

School of Medicine

UVA CENTER FOR DIABETES TECHNOLOGY

Evaluation of The Postprandial Impact of Automated Priming Bolus for Full Closed Loop Insulin Delivery

Protocol Chair

Sue A. Brown, MD

University of Virginia

Center for Diabetes Technology

NCT#05528770

Version Number: v1.7

06-Oct-2022

KEY ROLES

Protocol Principal Investigator	
Name, degree	Sue Brown, MD
Institution Name	University of Virginia Center for Diabetes Technology

PROTOCOL VERSION HISTORY

Version Number	Author(s)	Approver	Effective Date	Revision Description
1.0	Mark DeBoer, Mary Oliveri	Sue Brown	29-Jul-2022	Original Protocol
1.1	Mary Oliveri	Mark DeBoer	15-Aug-2022	FDA requested mods: <ul style="list-style-type: none">• Figure 1 was updated• BPS transitions described (section 7.6)
1.2	Mark DeBoer	Mark DeBoer	16-Aug-2022	FDA requested mods: <ul style="list-style-type: none">• Inclusion & exclusion criteria (section 3.5 & 3.6)• Pilot study BPS corrections (section 6.3 & 6.4)• Exercise termination criteria (section 7.8)• Discharge criteria (section 7.9)• Individual stopping criteria (section 11.10.1)
1.3	Mary Oliveri	Sue Brown	23-Aug-2022	FDA requested mods: <ul style="list-style-type: none">• Pilot study will complete a minimum of 2-3 participants (section 1.3, 3.2 & Chapter 6)• A H&P within 9 months of screening appointments may be used (section 3.4 & 3.7)• Further modified Exercise termination criteria (section 7.8)• Discharge criteria (section 6.6)
1.4	Mary Oliveri	Sue Brown	12-Sep-2022	IRB Pre-Review mods (07-Sep-2022): <ul style="list-style-type: none">• Clarified enrollment numbers (section 3.2 & 13.2)• Edited inclusion criteria (section 3.5).• Edited Screening Process (section 3.4 & 3.7)• Deleted references to questionnaires (section 5.1, 7.2, & 7.10)• Added 5-minute low intensity warm up (section 7.7)• Clarified Covid testing (section 9.1.3)• Deleted Covid vaccination record (section 10.3)

CLINICAL PROTOCOL

				<ul style="list-style-type: none">Edited pre-screening description (section 3.7)
1.5	Sue Brown	Sue Brown	25-Sep-2022	IRB FB Review request: <ul style="list-style-type: none">SAP description (Chapter 13).
1.6	Mary Oliveri	Mary Oliveri	27-Sep-2022	IRB FB Review request: <ul style="list-style-type: none">Remove screening remote references
1.7	Mary Oliveri	Mary Oliveri	06-Oct-2022	IRB FB Review request: <ul style="list-style-type: none">Clarified Part 11 identification process (section 15.3.1)

SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

Protocol Title: Evaluation of The Postprandial Impact of Automated Priming Bolus for Full Closed Loop Insulin Delivery

Protocol Version/Date: v1.7 06-Oct-2022

I have read the protocol specified above. In my formal capacity as a Site Principal Investigator, my duties include ensuring the safety of the study participants enrolled under my supervision. It is understood that all information pertaining to the study will be held strictly confidential and that this confidentiality requirement applies to all study staff at this site.

This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as required by the following: United States (US) Code of Federal Regulations (CFR) applicable to clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21 CFR Part 812).

As the Principal Investigator, I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the sponsor and documented approval from the Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary to eliminate an immediate hazard(s) to the trial participants.

All key personnel (all individuals responsible for the design and conduct of this trial) have completed Human Participants Protection Training and Good Clinical Practice Training. Further, I agree to ensure that all staff members involved in the conduct of this study are informed about their obligations in meeting the above commitments.

Investigator's Signature _____ Date: ____ / ____ / ____

Investigator's Name: _____

Site Name: University of Virginia

CLINICAL PROTOCOL

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
ADRR	Average Daily Risk Range
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
BPS	Bolus Priming System
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
DKA	Diabetic Ketoacidosis
DSMB	Data Safety Monitoring Board
FCL	Fully Closed Loop
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
HBGI	High Blood Glucose Index
HIIT	High-intensity interval training
HCL	Hybrid Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
LBGI	Low Blood Glucose Index
POC	Point-of-Care
QC	Quality Control
UI	User Interface

PROTOCOL SUMMARY

PARTICIPANT AREA	DESCRIPTION
Title	Evaluation of The Postprandial Impact of Automated Priming Bolus for Full Closed Loop Insulin Delivery
Investigational Device	UVA Model Predictive Control Artificial Pancreas (RocketAP) with and without use of the Bolus Priming System (BPS)
Objectives	The purpose of this study is to show the safety and feasibility of a new fully automated AP controller with and without the Bolus Priming System
Study Design	A randomized cross-over trial assessing glycemic responses to a fully automated AP system using two approaches: 1) using the Bolus Priming System (which detects shifts in glucose level to trigger a priming dose of insulin) 2) without the Bolus Priming System We will also have structured meal and exercise challenges of the fully closed loop system.
Number of Sites	One
Endpoint	The primary outcome will be time in range 70-180 mg/dL for a 24-hour period.
Population	Key Inclusion Criteria <ul style="list-style-type: none">• Age 18 and \leq65 years of age• Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year• Currently using insulin for at least six months• Currently using insulin pump for at least three months
Sample Size	<ul style="list-style-type: none">• Pilot Study: complete a minimum of 2-3 participants• Main Study: complete up to 20 participants
Treatment Groups	Randomized crossover: Participants will be randomized to the order that they experience the use of the BPS in fully automated closed loop (FCL) (for 24 hours each, with a 24-hour washout in between): 1) with the BPS active, 2) without BPS.
Participant Duration	Pilot Study: Participants will be admitted to a local hotel or rental house for up to approximately 24 hours and will have a dinner with the RocketAP without the BPS Main Study: Participants will be admitted to a local hotel for approximately 96 hours.
Protocol Overview/Synopsis	Main Study participants will be admitted to the hotel for a 4-night study, receiving the two sessions in random order: 1) FCL with BPS activated, 2) FCL without the BPS, with a 24-hour washout period in between. During the admission, participants will receive structured meals and have blood glucose control followed to compare time in range 70-180 mg/dL between Controller sessions. After the first 24 hour period on the first FCL approach (BPS vs. no BPS,) that the participant has been randomized to, there will be a 24 hour challenge period before shifting to the other randomized approach; during this session participants will undergo further testing of the control algorithm, including meal challenges and a high-intensity interval training bout.

CLINICAL PROTOCOL

STUDY VISITS AND PROCEDURES SCHEDULE

	Screening	Study Equipment Training	Pre-Admission Check-In	Study Admission	Post-Admission Check-In
Location	Clinic	Clinic/ Remote	Phone/ Email/ Text	Hotel/Rental House	Phone/ Email/ Text
Visit	1	2	3	4	5
Informed Consent	X				
Eligibility Assessment	X				
Medical History	X				
HbA1c	X				
Pregnancy test (if applicable)	X	X		X	
Physical Exam	X				
Vital Signs (height/weight)	X			X	
Electrocardiogram (ECG)	X				
Demographic Survey	X				
Randomization				X	
COVID-19 Testing			X		
CGM Use				X	
Survey	X				
Review diabetes management and AEs				X	X

CLINICAL PROTOCOL

1	TABLE OF CONTENTS	
2	Chapter 1 Background	13
3	1.1 Introduction.....	13
4	1.2 Study Objective.....	14
5	1.3 Study Design.....	14
6	1.4 Study Device Download	16
7	1.5 Study System Issues.....	16
8	Chapter 2 Study Devices	18
9	2.1 Insulin Pump	18
10	2.2 Continuous Glucose Monitor.....	18
11	2.3 Blood Glucose Meter and Strips	18
12	2.4 Ketone Meter and Strips	18
13	2.5 Study Devices Accountability Procedures.....	18
14	Chapter 3 Study Screening	19
15	3.1 Clinical Sites	19
16	3.2 Participant Recruitment and Enrollment.....	19
17	3.3 Informed Consent and Authorization Procedures.....	19
18	3.4 Screening Procedures.....	19
19	3.5 Participant Inclusion Criteria	19
20	3.6 Participant Exclusion Criteria	20
21	3.7 Visit 1: Screening Procedures	21
22	3.8 Demographic Data Survey	23
23	Chapter 4 Randomization	25
24	4.1 Pilot Study Participants.....	25
25	4.2 Main Study Participants.....	25
26	Chapter 5 Visit 2: Study Equipment Training.....	26

CLINICAL PROTOCOL

27	5.1 CGM Training.....	26
28	5.2 Activity Tracker.....	26
29	5.3 Study Insulin Pump.....	27
30	Chapter 6 Pilot Study	28
31	6.1 Qualifications and Role of the Staff.....	28
32	6.2 Visit 3: Pre-Admission Check-In Visit.....	28
33	6.3 Visit 4: Admission Check-In	28
34	6.4 Study Meals	29
35	6.5 Admission Activities.....	29
36	6.6 Admission Discharge.....	29
37	6.7 Visit 5: Post Admission Check-In Visit.....	30
38	Chapter 7 Main Study	31
39	7.1 Hotel Admission	31
40	7.2 Qualifications and Role of the Staff.....	31
41	7.3 Visit 3: Pre-Admission Check-In Visit.....	31
42	7.4 Visit 4: Admission Check-In	31
43	7.5 System Transitions.....	32
44	7.6 Study Meals	32
45	7.7 Admission Activities.....	33
46	7.8 Admission Discharge.....	34
47	7.9 Visit 5: Post Admission Check-In Visit.....	34
48	7.10 Medical Monitor Review	34
49	Chapter 8 Medical Monitor Review.....	35
50	8.1 Medical Monitor Study Safety Data Review	35
51	8.2 Medical Monitor Main Study Safety Data Review	35
52	Chapter 9 Testing Procedures	36
53	9.1 Laboratory / Point of Care Testing	36

CLINICAL PROTOCOL

54	Chapter 10 Risks Associated with Clinical Trial.....	37
55	10.1 Potential Risks and Benefits of the Investigational Device	37
56	10.2 General Considerations.....	40
57	10.3 COVID-19 Risk Mitigation Plan and Justification.....	41
58	Chapter 11 Adverse Events, Device Issues, and Stopping Rules.....	42
59	11.1 Definitions.....	42
60	11.2 Reportable Events	43
61	11.3 Relationship of Adverse Event to Study Device.....	44
62	11.4 COVID-19 Transmission	44
63	11.5 Intensity of Adverse Event.....	45
64	11.6 Coding of Adverse Events	45
65	11.7 Outcome of Adverse Events	45
66	11.8 Reportable Device Issues	46
67	11.9 Timing of Event Reporting	46
68	11.10 Stopping Criteria.....	47
69	11.11 Independent Safety Oversight.....	48
70	11.12 Definition of a Data Breach	48
71	Chapter 12 Miscellaneous Considerations	49
72	12.1 Prohibited Medications, Treatments, and Procedures.....	49
73	12.2 Participant Withdrawal	49
74	12.3 Confidentiality	49
75	Chapter 13 Statistical Consideration	50
76	13.1 Design and Randomization.....	50
77	13.2 Sample Size.....	51
78	13.3 Outcome Measures.....	51
79	13.4 Safety Analyses.....	52
80	13.5 Baseline Descriptive Statistics.....	52

CLINICAL PROTOCOL

81	13.6 Device Issues	52
82	Chapter 14 Data Collection and Monitoring.....	53
83	14.1 Case Report Forms and Device Data	53
84	14.2 Study Records Retention.....	53
85	14.3 Protocol Deviations.....	53
86	Chapter 15 Ethics/Protection of Human Participants	54
87	15.1 Ethics Standard	54
88	15.2 Institutional Review Boards.....	54
89	15.3 Informed Consent Process	54
90	Chapter 16 References.....	56
91		
92		

CLINICAL PROTOCOL

93 Chapter 1 Background

94 1.1 Introduction

95 A major impediment to maintaining blood glucose (BG) control in Type 1 diabetes (T1D) is missed
96 meal boluses, which has been associated with significantly higher HbA1c levels.¹ While the
97 advent of the artificial pancreas (AP) offers promise of safe reductions in HbA1c, our research
98 group previously found that current AP systems only partly compensates for missed prandial
99 insulin.² We thus designed a new system called RocketAP to be fully automated, utilizing a Bolus
100 Priming System (BPS) that recognizes meal ingestion and delivers a quick priming dose of insulin
101 prior to extreme blood sugar excursions. When used as a fully automated closed loop (FCL) system
102 (without any meal announcements to the controller), this system improves time-in-range compared
103 to a current commercially available system (Control-IQ). However, we have not previously
104 determined whether the BPS provides improved blood sugar control over what the RocketAP
105 controller could without the BPS. Indeed, when the BPS provides a bolus, it reduces the amount
106 of insulin the controller can provide in response to high blood sugars—leaving open the possibility
107 that the RocketAP controller could provide a similar degree of blood sugar control after
108 unannounced meals. In addition, this system needs to be further tested under challenging
109 conditions of exercise and food intake. This is particularly true for the BPS, given the potential
110 that the BPS could detect spurious changes in blood sugar and provide a priming dose of insulin
111 in the absence of a meal.

112 In the current study, the maximum amount of insulin that the BPS injects (which varies based on
113 the system's calculation of the probability that a meal has been ingested) is 6% of the person's
114 total daily insulin for any individual meal. This system is equipped with a novel hypoglycemia
115 anti-rebound system, which constrains insulin infusion after CGM/SMBG readings <70 mg/dL.
116 The BPS system is also silenced at night (23:00 – 6:00h).

117 In the current study, we are testing this RocketAP system for BG levels using two approaches:
118 A randomized cross-over trial where each participant will experience FCL for two 24-hour study
119 periods in random order (referred to as FCL1 and FCL2) with:

120 • The BPS functioning
121 • The BPS inactivated

122 During the washout period between FCL1 and FCL2, we will test the RocketAP system in FCL
123 with further challenges, both before and after the change in BPS treatment arm—i.e., not as a
124 cross-over assessment but a comparison between participants randomized to start with or without
125 BPS. These challenges will include:

126 • A session of high-intensity interval training (assessing the safety of the BPS when BG's
127 may spike during bursts of anaerobic activity)

CLINICAL PROTOCOL

- 128 • A high-carbohydrate, high-fat meal (assessing how the system responds to prolonged
129 carbohydrate absorption)
- 130 • Ingestion of a bolus of simple sugar (assessing the safety of the BPS when the user's
131 blood sugar spikes from a relatively low amount of carbohydrate)

132 Participants will be admitted to a hotel and started on the RocketAP for the purpose of comparing
133 FCL use with and without BPS as described above, all implemented on the DiAs platform (MAF
134 2109). As an assessment of the efficacy of the system in maintaining BG control, participants will
135 be followed for approximately 24 hours in the randomized phase (FCL1 vs. FCL2) and during the
136 24-hour cross-over phase. Our primary outcome will be one of efficacy in assessing BG control
137 (TIR 70-180 mg/dL) between the two 24-hour FCL1/FCL2 periods.

138 We hypothesize that performances of RocketAP without BPS in FCL will provide similar glycemic
139 control as FCL with BPS. We expect that this will constitute an important step toward having a
140 fully automated AP system because it may remove the need for a BPS system that itself could
141 increase risk of episodes of hypoglycemia.

142 **1.2 Study Objective**

143 The purpose of this study is to test the performance of the RocketAP in FCL both with and without
144 the BPS, assessing efficacy and safety. We will target completion of up to 20 adults in a
145 randomized cross-over trial, comparing blood glucose time in range 70-180 mg/dL for two 24-
146 hour periods and assessing TIR during an additional challenge period, which will be compared
147 between those who started on BPS vs. those who did not.

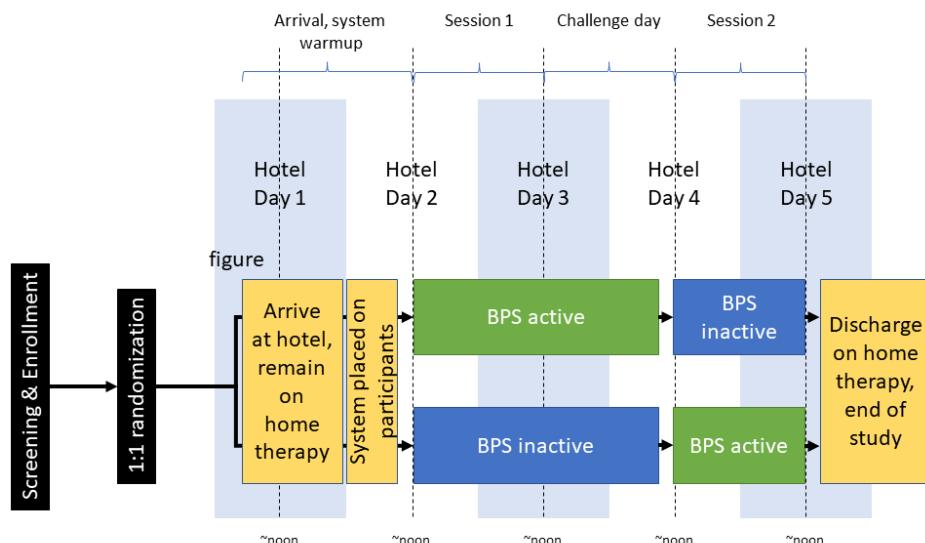
148 **1.3 Study Design**

149 We will consent up to 30 participants, ages ≥ 18.0 and ≤ 65 years, with a goal to have up to 20
150 participants complete the trial. The study will be performed overnight at a local hotel/rental house
151 (heretofore referred to as "hotel"). Enrollment in the Pilot Study will proceed with the goal of
152 completing a minimum of 2-3 participants. This admission will be about 24 hours at a hotel/rented
153 house. Enrollment in the Main Study will proceed with the goal of completing 20 participants.

154 **1.3.1 Study Hardware/Software**

155 The study itself will involve use of the DiAs prototyping platform (MAF 2109), connected to a
156 Tandem t:AP research pump and a Dexcom G6 sensor, and implementing RocketAP with and
157 without BPS. Upon arrival at the hotel, participants will be instructed in how to use the Tandem
158 research pump as well as the UVa AP system, including stopping the system.

159 **1.3.2 Timing of UVa Artificial Pancreas Use**

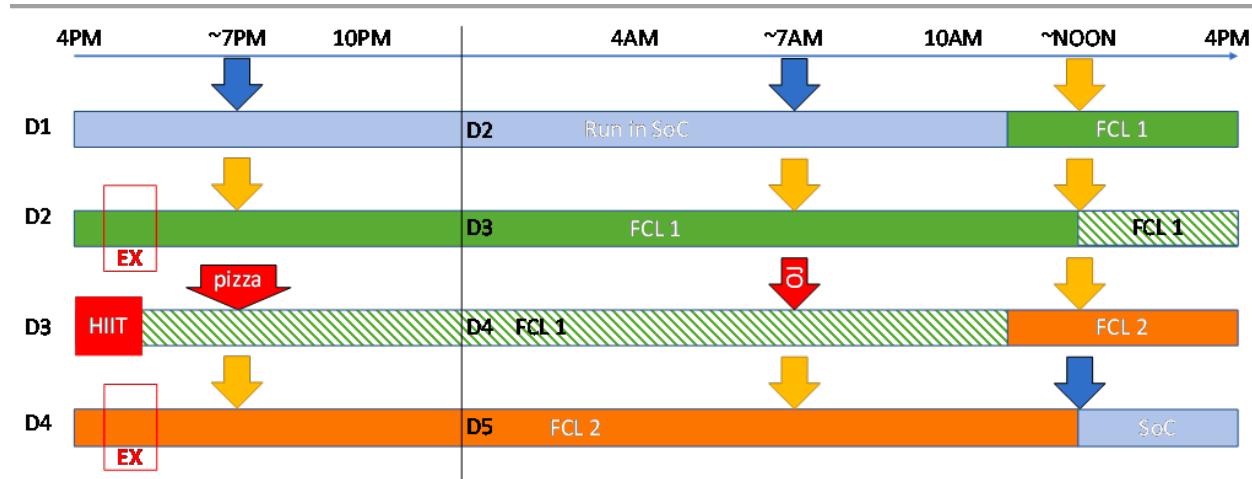

160 The participants will arrive to hotel the evening before starting the experimental system to allow
161 for a settling of blood glucose in an unfamiliar environment. The next morning, participants will
162 be connected to a Tandem research pump connected to the UVa DiAs platform and their Dexcom

CLINICAL PROTOCOL

163 G6 Transmitter will be linked with DiAs. Participants will then be taught how to use DiAs in this
164 configuration. The research pump will be programmed with the individual's usual insulin
165 parameters. Once started, the participants will have their blood sugar managed through this system
166 during the entirety of the time at hotel.

167 1.3.3 Study Controller Sessions

168 *Order and timing of controller sessions:* During the hotel stay, participants will have two separate
169 24-hour periods during which they will receive FCL control with and without the BPS active.
170 These will be separated by a 24-hour challenge period which will involve further challenges. The
171 timing and potential order of these sessions is shown in Figure 1.



172

173 Figure 1: Timeline and randomized order of the Study Controller Sessions

174 During these 24-hour periods participants will be followed for the experimental meals as part of
175 the Study Controller Sessions to compare blood glucose control with and without the BPS (Figure
176 1). The study meals and activities will be standardized between study sessions (see Figure 2).

CLINICAL PROTOCOL

177

178 Figure 2: Timeline of Study Controller Sessions and Study Meals and activities. There will be two identical 24-
179 hour periods (FCL1 in green and FCL2 in orange), separated by a 24-hour challenge period (FCL1 in green-hatched)
180 that will first involve the BPS activation assignment the participant was randomized to (the treatment approach used
181 in FCL1) and then involve the alternate assignment (the treatment approach to be used in FCL2), with the system
182 switch at the end of the challenge day. Arrows represent meals with Blue Arrows representing meals in which the
183 participants are using their personal devices.

184 The primary outcome will compare the percent time CGM is between 70 and 180 mg/dL during
185 daytime for FCL1 and FCL2 sessions with and without BPS. During the time between arrival at
186 the hotel and being started on the experimental system, participants will use their home diabetes
187 management approach, including insulin dosing via normal carbohydrate announcement. Starting
188 the first morning of the study (Day 2 of study), study staff who will be present will include nursing
189 staff and technical staff; a study physician will be available either on-site or nearby off-site at all
190 times. Hyperglycemia and hypoglycemia treatment protocols will be followed per guidelines. We
191 anticipate more significant cases of hyperglycemia during meals on the study system because of
192 the lack of carbohydrate announcement; participants will be encouraged to drink large amounts of
193 non-caloric beverages, particularly after these meals. UVA CDT study staff will monitor CGM
194 output continuously and manage glucose control issues. At the end of the hotel stay, the participant
195 will return to their home insulin management.

196 1.4 Study Device Download

197 Before discharge from the hotel, all study devices will be turned in to study staff for device
198 download, and the participants will return to their usual diabetes management.

199 1.5 Study System Issues

200 If the CGM signal becomes unavailable for more than 20 minutes consecutively, closed loop will
201 not operate to automatically adjust insulin. If the CGM is not connected, the system will revert to
202 usual function of the pump and deliver insulin with the insulin dosing parameters programmed in

CLINICAL PROTOCOL

203 the system for that individual. Resumption of closed-loop control will occur automatically once
204 CGM signal is available again.

205 If the study system is unable to maintain pump connectivity, the pump will automatically revert to
206 pre-programmed basal insulin delivery after 30 minutes without any need for instruction from the
207 user.

CLINICAL PROTOCOL

208 **Chapter 2 Study Devices**

209 **2.1 Insulin Pump**

210 The study systems will utilize the Tandem t:AP research pump connected to the UVa DiAs system
211 run on a dedicated external smart phone, running the RocketAP control algorithm with either the
212 BPS system active or not, with the order of these sessions determined randomly.

213 **2.2 Continuous Glucose Monitor**

214 The study CGM will include Dexcom G6 transmitter and sensors. The CGM sensor is viable for
215 10 days.

216 **2.3 Blood Glucose Meter and Strips**

217 Blood glucose levels will be measured during the hotel admission with the use of a study
218 glucometer. The CGM device will be calibrated, if needed, using the study glucometer and strips
219 in accordance with the manufacturer's labelling.

220 **2.4 Ketone Meter and Strips**

221 Blood ketone levels will be measured during the hotel admission with the use of the Abbott
222 Precision Xtra meters and strips in accordance with the manufacturer's labelling. The blood
223 glucose meter component of the Precision Xtra Device will not be used.

224 **2.5 Study Devices Accountability Procedures**

225 Device serial numbers will be recorded, and use of equipment will be tracked.

CLINICAL PROTOCOL

226 **Chapter 3 Study Screening**

227 **3.1 Clinical Sites**

228 The study will be performed at the University of Virginia, with screening procedures taking place
229 either virtually, at the Clinical Research Unit, or at local hotel.

230 **3.2 Participant Recruitment and Enrollment**

231 Pilot Study: Enrollment goal in the Pilot Study will be to complete a minimum of 2-3 participants.
232 Up to 6 participants may sign consent forms.

233 Main Study: Enrollment in the study will proceed with the goal of completing up to 20
234 participants. Participants will initially be randomized for the order of using FCL with or without
235 BPS. Up to 30 participants may sign the consent form.

236 **3.3 Informed Consent and Authorization Procedures**

237 Before consent has been obtained, participants will be asked inclusion/exclusion criteria questions
238 during pre-screening to determine study eligibility. Before completing any procedures or
239 collecting any data that are not part of usual care, written informed consent, when applicable) will
240 be obtained. Potential eligibility may be assessed as part of a routine-care examination.

241 A participant is considered enrolled when the informed consent form has been signed by the
242 participant and the study team.

243 Consenting procedures and documentation is defined in section 15.3.

244 **3.4 Screening Procedures**

245 After informed consent has been signed, a potential participant will be evaluated for study
246 eligibility through the elicitation of a medical history, performance of a physical examination
247 by licensed personnel, an ECG, and pregnancy testing (if applicable) to screen for exclusionary
248 medical conditions.

249 A physical exam documented in the prior 9 months can suffice for the physical exam but will not
250 serve as an exclusionary criterion if not available. Participants may self-report height, weight,
251 blood pressure, temperature, and heart rate. Individuals who do not initially meet study eligibility
252 requirements may be rescreened at a later date per investigator discretion.

253 **3.5 Participant Inclusion Criteria**

254 The participants must meet all of the following inclusion criteria in order to be eligible to
255 participate in the study.

- 256 1. Age ≥ 18.0 and ≤ 65 years old at time of consent
- 257 2. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year

CLINICAL PROTOCOL

258 3. Currently using insulin for at least six months

259 4. Currently using insulin pump for at least three months

260 5. Using insulin parameters such as carbohydrate ratio and correction factors consistently on
261 their pump in order to dose insulin for meals or corrections

262 6. Current regular exercise (e.g. walk, bike, jog) and be able to participate in a high intensity
263 interval training activity.

264 7. Access to internet and willingness to upload data during the study as needed

265 8. For females, not currently known to be pregnant or breastfeeding

266 9. If female and sexually active, must agree to use a form of contraception to prevent pregnancy
267 while a participant in the study. A negative serum or urine pregnancy test will be required for
268 all females of childbearing potential. Participants who become pregnant will be discontinued
269 from the study. Also, participants who during the study develop and express the intention to
270 become pregnant within the timespan of the study will be discontinued.

271 10. Willingness to suspend use of any personal CGM for the duration of the clinical trial once the
272 study CGM is in use

273 11. Willingness to use the UVa closed-loop system throughout study admission

274 12. Willingness to use personal lispro (Humalog) or aspart (Novolog) during the study admission.

275 13. Willingness not to start any new non-insulin glucose-lowering agent during the course of the
276 trial (including metformin/biguanides, GLP-1 receptor agonists, pramlintide, DPP-4
277 inhibitors, sulfonylureas and naturaceuticals)

278 14. Willingness to eat at least 1 g/kg of carbohydrate per day during the hotel admission

279 15. Willingness to reschedule if placed on oral steroids

280 16. An understanding and willingness to follow the protocol and signed informed consent

281 17. Willingness to follow COVID-19 protocols in place at the time of study.

282 **3.6 Participant Exclusion Criteria**

283 The participant must not have any exclusion criteria in order to be eligible to participate in the
284 study.

285 1. History of diabetic ketoacidosis (DKA) in the 6 months prior to enrollment

286 2. Severe hypoglycemia resulting in seizure or loss of consciousness in the 12 months prior to
287 enrollment

288 3. Pregnancy or intent to become pregnant during the trial

289 4. Currently being treated for a seizure disorder

290 5. Planned surgery during study duration.

291 6. Treatment with meglitinides/sulfonylureas at the time of hotel study.

CLINICAL PROTOCOL

292 7. Use of metformin/biguanides, GLP-1 agonists, pramlintide, DPP-4 inhibitors, SGLT-2
293 inhibitors, or naturaceuticals with a change in dose in the past month.

294 8. Coronary artery disease or heart failure, unless written clearance is received from a
295 cardiologist or personal health care provider allowing clearance for high-intensity interval
296 training and documentation of a negative stress test within the year

297 9. History of cardiac arrhythmia (except for benign premature atrial contractions and benign
298 premature ventricular contractions which are permitted or previous ablation of arrhythmia
299 without recurrence which may be permitted)

300 10. Clinically significant electrocardiogram (ECG) at time of Screening, as interpreted by the
301 study medical physician.

302 11. A known medical condition that in the judgment of the investigator might interfere with the
303 completion of the protocol such as the following examples:

304 a. Inpatient psychiatric treatment in the past 6 months
305 b. Presence of a known adrenal disorder
306 c. Abnormal liver function test results (Transaminase >2 times the upper limit of
307 normal); testing required for subjects taking medications known to affect liver
308 function or with diseases known to affect liver function
309 d. Uncontrolled thyroid disease
310 e. Musculoskeletal or other condition that limits participation in exercise portion of
311 study

312 12. A known medical condition that in the judgment of the investigator might interfere with the
313 completion of the protocol.

314 13. Positive Covid-19 test result

3.7 Visit 1: Screening Procedures

315 The participant will be evaluated for study inclusion and exclusion eligibility after the informed
316 consent form has been signed by the participant and the study team.

317 Individuals who do not initially meet study eligibility requirements may be rescreened at a later
318 date per investigator discretion.

319 Screening procedures will last approximately 1-2 hours. The visit may occur in-person or by
320 telecommunication. The following procedures may be performed/data collected/eligibility criteria
321 checked and documented:

322 1. Inclusion and Exclusion criteria assessed
323 2. Demographics, including:
324 a. Date of birth
325 b. Gender
326 c. Race
327 d. Ethnicity
328 3. Medical History, including diabetes history

CLINICAL PROTOCOL

330 a. Duration of disease (number of years)
331 b. Current insulin pump model
332 c. History of CGM use
333 d. Current treatment
334 e. Severe hypoglycemia history
335 f. Severe hyperglycemia history
336 g. History of seizures
337 h. Loss of consciousness

338 4. Basal rates
339 5. Carbohydrate ratios
340 6. Insulin sensitivity factors
341 7. Target glucose
342 8. Average daily insulin
343 9. Surgical history
344 10. Allergies
345 11. Concomitant medications
346 12. Electrocardiogram (ECG)
347 13. Physical Examination – Aa historical history and physical report within 9 months of screening appointments may be used but is not required for eligibility. If vitals are not available, may include self-reported values.
350 a. Weight (may be self-reported)
351 b. Height (may be self-reported)
352 c. Blood pressure
353 d. Temperature
354 e. Heart Rate
355 14. Screening Labs
356 a. Hemoglobin A1c point of care
357 b. Urine or serum pregnancy test for all women of childbearing potential (this test can
358 be done remotely with results sent to the study team)

359 If needed based on medical history, investigators may include baseline chemistry panel, liver
360 function tests, hematocrit, and thyroid stimulating hormone (lab results within one year of
361 screening appointment may be used).

362 Up to 6 months of historical data from the participant's personal insulin pump, glucometer, or
363 continuous glucose monitor may be downloaded or recorded. Data will be obtained from the
364 participant's personal insulin pump and CGM. This data may be obtained through the commercial
365 applications (e.g. t:connect and Dexcom G6).

366 If participants are on-site, the participant's glucometer may be uploaded to ensure that the
367 participant can successfully upload the equipment.

368 Any labs required may be obtained at a local laboratory (e.g. LabCorp) convenient to the
369 participant.

CLINICAL PROTOCOL

370 This study is not meant to find out if the participant has any other disease or problem. The study
371 leaders will alert the participant if any of the research results are important to his/her health during
372 the study. The participant may have a copy of the screening tests to discuss with the personal
373 physician. When the blood tests are completed, any blood left over will be thrown away. It will
374 not be stored for any future testing.

375 For potential subjects who live out of state and or a significant distance from UVA to facilitate the
376 consent process, e-consent will be used. Note: For potential participants who are not able to use
377 DocuSign, email, fax, or mail will be an option for receipt of the signed consent. The consenting
378 process will involve discussing the study at length in a phone call/HIPAA compliant
379 telecommunication method with the interested potential participant. The potential participant will
380 be asked permission to review inclusion/exclusion criteria to assess if they are eligible to
381 participate in the study. If permission is granted, the study team will review the pre-screening
382 questionnaire which contains the inclusion/exclusion criteria. If eligible, the study team member
383 will provide a copy of the informed consent form (i.e. in person, email, or mail) to the potential
384 participant for their review. Potential participants may also elect to choose to review the informed
385 consent form prior to discussing pre-screening questions.

386 The potential participant will be given an opportunity to ask the study team questions or may speak
387 directly with the study physician. After ample time to make an informed decision, the potential
388 participant may sign the consent form at home and provide it to the study team (e.g. in person,
389 electronically, email, fax, or mail). The potential participant's understanding of the information,
390 presented in the process of consent will be assessed by asking open-ended questions, may occur
391 during the phone call or at the screening appointment. Once consent is obtained, study procedures
392 may begin (e.g. LabCorp).

393 The study physician or physician designee will have the discretion to repeat screening tests. The
394 repeat screening tests may be conducted locally (e.g. LabCorp). The participant may request a
395 copy of any of the results from the screening evaluation to review with their primary care provider.

396 If an exclusionary condition is identified, the study participant will be excluded from participation
397 with follow up and referral to their primary care physician as needed.

398 If the study participant is pregnant, the study physician will discuss the results of the blood test
399 with the participant and the participant will be asked to seek confirmation of the test and the
400 appropriate medical care.

401 Participants may be re-screened at a later date if their clinical situation changes as determined by
402 the study physician.

403 **3.8 Demographic Data Survey**

404 Research in diabetes technology has revealed significant disparities in minoritized population's
405 representation in clinical trials and access to devices that improve diabetes outcomes. Collection

CLINICAL PROTOCOL

406 of detailed demographic data regarding participants in technology trials has become essential. This
407 includes data on race/ethnicity, income levels and insurance status, as well as education and other
408 variables that describe the study population.

409 The Demographic Data Survey will be electronically administered once eligibility has been met.

410 a. Gender
411 b. Race
412 c. Ethnicity
413 d. Marital status
414 e. Level of education
415 f. Employment status
416 g. Household income
417 h. Health insurance status
418 i. Monthly insulin costs

CLINICAL PROTOCOL

419 **Chapter 4 Randomization**

420 Participants will receive the two different experimental conditions (FCL with and without BPS) in
421 random order as described below.

422 **4.1 Pilot Study Participants**

423 Pilot participants will not be randomized and will use the RocketAP system with and without BPS.

424 **4.2 Main Study Participants**

425 Once eligibility is met and screening procedures are completed, the participant may continue to
426 randomization. Screening failures and study dropout participants may be replaced. Randomization
427 will occur via permuted blocks of 4.

CLINICAL PROTOCOL

428 **Chapter 5 Visit 2: Study Equipment Training**

429 Equipment training may begin at the hotel after UVa AP system has been put in place. The purpose
430 of this training is to introduce the study insulin pump and study CGM to the participant.

431 The participant's insulin parameters will be programmed into their study insulin pump and
432 confirmed by two research staff. Subjects will then switch to the study insulin pump. The
433 participant's personal pump and infusion site will be removed.

434 The participant will have the insulin pump and sensor on them at all times.

435 **5.1 CGM Training**

436 A study CGM will be provided to all participants at the training session. The participants will be
437 provided with CGM equipment and instructed to use the study CGM on a daily basis. If the
438 participant has prior use of the CGM, re-training will be specific to the individual. The study team
439 may elect to have less frequent CGM users watch the Dexcom online training videos
440 (<https://www.dexcom.com/training-videos>) to assist in the training session. Study staff training
441 may include review of study CGM in real-time to make management decisions and how to review
442 the data after an upload for retrospective review. Study staff will specifically identify how alarms
443 are set using the app and the frequency that these alarms will repeat.

444 The participants personal CGM will be discontinued. The participants will be observed placing the
445 sensor and will learn/review how to access the CGM trace via the DiAs phone or the Tandem
446 research pump, as needed. The participants will be asked to perform fingerstick blood glucose
447 measurements (if needed) in accordance with the labelling of the study CGM device.

448 An electronic copy of the CGM user's guide will be provided for the participants to read. The
449 study team will be sure that the participants will leave the training session knowing how to properly
450 use the CGM. The study team will be available for any questions.

451 Participants will have the option of using their personal smartphone or receive a study smartphone
452 to use in order to collect the data from the devices. If the participant elects to use a personal device,
453 the Dexcom app will be downloaded to their phone in order to monitor the participant's CGM
454 values and alerts in real-time may be used.

455 **5.2 Activity Tracker**

456 All participants may be asked to wear an activity tracker (e.g. Fitbit) during the entire study (home
457 and hotel admissions) to record information about movement and heart rate though not an endpoint
458 in this study.

CLINICAL PROTOCOL

459 **5.3 Study Insulin Pump**

460 The study team will be responsible for monitoring and managing the study insulin pump during
461 the hotel admissions. The participants may be provided a quick overview on its functionality to
462 understand the equipment.

463 **5.3.1 Study Insulin Pump Topics**

464 The study team will assist the participant in study pump infusion site initiation and will start the
465 participant on the study pump. The study pump will be programmed with the participant's usual
466 basal rates and pump parameters. The participant's personal pump will be removed. The
467 investigator may elect to use an existing personal pump infusion site at their discretion at the start
468 of the study.

469 The participant will be instructed on charging the pump, navigation through menus, bolus
470 procedures including stopping a bolus, etc.

471 **5.3.2 Other Issues**

472 The participant will be instructed to notify study staff if they experience any issues with the study
473 devices during the hotel admission. Staff will be present in the event that if insulin is delivered by
474 any means other than the study pump (e.g. injection of subcutaneous insulin via syringe in the
475 event of infusion site failure). If insulin is delivered by any means other than the study pump, the
476 study team will be instructed to turn off closed-loop mode for approximately four hours.

477 The participant will also be asked to alert the study clinical staff for technical issues with the
478 Tandem research pump and/or the DiAs system, including use of the study pump and study CGM
479 (open loop mode) during periods of component disconnections or technical difficulties.

480 A glucagon emergency kit will be available at the hotel once the investigational system is in place.

481 Glycemic Treatment Guidelines will be available for staff use during the study admissions.

482 **5.3.3 Optimization of Insulin Pump Settings**

483 Data-driven optimization of pump settings can occur any time prior to the hotel admission,
484 particularly if the participant contacts the study physician due to concerns about their pump
485 settings due to recurring hypo- or hyperglycemia. No pump settings changes can occur during
486 closed loop testing.

CLINICAL PROTOCOL

487 **Chapter 6 Pilot Study**

488 In order to optimize the flow of the study visits during the Main Study, we will perform a Pilot
489 Study at a local hotel or rental house. The duration of the pilot admission will be approximately
490 24 hours with the intent of testing the logistics of our study procedures. The goal will be to
491 complete 2-3 participants. Pilot study participants are eligible to enroll in the Main Study.

492 Participants and staff will adhere to the Covid-19 Mitigation Plan as outlined in Section 10.3

493 **6.1 Qualifications and Role of the Staff**

494 For the pilot study, there will be at least two study staff present at all times at the study site, at least
495 one of whom will be clinical staff (e.g. nurse, physician, nurse practitioner, physician assistant).
496 There will be a physician available either on-site or off-site within an approximate 20-minute drive
497 at all times. In addition, one of the study medical physicians and one senior engineer will be on
498 call during the entire admission. Glucagon for the emergency treatment of hypoglycemia will be
499 available on-site.

500 **6.2 Visit 3: Pre-Admission Check-In Visit**

501 Pilot participants will be contacted by the study team approximately 24-48 hours prior to the hotel
502 admission to verify the following information:

- 503 • Inquire about any changes to the participant's medical history
- 504 • Study equipment (e.g. CGM and activity tracker) initiation has occurred
- 505 • Determine pump profile(s) the participant uses on certain days
- 506 • New CGM sensor has been placed approximately 24-72 hours prior to admission for proper
507 warm-up
- 508 • Verify with the participant that the goal CGM reading on day 2 is less than 200 mg/dL;
509 this may require contact with the study physician prior to day 2 of the hotel study.
- 510 • Should any concerns regarding medical history, pump information, or unforeseen issues
511 arise, the admission will be cancelled for that participant at the discretion of the investigator

512 **6.3 Visit 4: Admission Check-In**

513 For the pilot study, one to three participants will be assessed at a time. The participant will arrive
514 at the hotel on the first day of the admission. The study team will perform vital signs and inquire
515 about any changes to the participant's medical history. Any changes to medical history will be
516 communicated to the medical physician to ensure continued eligibility and participation.

517 A urine pregnancy test will be collected if relevant. The test must be negative for the participant
518 to continue with the study.

519 The subject's CGM reading, and ketone concentration will be recorded. In the event that the
520 participant's CGM reading is not between 80-250 mg/dL or ketone concentration is ≥ 0.6 mmol/L
521 prior to initiation of the UVa AP system, the study physician may recommend additional insulin

CLINICAL PROTOCOL

522 dosing according to the participants' usual doses. Study physician may elect to cancel participant's
523 participation in the hotel admission if concerned about their medical safety. This participant will
524 not be replaced.

525 The participant's home insulin pump will be discontinued, and the study Tandem research insulin
526 pump will be initiated using the RocketAP system with BPS activated. The study team will ensure
527 the proper function of the CGM, insulin pump, and activity tracker. The goal will be to initiate
528 Closed-Loop Control by approximately lunch time, running the RocketAP system on the DiAs
529 platform.

530 The CGM used in the study is FDA-approved for the non-adjunctive measurement of blood
531 glucose (i.e. the CGM reading can be used for insulin dosing decisions). The CGM readings will
532 be the primary source of blood glucose values. There are no protocol fingerstick blood glucose
533 measurements other than at times of CGM calibration (if necessary) and if directed by the study
534 team. Fingerstick blood glucose measurements may be taken whenever participants experience
535 symptoms, if the CGM glucose is suspected to be erroneous, or any time the participant would like
536 to be reassured.

537 **6.4 Study Meals**

538 Participants will eat a structured dinner at approximately 6-7 pm during the admission. The
539 participant will not announce carbohydrate ingestion, allowing testing of the RocketAP controller
540 with BPS following dinner. Breakfast in the morning will be with the BPS system engaged.
541 Throughout the Pilot study, the participant will remain in closed loop mode.

542 **6.5 Admission Activities**

543 In the afternoon after admission, participants will participate in a supervised bout of high-intensity
544 interval training (see details in Section 7.8). During this time, the system will have BPS activated.
545 Apart from the programmed exercise portions, participants will be free to engage in low-intensity
546 activity (i.e. walking) during the admission. Participants will enjoy quiet activities in the evening.

547 **6.6 Admission Discharge**

548 Discharge will be at approximately noon. Discharge criteria is CGM value 80-300 mg/dL with
549 stable trend and ketones ≤ 0.6 mmol/L. If the CGM values are above 300 mg/dL and ketone values
550 are > 0.6 mmol/L, the study team will check the insulin pump infusion site and correction insulin
551 will be administered per study physician judgement via the subject's insulin pump. A qualified
552 clinical study team member (e.g. MD, NP, PA, CDE) will assess and discuss the transition back to
553 usual care with the study participant.

554 Participants will be asked to continue monitoring ketone levels for 24-48 hours after the hotel
555 admission if ketones were > 0.6 mmol/L at time of discharge. Urine ketone supplies may be
556 provided for this testing.

CLINICAL PROTOCOL

557 **6.7 Visit 5: Post Admission Check-In Visit**

558 Approximately 24-48 hours after the hotel admission, the study team will contact the participant
559 via phone/email/text/text to assess adverse events, adverse device effects, and device issues.

CLINICAL PROTOCOL

560 Chapter 7 Main Study

561 7.1 Hotel Admission

562 Main Study participants will participate in hotel admission. Each admission will be up to
563 approximately 96 hours in duration.

564 Participants and staff will adhere to the Covid-19 Mitigation Plan as outlined in Section 10.3.

565 7.2 Qualifications and Role of the Staff

566 There will be at least two study staff present at all times at the study site, at least one of whom will
567 be clinical staff (e.g. nurse, physician, nurse practitioner, physician assistant). There will be a
568 physician at the hotel or nearby on call during the study at all times. In addition, at least one senior
569 engineer will be on call during the entire admission. Participants will be remotely monitored by at
570 least one study team member using a web-based remote monitoring system that has been
571 previously established for DiAs. The web-based remote monitoring system will display real-time
572 insulin delivery, CGM and other system information to allow for patient safety monitoring. In
573 addition, study team members will be trained in all protocol and glycemic treatment guideline
574 procedures. The closed-loop system will be managed by the participant with study-staff
575 supervision, particularly at the time of insulin boluses. Glucagon for the emergency treatment of
576 hypoglycemia will be available on-site.

577 7.3 Visit 3: Pre-Admission Check-In Visit

578 Participants will be contacted by the study team approximately 24-48 hours prior to each hotel
579 admission if most recent contact with the study participant exceeds 10 days. The study team will
580 verify the following information:

- 581 • Inquire about any changes to the participant's medical history
- 582 • Study equipment (e.g. CGM and activity tracker) initiation has occurred
- 583 • Determine pump profile(s) the participant uses on certain days
- 584 • New CGM sensor has been placed approximately 24-72 hours prior to admission for proper
585 warm-up
- 586 • Verify with the subject that the goal CGM reading at time of arrival is less than 200 mg/dL;
587 this may require contact with the study physician prior to arrival on the day of the study
588 visit
- 589 • Should any concerns regarding medical history, pump information, or unforeseen issues
590 arise, the admission will be cancelled for that participant at the discretion of the investigator

591 7.4 Visit 4: Admission Check-In

592 Participants will arrive at the hotel on the first day of the admission. As described in section 10.3,
593 all participants will receive a test for COVID-19 after arriving for the study. The study team will
594 perform vital signs and inquire about any changes to the participant's medical history. Any

CLINICAL PROTOCOL

595 changes to medical history will be communicated to the medical physician to ensure continued
596 eligibility and participation.

597 A urine pregnancy test will be collected for female participants of childbearing age. The test must
598 be negative for the participant to continue with the study.

599 The subject's CGM reading, and ketone concentration will be recorded. In the event that the
600 participant's CGM reading is not between 80-250 mg/dL or ketone concentration is ≥ 0.6 mmol/L
601 prior to initiation of the UVa artificial pancreas system, the study physician may recommend
602 additional insulin dosing according to the participants' usual doses. Study physician may elect to
603 cancel participant's participation in the hotel admission if concerned about their medical safety.
604 This participant will not be replaced.

605 The participant's home insulin pump will be discontinued, and the study insulin pump will be
606 initiated. The study team will ensure the proper function of the CGM, insulin pump, and activity
607 tracker.

608 The CGM used in the study is FDA-approved for the non-adjunctive measurement of blood
609 glucose (i.e. the CGM reading can be used for insulin dosing decisions). The CGM readings will
610 be the primary source of blood glucose values. There are no protocol fingerstick blood glucose
611 measurements other than at times of CGM calibration (if necessary) and if directed by the study
612 team. Fingerstick blood glucose measurements may be taken whenever participants experience
613 symptoms, if the CGM glucose is suspected to be erroneous, or any time the participant would like
614 to be reassured. Glycemic Treatment Guidelines to be used during the hotel admission are defined
615 in a separate document.

616 **7.5 System Transitions**

617 Participants will be informed beforehand and at the time of the transfer from one BPS state to
618 another. Participants will be told what this transition means with respect to insulin dosing. The
619 transfer from one treatment to another will proceed as follows:

- 620 • The system is stopped
- 621 • DiAs is plugged into a laptop and 'parameters.xml' file (with the corresponding BPS
622 condition) will be replaced
- 623 • DiAs is restarted
- 624 • CGM is recovered and pump connections is checked
- 625 • DiAs is transitioned to Closed Loop Control mode

626 **7.6 Study Meals**

627 Participants will eat structured study meals during the admission, with the same amount of
628 carbohydrate, protein and fat for meals (breakfast, lunch, dinner) on the days for FCL1 and FCL2.
629 During the 24-hour challenge period, there will be additional meal challenges that will only be
630 performed on that day. This includes a high carbohydrate high fat meal at dinner (such as pizza)

CLINICAL PROTOCOL

631 and an early breakfast that consists primarily of fast-acting carbs (e.g.. juice). In all cases the
632 carbohydrate content of the meal will not be announced during the study once the AP system has
633 been placed. Snacks with carbohydrates will not be allowed unless for the treatment of low blood
634 sugars. Non-carbohydrates snacks may be allowed throughout the protocol per investigator
635 discretion, but the intention is not to have non-carbohydrate snacks. Blood glucose levels will be
636 followed via continuous glucose monitor and glucose values will be managed by the AP system
637 as usual.

638 **7.7 Admission Activities**

639 During the study, we will challenge the participants with exercise sessions that will be supervised
640 by study staff. During FCL1 and FCL2, participants will do a mild to moderate walking or similar
641 exercise at approximately 4pm on each of those study days.

642 During the challenge phase (the 24-hour period between the FCL1 and FCL2), participants will
643 undergo supervised session of high-intensity interval training (HIIT). The HIIT workout will
644 consist of a 5-minute low intensity warmup period, a workout of about 1 minute of vigorous
645 exercise followed by approximately 2 minutes of light intensity exercise or rest. This 3-minute set
646 of intervals may be repeated up to 6 times or until volitional exhaustion, followed by approximately
647 5 minutes of light intensity cooldown and stretching. The goal of this will be to assess the safety
648 of the AP system in HIIT, given that HIIT has been observed to result in an increase in BG levels,
649 which could theoretically lead to activation of the BPS—dosing insulin. The AP system will be
650 monitored for BPS activation during this workout. If the BPS is activated, participants will
651 continue to be monitored for BG excursions, including receiving treatment for hypoglycemia if
652 this occurs (as described in the Glycemic Treatment Guidelines).

653 Exercise challenges will be terminated early with subjective symptoms such as shortness of breath,
654 chest pain, dizziness, palpitations, or any such concerning symptoms reported by participants.
655 Participants will stop their participation in the exercise portion of the study if reporting any
656 concerning symptoms. Study physicians (or physician's assistants) will assess the participants for
657 their need for additional care outside the study. If symptoms resolve entirely and there is no
658 additional requirement for care outside the study, participants will stop participation in the exercise
659 portion of the study and will not repeat that portion of the study. Participants however may then
660 continue with the remainder of the study per investigator discretion.

661 Participants will also be free to engage in low-intensity activity (i.e. walking) during the hotel
662 admission but will be asked to have this match between 24-hour study periods as best as possible.
663 Participants may leave the hotel to be outside, provided they are accompanied by a study staff
664 member and follow COVID precautions in place at the time of study, as described in Section .3.
665 Participants will enjoy quiet activities in the evening.

CLINICAL PROTOCOL

666 **7.8 Admission Discharge**

667 Discharge will be at approximately 1 pm. Discharge criteria is CGM value 80-300 mg/dL with
668 stable trend and ketones <=0.6 mmol/L. If the CGM values are above 300 mg/dL and ketone values
669 are >0.6 mmol/L, the study team will check the insulin pump infusion site and correction insulin
670 will be administered per study physician judgement via the subject's insulin pump. A qualified
671 clinical study team member (e.g. MD, NP, PA, CDE) will assess and discuss the transition back to
672 usual care with the study participant.

673 Participants will be asked to continue monitoring ketone levels for 24-48 hours after the hotel
674 admission if ketones were >0.6 mmol/L prior to discharge. Urine ketone supplies may be provided
675 for this testing.

676 All study equipment will be returned at the time of study end. Per investigator discretion, a
677 participant may wear home the study CGM device in use and will be requested to return the study
678 transmitter.

679 **7.9 Visit 5: Post Admission Check-In Visit**

680 Approximately 24-48 hours after the hotel admission, the study team will contact the participant
681 via phone/email/text to assess adverse events, adverse device effects, and device issues.

682 **7.10 Medical Monitor Review**

683 At the conclusion of the Main Study, the medical monitor will review the data as referenced in
684 section 8.3.

CLINICAL PROTOCOL

685 **Chapter 8 Medical Monitor Review**

686 **8.1 Medical Monitor Study Safety Data Review**

687 The Medical Monitor will be provided all adverse event data for review to assess safety. The
688 Medical Monitor will review data related to individual stopping criteria as detailed in the study
689 protocol.

690 **8.2 Medical Monitor Main Study Safety Data Review**

691 A Medical Monitor will review compiled safety data at the conclusion of the trial. In addition, the
692 Medical Monitor will review all DKA and severe hypoglycemia irrespective of relatedness to study
693 device use, and all serious events (including UADEs) related to study device use at the time of
694 occurrence. The Medical Monitor also will be informed of any ADEs not meeting criteria for a
695 UADE if the Study PI requests the Medical Monitor review. The Medical Monitor can request
696 modifications to the study protocol or suspension or stoppage of the study if deemed necessary
697 based on the totality of safety data available.

CLINICAL PROTOCOL

698 **Chapter 9 Testing Procedures**

699 **9.1 Laboratory / Point of Care Testing**

700 **9.1.1 HbA1c**

701 A blood sample will be obtained at screening to obtain a baseline hemoglobin A1c level. A blood
702 test obtained within 2 weeks prior to enrollment may be used.

703 HbA1c level may be measured by study team using the DCA2000, a comparable point of care
704 device, at time of screening

705 Labs may be obtained at a local laboratory (e.g. LabCorp) convenient to the participant.

706 **9.1.2 Pregnancy Test**

707 A serum or urine pregnancy test will be required for women of childbearing potential at in person
708 visit and admission. Test must be negative to participate in the study.

709 **9.1.3 Covid-19 Testing**

710 All participants and study staff (e.g. on-site research coordinators, technicians, nurses, and
711 physicians) will be tested with a COVID-19 test within the first 24 hours of the hotel admission or
712 up to 72 hours in advance of being on-site for the Pilot and Main Study. Individuals with Covid-
713 19 positive tests will be excluded from the study.

714 **9.1.4 Demographic Data Survey**

715 The Demographic Data Survey will be asked after study eligibility has been met.

CLINICAL PROTOCOL

716 **Chapter 10 Risks Associated with Clinical Trial**

717 **10.1 Potential Risks and Benefits of the Investigational Device**

718 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data are
719 handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are always a
720 risk in participants with type 1 diabetes and participants will be monitored for these symptoms.

721 **10.1.1 Venipuncture Risks**

722 A hollow needle/plastic tube may be placed in the arm for taking blood samples (e.g. external
723 HbA1c measurements for inclusion criteria). Blood draws can cause some common reactions like
724 pain, bruising, or redness at the sampling site. Less common reactions include bleeding from the
725 sampling site, formation of a small blood clot or swelling of the vein and surrounding tissues, and
726 fainting.

727 **10.1.2 Fingerstick Risks**

728 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
729 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory
730 tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of bleeding
731 under the skin will produce a bruise. A small scar may persist for several weeks. The risk of local
732 infection is less than 1 in 1000. This should not be a significant contributor to risks in this study
733 as finger sticks are part of the usual care for people with diabetes.

734 **10.1.3 Subcutaneous Catheter Risks (CGM)**

735 Participants using the CGM will be at low risk for developing a local skin infection at the site of
736 the sensor needle placement. If a catheter is left under the skin for more than 24 hours it is possible
737 to get an infection where it goes into the skin, with swelling, redness and pain. There may be
738 bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10 risk).

739 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
740 leave a small portion of the sensor under the skin that may cause redness, swelling, or pain at the
741 insertion site. The participant should be further instructed to notify the study coordinator
742 immediately if this occurs.

743 **10.1.4 Risks of Hypoglycemia**

744 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
745 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
746 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating,
747 jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or seizures
748 (convulsions) and that for a few days the participant may not be as aware of symptoms of

CLINICAL PROTOCOL

749 hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values could
750 lead to inappropriate insulin delivery.

751 **10.1.5 Risks of Hyperglycemia**

752 Hyperglycemia is likely because of the study design including unannounced carbohydrate
753 ingestion. Also, hyperglycemia and ketonemia could occur if insulin delivery is attenuated or
754 suspended for an extended period or if the pump or infusion set is not working properly. A CGM
755 functioning poorly and significantly under-reading glucose values could lead to inappropriate
756 suspension of insulin delivery.

757 **10.1.6 Risks of Device Reuse**

758 Participant will be informed that FDA or relevant national authorities have approved the insulin
759 pump, CGM, glucometer and ketone meter for single use and that by using them among multiple
760 patients, bloodborne pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

761 The study CGM system is labelled for single use only. The sensor (the component of the system
762 that enters the skin) will be single use only. The transmitter and receiver may be reused during the
763 study after cleaning the device using a hospital-approved cleaning procedure. The transmitter is
764 attached to the sensor but does not enter the skin and the receiver, if used, is a handheld device.

765 The study insulin pumps are labelled for single-patient use. During the study, this device may be
766 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
767 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.).

768 The study blood glucose meter and blood ketone meter are labelled for single-patient use.
769 During the study, these devices may be reused after cleaning adhering to a hospital-approved
770 cleaning procedure.

771 **10.1.7 Device Cleaning Instructions**

772 CGM cleaning instructions are provided in the Dexcom G4 Platinum (Professional) Cleaning and
773 Disinfection manual (current edition) and a similar approach will be applied for the G6 version
774 used in this study. The transmitter should be cleaned with Clorox Healthcare® Bleach Germicidal
775 Cleaner or any disinfectant product in a spray bottle containing a bleach solution of 6500 parts per
776 million with the EPA registration number 56392-7. The transmitter will be submerged in this
777 solution and then placed on an absorbent wipe or clean surface. Two sprays will be dispensed
778 from the Clorox cleaner onto each side of the transmitter. A nylon brush will be used to scrub the
779 transmitter on all sides for 30 seconds. The transmitter will be placed in the Clorox Cleaner
780 solution for one minute. Transmitter is then rinsed under flowing tap water for ten seconds. The
781 transmitter will then be disinfected using a disinfectant product with EPA registration number
782 56392-7 using similar procedures as the cleaning process.

CLINICAL PROTOCOL

783 Per the pump manufacturer, the insulin pump will be cleaned with a damp lint-free cloth. Use of
784 household or industrial cleaners, solvents, bleach, scouring pads, chemicals, or sharp instruments
785 are prohibited. The pump should never be submerged in water. If needed, use only a very mild
786 detergent, such as a bit of liquid soap with warm water. A soft towel will be used to dry the pump.

787 The glucometer is cleaned and disinfected with two separate Super Sani-Cloths (EPA number
788 9480-4). The entire surface will be cleaned, making sure the surface stays wet for 2 minutes. This
789 step is repeated with a clean cloth for disinfecting the device.

790 The Precision Xtra User's Guide suggests that healthcare professionals use 10% bleach, 70%
791 alcohol or 10% ammonia to clean the device.

792 Equipment that touches intact skin will be cleaned with ethyl or isopropyl alcohol (70-90%),
793 quaternary ammonium germicidal detergent (i.e. Cavicide, EPA number 46781) or household
794 bleach. The contact time on the surface depends on the method used to clean the equipment.
795 Cavicide requires three minutes on the surface of the equipment. Clorox Germicidal Bleach Wipes
796 require two minutes on the equipment. The surface should remain wet (i.e. slightly damp) with the
797 disinfectant to be considered effective though not wet enough to leave drops of liquid.

798 In the event a manufacturer updates cleaning procedures for their device, the study team will
799 adhere to the most current recommendations.

800 There is the risk of blood sampling collection and contamination from sampling techniques. Hand
801 washing with either soap & water or waterless hand sanitizer will be used prior to caring for the
802 study subject. Gloves will be worn during blood sample collection and processing. Medical
803 personnel will continue to practice hygiene for the subject's protection (i.e. hand washing,
804 changing gloves frequently, disposing needles properly). Gloves will be removed, and hands
805 washed or sanitized prior to leaving and upon return to the subject's room. Soiled linen will be
806 changed to minimize the transfer of pathogenic organisms.

807 **10.1.8 Risk of Exercise**

808 There is a risk of musculoskeletal symptoms or injury from participating in an exercise regimen.
809 There are cardiovascular or cerebrovascular risks (including but not limited to dizziness,
810 lightheaded, syncope, arrhythmia or ischemia) associated with participating in an exercise
811 regimen. The intention of the eligibility criteria will be to minimize these risks.

812 **10.1.9 Hb1Ac Risk**

813 An NGSP Point of Care analyzer (i.e. DCA Vantage Analyzer) will be utilized at the research site
814 to obtain the subject's HbA1c level.

CLINICAL PROTOCOL

815 **10.1.10 Other Risks**

816 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
817 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
818 If these reactions occur, different adhesives or “under-taping” (such as with IV 3000, Tegaderm,
819 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
820 medication may be required.

821 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion
822 sites are inserted under the skin. It is possible that any part that is inserted under the skin may
823 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or
824 topical antibiotics can be used. The risk of skin problems could be greater if you use a sensor for
825 longer than it is supposed to be used. Therefore, participants will be carefully instructed about
826 proper use of the sensor.

827 Data downloaded from the CGM, pump, glucometer, and ketone meter will be collected for the
828 study as measures of diabetes self-management behaviours. Some people may be uncomfortable
829 with the researchers' having such detailed information about their daily diabetes habits.

830 **10.1.11 Known Potential Benefits**

831 It is expected that this protocol will yield increased knowledge about using an automated closed-
832 loop system with anticipatory action to control glucose levels. The individual participant may not
833 benefit from study participation.

834 **10.1.12 Risk Assessment**

835 Based on the facts that (1) adults with diabetes experience mild hypoglycemia and hyperglycemia
836 frequently as a consequence of the disease and its management, (2) the study intervention involves
837 periodic automated insulin dosing that may increase the likelihood of hypoglycemia, and periodic
838 automated attenuation of insulin delivery that may increase the likelihood of hyperglycemia, (3)
839 mitigations are in place, and have been tested in prior studies using the investigational device
840 system in the home setting, that limit the likelihood of excessive insulin dosing or prolonged
841 withdrawal of insulin, and (4) rapid reversal of hypoglycemia and hyperglycemia can be achieved..
842 In addition, it is the belief of the investigators that this study also presents prospect of direct benefit
843 to the participants and general benefit to others with diabetes.

844 **10.2 General Considerations**

845 The study is being conducted in compliance with the policies described in the study policies
846 document, with the ethical principles that have their origin in the Declaration of Helsinki, with the
847 protocol described herein, and with the standards of Good Clinical Practice (GCP).

848 Whenever possible, data will be directly collected in electronic case report forms, which will be
849 considered the source data.

CLINICAL PROTOCOL

850 The protocol is considered a significant risk device study, due to the fact that the closed-loop
851 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S. Food
852 and Drug Administration (FDA) is required to conduct the study.

853 **10.3 COVID-19 Risk Mitigation Plan and Justification**

854 The study team will follow local guidelines that are in effect at the time of the study admission.

855 **10.3.1 Participants and Study Personnel**

856 We will follow a combination of approaches to increase our likelihood of having a COVID-free
857 environment:

- 858 • We will follow CDC and local guidelines in effect at the time of the study.
- 859 • All participants and study staff (research coordinators, technicians, nurses, and physicians)
860 will be tested with an FDA authorized COVID-19 test with the **first 24 hours of study**
861 **start or up to approximately 72 hours before their participation in the study hotel.**
862 Those with positive tests will be excluded from the study.
- 863 • Any participants with positive test will be discharged from the study. Hotel rooms of these
864 participants will be restricted from future use. We will limit any personal interaction
865 between study personnel and these individuals. We will follow local guidelines in effect
866 at the time of study to guide interactions.

867 **10.3.2 Environment**

868 The study team will adhere to current hotel guidelines.

CLINICAL PROTOCOL

869 Chapter 11 Adverse Events, Device Issues, and Stopping Rules

870 11.1 Definitions

871 11.1.1 Adverse Events (AE)

872 Any untoward medical occurrence in a study participant, irrespective of the relationship between
873 the adverse event and the device(s) under investigation (section 11.2) for reportable adverse events
874 for this protocol).

875 Positive pregnancy test will be not considered adverse event.

876 11.1.2 Serious Adverse Event (SAE)

877 Any untoward medical occurrence that:

- 878 • Results in death.
- 879 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might
880 have become life-threatening, is not necessarily considered a serious adverse event).
- 881 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 882 • Results in persistent or significant disability/incapacity or substantial disruption of the
883 ability to conduct normal life functions (life threatening).
- 884 • Is a congenital anomaly or birth defect.
- 885 • Is considered a significant medical event by the investigator based on medical judgment
886 (e.g., may jeopardize the participant or may require medical/surgical intervention to
887 prevent one of the outcomes listed above).

888 11.1.3 Unanticipated Adverse Device Effect (UADE)

889 Any serious adverse effect on health or safety or any life-threatening problem or death caused by,
890 or associated with, a device, if that effect, problem, or death was not previously identified in nature,
891 severity, or degree of incidence in the investigational plan or application (including a
892 supplementary plan or application), or any other unanticipated serious problem associated with a
893 device that relates to the rights, safety, or welfare of participants (21 CFR 812.3(s)).

894 11.1.4 Adverse Device Effect (ADE)

895 Any untoward medical occurrence in a study participant which the device may have caused or to
896 which the device may have contributed.

897 11.1.5 Device Complaints and Malfunctions

898 A device complication or complaint is something that happens to a device or related to device
899 performance, whereas an adverse event happens to a participant. A device complaint may occur
900 independently from an AE, or along with an AE. An AE may occur without a device complaint or
901 there may be an AE related to a device complaint. A device malfunction is any failure of a device

CLINICAL PROTOCOL

902 to meet its performance specifications or otherwise perform as intended. Performance
903 specifications include all claims made in the labelling for the device. The intended performance
904 of a device refers to the intended use for which the device is labelled or marketed. (21 CFR 803.3).

905 **11.2 Reportable Events**

906 For this protocol, a reportable adverse event includes any untoward medical occurrence that meets
907 one of the following criteria:

- 908 • A serious adverse event as defined in section 11.2
- 909 • An Adverse Device Effect as defined in section 11.1.4, unless excluded from reporting in
910 section 11.7
- 911 • An Adverse Event as defined in section 11.1.1 occurring in association with a study
912 procedure
- 913 • An AE as defined in section 11.1.1 which leads to discontinuation of a study device for 2
914 or more hours
- 915 • Hypoglycemia meeting the definition of severe hypoglycemia as defined in section 11.2.1
- 916 • Diabetic ketoacidosis (DKA) as defined in section 11.2.2 or in the absence of DKA, a
917 hyperglycemic or ketosis event meeting the criteria defined below

918 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
919 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement are
920 only reportable if severe and/or required treatment.

921 **11.2.1 Hypoglycemia Event**

922 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
923 when the following definition for severe hypoglycemia is met:

- 924 • The event required assistance of another person due to altered consciousness, and required
925 another person to actively administer carbohydrate, glucagon, or other resuscitative actions
- 926 • Impaired cognitively to the point that he/she was unable to treat himself/herself, was unable
927 to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced
928 seizure or coma. These episodes may be associated with sufficient neuroglycopenia to
929 induce seizure or coma
- 930 • If plasma glucose measurements are not available during such an event, neurological
931 recovery attributable to the restoration of plasma glucose to normal is considered sufficient
932 evidence that the event was induced by a low plasma glucose concentration

933 **11.2.2 Hyperglycemia Events/Diabetes Ketoacidosis**

934 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
935 event when one of the following four criteria is met:

- 936 • The event involved DKA, as defined by the Diabetes Control and Complications Trial
937 (DCCT) and described below evaluation or treatment was obtained at a health care provider
938 facility for an acute event involving hyperglycemia or ketosis

CLINICAL PROTOCOL

- 939 • Blood ketone level ≥ 1.5 mmol/L and communication occurred with a health care provider
940 at the time of the event
- 941 • Blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
942 provider

943 Hyperglycemic events are classified as DKA if the following are present:

- 944 • Symptoms such as polyuria, polydipsia, nausea, or vomiting
- 945 • Serum ketones ≥ 1.5 mmol/L or large/moderate urine ketones
- 946 • Either arterial blood pH < 7.30 or venous pH < 7.24 or serum bicarbonate < 15
- 947 • Treatment provided in a health care facility

948 All reportable Adverse Events—whether volunteered by the participant, discovered by study
949 personnel during questioning, or detected through physical examination, laboratory test, or other
950 means—will be reported on an adverse event form online. Each adverse event form is reviewed
951 by the Medical Monitor to verify the coding and the reporting that is required.

952 11.3 Relationship of Adverse Event to Study Device

953 The study investigator will assess the relationship of any adverse event to be related or unrelated
954 by determining if there is a reasonable possibility that the adverse event may have been caused by
955 the study device.

956 To ensure consistency of adverse event causality assessments, investigators should apply the
957 following general guideline when determining whether an adverse event is related:

- 958 • There is a plausible temporal relationship between the onset of the adverse event and the
959 study intervention, and the adverse event cannot be readily explained by the participant's
960 clinical state, intercurrent illness, or concomitant therapies; and/or the adverse event
961 follows a known pattern of response to the study intervention; and/or the adverse event
962 abates or resolves upon discontinuation of the study intervention or dose reduction and, if
963 applicable, reappears upon rechallenge.
- 964 • Evidence exists that the adverse event has an etiology other than the study intervention
965 (e.g., pre-existing medical condition, underlying disease, intercurrent illness, or
966 concomitant medication); and/or the adverse event has no plausible temporal relationship
967 to study intervention.

968 11.4 COVID-19 Transmission

969 While we are taking steps to prevent transmission of COVID-19 during this study, there is a
970 possibility that participants, based either on exposure before the hotel admission or during the stay,
971 are infected with COVID-19. Any appearance of significant COVID-19 symptoms in participants
972 will be cause for repeat COVID-19 testing and possible quarantine until test results are returned.
973 If this Covid-19 test is positive, the participant will be discharged from the study.

974 In the event of a COVID-19 positive test in a participant, the study team will follow up with the
975 participant via phone until conclusion of treatment for the COVID-19 related symptoms. All

CLINICAL PROTOCOL

976 participants will be asked to follow up via phone with the study team in the event of a positive test
977 within 14 days after discharge from the hotel.

978 **11.5 Intensity of Adverse Event**

979 The intensity of an adverse event will be rated on a three-point scale: (1) mild, (2) moderate, or (3)
980 severe. It is emphasized that the term severe is a measure of intensity: thus, a severe adverse event
981 is not necessarily serious. For example, itching for several days may be rated as severe, but may
982 not be clinically serious.

- 983 • MILD: Usually transient, requires no special treatment, and does not interfere with the
984 participant's daily activities.
- 985 • MODERATE: Usually causes a low level of inconvenience or concern to the participant
986 and may interfere with daily activities but is usually ameliorated by simple therapeutic
987 measures.
- 988 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic
989 drug therapy or other treatment.

990 **11.6 Coding of Adverse Events**

991 Adverse events will be coded per the UVA IRB website instructions (i.e. mild, moderate, severe).
992 The Medical Monitor will review the investigator's assessment of causality and may agree or
993 disagree. Both the investigators and Medical Monitor's assessments will be recorded. The
994 Medical Monitor will have the final say in determining the causality.

995 Adverse events that continue after the participant's discontinuation or completion of the study will
996 be followed until their medical outcome is determined or until no further change in the condition
997 is expected.

998 **11.7 Outcome of Adverse Events**

999 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 1000 • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without
1001 sequelae. Record the AE/SAE stop date.
- 1002 • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had stabilized
1003 without change in the event anticipated. Record the AE/SAE stop date.
- 1004 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that
1005 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the
1006 time of death; however, were not the cause of death, will be recorded as "resolved" at the
1007 time of death.
- 1008 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined
1009 as the event was ongoing with an undetermined outcome.
- 1010 • An ongoing outcome will require follow-up by the site in order to determine the final
1011 outcome of the AE/SAE.

CLINICAL PROTOCOL

1012 • The outcome of an ongoing event at the time of death that was not the cause of death, will
1013 be updated and recorded as “resolved” with the date of death recorded as the stop date.
1014 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or
1015 the participant’s records to determine the outcome (for example, a participant that was lost
1016 to follow-up).

1017 All clinically significant abnormalities of clinical laboratory measurements or adverse events
1018 occurring during the study and continuing at study termination should be followed by the
1019 participant’s physician and evaluated with additional tests (if necessary) until diagnosis of the
1020 underlying cause, or resolution. Follow-up information should be recorded on source documents.

1021 If any reported adverse events are present when a participant completes the study, or if a participant
1022 is withdrawn from the study due to an adverse event, the participant will be contacted for re-
1023 evaluation within 2 weeks. If the adverse event has not resolved, additional follow-up will be
1024 performed as appropriate. Every effort should be made by the Investigator or delegate to contact
1025 the participant until the adverse event has resolved or stabilized.

1026 **11.8 Reportable Device Issues**

1027 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
1028 whether an adverse event occurred, except in the following circumstances.

1029 The following device issues are anticipated and will not be reported but will be reported as an Adverse
1030 Event if the criteria for AE reporting described above are met:

1031 • Component disconnections
1032 • CGM sensors lasting fewer than the number of days expected per CGM labelling
1033 • CGM tape adherence issues
1034 • Pump infusion set occlusion not leading to ketosis
1035 • Battery lifespan deficiency due to inadequate charging or extensive wireless
1036 communication
1037 • Intermittent device component disconnections/communication failures not leading to
1038 system replacement
1039 • Device issues clearly addressed in the user guide manual that do not require additional
1040 troubleshooting
1041 • Skin reactions from CGM sensor placement or pump infusion set placement that do not
1042 meet criteria for AE reporting

1043 **11.9 Timing of Event Reporting**

1044 • UADEs must be reported within 10 working days to the FDA after the sponsor first receives
1045 notice of the adverse effect.
1046 • Other reportable adverse events, device malfunctions (with or without an adverse event)
1047 and device complaints should be reported promptly, but there is no formal required
1048 reporting period.

CLINICAL PROTOCOL

- 1049 • The IDE Sponsor will investigate the UADE and if indicated, report the results of the
1050 investigation to the IRBs, FDA, and DSMB within 10 working days of the study team
1051 becoming aware of the UADE per 21CFR 812.46(b) (2).
- 1052 • The Medical Monitor will determine if the UADE presents an unreasonable risk to
1053 participants. If so, the DSMB must ensure that all investigations, or parts of investigations
1054 presenting that risk, are terminated as soon as possible but no later than 5 working days
1055 after the Medical Monitor makes this determination and no later than 15 working days after
1056 first receipt notice of the UADE.
- 1057 • In the case of a device system component malfunction (e.g. pump, CGM, control
1058 algorithm), information will be forwarded to the responsible manufacturer by the study
1059 personnel.

1060 **11.10 Stopping Criteria**

1061 **11.10.1 Participant Discontinuation**

1062 Rules for discontinuing study device use are described below.

- 1063 • The investigator believes it is unsafe for the participant to continue the intervention. This
1064 could be due to the development of a new medical condition or worsening of an existing
1065 condition; or participant behaviour contrary to the indications for use of the device that
1066 imposes on the participant's safety
- 1067 • The participant requests that the treatment be stopped
- 1068 • The participant tests positive for COVID-19 (during study testing or otherwise within 14
1069 days of study start) or subsequently develops symptoms for COVID-19 and tests positive.
- 1070 • Diagnosis of DKA. Any severe hypoglycemia event meeting the definition in section
1071 11.2.1 of the protocol.

1072 **11.10.2 Suspending/Stopping Overall Study**

1073 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
1074 hyperglycemia event (as defined in section 11.2.2), use of the study device system will be
1075 suspended while the problem is diagnosed.

1076 In the event that two distinct episodes of DKA or two distinct severe hypoglycemia events as
1077 defined in section 11.2 occur, the overall study would be suspended while the underlying
1078 conditions are determined.

1079 In addition, study activities could be similarly suspended if the manufacturer of any constituent
1080 study device requires stoppage of device use for safety reasons (e.g. product recall). The affected
1081 study activities may resume if the underlying problem can be corrected by a protocol or system
1082 modification that will not invalidate the results obtained prior to suspension. The study Medical
1083 Monitor will review all adverse events and adverse device events that are reported during the study
1084 and will review compiled safety data at periodic intervals. The Medical Monitor may request
1085 suspension of study activities or stoppage of the study if deemed necessary based on the totality
1086 of safety data available.

CLINICAL PROTOCOL

1087 11.11 Independent Safety Oversight

1088 A Medical Monitor will review all DKA and severe hypoglycemia irrespective of relatedness to
1089 study device use, and all serious events (including UADEs) related to study device use at the time
1090 of occurrence. The Medical Monitor can request modifications to the study protocol or suspension
1091 or outright stoppage of the study if deemed necessary based on the totality of safety data available.
1092 Details regarding Medical Monitor review will be documented in a separate Medical Monitor
1093 document.

1094 11.12 Definition of a Data Breach

1095 A data breach is defined in the HITECH Act (43 USC 17932) as an unauthorized acquisition,
1096 access, or use of protected health information (PHI) that compromises the security or privacy of
1097 such information.

CLINICAL PROTOCOL

Chapter 12 Miscellaneous Considerations

12.1 Prohibited Medications, Treatments, and Procedures

Participants using glulisine at the time of enrollment will be asked to contact their personal physician to change their prescribed personal insulin to lispro or aspart for the duration of the trial.

The study devices (study insulin pump, study CGM) must be removed before Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or diathermy treatment. Participants may continue in the trial after temporarily discontinuing use if requiring one of the treatments above.

12.2 Participant Withdrawal

Participation in the study is voluntary. Participant may withdraw at any time. For participants who do withdraw from the study, the study team will determine if their data will be used in analysis.

12.3 Confidentiality

For security and confidentiality purposes, subjects will be assigned an identifier that will be used instead of their name. Protected health information gathered for this study may be shared with the third-party collaborators. De-identified subject information may also be provided to collaborators involved in the study after the appropriate research agreement has been executed.

CLINICAL PROTOCOL

1113 Chapter 13 Statistical Consideration

1114 13.1 Design and Randomization

1115 The main study is itself an early exploratory study to assess glycemic responses of a fully closed-
1116 loop system (Rocket AP). This information is detailed in Table 1.

1117 Randomization will occur via selection from the above list using permuted blocks in groups of 4.

1118 13.1.1 Planned Analysis

1119 Our primary objective is to assess the impact of priming bolus on post prandial FCL control therefore we
1120 will test the following statistical hypotheses

1121

1122 **a. Null Hypothesis:** There is no difference in the means of time spent in the 70-180mg/dL range during
1123 daytime between FCL with and without prandial priming bolus (BPS at 6% and 0% of TDI respectively)

1124

1125 **b. Alternative Hypothesis:** There is a difference in the means of time spent in the 70-180mg/dL range during
1126 daytime between FCL with and without prandial priming bolus (BPS at 6% and 0% of TDI respectively)

1127

1128 To do so we will use repeated measure ANOVA models to predict daytime time in range with the BPS
1129 status a fixed effect and baseline HbA1c and gender as covariates.

1130

1131 *Secondary outcomes:*

1132 All secondary outcomes will be similarly analyzed. If an outcomes distribution is not suited for mixed
1133 model analysis (e.g. profound skewness, or large atom at boundary) we will perform paired Wilcoxon
1134 signed rank test (and loose the capacity to use covariate) to test difference in the median instead of the
1135 mean; this is expected for time below 70mg/dL, number of hypoglycemia, and possibly time above
1136 250mg/dL.

1137

1138 We do not plan to correct for multiple comparisons.

1139

1140 We do not expect substantial missing values in this highly supervised study, but if more than 3 subjects
1141 have one or more missing admissions, we will consider switching from RANOVA to mixed model repeated
1142 measures.

1143

CLINICAL PROTOCOL

1144 **13.2 Sample Size**

1145 As a early exploratory Study, the goal will be to complete up to 20 participants in the main study
1146 to provide data from a variety of individuals. This number was chosen out of feasibility and not
1147 from a formal power calculation. (The Pilot Study for this proposal will assess ease of system and
1148 will be completed in a minimum of 2-3 individuals prior to the beginning of the Main Study.) With
1149 N=20 and our randomized crossover design (allowing for paired comparison), we can hope to detect a
1150 minimum effect size of 0.66 at a power of 80%. Based of prior FCL study, the standard deviation of daytime
1151 TIR is approximately 12%, leading to a detectable difference in daytime TIR of 8%.

1152 **13.3 Outcome Measures**

1153 **13.3.1 Primary Efficacy Endpoint**

1154 The study design allows for multiple comparisons of blood glucose control during the study meals
1155 and exercise sessions, with for the primary comparison of interest being between the RocketAP
1156 with and without BPS. Our primary endpoint is CGM time-in-range 70-180 mg/dL for the daytime
1157 period 6 am – 12 am when on each treatment modality (BPS vs. no BPS).

1158 **13.3.2 Secondary Outcomes**

1159 Each admission is separated into windows of analysis:

- 1160 • The entirety of the admission (24h: 4pm to 4pm)
- 1161 • The 4 hours following each of the meals.
- 1162 • The overnight period (12 am to 6 am)

1163 For each of these periods we will compute the following outcomes:

- 1164 • Number of hypoglycemia events defined as at least two consecutive CGM values
1165 <70mg/dL or a hypoglycemia treatment (two events separated by less than 30 minutes are
1166 counted as one).
- 1167 • Percent CGM time <70 mg/dL
- 1168 • Percent CGM time between 80-140mg/dL
- 1169 • Percent CGM time between 70-180mg/dL
- 1170 • Percent CGM time >180 mg/dL
- 1171 • Percent CGM time >250 mg/dL
- 1172 • Units of insulin injected
- 1173 • Area under the curve when accounting for starting BG
- 1174 • Low Blood Glucose Index
- 1175 • High Blood Glucose Index
- 1176 • CGM coefficient of variation
- 1177 • Mean CGM

CLINICAL PROTOCOL

1179

13.3.3 CGM data treatment

1180 • Saturated CGM values “High” and “Low” will be replaced by 401mg/dL and 39mg/dL
1181 respectively.

1182 • Any CGM gaps shorter than 1 hour will be interpolated
1183 • CGM data during recorded occlusion event will be removed from analysis as follow:
1184 any measurement less than 2h before or after the time of record will be removed.
1185 • CGM data following a pump/DiAs communication interruption >1h by less than 2h
1186 will be removed

1187

13.3.4 Outcome computation conditions

1188 Outcomes will only be computed if at least 80% of the analysis window CGM measurements (after data
1189 treatment) are available

1190

13.4 Safety Analyses

1191 We will assess for the system’s functionality, including the ability of the system to run its code
1192 without error (delivering insulin safely, as planned), as well as its ability to avoid low BG <70
1193 mg/dL.

1194

13.5 Baseline Descriptive Statistics

1195 Baseline demographic and clinical characteristics of the cohort of all randomized participants will
1196 be summarized in a table using summary statistics appropriate to the distribution of each variable.
1197 Descriptive statistics will be displayed overall and by treatment group.

1198 Will include:

1199 • Age
1200 • HbA1c
1201 • Gender
1202 • Race/ethnicity
1203 • CGM use before enrollment
1204 • AID use before enrollment
1205 • Diabetes duration
1206 • BMI
1207 • Total Daily Insulin

1208

13.6 Device Issues

1209 The following tabulations and analyses will be performed during time on the UVa AP systems to
1210 assess device issues:

1211 • Device malfunctions requiring study team contact and other reported device issues
1212 • % time CGM data available
1213 • % time with closed loop control

CLINICAL PROTOCOL

1214 **Chapter 14 Data Collection and Monitoring**

1215 **14.1 Case Report Forms and Device Data**

1216 The study data are collected through a combination of case report forms (electronic and paper) and
1217 electronic device data files obtained from the software and individual hardware components. These
1218 electronic device files and electronic CRFs are considered the primary source documentation.

1219 When data are directly collected in electronic case report forms, this will be considered the source
1220 data. Records will be maintained in accordance with ICH E6 and institutional regulatory
1221 requirements for the protection of confidentiality of participants.

1222 **14.2 Study Records Retention**

1223 Study documents should be retained for a minimum of 2 years after the last approval of a marketing
1224 application in an ICH region and until there are no pending or contemplated marketing applications
1225 in an ICH region or until at least 2 years have elapsed since the formal discontinuation of clinical
1226 development of the investigational product. These documents should be retained for a longer
1227 period, however, if required by local regulations. No records will be destroyed without the written
1228 consent of the sponsor, if applicable. It is the responsibility of the sponsor to inform the investigator
1229 when these documents no longer need to be retained.

1230 **14.3 Protocol Deviations**

1231 A protocol deviation is any noncompliance with the clinical trial protocol, Good Clinical Practices
1232 (GCP), or procedure requirements. The noncompliance may be either on the part of the participant,
1233 the investigator, or the study site staff. As a result of deviations, corrective actions may be
1234 developed by the site and implemented as appropriate. Major deviations will be reported to the
1235 IRB-HSR within 7 calendar days of when the study team becomes aware of the event.

CLINICAL PROTOCOL

1236 **Chapter 15 Ethics/Protection of Human Participants**

1237 **15.1 Ethics Standard**

1238 The investigator will ensure that this study is conducted in full conformity with Regulations for
1239 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21
1240 CFR Part 56, and/or the ICH E6.

1241 **15.2 Institutional Review Boards**

1242 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1243 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1244 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1245 require review and approval by the IRB before the changes are implemented to the study. All
1246 changes to the consent form will be IRB approved; a determination will be made regarding whether
1247 previously consented participants need to be re-consented.

1248 **15.3 Informed Consent Process**

1249 **15.3.1 Consent Procedures and Documentation**

1250 Informed consent is a process that is initiated prior to an individual's agreement to participate in
1251 the study and continues throughout the individual's study participation. Extensive discussion of
1252 risks and possible benefits of participation will be provided. Consent forms will be IRB approved
1253 and the participant will be asked to read and review the document. The investigator or their
1254 delegate will explain the research study to the participant and answer any questions that may arise.
1255 All participants will receive a verbal explanation in terms suited to their comprehension of the
1256 purposes, procedures, and potential risks of the study and of their rights as research participants.
1257 Participant will have the opportunity to carefully review the written consent form and ask questions
1258 prior to signing.

1259 The consenting process will involve discussing the study at length in a phone call/HIPAA
1260 compliant telecommunication method for consenting that is not face to face. The participant will
1261 sign the informed consent document prior to any procedures being done specifically for the study.
1262 The consent form may be signed electronically with the use of the Part 11 compliant version of
1263 DocuSign for both in-person and telecommunication screening visits. The study team will follow
1264 the FDA part 11 compliant process of verification of reviewing two forms of identification if
1265 signing electronically off site. A HIPAA compliant video conferencing tool will be utilized during
1266 the consenting process of the telecommunication screening visit to facilitate review of the
1267 participant's identification. A copy of the informed consent document will be given to the
1268 participant for their records. The rights and welfare of the participants will be protected by

CLINICAL PROTOCOL

1269 emphasizing to them that the quality of their medical care will not be adversely affected if they
1270 decline to participate in this study.

15.3.2 Participant and Data Confidentiality

1272 The study monitor, representatives of the IRB or device company supplying study product may
1273 inspect all documents and records required to be maintained by the investigator, including but not
1274 limited to, medical records (office, clinic, or hospital) for the participants in this study.

1275 The study participant's contact information will be securely stored at the clinical site for internal
1276 use during the study. At the end of the study, all records will continue to be kept in a secure
1277 location for as long a period as dictated by local IRB and Institutional regulations.

15.3.3 Participant and Data Confidentiality

1279 The study monitor, representatives of the IRB or device company supplying study product may
1280 inspect all documents and records required to be maintained by the investigator, including but not
1281 limited to, medical records (office, clinic, or hospital) for the participants in this study.

1282 The study participant's contact information will be securely stored at the clinical site for internal
1283 use during the study. At the end of the study, all records will continue to be kept in a secure location
1284 for as long a period as dictated by local IRB and Institutional regulations.

1285 Study participant research data, which is for purposes of statistical analysis and scientific reporting,
1286 will be transmitted to and stored at the University of Virginia Center for Diabetes Technology.
1287 The study data entry and study management systems used by research staff will be secured and
1288 password protected. At the end of the study, all study databases may be de-identified and archived
1289 at the University of Virginia Center for Diabetes Technology.

CLINICAL PROTOCOL

1290 Chapter 16 References

1291 1. Burdick J, Chase HP, Slover RH, et al. Missed insulin meal boluses and elevated hemoglobin
1292 A(1c) levels in children receiving insulin pump therapy. *Pediatrics*. Mar 2004;113(3):E221-E224.
1293 doi:10.1542/peds.113.3.e221

1294 2. Cherñavvsky DR, DeBoer MD, Keith-Hynes P, et al. Use of an artificial pancreas among
1295 adolescents for a missed snack bolus and an underestimated meal bolus. *Pediatr Diabetes*. Feb
1296 2016;17(1):28-35. doi:10.1111/pedi.12230

1297 3. Garcia-Tirado J, Brown SA, Laichuthai N, et al. Anticipation of Historical Exercise Patterns
1298 by a Novel Artificial Pancreas System Reduces Hypoglycemia During and After Moderate-
1299 Intensity Physical Activity in People with Type 1 Diabetes. *Diabetes Technol Ther*. Dec
1300 2020;doi:10.1089/dia.2020.0516

1301 4. Voysey, Merryn and Costa Clemens, Sue Ann and Madhi, Shabir A. et al and Group, Oxford
1302 COVID Vaccine Trial, Single Dose Administration, And The Influence Of The Timing Of The
1303 Booster Dose On Immunogenicity and Efficacy Of ChAdOx1 nCoV-19 (AZD1222) Vaccine.
1304 Available at SSRN: <https://ssrn.com/abstract=3777268>