

Statistical Analysis Plan

DRCR Retina Network Protocol AG: Randomized Clinical Trial Assessing the Effects of Pneumatic Vitreolysis on Vitreomacular Traction

ClinicalTrials.gov Identifier: NCT03647267

Version Number	Author	Approver	Effective Date	Revision Description
1.0	Wesley Beaulieu	Maureen Maguire	08 Oct 2019	Initial SAP for Protocol version 2.0
2.0	Wesley Beaulieu	Maureen Maguire	19 Jan 2021	Revisions were made to accommodate a smaller than anticipated sample size after early stopping for safety concerns. Changes were made following review of study data. Details are provided in subsection 1.17. Applies to Protocol version 3.0.

SIGNATURES	
AUTHOR	
APPROVER	

1 **1.0 Overview**

2 The DRCR Retina Network Protocol AG randomized clinical trial will evaluate the effectiveness
3 of pneumatic vitreolysis (PVL) versus sham in treating eyes with idiopathic symptomatic
4 vitreomacular traction (VMT) without macular hole. Presence of VMT will be graded by a
5 central reading center on optical coherence tomography (OCT) prior to randomization and during
6 follow-up. The primary outcome and final visit are at 24 weeks. Randomization will be stratified
7 by clinical site and presence of epiretinal membrane (ERM) within 1 mm of the center of the
8 macula. Previous reports have suggested that the proportions of eyes with VMT release differ
9 depending on the presence of ERM.¹⁻³

10 **1.1 Statistical Hypotheses**

11 A test of superiority will be used in evaluating the following hypotheses for the primary
12 outcome:

13 Null Hypothesis (H₀): There is no difference in the proportion of eyes with central VMT release
14 without rescue treatment between the PVL and observation groups at 24 weeks.

15 Alternative Hypothesis (H_a): There is a difference in the proportion of eyes with central VMT
16 release without rescue treatment between the PVL and observation groups at 24 weeks.

17 Similar hypothesis tests will be conducted for all secondary, exploratory, and safety outcomes.

18 **1.2 Outcome Measures**

19 For the outcomes below, rescue treatment includes vitrectomy, ocriplasmin, or additional
20 pneumatic vitreolysis during the course of the study.

21 **1.2.1 Primary Efficacy Outcome:**

- 22 • Proportion of eyes with central VMT release* without rescue treatment at 24 weeks.
 - 23 ○ For purposes of description only, the distribution of eyes within treatment group
24 by the following categories at 24 weeks will be tabulated without statistical
25 comparison:
 - 26 ▪ Central VMT release without rescue treatment
 - 27 ▪ Central VMT release with rescue treatment
 - 28 ▪ No central VMT release and no rescue treatment
 - 29 ▪ No central VMT release despite rescue treatment

30 *Determined by masked grader at the central reading center.

31 **1.2.2 Secondary Efficacy Outcomes:**

- 32 • Proportion of eyes with central VMT release* without rescue treatment through 24 weeks
33 (time-to-event analysis).
- 34 • Mean change in visual acuity letter score from baseline at 24 weeks.

35 • Proportion of eyes with at least 10-letter gain (increase) in visual acuity from baseline at
36 24 weeks.

37 • Proportion of eyes with at least 10-letter loss (decrease) in visual acuity from baseline at
38 24 weeks.

39 • Proportion of eyes receiving rescue treatment before the 24-week visit.

40 ○ For purposes of description only, the following will be tabulated within treatment
41 group without statistical comparison:

42 ■ Proportion of eyes receiving rescue treatment before the 24-week visit or
43 for which rescue treatment is planned at the 24-week visit and medical
44 records confirm rescue treatment occurred within the subsequent 12
45 weeks.

46 ■ Type of rescue treatment.

47 *Determined by masked grader at the central reading center.

48 **1.2.3 Exploratory Efficacy Outcomes:**

49 • Mean change in shape discrimination hyperacuity (SDH) from baseline at 24 weeks.

50 • Proportion of eyes with ellipsoid zone* integrity at 24 weeks.

51 ○ Both ellipsoid zone integrity within 1 mm of the center of the macula and at the
52 foveal center will be analyzed

53 *Determined by masked grader at the central reading center.

54 **1.3 Analysis Cohorts**

55 • Intention-To-Treat (ITT) Analysis Cohort: all randomized participants irrespective of
56 treatment received and analyzed according to treatment assignment.

57 • Safety Analysis Cohort: all randomized participants irrespective of treatment received
58 and analyzed according to treatment assignment.

59 • Per-Protocol Analysis Cohort: only participants who complete the initial treatment (PVL
60 or sham injection) and do not receive any non-protocol treatments during follow-up.
61 Vitrectomy performed according to the criteria in section 4.2.1 of the protocol is
62 considered per-protocol and eyes receiving this procedure will be included in the per-
63 protocol cohort.

64 The primary analysis will follow the ITT principle. It will include all randomized participants.
65 The data from the ITT cohort will be analyzed according to the group to which the participants
66 were assigned through randomization, regardless of treatment actually received.

67 A per-protocol analysis will be performed to provide additional information regarding the
68 magnitude of the treatment effect. The per-protocol analysis will only be performed if more than
69 10% of randomized participants would be excluded by these criteria (e.g., 13 or more
70 participants if exactly 124 are enrolled).

71 The ITT analysis is considered the primary analysis. If the results of the per-protocol and ITT
72 analyses give inconsistent results, then the per-protocol analysis will be interpreted with caution.
73 In this scenario, exploratory analyses will be performed to evaluate possible factors contributing
74 to the differences.

75 **1.4 Analysis of the Primary Efficacy Outcome**

76 The primary outcome of central VMT release without rescue treatment at 24 weeks is a binary
77 variable that is graded by the central reading center. Logistic regression will be used to test the
78 hypothesis of superiority. The risk difference for the treatment group effect (estimated with
79 conditional standardization)⁴, along with the 95% confidence interval (estimated with the delta
80 method)⁴ and *P* value will be used to compare treatment groups. To aid in interpretation of the
81 risk difference, observed outcome proportions will be reported for each treatment group.

82 Since the chance of re-attachment after release before 24 weeks is highly unlikely, an eye with
83 central VMT release without rescue treatment prior to 24 weeks will be considered to have met
84 the outcome through 24 weeks if the participant is lost to follow-up. Similarly, any eye receiving
85 rescue treatment prior to 24 weeks will be considered not to have met the outcome through 24
86 weeks.

87 Multiple imputation will be used to impute missing data for eyes lost to follow-up that did not
88 have prior release or rescue treatment documented. The imputation model will treatment group,
89 and VMT status at 1, 4, 12, and 24 weeks.

90 A sensitivity analysis will be conducted using the same approach as above, but without multiple
91 imputation (i.e., complete-case analysis).

92 **1.5 Analysis of the Secondary and Exploratory Efficacy Outcomes**

93 The ITT analysis cohort will be used for all secondary and exploratory outcomes.

94 **1.5.1 Secondary Efficacy Outcomes**

95 Development of central VMT release without rescue treatment through 24 weeks is a time-to-
96 event outcome graded by the central reading center that will be modeled with Cox proportional
97 hazards regression and robust variance estimation. The hazard ratio along with the 95%
98 confidence interval and *P* value will be used to compare treatment groups. To aid in
99 interpretation, a Kaplan-Meier plot will be constructed and the cumulative probability of the
100 outcome will be estimated at the final time point for each group. Data from eyes not observed to
101 have release or that receive rescue treatment will be censored on the date of their final visit (not
102 the date of rescue treatment).

103 Change in visual acuity letter score from baseline to 24 weeks is a continuous variable that will
104 be analyzed using a general linear model with robust variance estimation. Baseline visual acuity
105 will be included as a covariate. The adjusted treatment group difference, 95% confidence
106 interval, and *P* value will be presented. To aid in interpretation, least squares means and
107 associated 95% confidence intervals will be reported for each treatment group. Missing data will
108 be imputed with multiple imputation. The imputation model will include treatment group,
109 baseline visual acuity, visual acuity at 1, 4, 12, and 24 weeks, and VMT status at 1, 4, 12, and 24
110 weeks.

111 The proportions of eyes with at least 10-letter gain (increase) and at least 10-letter loss (decrease)
112 in visual acuity from baseline are binary variables that will be analyzed with logistic regression
113 utilizing the imputed data sets from the analysis of mean change in visual acuity from baseline.
114 Baseline visual acuity will be included as a covariate.

115 The proportion of eyes receiving rescue treatment before the 24-week visit is a binary variable
116 that will be analyzed with logistic regression. Complete-case analysis (no imputation of missing
117 data) will be used for this outcome.

118 **1.5.2 Exploratory Efficacy Outcomes**

119 Change in SDH is a continuous variable that will be analyzed similarly to change in visual acuity
120 but substituting baseline and follow-up SDH for visual acuity. Complete-case analysis (no
121 imputation of missing data) will be used for this outcome. Shape discrimination hyperacuity
122 ranges from -1 to +1. On the myVisionTrack test being used in this study, normal SDH is -0.60
123 or less.

124 The proportion of eyes with ellipsoid zone integrity at 24 weeks is a binary variable graded by
125 the central reading center (loss of integrity and no loss of integrity). Both ellipsoid zone integrity
126 in the central subfield and at the foveal center will be analyzed. Logistic regression will be used
127 to compare treatment groups. Ellipsoid zone status at baseline will be included as a covariate.
128 The risk difference for the treatment group effect, 95% confidence interval, and *P* value will
129 be used to compare treatment groups. To aid in interpretation of the risk difference, observed
130 outcome proportions will be reported for each treatment group. Complete-case analysis (no
131 imputation of missing data) will be used for this outcome.

132 **1.6 Safety Analyses**

133 All reportable adverse events will be categorized as study eye or systemic. All events will be
134 tabulated by treatment group in a listing of each reported Medical Dictionary for Regulatory
135 Activities (MedDRA) term and summarized over each MedDRA System Organ Class. All
136 randomized participants will be included in safety analyses. Any events occurring between
137 randomization and study treatment will be counted. For each treatment group, the number of
138 adverse events (ocular or systemic) considered related to treatment will be tabulated.

139 **1.6.1 Ocular Adverse Events**

140 The frequency of each ocular adverse event occurring at least once per eye will be calculated.
141 The proportion of eyes experiencing each outcome will be compared between treatment groups
142 with Barnard's unconditional exact test. The following ocular adverse events are of primary
143 interest:

- 144 • Retinal detachment
- 145 • Retinal tear
- 146 • Macular hole development
- 147 • Cataract extraction in eyes phakic at baseline
- 148 • Vitreous hemorrhage
- 149 • Adverse intraocular pressure (IOP) events (composite outcome)

150 ○ Increase in IOP ≥ 10 mmHg from baseline (at a follow-up visit)
151 ○ IOP ≥ 30 mmHg (at a follow-up visit)
152 ○ Initiation of medication to lower IOP that was not in use at baseline
153 ○ Glaucoma procedure

154 The number of eyes with endophthalmitis and traumatic cataract will be tabulated without
155 statistical comparison.

156 **1.6.2 Systemic Adverse Events**

157 The frequency of each systemic adverse event occurring at least once per participant will be
158 calculated. The proportion of participants experiencing each outcome will be compared with
159 Barnard's unconditional exact test. The following systemic adverse events are of primary
160 interest:

161 • Death
162 • Serious adverse event (at least one)

163 The following systemic adverse events are of secondary interest and will be tabulated without
164 statistical comparison:

165 • For each MedDRA System Organ Class, proportion of participants with at least one
166 serious event

167 **1.7 Intervention Adherence**

168 Adherence will be defined as completion of the treatment assigned at randomization: either PVL
169 or sham injection.

170 **1.8 Protocol Adherence and Retention**

171 Protocol deviations and visit completion rates (excluding deaths) will be tabulated for each
172 treatment group.

173 **1.9 Baseline Descriptive Statistics**

174 Baseline characteristics will be tabulated by treatment group and summary statistics appropriate
175 to the distribution will be reported.

176 **1.10 Planned Interim Analyses**

177 There is no formal interim analysis planned for this study. The Data and Safety Monitory
178 Committee (DSMC) will review safety and outcome data approximately every 6 months while
179 the study is ongoing.

180 **1.11 Subgroup Analyses**

181 Subgroup analyses, i.e., assessments of effect modification (interaction), will be conducted for
182 the primary outcome. These analyses will be considered exploratory. Additionally, interpretation
183 of the analyses will depend on whether the primary analysis demonstrates a significant treatment

184 group difference; in the absence of such a difference, subgroup analyses will be interpreted with
185 caution.

186 The general approach for these exploratory analyses will be to add an interaction term for the
187 subgroup factor by treatment into the primary analysis model. In addition, within-subgroup risk
188 differences and 95% confidence intervals will be estimated from the interaction model if the
189 interaction P value is less than .05. Subgroup analyses will use data from eyes that complete the
190 24-week visit or have VMT release or rescue treatment prior to 24 weeks (i.e., complete case
191 analysis as described in section 1.4).

192 The primary subgroup analysis will evaluate the effect of ERM presence within 1 mm of the
193 center of the macula at baseline. In previous studies, eyes with ERM had lower release rates
194 compared with eyes not having ERM.¹⁻³

195 Secondary subgroup analyses will include ERM presence at the site of vitreous adhesion, lens
196 status (phakic or pseudophakic), retinoschisis, subretinal fluid within the central 1 mm, length of
197 adhesion on OCT (less than or equal to 1500 microns or greater than 1500 microns), and diabetes
198 status (has diabetes or does not have diabetes). Subgroups will be defined by the value at
199 baseline.

200 There are no data to suggest that the treatment effect will vary by sex or race/ethnicity. However,
201 both of these factors will be evaluated in exploratory subgroup analyses as mandated by National
202 Institutes of Health (NIH) guidelines.

203 Subgroup factors will be analyzed as categorical and continuous or ordinal variables where
204 possible. Secondary and exploratory subgroup analyses will only be conducted if there are at
205 least 20 eyes in each subgroup for each treatment group. The primary subgroup analysis will be
206 conducted regardless of sample size.

207 **1.12 Multiple Testing**

208 There will be no formal adjustment for multiple testing. Only $P \leq .05$ will be considered of
209 interest.

210 **1.13 Visit Windows for Analysis**

211 The analysis windows for visits will be defined according to Table 1. If multiple visits fall within
212 the same window, priority will be given to the protocol visit over unspecified visits. If there is no
213 protocol visit in the window, then the visit closest to the target date (but within the analysis
214 window) will be designated as the analysis visit. Visit windows will be filled in the following
215 order to handle visits occurring on the border of two windows: 24 weeks, 12 weeks, 4 weeks, 1
216 week.

217 **Table 1. Analysis Windows**

Visit \pm Protocol Window	Target	Analysis Window
1 week (-4 days to +3 days)	7 days	1 day – 2 weeks (1 – 14 days)
4 (± 1) weeks	28 days	2 – 8 weeks (14 – 56 days)
12 (± 2) weeks	84 days	8 – 18 weeks (56 – 126 days)
24 (± 4) weeks	168 days	18 – 40 weeks (126 – 280 days)

218 **1.14 Missing Data**

219 The strategy for handling missing data generally is included with the description of each
220 analysis. For analyses using multiple imputation, the Markov chain Monte Carlo (MCMC)
221 method with 100 imputations will be used. Where otherwise not specified, only participants with
222 non-missing data are included in analyses (i.e., complete-case analysis).

223 **1.15 Outliers**

224 To ensure that statistical outliers do not have an undue impact on analyses of continuous
225 outcomes, change in continuous outcomes from baseline will be truncated to ± 3 standard
226 deviations based on the overall mean and standard deviation from both treatment groups
227 combined at 24 weeks. Truncation will occur after imputation, where applicable.

228 **1.16 Model Assumptions and Nonconvergence**

229 All model assumptions will be verified. If model assumptions are seriously violated, covariates
230 may be categorized or excluded, and a non-parametric approach, robust method, or
231 transformation may be considered. The proportional hazards assumption will be assessed by
232 visual inspection of Kaplan-Meier curves. If the proportional hazards assumption is seriously
233 violated, then an alternative approach, such as analysis of restricted mean survival time, may be
234 undertaken.

235 If a logistic regression models fail to converge, then covariates will be excluded, missing data
236 will not be imputed (where applicable), the confidence interval for the risk difference will be
237 estimated with the Newcombe method, and the *P* value for the treatment group comparison will
238 be calculated with Barnard's unconditional exact test.

239 **1.17 Revisions**

240 Owing to lower than anticipated final sample size, the following key changes were made to the
241 analysis plan after review of study data:

- 242 • Presence of epiretinal membrane has been removed as a covariate from all imputation
243 and regression models.
- 244 • Proportion of eyes with central VMT release and vitreopapillary traction (VPT) release
245 without rescue treatment at 24 weeks has been removed from the list of secondary
246 outcomes.
- 247 • A sensitivity analysis of confounding for the primary outcome has been removed.
- 248 • An alternative analysis method has been described for outcomes in which logistic
249 regression fails to converge.

250 In addition, treatment and subgroup effects from all logistic regression analyses will now be
251 summarized with a risk difference instead of a relative risk.

252 **References**

253 1. Dugel PU, Tolentino M, Feiner L, Kozma P, Leroy A. Results of the 2-Year Ocriplasmin
254 for Treatment for Symptomatic Vitreomacular Adhesion Including Macular Hole
255 (OASIS) Randomized Trial. *Ophthalmology*. 2016;123(10):2232-2247.

256 2. Stalmans P, Benz MS, Gandorfer A, et al. Enzymatic vitreolysis with ocriplasmin for
257 vitreomacular traction and macular holes. *N Engl J Med*. 2012;367(7):606-615.

258 3. Chan CK, Crosson JN, Mein CE, Daher N. Pneumatic Vitreolysis for Relief of
259 Vitreomacular Traction. *Retina*. 2017.

260 4. Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily
261 computed indirectly from multivariable logistic regression. *J Clin Epidemiol*.
262 2007;60(9):874-882.

263