

Study Title: Effect of Low Volume Sprint Interval Training on Cardiorespiratory Fitness

NCT number: To be determined

Date: 12/15/2025

Statistical design and power

The proposed study *Effect of Low Volume Sprint Interval Training on Cardiorespiratory Fitness; A Randomized Controlled Trial* is a longitudinal, randomized controlled trial comparing the efficacy of REHIT at improving cardiometabolic health in comparison to a no-intervention control group. At baseline, participants will be randomized into the exercise condition or a control group by a statistician, with an allocation ratio of 1:1. Research staff will not have access to the randomization list.

Data will be expressed as mean \pm standard deviation and will be analyzed using SPSS V. 27.0 (IBM, Armonk, NY). The Shapiro-Wilks test will be used to assess normality of each variable. Changes in outcomes will be analyzed using two-way mixed-model ANOVA, with time as a within-subjects factor (pre- vs. 4 wks vs. 8 wks) and group (REHIT vs. control) as a between-subjects factor. Changes in exercise enjoyment will be analyzed using a repeated measures ANOVA. If a significant F-ratio occurs, Tukey's *post hoc* test will be used to identify differences between means. The Greenhouse-Geisser correction will be used if the sphericity assumption of equal variances across groups is not met. Unpaired t-test will be used to identify baseline differences in age, BMI, and/or $\dot{V}O_2\text{max}$ between groups. If there is a baseline difference in any outcome between groups, it will be used as a covariate in our analysis. Cohen's d will be used as a measure of effect size and represented using these values: 0.20-0.49 = "small," 0.50-0.79 = "moderate," and ≥ 0.80 = "large". Both intention-to-treat analysis (including all randomized participants with data for baseline and follow-up timepoints) and per protocol analysis (including all participants with $>75\%$ of prescribed sessions completed) will be performed.

Sample size calculation:

In a pooled analysis of $n=117$ sedentary participants performing 6 weeks of REHIT, we established a mean increase in $\dot{V}O_2\text{max}$ of 9.3% with a standard deviation of individual responses (SD_{IR}) of $2.4 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ (Metcalfe and Vollaard, 2021). This was similar to the 10.0% increase in $\dot{V}O_2\text{max}$ with an SD_{IR} of $2.5 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ which we observed in a cohort of sedentary individuals performing 6 weeks of supervised SIT ($n=136$, METAPREDICT Study; (Phillips et al., 2017)), and to the SD_{IR} of the training response reported by the HERITAGE Family Study following 20 weeks of MICT ($n=720$; $SD=2.7 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ (Bouchard and Rankinen, 2001)). This suggests that these are "typical" values for between-subject variability in the response for $\dot{V}O_2\text{max}$ following training. Therefore, these can be considered suitable data for use in the sample size calculation for the proposed project.

An increase in $\dot{V}O_2\text{max}$ equivalent to 1 MET ($3.5 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$) is expected to reduce risk of all-cause and CVD mortality by 15% and 19%, respectively (Lee et al., 2011). In the absence of a universally accepted smallest clinically meaningful effect for the primary outcome measure of $\dot{V}O_2\text{max}$ used in the present study, we define the smallest worthwhile difference in the change in $\dot{V}O_2\text{max}$ between the intervention and control groups as $1.5 \text{ mL}\cdot\text{kg}^{-1}\cdot\text{min}^{-1}$ ($\sim 4.5\%$ increase in $\dot{V}O_2\text{max}$), equivalent to a risk reduction for CVD mortality of $\sim 8\%$. Thus, in order to be able to detect the smallest worthwhile difference with an effect size of $d=0.60$, we need $n=120$ participants in total (with $n=60$ participants randomized to the training group and $n=60$ to the control group) with $\alpha=0.05$ and power of 90%. A secondary analysis of sex differences in the response to REHIT will be performed, sufficiently powered to detect a large effect size ($d=0.80$) with $\alpha=0.05$ and a power of 80%. We will recruit participants until the target has been achieved.

Despite dozens of studies exhibiting beneficial effects of exercise training on lipid oxidation, no study has identified a smallest worthwhile change for this outcome. However, with a sample size of $n=120$ established for the primary outcome measure of training-induced change in $\dot{V}O_2\text{max}$, our study will be sufficiently powered to detect changes in lipid oxidation (Aim 2) with a medium effect size of $d=0.52$, with $\alpha=0.05$ and power of 80%.

Exercise enjoyment as measured using the PACES questionnaire is only assessed in the intervention group, with changes analysed using a repeated measures ANOVA. The study will be sufficiently powered to detect changes in exercise enjoyment (Aim 3) with a small effect size of $f=0.14$, with alpha=0.05 and power of 90%.