/RPED which included the remaining eye disorders not included in CSR/RPED section and are described in this section.

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Abnormal sensation in eye	Exfoliation syndrome	Ocular ischaemic syndrome
Abscess of eyelid	Exophthalmos	Ocular lymphoma
Acanthamoeba keratitis	Exophthalmos congenital	Ocular myasthenia
Accommodation disorder	Exposure keratitis	Ocular neoplasm
Acquired corneal dystrophy	Extraocular muscle disorder	Ocular pemphigoid
Acquired epiblepharon	Extraocular muscle paresis	Ocular procedural complication
Acquired lenticonus	Extraocular retinoblastoma	Ocular retrobulbar haemorrhage
Acquired pigmented retinopathy	Exudative retinopathy	Ocular rosacea
Acute haemorrhagic conjunctivitis	Eye abscess	Ocular sarcoidosis
Acute macular outer retinopathy	Eye allergy	Ocular surface disease
Acute myopia	Eye anterior chamber congenital anomaly	Ocular toxicity
Acute zonal occult outer retinopathy	Eye burns	Ocular vascular disorder
Adenoviral conjunctivitis	Eye colour change	Ocular vasculitis
Age-related macular degeneration	Eye complication associated with device	Oculocerebrorenal syndrome
AIDS retinopathy	Eye contusion	Oculodentodigital dysplasia
Allergic keratitis	Eye degenerative disorder	Oculoglandular syndrome
Alstroem syndrome	Eye discharge	Oculogyric crisis
Altered visual depth perception	Eye disorder	Oculomucocutaneous syndrome
Amaurosis	Eye haemangioma	Oculopharyngeal dystrophy
Amaurosis fugax	Eye haematoma	Oculorespiratory syndrome
Amblyopia	Eye haemorrhage	Onchocerciasis
Amblyopia alcohol	Eye infection	Open angle glaucoma
Amblyopia congenital	Eye infection bacterial	Open globe injury
Amblyopia strabismic	Eye infection chlamydial	Ophthalmia neonatorum
Amblyopia tobacco	Eye infection fungal	Ophthalmia nodosa
Angle closure glaucoma	Eye infection gonococcal	Ophthalmic herpes simplex
Aniridia	Eye infection helminthic	Ophthalmic herpes zoster
Aniseikonia	Eye infection intraocular	Ophthalmic vein thrombosis
Anisometropia	Eye infection staphylococcal	Ophthalmoplegia
Anomaly of orbit, congenital	Eye infection syphilitic	Ophthalmoplegic migraine

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Anophthalmos	Eye infection toxoplasmal	Opitz-G/BBB syndrome
Anterior capsule contraction	Eye infection viral	Opsoclonus myoclonus
Anterior chamber angle neovascularisation	Eye inflammation	Optic atrophy
Anterior chamber cell	Eye injury	Optic disc disorder
Anterior chamber cleavage syndrome	Eye irritation	Optic disc drusen
Anterior chamber collapse	Eye laser scar	Optic disc haemorrhage
Anterior chamber crystallisation	Eye luxation	Optic disc hyperaemia
Anterior chamber degeneration	Eye movement disorder	Optic disc pit
Anterior chamber disorder	Eye muscle entrapment	Optic disc telangiectasia
Anterior chamber fibrin	Eye naevus	Optic disc vascular disorder
Anterior chamber flare	Eye oedema	Optic discs blurred
Anterior chamber inflammation	Eye opacity	Optic glioma
Anterior chamber opacity	Eye pain	Optic ischaemic neuropathy
Anterior chamber pigmentation	Eye paraesthesia	Optic nerve compression
Anterior segment ischaemia	Eye pruritus	Optic nerve cupping
Antimetropia	Eye swelling	Optic nerve disorder
Aphakia	Eye symptom	Optic nerve hypoplasia
Aphakia congenital	Eye ulcer	Optic nerve infarction
Aqueous fibrin	Eyeball avulsion	Optic nerve injury
Aqueous humour leakage	Eyelash changes	Optic nerve neoplasm
Arcus lipoides	Eyelash discolouration	Optic nerve sheath haemorrhage
Argyll-Robertson pupils	Eyelash hyperpigmentation	Optic neuritis
Arteriosclerotic retinopathy	Eyelash hypopigmentation	Optic neuritis meningococcal
Asthenopia	Eyelash injury	Optic neuropathy
Astigmatism	Eyelash thickening	Optic pathway injury
Atopic cataract	Eyelid bleeding	Orbit atrophy
Atopic keratoconjunctivitis	Eyelid boil	Orbital apex syndrome
Atrophy of globe	Eyelid contusion	Orbital compartment syndrome
Autoimmune retinopathy	Eyelid cyst	Orbital cyst
Autoimmune uveitis	Eyelid degenerative disorder	Orbital granuloma
Bacterial blepharitis	Eyelid disorder	Orbital infection
Bacterial dacryocystitis	Eyelid erosion	Orbital myositis
Bacterial iritis	Eyelid exfoliation	Orbital oedema
Balint's syndrome	Eyelid folliculitis	Oscillopsia
Basal cell naevus syndrome	Eyelid function disorder	Osteoporosis-pseudoglioma syndrome
Basedow's disease	Eyelid haemangioma	Ota's naevus
Behcet's syndrome	Eyelid haematoma	Overwear syndrome

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Bell's phenomenon	Eyelid infection	Panophthalmitis
Benign neoplasm of choroid	Eyelid injury	Papilloedema
Benign neoplasm of conjunctiva	Eyelid irritation	Papilloma conjunctival
Benign neoplasm of cornea	Eyelid margin crusting	Papillophlebitis
Benign neoplasm of eye	Eyelid myoclonus	Paralytic lagophthalmos
Benign neoplasm of eyelid	Eyelid naevus	Paraneoplastic retinopathy
Benign neoplasm of lacrimal duct	Eyelid oedema	Parinaud syndrome
Benign neoplasm of lacrimal gland	Eyelid pain	Parophthalmia
Benign neoplasm of optic nerve	Eyelid ptosis	Pars plana cyst
Benign neoplasm of orbit	Eyelid ptosis congenital	Pathologic myopia
Benign neoplasm of retina	Eyelid rash	Periorbital abscess
Bickerstaff's encephalitis	Eyelid retraction	Periorbital cellulitis
Binocular eye movement disorder	Eyelid sensory disorder	Periorbital disorder
Birdshot chorioretinopathy	Eyelid skin dryness	Periorbital fat atrophy
Blau syndrome	Eyelid thickening	Periorbital fat herniation
Blebitis	Eyelid tumour	Periorbital haematoma
Blepharal papilloma	Eyelid vascular disorder	Periorbital haemorrhage
Blepharal pigmentation	Eyelid vellus hair changes	Periorbital infection
Blepharitis	Eyelids pruritus	Periorbital inflammation
Blepharitis allergic	Faciodigitogenital dysplasia	Periorbital oedema
Blepharochalasis	Fat adherence syndrome	Persistent corneal epithelial defect
Blepharophimosis	Fibrin deposition on lens postoperative	Persistent pupillary membrane
Blepharophimosis congenital	Filariasis	PHACES syndrome
Blepharospasm	Flat anterior chamber of eye	Phacolytic glaucoma
Blepharosynechia	Floppy eyelid syndrome	Phakomatosis
Blindness	Floppy iris syndrome	Photoelectric conjunctivitis
Blindness congenital	Foreign body in eye	Photokeratitis
Blindness cortical	Foreign body sensation in eyes	Photophobia
Blindness day	Foster-Kennedy Syndrome	Photopsia
Blindness hysterical	Fraser syndrome	Pigment dispersion syndrome
Blindness transient	Fuchs' syndrome	Pigmentary glaucoma
Blindness traumatic	Fungal retinitis	Pinguecula
Blindness unilateral	Gaze palsy	Pingueculitis
Bloch-Sulzberger syndrome	Giant papillary conjunctivitis	Polypoidal choroidal vasculopathy
Borderline glaucoma	Glare	Post measles blindness
Bowman's membrane disorder	Glassy eyes	Posterior capsule opacification
Bowman's membrane injury	Glaucoma	Posterior capsule rupture
Brow ptosis	Glaucoma traumatic	Posterior segment of eye anomaly

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Candida endophthalmitis	Glaucomatocyclitic crises	Posterior segment of eye anomaly congenital
Candida retinitis	Glaucomatous optic disc atrophy	Presbyopia
CANVAS syndrome	Graft versus host disease in eye	Presumed ocular histoplasmosis syndrome
Capsular block syndrome	Growth of eyelashes	Progressive external ophthalmoplegia
Carcinoma in situ of eye	Haemangioma of retina	Prominent epicantal folds
Cataract	Halo vision	Prostaglandin analogue periorbitopathy
Cataract congenital	Heerfordt's syndrome	Protozoal corneal ulcer
Cataract cortical	Hemianopia	Pseudo-blepharoptosis
Cataract diabetic	Hemianopia heteronymous	Pseudoendophthalmitis
Cataract nuclear	Hemianopia homonymous	Pseudomyopia
Cataract operation complication	Hepato-lenticular degeneration	Pseudopapilloedema
Cataract subcapsular	Hereditary choroidal dystrophy	Pseudophakic bullous keratopathy
Cataract traumatic	Hereditary optic atrophy	Pseudophakic glaucoma
Cavernous sinus syndrome	Hereditary retinal dystrophy	Pseudophakodonesis
Cellulitis orbital	Hermansky-Pudlak syndrome	Pseudopterygium
Chalazion	Herpes ophthalmic	Pseudostrabismus
CHARGE syndrome	Herpes simplex necrotising retinopathy	Pseudoxanthoma elasticum
Charles Bonnet syndrome	Herpes simplex virus conjunctivitis neonatal	Psychogenic visual disorder
Chemical burns of eye	Herpes zoster necrotising retinopathy	Pterygium
Chemical eye injury	Heterochromia iridis	Punctate keratitis
Chemical iritis	Heteronymous diplopia	Pupil fixed
Chiasma syndrome	Heterophoria	Pupillary block
Chloropsia	Hippus	Pupillary deformity
Cholesterolosis bulbi	Holmes-Adie pupil	Pupillary disorder
Chorioretinal atrophy	Homonymous diplopia	Pupillary reflex impaired
Chorioretinal degeneration congenital	Hordeolum	Pupillotonia
Chorioretinal disorder	Horner's syndrome	Pupils unequal
Chorioretinal folds	Hyalosis asteroid	Parutscher retinopathy
Chorioretinal scar	Hypermetropia	Quadrantanopia
Chorioretinitis	Hypertelorism of orbit	Radiation cataract
Choroid melanoma	Hyphaema	Radiation corneal injury
Choroid neoplasm	Hypoesthesia eye	Radiation retinopathy
Choroid tubercles	Hypopigmentation of eyelid	Raymond-Cestan syndrome
Choroidal coloboma	Hypopyon	Recession of chamber angle of eye

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Choroidal detachment	Hypotelorism of orbit	Refraction disorder
Choroidal dystrophy	Hypotony of eye	Refractive amblyopia
Choroidal effusion	Idiopathic orbital inflammation	Retinal aneurysm
Choroidal haemangioma	IIIrd nerve disorder	Retinal aneurysm rupture
Choroidal haematoma	IIIrd nerve injury	Retinal anomaly congenital
Choroidal haemorrhage	IIIrd nerve paralysis	Retinal arteriovenous malformation
Choroidal infarction	IIIrd nerve paresis	Retinal artery embolism
Choroidal neovascularisation	Immune recovery uveitis	Retinal artery occlusion
Choroidal rupture	Inclusion conjunctivitis	Retinal artery spasm
Choroidal sclerosis	Inclusion conjunctivitis neonatal	Retinal artery stenosis
Choroiditis	Infectious crystalline keratopathy	Retinal artery thrombosis
Chromatopsia	Infectious iridocyclitis	Retinal collateral vessels
Ciliary body degeneration	Infective corneal ulcer	Retinal coloboma
Ciliary body disorder	Infective episcleritis	Retinal cyst
Ciliary body haemorrhage	Infective iritis	Retinal degeneration
Ciliary hyperaemia	Infective keratitis	Retinal depigmentation
Ciliary muscle spasm	Infective scleritis	Retinal deposits
Ciliary zonular dehiscence	Infective uveitis	Retinal disorder
Closed globe injury	Inflammation of lacrimal passage	Retinal drusen
Cockayne's syndrome	Injury corneal	Retinal dystrophy
Cogan's syndrome	Injury of conjunctiva	Retinal exudates
Cohen syndrome	Intra-ocular injection complication	Retinal fibrosis
Coloboma	Intraocular haematoma	Retinal haemorrhage
Colour blindness	Intraocular melanoma	Retinal infarction
Colour blindness acquired	Iridocele	Retinal infiltrates
Commotio retinae	Iridocorneal endothelial syndrome	Retinal injury
Computer vision syndrome	Iridocyclitis	Retinal ischaemia
Congenital astigmatism	Iridodialysis	Retinal melanocytoma
Congenital choroidal anomaly	Iridodonesis	Retinal melanoma
Congenital corneal anomaly	Iridoplegia	Retinal migraine
Congenital epiblepharon	Iridoschisis	Retinal neoplasm
Congenital eye disorder	Iris adhesions	Retinal neovascularisation
Congenital eye naevus	Iris atrophy	Retinal oedema
Congenital eyelid malformation	Iris bombe	Retinal pallor
Congenital Horner's syndrome	Iris coloboma	Retinal perivascular sheathing
Congenital iris anomaly	Iris convex	Retinal phototoxicity
Congenital lacrimal gland anomaly	Iris cyst	Retinal pigment epithelial tear
Congenital lacrimal passage anomaly	Iris disorder	Retinal pigment epitheliopathy

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Congenital lenticonus	Iris exfoliation	Retinal pigmentation
Congenital myopia	Iris haemorrhage	Retinal scar
Congenital night blindness	Iris hyperpigmentation	Retinal tear
Congenital nystagmus	Iris hypopigmentation	Retinal telangiectasia
Congenital oculomotor apraxia	Iris incarceration	Retinal thickening
Congenital optic nerve anomaly	Iris injury	Retinal toxicity
Congenital retinoblastoma	Iris melanoma	Retinal vascular disorder
Congenital scleral disorder	Iris neoplasm	Retinal vascular occlusion
Congenital trichomegaly	Iris neovascularisation	Retinal vascular thrombosis
Congenital visual acuity reduced	Iris transillumination defect	Retinal vasculitis
Congenital vitreous anomaly	Iris vascular disorder	Retinal vein occlusion
Conjunctival abrasion	Iritis	Retinal vein thrombosis
Conjunctival adhesion	Irlen syndrome	Retinal vessel avulsion
Conjunctival bleb	IRVAN syndrome	Retinal white without pressure
Conjunctival cyst	IVth nerve disorder	Retinitis
Conjunctival degeneration	IVth nerve injury	Retinitis histoplasma
Conjunctival deposit	IVth nerve paralysis	Retinitis pigmentosa
Conjunctival discolouration	Kayser-Fleischer ring	Retinitis viral
Conjunctival disorder	Kearns-Sayre syndrome	Retinoblastoma
Conjunctival erosion	Keratic precipitates	Retinopathy congenital
Conjunctival filtering bleb leak	Keratitis	Retinopathy haemorrhagic
Conjunctival follicles	Keratitis bacterial	Retinopathy hypertensive
Conjunctival granuloma	Keratitis fungal	Retinopathy hyperviscosity
Conjunctival haemorrhage	Keratitis interstitial	Retinopathy of prematurity
Conjunctival hyperaemia	Keratitis sclerosing	Retinopathy proliferative
Conjunctival irritation	Keratitis viral	Retinopathy sickle cell
Conjunctival laceration	Keratitis-ichthyosis-deafness syndrome	Retinopathy solar
Conjunctival lymphangiectasia	Keratoconjunctivitis measles	Retinoschisis
Conjunctival melanoma	Keratoconus	Retinoschisis congenital
Conjunctival neoplasm	Keratomalacia	Retro-orbital neoplasm
Conjunctival oedema	Keratopathy	Rhegmatogenous retinal detachment
Conjunctival opacity	Keratorhexis	Rheumatoid scleritis
Conjunctival pallor	Keratosis gonococcal	Romana's sign
Conjunctival pigmentation	Keratouveitis	Ross syndrome
Conjunctival primary acquired melanosis	Koeppe nodules	Saccadic eye movement
Conjunctival retraction	Lacrimal atrophy	Schlemm's canal obstruction
Conjunctival scar	Lacrimal cyst	Scintillating scotoma

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Conjunctival telangiectasia	Lacrimal disorder	Scleral cyst
Conjunctival ulcer	Lacrimal duct neoplasm	Scleral degeneration
Conjunctival vascular disorder	Lacrimal duct pigmentation	Scleral deposits
Conjunctivalisation	Lacrimal fistula	Scleral discolouration
Conjunctivitis	Lacrimal gland abscess	Scleral disorder
Conjunctivitis allergic	Lacrimal gland enlargement	Scleral haemorrhage
Conjunctivitis bacterial	Lacrimal haemorrhage	Scleral hyperaemia
Conjunctivitis chlamydial	Lacrimal mucocoele	Scleral oedema
Conjunctivitis fungal	Lacrimal passage granuloma	Scleral pigmentation
Conjunctivitis gonococcal neonatal	Lacrimal punctum agenesis	Scleral thinning
Conjunctivitis tuberculous	Lacrimal punctum enlarged	Scleritis
Conjunctivitis viral	Lacrimal sac cellulitis	Scleritis allergic
Conjunctivochalasis	Lacrimal structural disorder	Scleromalacia
Contact lens acute red eye	Lacrimal structure injury	Seasonal allergy
Contact lens intolerance	Lacrimation decreased	Septo-optic dysplasia
Corectopia	Lacrimation disorder	Silent sinus syndrome
Cornea verticillata	Lacrimation increased	Sjogren's syndrome
Corneal abrasion	Lagophthalmos	Slipped extraocular muscle
Corneal abscess	Laurence-Moon-Bardet-Biedl syndrome	Spherophakia
Corneal bleeding	Leber's congenital amaurosis	Spontaneous hyphaema
Corneal cyst	Lecithin-cholesterol acyltransferase deficiency	Staphylococcal blepharitis
Corneal decompensation	Lens abnormality, congenital	Staphyloma
Corneal defect	Lens discolouration	Stargardt's disease
Corneal degeneration	Lens dislocation	Stickler's syndrome
Corneal deposits	Lens disorder	Strabismus
Corneal disorder	Lenticular injury	Strabismus congenital
Corneal dystrophy	Lenticular opacities	Sturge-Weber syndrome
Corneal endothelial cell loss	Lenticular pigmentation	Subacute myelo-optic neuropathy
Corneal endotheliitis	Leukaemic retinopathy	Subconjunctival cyst
Corneal epithelial microcysts	Leukocoria	Subretinal fibrosis
Corneal epithelial wrinkling	Lid lag	Subretinal haematoma
Corneal epithelium defect	Lid margin discharge	Sudden visual loss
Corneal erosion	Lid sulcus deepened	Superficial injury of eye
Corneal exfoliation	Ligneous conjunctivitis	Superior corneal epithelial arcuate lesion
Corneal flap complication	Limbal stem cell deficiency	Superior limbic keratoconjunctivitis
Corneal graft rejection	Limbal swelling	Susac's syndrome

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Corneal hypertrophy	Lipaemia retinalis	Swollen tear duct
Corneal infection	Lipodermoid tumour	Symblepharon
Corneal infiltrates	Loss of visual contrast sensitivity	Sympathetic ophthalmia
Corneal irritation	Macrocornea	Tear discolouration
Corneal lesion	Macular cyst	Temporal arteritis
Corneal leukoma	Macular degeneration	Tenon's cyst
Corneal neovascularisation	Macular dystrophy congenital	Terrien's marginal degeneration
Corneal oedema	Macular fibrosis	Thermal burns of eye
Corneal opacity	Macular hole	Thyrotoxic crisis
Corneal opacity congenital	Macular ischaemia	Tilted disc syndrome
Corneal perforation	Macular oedema	Tolosa-Hunt syndrome
Corneal pigmentation	Macular opacity	Toxic anterior segment syndrome
Corneal scar	Macular pigmentation	Toxic cataract
Corneal staphyloma	Macular pseudohole	Toxic optic neuropathy
Corneal striae	Macular rupture	Toxocariasis
Corneal thickening	Macular scar	Trachoma
Corneal thinning	Macular vasospasm	Tractional retinal detachment
Corneal touch	Maculopathy	Traumatic iritis
Corneal warpage	Madarosis	Trichiasis
Corneoconjunctival intraepithelial neoplasia	MAGIC syndrome	Trichomegaly
Cortical visual impairment	Malignant exophthalmos	Triple A syndrome
Cri du Chat syndrome	Malignant glaucoma	Trisomy 13
Crocodile tears syndrome	Malignant melanoma of eyelid	Trisomy 22
Cryptophthalmos	Malignant neoplasm of choroid	Tuberculosis of eye
Cutaneous horn of eyelid	Malignant neoplasm of conjunctiva	Tubulointerstitial nephritis and uveitis syndrome
Cyanopsia	Malignant neoplasm of cornea	Tunnel vision
Cyclitic membrane	Malignant neoplasm of eye	Uhthoff's phenomenon
Cyclitis	Malignant neoplasm of eyelid	Ulcerative keratitis
Cyclopia	Malignant neoplasm of lacrimal duct	Usher's syndrome
Cycloplegia	Malignant neoplasm of lacrimal gland	Uveal prolapse
Cystic eyeball, congenital	Malignant neoplasm of orbit	Uveitic glaucoma
Cystoid macular oedema	Malignant neoplasm of retina	Uveitis
Cytomegalovirus chorioretinitis	Marcus Gunn syndrome	Uveitis-glaucoma-hyphaema syndrome
Dacryoadenitis acquired	Marfan's syndrome	Varicella keratitis
Dacryocanaliculitis	Meibomian gland discharge	Venous stasis retinopathy

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Dacryocystitis	Meibomian gland dysfunction	Vernal keratoconjunctivitis
Dacryolith	Meibomianitis	Vestibular nystagmus
Dacryostenosis acquired	Metallosis of globe	Viral corneal ulcer
Dacryostenosis congenital	Metamorphopsia	Viral keratouveitis
Dark circles under eyes	Metastases to eye	Viral uveitis
Deep anterior chamber of the eye	Metastatic ocular melanoma	Vision abnormal neonatal
Deformity of orbit	Microcornea	Vision blurred
Delayed dark adaptation	Microphtalmos	Visual acuity reduced
Delayed light adaptation	Microvascular cranial nerve palsy	Visual acuity reduced transiently
Delayed visual maturation	Mikulicz's disease	Visual brightness
Dellen	Mikulicz's syndrome	Visual cortex atrophy
Deposit eye	Millard-Gubler syndrome	Visual field defect
Detached Descemet's membrane	Miller Fisher syndrome	Visual impairment
Developmental glaucoma	Miosis	Visual pathway disorder
Diabetic blindness	Mittendorf dot	Visual perseveration
Diabetic eye disease	Morning glory syndrome	Visual snow syndrome
Diabetic glaucoma	Mycotic corneal ulcer	Vitamin A deficiency eye disorder
Diabetic keratopathy	Mycotic endophthalmitis	Vitamin A deficiency related conjunctival disorder
Diabetic ophthalmoplegia	Mydriasis	Vitamin A deficiency related corneal disorder
Diabetic retinal oedema	MYH9-related disease	VIth nerve disorder
Diabetic retinopathy	Myopia	VIth nerve injury
Diabetic uveitis	Myopic chorioretinal degeneration	VIth nerve paralysis
Diffuse lamellar keratitis	Myopic disc	VIth nerve paresis
Diffuse uveal melanocytic proliferation	Narrow anterior chamber angle	Vitreal cells
Diplopia	Necrotising herpetic retinopathy	Vitreomacular interface abnormal
Disorder of globe	Necrotising retinitis	Vitreous abscess
Disorder of orbit	Necrotising scleritis	Vitreous adhesions
Distichiasis	Neoplasm of cornea unspecified malignancy	Vitreous cyst
Dry age-related macular degeneration	Neoplasm of orbit	Vitreous degeneration
Dry eye	Neovascular age-related macular degeneration	Vitreous detachment
Duane's syndrome	Neurologic neglect syndrome	Vitreous disorder
Dyschromatopsia	Neurological eyelid disorder	Vitreous fibrin
Dysmetropsia	Neuromyelitis optica pseudo relapse	Vitreous floaters
Eales' disease	Neuromyelitis optica spectrum disorder	Vitreous haematoma

SOC Eye Disorders	SOC Eye Disorders	SOC Eye Disorders
Eccentric fixation	Neuropathy, ataxia, retinitis pigmentosa syndrome	Vitreous haemorrhage
Ectropion	Neurotrophic keratopathy	Vitreous haze
Ectropion uveae	Nictitating spasm	Vitreous injury
Eczema eyelids	Night blindness	Vitreous loss
Emanuel syndrome	Non-infectious endophthalmitis	Vitreous opacities
Endocrine ophthalmopathy	Noninfective chorioretinitis	Vitreous prolapse
Endophthalmitis	Noninfective conjunctivitis	Vitritis
Enophthalmos	Noninfective retinitis	Vogt-Koyanagi-Harada syndrome
Enophthalmos traumatic	Normal tension glaucoma	Waardenburg syndrome
Entropion	Norrie's disease	Wagner's disease
Entropion congenital	Nystagmus	Weill-Marchesani syndrome
Episcleral hyperaemia	Ocular albinism	Wildervanck syndrome
Episcleritis	Ocular cancer metastatic	Winchester syndrome
Erythema of eyelid	Ocular discomfort	Wolfram syndrome
Erythropsia	Ocular dysmetria	Wyburn Mason's syndrome
Eversion of lacrimal punctum	Ocular fistula	Xanthopsia
Excessive eye blinking	Ocular haemangiopericytoma	Xerophthalmia
Excessive ocular convergence	Ocular hyperaemia	Zika virus associated ocular birth defect
Exfoliation glaucoma	Ocular hypertension	Ocular icterus

5.9 Minimum Critical Toxicities

Minimum Critical Toxicity search strategies are per SMQs and utilize MedDRA 21.0. As SMQs are standardized lists of PTs per MedDRA version, the individual SMQ PTs are not enumerated further within this document. The search strategies described below will be used to identify cases for analysis purposes and are not intended to be used to calculate frequencies of adverse drug reactions.

Table 11: Table of Minimal Critical Toxicities and SMQ Search Strategies

Minimal Critical Toxicity	Search Strategy
Hepatotoxicity	<ul style="list-style-type: none">Biliary system related investigations, signs, and symptoms SMQ [narrow, broad]Cholestasis and jaundice of hepatic origin SMQ [narrow, broad]Hepatic failure, fibrosis and cirrhosis and other liver damage-related conditions SMQ [narrow, broad]Hepatitis, non-infectious SMQ [narrow, broad]Liver related investigations, signs and symptoms SMQ [narrow, broad]
Cardiac Toxicity	<ul style="list-style-type: none">Torsade de Pointes / QT prolongation SMQ [narrow, broad]
Nephrotoxicity	<ul style="list-style-type: none">Acute renal failure SMQ [narrow, broad]
Haematologic Toxicities	<ul style="list-style-type: none">Haematopoietic cytopenias affecting more than one type of blood cell SMQ [narrow, broad]Haematopoietic erythropenia SMQ [narrow, broad]Haematopoietic leukopenia SMQ [narrow, broad]Haematopoietic thrombocytopenia SMQ [narrow, broad]

5.10 CYP3A4 Inhibitors and Inducers

The list of CYP3A4 inducers and inhibitors are retrieved from the Drug Bank ([Wishart 2017](#)). Terms are coded based on WHODrug Enhanced + Herbals (HD/DDE) Mar2018 B3 global.

The coded concomitant medications which contained below preferred terms will be marked according to type (inhibitor/inducer) and category (moderate/strong) with the exception that medication administered through topical, optic or aural routes will not be considered as inducers or inhibitors.

Type	Category	Preferred Name/Generic Name	Type	Category	Preferred Term
Inhibitor	Moderate	AMIODARONE	Inducer	Moderate	AVASIMIBE
Inhibitor	Moderate	AMPRENAVIR	Inducer	Moderate	BEXAROTENE
Inhibitor	Moderate	ANASTROZOLE	Inducer	Moderate	BOSENTAN
Inhibitor	Moderate	APREPITANT	Inducer	Moderate	DABRAFENIB
Inhibitor	Moderate	BARNIDIPINE	Inducer	Moderate	EFAVIRENZ
Inhibitor	Moderate	BENIDIPINE	Inducer	Moderate	ETRAVIRINE
Inhibitor	Moderate	CLOBAZAM	Inducer	Moderate	MIFEPRISTONE
Inhibitor	Moderate	CLOZAPINE	Inducer	Moderate	MODAFINIL
Inhibitor	Moderate	CRIZOTINIB	Inducer	Moderate	NAFCILLIN
Inhibitor	Moderate	DANAZOL	Inducer	Strong	APALUTAMIDE
Inhibitor	Moderate	DESVENLAFAZINE	Inducer	Strong	CARBAMAZEPINE
Inhibitor	Moderate	DILTIAZEM	Inducer	Strong	DEXAMETHASONE
Inhibitor	Moderate	DIMETHYL SULFOXIDE	Inducer	Strong	ENZALUTAMIDE
Inhibitor	Moderate	DRONEDARONE	Inducer	Strong	FOSPHENYTOIN
Inhibitor	Moderate	ERYTHROMYCIN	Inducer	Strong	LUMACRAFTOR

Type	Category	Preferred Name/Generic Name	Type	Category	Preferred Term
Inhibitor	Moderate	FLUCONAZOLE	Inducer	Strong	MIDOSTAURIN
Inhibitor	Moderate	FLUVOXAMINE	Inducer	Strong	MITOTANE
Inhibitor	Moderate	FOSAMPRENAVIR	Inducer	Strong	NEVIRAPINE
Inhibitor	Moderate	FOSNETUPITANT	Inducer	Strong	OXCARBAZEPINE
Inhibitor	Moderate	FUSIDIC ACID	Inducer	Strong	PENTOBARBITAL
Inhibitor	Moderate	HALOPERIDOL	Inducer	Strong	PHENOBARBITAL
Inhibitor	Moderate	IMATINIB	Inducer	Strong	PHENYTOIN
Inhibitor	Moderate	INDALPINE	Inducer	Strong	PRIMIDONE
Inhibitor	Moderate	ISAVUCONAZOLE	Inducer	Strong	RIFAMPICIN
Inhibitor	Moderate	ISAVUCONAZONIUM	Inducer	Strong	RIFAMYCIN
Inhibitor	Moderate	ISONIAZID	Inducer	Strong	RIFAXIMIN
Inhibitor	Moderate	ISRADIPINE	Inducer	Strong	RIMEXOLONE
Inhibitor	Moderate	LINAGLIPTIN	Inducer	Strong	HYPERICUM PERFORATUM
Inhibitor	Moderate	LOVASTATIN	Inducer	Strong	GLUCOCORTICOIDS
Inhibitor	Moderate	LULICONAZOLE			
Inhibitor	Moderate	MICONAZOLE			
Inhibitor	Moderate	MIFEPRISTONE			
Inhibitor	Moderate	MILNACIPRAN			
Inhibitor	Moderate	NETUPITANT			
Inhibitor	Moderate	NICARDIPINE			
Inhibitor	Moderate	NILVADIPINE			
Inhibitor	Moderate	PAROXETINE			
Inhibitor	Moderate	PRIMAQUINE			
Inhibitor	Moderate	RISPERIDONE			
Inhibitor	Moderate	SERTRALINE			
Inhibitor	Moderate	SIMEPREVIR			
Inhibitor	Moderate	TIOCONAZOLE			
Inhibitor	Moderate	VENETOCLAX			
Inhibitor	Moderate	VENLAFAXINE			
Inhibitor	Moderate	VERAPAMIL			
Inhibitor	Moderate	ZIMELDINE			
Inhibitor	Moderate	ZIPRASIDONE			
Inhibitor	Strong	ATAZANAVIR			
Inhibitor	Strong	BOCEPREVIR			
Inhibitor	Strong	CLARITHROMYCIN			
Inhibitor	Strong	CLOTRIMAZOLE			
Inhibitor	Strong	COBICISTAT			
Inhibitor	Strong	CONIVAPTAN			

Type	Category	Preferred Name/Generic Name	Type	Category	Preferred Term
Inhibitor	Strong	CURCUMIN			
Inhibitor	Strong	DANOPREVIR			
Inhibitor	Strong	DARUNAVIR			
Inhibitor	Strong	DELAVIRDINE			
Inhibitor	Strong	DILTIAZEM			
Inhibitor	Strong	ECONAZOLE			
Inhibitor	Strong	EFAVIRENZ			
Inhibitor	Strong	ELVITEGRAVIR			
Inhibitor	Strong	ERGOTAMINE			
Inhibitor	Strong	IDEALISISB			
Inhibitor	Strong	INDINAVIR			
Inhibitor	Strong	ITRACONAZOLE			
Inhibitor	Strong	KETOCONAZOLE			
Inhibitor	Strong	LOPERAMIDE			
Inhibitor	Strong	LOPINAVIR			
Inhibitor	Strong	MIBEFRADIL			
Inhibitor	Strong	MIDOSTAURIN			
Inhibitor	Strong	NALOXONE			
Inhibitor	Strong	NEFAZODONE			
Inhibitor	Strong	NELFINAVIR			
Inhibitor	Strong	NILOTINIB			
Inhibitor	Strong	POSACONAZOLE			
Inhibitor	Strong	RIBOCICLIB			
Inhibitor	Strong	RITONAVIR			
Inhibitor	Strong	SAQUINAVIR			
Inhibitor	Strong	STIRIPENTOL			
Inhibitor	Strong	TELAPREVIR			
Inhibitor	Strong	TELITHROMYCIN			
Inhibitor	Strong	TERFENADINE			
Inhibitor	Strong	TIPRANAVIR			
Inhibitor	Strong	TROLEANDOMYCIN			
Inhibitor	Strong	VORICONAZOLE			

5.11 Phosphate Binders

All terms in the search strategy are based on WHODrug Enhanced + Herbals (HD/DDE)
Mar2018 B3 Global.

Preferred Name/Generic Name	Preferred Name/Generic Name	Preferred Name/Generic Name
CALCIUM CARBONATE	SEVELAMER HYDROCHLORIDE	ALUMINUM HYDROXIDE
CALCIUM POLYSTYRENE SULFONATE	SUCROFERRIC OXYHYDROXIDE	
SEVELAMER	FERRIC CITRATE	
SEVELAMER CARBONATE	LANTHANUM CARBONATE	

6 REFERENCE

[Clinical Trial Protocol CBGJ398X2204 Version 6 \(Amendment 5\), Dated on 15-Jan-2020](#)

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082.