

UVA CENTER FOR DIABETES TECHNOLOGY

1

2 **Safety of the Tandem t:slim X2 with Control-IQ**

3 **Automated Insulin Delivery System in**

4 **Preschoolers, age 2-6 Years Old**

5

6

7 **Study Sponsor**

8 Marc D. Breton, Ph.D.
9 University of Virginia
10 Center for Diabetes Technology

11 **Protocol Chair**

12 R. Paul Wadwa, MD
13 Barbara Davis Center
14 University of Colorado

16 **Participating Institutions**

17 University of Virginia, Charlottesville, Virginia
18 Barbara Davis Center, University of Colorado, Colorado
19 Stanford University, California

NCT04084171

20 Version Number: v1.3

21 30-Aug-2019

CLINICAL PROTOCOL

22

Key Roles

Key Roles	
Sponsor Chair / IDE Chair	
Name, degree	Marc D. Breton, Ph.D.
Institution Name	University of Virginia, Center for Diabetes Technology
Protocol Chair/Director	
Name, degree	R. Paul Wadwa, MD
Institution Name	Barbara Davis Center, University of Colorado

23

Protocol Version History

Version Number	Author(s)	Approver	Effective Date	Revision Description
1.0	Marc Breton	Marc Breton		Original Protocol
1.1	Mary Oliveri	Mary Oliveri	22-Aug-2019	<p>FDA revisions</p> <ul style="list-style-type: none"> Exclusion criteria added: use of diluted insulin A phone with the Dexcom Follow app will be near the child participant during the home study. Participant Stopping Criteria redefined <p>IRB revisions</p> <ul style="list-style-type: none"> Parent/child enrollment required since parent is completing questionnaire; Questionnaire to occur after home use of equipment; Added Other Risks: Photographs taken by the study team may be shared at conference; presentations, study brochures, or potential research donors Revised 'Timing of Event' section; Revisions throughout document to improve clarity
1.2	Mary Oliveri	Mary Oliveri	29-Aug-2019	<p>FDA revisions</p> <ul style="list-style-type: none"> Clarified exclusion criteria Added SMBG pre-meal on day 1 open-loop & every bedtime during At-Home use Added caregivers Physical activity restricted if CGM is below 90 mg/dL
1.3	Mary Oliveri	Mary Oliveri	30-Aug-2019	<p>FDA revisions</p> <ul style="list-style-type: none"> If > 1 serious hypoglycemia or > 1 DKA event occurs, the study may be paused to determine a root cause prior to continuation of the study Transition back to personal insulin pump will be completed under the supervision of a study MD

26 **Site Principal Investigator Statement of Compliance**

27 Protocol Title: Safety of the Tandem t:slim X2 with Control-IQ Automated Insulin Delivery
28 System in Preschoolers, age 2-6 Years Old.

29 Protocol Version/Date: v1.0/30-Aug-2019

30 I have read the protocol specified above. In my formal capacity as a Site Principal Investigator,
31 my duties include ensuring the safety of the study participants enrolled under my supervision. It
32 is understood that all information pertaining to the study will be held strictly confidential and that
33 this confidentiality requirement applies to all study staff at this site.

34 This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as
35 required by the following: United States (US) Code of Federal Regulations (CFR) applicable to
36 clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21
37 CFR Part 812).

38 As the Principal Investigator, I will assure that no deviation from, or changes to the protocol
39 will take place without prior agreement from the sponsor and documented approval from the
40 Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary
41 to eliminate an immediate hazard(s) to the trial participants.

42 All key personnel (all individuals responsible for the design and conduct of this trial) have
43 completed Human Participants Protection Training and Good Clinical Practice Training. Further,
44 I agree to ensure that all staff members involved in the conduct of this study are informed about
45 their obligations in meeting the above commitments.

46

47 Investigator's Signature _____ Date: ____ / ____ / ____

48 dd mmm yyyy

49 Investigator's Name: _____

50 Site Name: _____

List of Abbreviations

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE	Bluetooth, Bluetooth low energy
CRF	Case Report Form
CGM	Continuous Glucose Monitoring System
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
LGS	Low Glucose Suspend
PLGS	Predictive Low Glucose Suspend
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
RCT	Randomized Control Trial
SC	Standard of Care group
SD	Standard Deviation
SMBG	Self-Monitoring Blood Glucose
TDD	Total Daily Dose
UI	User Interface

Table of Contents

53	CHAPTER 1: BACKGROUND INFORMATION	11
56	1.1 Introduction	11
57	1.2 Study Objective	12
58	1.3 Primary Specific Aim.....	14
59	1.4 Secondary Specific Aims	14
60	1.5 Study Design	15
61	CHAPTER 2: STUDY ENROLLMENT AND SCREENING	17
62	2.1 Participant Recruitment and Enrollment	17
63	2.2 Informed Consent and Authorization Procedures	17
64	2.3 Participant Inclusion Criteria	17
65	2.4 Participant Exclusion Criteria	17
66	2.5 Eligibility Screening Procedures	18
67	CHAPTER 3: STUDY DEVICES	20
68	3.1 Insulin Pump	20
69	3.2 Continuous Glucose Monitoring	20
70	3.3 Blood Glucose Meter and Strips	20
71	3.4 Ketone Meter and Strips.....	20
72	3.5 Study Device Accountability Procedures.....	20
73	CHAPTER 4: STUDY EQUIPMENT TRAINING.....	21
74	4.1 Insulin Pump Training.....	21
75	4.2 CGM Training	22
76	4.3 Blood Glucose and Ketone Testing.....	23
77	4.4 Optimization of Insulin Pump Settings	24
78	CHAPTER 5: HOTEL ADMISSION PROCEDURES	25
79	5.1 General Admission Instructions	25
80	5.2 Hotel Staffing Qualifications	25

CLINICAL PROTOCOL

81	5.3	Pre-Admission Check-in Visit	25
82	5.4	Admission Check-In (times are approximate)	26
83	5.5	Study Procedures.....	26
84	5.6	Hotel Admission Schedule (times are approximate).....	26
85	5.7	Bolus Treatment	27
86	5.8	Meal Boluses	27
87	5.9	Group Activities	27
88	5.10	Procedures Related to Discharge.....	27
89	CHAPTER 6: CONTROL-IQ AT HOME	28	
90	6.1	At-Home Use.....	28
91	6.2	Meal Bolus	28
92	6.3	Blood Glucose Checks	28
93	6.4	Activity.....	28
94	6.5	Caregivers.....	28
95	6.6	Post-Study Check-in Visit.....	28
96	6.7	Questionnaire	29
97	CHAPTER 7: GLYCEMIC TREATMENT GUIDELINES	30	
98	7.1	Hotel Admission Glycemic Guidelines.....	30
99	7.2	At-Home Glycemic Guidelines	30
100	CHAPTER 8: REMOTE MONITORING.....	32	
101	8.1	Hotel Admission Monitoring	32
102	8.2	Home Monitoring	32
103	CHAPTER 9: TESTING PROCEDURES.....	33	
104	9.1	Laboratory / Point of Care Testing.....	33
105	CHAPTER 10: RISKS ASSOCIATED WITH CLINICAL TRIAL	34	
106	10.1	Potential Risks and Benefits of the Investigational Device	34
107	10.2	Potential Risks and Benefits of the Investigational Device	37
108	10.3	General Considerations	37

109	CHAPTER 11: ADVERSE EVENTS, DEVICE ISSUES, AND STOPPING RULES	39
110	11.1 Adverse Events.....	39
111	11.2 Reportable Device Issues	43
112	11.3 Timing of Event Reporting	43
113	11.4 Stopping Criteria	44
114	11.5 Independent Safety Oversight	44
115	CHAPTER 12: MISCELLANEOUS CONSIDERATIONS.....	45
116	12.1 Prohibited Medications, Treatments, and Procedures	45
117	12.2 Participant Withdrawal.....	45
118	12.3 Confidentiality.....	45
119	CHAPTER 13: STATISTICAL CONSIDERATION	46
120	13.1 Statistical and Analytical Plans	46
121	13.2 Statistical Hypotheses	46
122	CHAPTER 14: DATA COLLECTION AND MONITORING	48
123	14.1 Case Report Forms and Device Data	48
124	14.2 Study Records Retention.....	48
125	14.3 Protocol Deviations	48
126	CHAPTER 15: ETHICS/PROTECTION OF HUMAN PARTICIPANTS	49
127	15.1 Ethical Standard	49
128	15.2 Institutional Review Boards	49
129	15.3 Informed Consent Process.....	49
130		

Protocol Summary

PARTICIPANT AREA	DESCRIPTION
Title	Safety of the Tandem t:slim X2 with Control-IQ Automated Insulin Delivery System in Preschoolers, age 2-6 Years Old.
Investigational Device	Tandem Control-IQ with G6 Continuous Glucose Monitor
Objectives	To assess study the safety profile of the Tandem t:slim X2 with Control-IQ system in children with T1D aged 2-6 years old under free living condition
Study Design	A single-arm, multi-center, clinical study
Number of Sites	3 independent clinical sites – sharing IDE and regulatory documentation only
Endpoint	Number of subjects with less than 6% time below 70 mg/dL and less than 40% time above 180 mg/dL.
Population	<p>Key Inclusion Criteria</p> <ul style="list-style-type: none"> • Age ≥ 2 and < 6 years old at the time of visit 1 • Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least 3 months and using insulin at the time of enrollment • Use of an insulin pump in the past 3 months • Use of Dexcom G6 for at least 11 out of the last 14 days <p>Key Exclusion Criteria</p> <ul style="list-style-type: none"> • Hypoglycemia induced seizure or loss of consciousness in the past 3 months • Concurrent use of any non-insulin glucose-lowering agent • A condition, which in the opinion of the investigator or designee, would put the participant or study at risk.
Sample Size	Up to 15 participants
Participant Duration	About 14 days
Protocol Overview/Synopsis	48 hour hotel stay with 24/7 study team supervision followed by parental remote monitoring for 72 hours of at-home use

Study Visits and Procedures Schedule

	SCREENING	OPEN LOOP AT-HOME USE	PRE- ADMISSION CHECK-IN	HOTEL ADMISSION	CLOSED LOOP AT- HOME USE	POST- ADMISSION CHECK-IN
DURATION	ABOUT 3 HOURS		ABOUT 30 MINUTES	ABOUT 48 HOURS	ABOUT 72 HOURS	ABOUT 30 MINUTES
COMMENT	SCREEN / ENROLL		PHONE, EMAIL, TEXT	HOTEL	HOME	PHONE, EMAIL, TEXT
Informed Consent	X					
Eligibility Assessment	X					
Medical History	X					
HbA1c	X					
Physical Exam	X			X		
Vital Signs	X			X		
Equipment Training	X			X		
Use of Study Equipment		X	X	X	X	
Blood Glucose & Ketone Measurement				X		
CGM Placement		X	X			
Review diabetes management and AEs				X	X	X
Review Medical Changes			X	X		
Questionnaire				X		
Return study equipment						X

135 **Chapter 1: BACKGROUND INFORMATION**

136 **1.1 Introduction**

137 The Tandem X2 insulin pump with Control-IQ Technology is a third-generation closed-loop
138 control (CLC) system retaining the same control algorithm that was initially tested by UVA's DiAs
139 system and then implemented in the inControl system. DiAs is described in 13 IDEs (see IDEs 1-
140 12 and 14 in the list below) and inControl is described in IDEs G160097, G160181, G150240,
141 G140169/S010. IDE 17-20 below are specific to the implementation proposed here. For complete
142 algorithmic and clinical background, we refer to these IDEs and to a number of scientific
143 publications that describe glycemic control outcomes and clinical impressions from the use of
144 these systems (see list of 25 peer-reviewed papers and scientific presentations under Bibliography).
145 Overall, this control algorithm has been implemented in two mobile platforms (DiAs and
146 inControl) and an embedded system (Tandem t:slim X2 with Control IQ) which have been tested
147 in 35 clinical trials by over 700 adults and children with type 1 diabetes (T1D) for over 1,200,000
148 hours of use to date in the U.S. and overseas.

149 As described above, this project is a result of a sequence of clinical trials that have tested
150 extensively. The following 20 IDEs reflect this progress:

- 151 1. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart
152 rate monitoring as an exercise marker, approved 10/08/2011;
- 153 2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
- 154 3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
- 155 4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
- 156 5. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in
157 adolescents; 6/19/2013;
- 158 6. IDE# G130142: Closed loop control in adolescents using heart rate as exercise
159 indicator; 7/16/13;
- 160 7. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control
161 of type 1 diabetes; 7/19/2013;
- 162 8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
- 163 9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor
164 augmented pump therapy overnight in type 1 diabetes; 5/14/2014;
- 165 10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night
166 in-home use; 6/6/2014;
- 167 11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor
168 Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes;
169 10/3/2014.
- 170 12. IDE #G150221: Reducing risks and improving glucose control during extended
171 exercise in youth with T1DM: The AP Ski Camp; 11/09/2015;
- 172 13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs.
173 24 hr closed loop control; 11/12/2015;

CLINICAL PROTOCOL

174 14. IDE #G160047: Closed-loop in school-age children 5-8 years old using DiAs platform;
175 03/29/2016;

176 15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: The International
177 Diabetes Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.

178 16. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The
179 International Diabetes Closed Loop (iDCL) Trial; 09/21/16

180 17. IDE#G170267: Real-Time Monitoring and Glucose Control During Winter-Sport
181 Exercise in Youth with Type 1 Diabetes: The AP Ski Camp Continued. 12/01/2017

182 18. IDE#G180053: Protocol 3: Clinical Acceptance of the Artificial Pancreas (DCLP3)

183 19. IDE#G180279: Safety and Efficacy of Initializing the Control-IQ Artificial Pancreas
184 System Using Total Daily Insulin, 11/21/2018

185 20. IDE#G180053/S008: Protocol 5: Clinical Acceptance of the Artificial Pancreas in
186 Pediatrics. A Study of t:slim X2 with Control-IQ Technology, currently enrolling,
187 12/17/2018

188 1.2 Study Objective

189 The closed-loop system, also called Artificial Pancreas (AP), modulates insulin infusion according
190 to computed real-time needs. It has proven to be successful in maintaining blood glucose in
191 euglycemic ranges during the day and even more efficiently during overnight hours where it was
192 shown that the system can keep glycemic values in the euglycemic range (70-180 mg/dL) for 70%
193 to 75% of the time.

194 The biggest challenges for glycemic control in young children with diabetes are frequent meals
195 and snacks as well as unpredictable activity/exercise routines. Meal variability has the benefit that
196 meals are typically announced and quantified. Glucose control around exercise, on the other hand,
197 is more complicated if the patient doesn't announce a change in activity level.

198 Over the last 5 years, our teams have developed and tested different version of closed-loop systems
199 and remote monitoring systems conducting clinical trials in summer and winter camp settings
200 demonstrating significantly improved glycemic control and hypoglycemia avoidance in young
201 adult and pediatric patients with T1D.

202 There is a new wearable version of a closed-loop control system that is proposed to be tested in
203 this clinical trial. The Closed-Loop Control System contained in t:slim X2 with Control-IQ
204 Technology that is described in Master File MAF-2032/A003. Control-IQ Technology is derived
205 from inControl previously described in IDE# G160097, G160181, G150240 and G140169/S010.
206 The CLC is an “artificial pancreas” (AP) application that uses advanced closed loop control
207 algorithms to automatically manage blood glucose levels for people with Type 1 Diabetes. The
208 system modulates insulin to keep blood glucose in a targeted range. The system components
209 include the t:slim X2 with Control-IQ Technology and the Dexcom CGM G6 (Figure 1).

210

Figure 1: t:slim X2 with Control-IQ and DexCom G6 system

211 This clinical trial aims to demonstrate the safety of the Closed-Loop Control (CLC), also known
 212 as Artificial Pancreas (AP) named t:slim X2 with Control-IQ Technology and assess usability in a
 213 supervised setting for the treatment of type 1 diabetes (T1D) in young children (2-6 years old). It
 214 is important to note that the system under study has been shown safe in efficacious in a large
 215 (N=168) RCT clinical trial in subjects 14 and up (results presented at ADA 2019), which
 216 Compared the system with sensor-augmented pump therapy, CLC system (Control-IQ) use for 6
 217 months improved:

- 218 • Time in target range 70-180 mg/dL (+11%; p<0.0001)
- 219 • HbA1c (-0.33%; p=0.0014)
- 220 • Mean Glucose by CGM (-13 mg/dL; p<0.0001)
- 221 • Hyperglycemia >180 mg/dL (-10%; p<0.0001)
- 222 • Hypoglycemia <70 mg/dL (-0.88%; p<0.0001)
- 223 • Hypoglycemia <54 mg/dL (-0.10%; p=0.02)

224 The same system is also currently the subject of a similar trial down to 6 years old (IDE#20 above).

225 Finally, preliminary analysis of a clinical trial in France using the same system in prepubertal
 226 children (6-10 yo) comparing 24/7 vs overnight use has shown very promising performances as
 227 well (Table 1).

228

Table 1: Interim analysis of FREELIFEKIDS AP (N=30 for 3 months)

	Overall					
	CLC at night		CLC 24/7		Stats	
	baseline	CLC	baseline	CLC	base vs Tx	Night vs 24/7
% time below 50mg/dL	0.4 ± 0.3%	0.3 ± 0.2%	0.5 ± 0.7%	0.3 ± 0.2%	ns	ns
% time below 54mg/dL	0.7 ± 0.6%	0.6 ± 0.3%	0.9 ± 1%	0.5 ± 0.4%	0.081	ns

CLINICAL PROTOCOL

% time below 60mg/dL	1.5 ± 1%	1.1 ± 0.5%	1.7 ± 1.6%	1.1 ± 0.8%	0.041	ns
% time below 70 mg/dL	4.1 ± 1.9%	2.8 ± 1%	3.9 ± 2.8%	2.8 ± 1.9%	0.006	ns
% time between 70-140mg/dL	42 ± 8.6%	45.6 ± 7.4%	37.9 ± 8.2%	49.3 ± 4.9%	<0.001	0.009
% time between 70-180mg/dL	63.2 ± 9.1%	67.5 ± 6.5%	59.7 ± 8.4%	71.8 ± 4%	<0.001	0.009
% time above 180mg/dL	32.8 ± 9.2%	29.6 ± 6.7%	36.4 ± 9.5%	25.4 ± 4.8%	<0.001	0.010
% time above 250mg/dL	9.6 ± 4.3%	8.6 ± 3.7%	11.8 ± 5.6%	6.1 ± 2.2%	0.001	0.010
% time above 300mg/dL	2.8 ± 1.7%	2.7 ± 1.8%	3.9 ± 3.7%	1.7 ± 1%	0.030	0.046
Average CGM [mg/dL]	158.1 ± 13.6	156.7 ± 10.5	165.4 ± 15.8	150.2 ± 7.4	0.001	0.006

229 We propose to use the Control-IQ System during a supervised 48 hours hotel stay with planned
 230 activities and meals; in addition, child participants will continue to use the system for another 3
 231 days at home under the parent/guardian(s) supervision.

232 **1.3 Primary Specific Aim**

233 Study the safety profile of the Tandem t:slim X2 with Control-IQ System in children with type 1
 234 diabetes aged 2-6 years old.

235 **1.4 Secondary Specific Aims**

- 236 • Assess the safety profile of the system at home under parental/legal guardian(s)
 237 supervision
- 238 • Compare system performance to normative data from a 6-12 years old cohort

239 **1.5 Study Design**

240 **1.5.1 Purpose/Objectives of Clinical Study**

241 The purpose of this study is to demonstrate the safety and efficacy the Artificial Pancreas system
242 (Tandem t:slim X2 with Control IQ Technology) in T1D participants, aged 2-6 y.o.

243 **1.5.2 Study Participants**

244 Approximately 15 participants with Type 1 Diabetes Mellitus, currently managed with insulin
245 pump therapy, will participate in the trial for approximately 14 days. The study will be performed
246 at the University of Virginia, Stanford University, and the Barbara Davis Center at the University
247 of Colorado. Children and a parent/guardian(s) will use the system at home in Open Loop until the
248 start of the Hotel Admission. The child participant will then use the Control-IQ System during a
249 ~48 hours study hotel/house admission. The child participant will then use the Control-IQ System
250 at home for 72 hours under parental supervision and remote monitoring by the study team.

251 **1.5.3 Clinical Sites**

252 Each clinical site will perform the trial independently, seeking their own local IRB approval.

253 • The University of Virginia-Center for Diabetes Technology

254 • 560 Ray Hunt Drive, Charlottesville VA 22903

255

256 • Stanford University

257 • 300 Pasteur Drive, # S302, Palo Alto, CA 94304

258

259 • Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus:

260 • 1775 Aurora Court, Aurora, CO 80045

261 **1.5.4 Study Diagram**

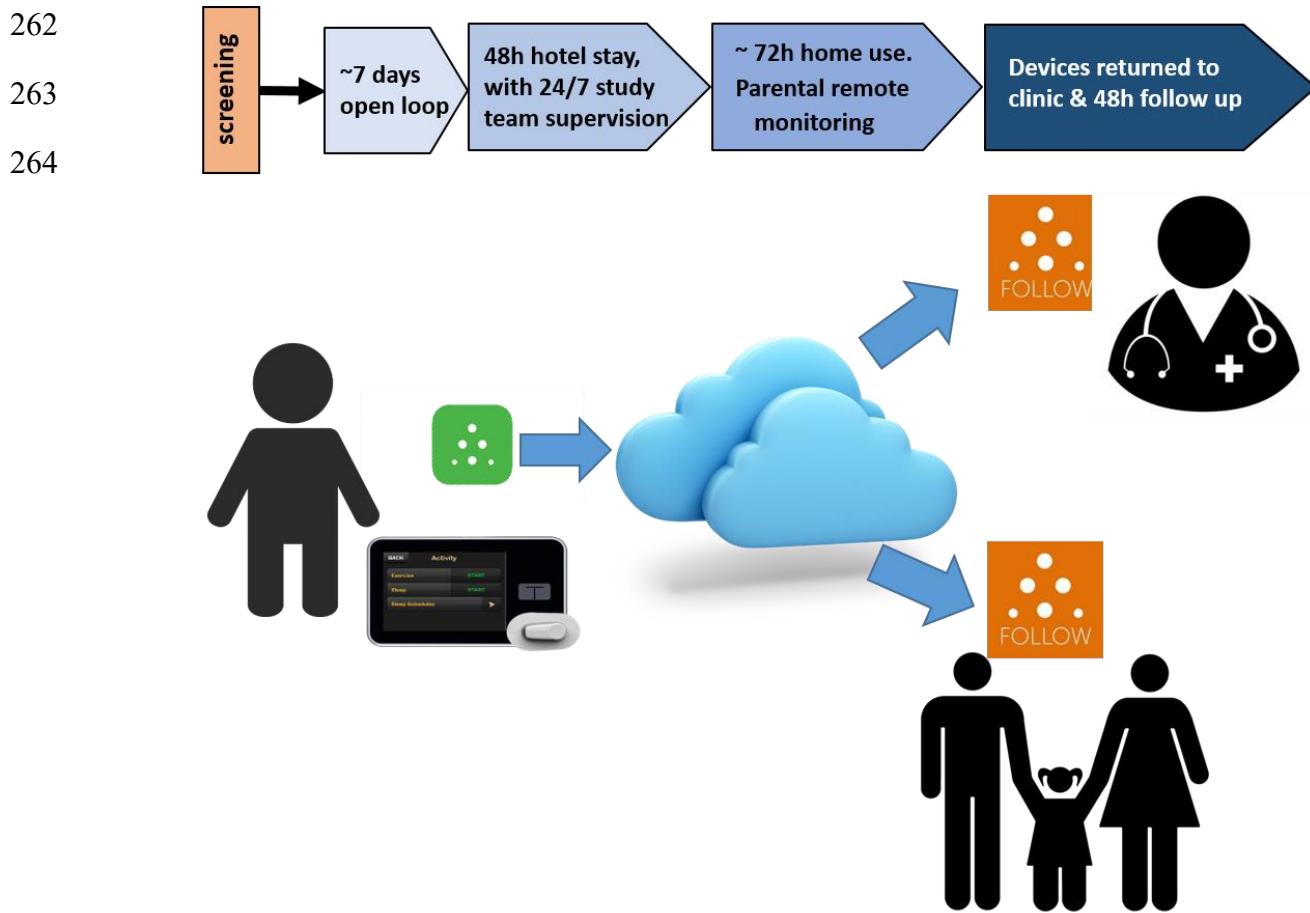


Figure 2: Study Diagram

265 **Chapter 2: STUDY ENROLLMENT AND SCREENING**

266 **2.1 Participant Recruitment and Enrollment**

267 Enrollment will proceed with the goal of completing 15 participants in this trial, approximately 5
268 participants per clinical site.

269 Enrollment at the University of Virginia will be defined as a parent/child dyad as the parent is
270 completing the questionnaire at the conclusion of the study.

271 Up to 25 participants may sign the consent form.

272 **2.2 Informed Consent and Authorization Procedures**

273 Consenting procedures and documentation is defined in section 15.3.

274 **2.3 Participant Inclusion Criteria**

275 Child participants must meet all of the following inclusion criteria in order to be eligible to
276 participate in the study.

- 277 1. Age \geq 2 and $<$ 6 years old at the time of consent
- 278 2. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least 3 months
279 and using insulin at the time of enrollment
- 280 3. Use of an insulin pump in the past 3 months
- 281 4. Use of Dexcom G6 for at least 11 out of the last 14 days
- 282 5. Parent/guardian(s) have familiarity with and use of carbohydrate ratios for meal boluses
- 283 6. Living with one or more parent/guardian knowledgeable about emergency procedures for
284 severe hypoglycemia and able to contact emergency services and study staff
- 285 7. At least one parent/guardian is willing to stay with the child during the hotel/house portion of
286 the study on the dates selected by the study team
- 287 8. Investigator has confidence that the parent/guardian(s) can successfully operate all study
288 devices and is capable of adhering to the protocol
- 289 9. Willingness to switch to lispro (Humalog) or aspart (Novolog) if not already, and to use no
290 other insulin besides lispro (Humalog) or aspart (Novolog) during the study
- 291 10. Total daily insulin dose (TDD) of at least 5 U/day
- 292 11. Willingness not to start any new non-insulin glucose-lowering agent during the course of the
293 trial
- 294 12. Child participant and parent/guardian(s) willingness to participate in all training sessions as
295 directed by study staff
- 296 13. Willingness to discontinue non-Tandem t:slim insulin pumps during the entire study
- 297 14. Willingness to wear a Dexcom G6 sensor during the entire study
- 298 15. An understanding and willingness to follow the protocol and sign informed consent

299 **300 2.4 Participant Exclusion Criteria**

301 Individuals meeting any of the following exclusion criteria at baseline will be excluded from study
302 participation.

CLINICAL PROTOCOL

- 303 1. Hypoglycemia induced seizure or loss of consciousness in the past 3 months
- 304 2. Diabetes Ketoacidosis in the past 3 months
- 305 3. Use of diluted insulin
- 306 4. Concurrent use of any non-insulin glucose-lowering agent
- 307 5. Hemophilia or any other bleeding disorder
- 308 6. A condition, which in the opinion of the investigator or designee, would put the participant
309 or study at risk. These conditions may include:
 - 310 • Acute illness at the time of the enrollment visit (fever of 101 or higher, vomiting, diarrhea)
 - 311 • Addison's disease
 - 312 • Diagnosed at less than 1 year of age without positive antibodies
 - 313 • Decreased renal function
 - 314 • Cystic fibrosis
 - 315 • Other chronic conditions, such as an underlying seizure disorder
- 316 7. Participation in another pharmaceutical or device trial at the time of enrollment or during the
317 study.
- 318 8. Having a family member(s) employed by Tandem Diabetes Care, Inc. or having a direct
319 supervisor at place of employment who is also directly involved in conducting the clinical
320 trial (as a study investigator, coordinator, etc.); or having a first-degree relative who is
321 directly involved in conducting the clinical trial.

322 **2.5 Eligibility Screening Procedures**

323 After informed consent has been signed, the child participant will be evaluated for study inclusion
324 and exclusion eligibility and documented:

- 325 1. Demographics (date of birth, gender, race and ethnicity)
- 326 2. Medical history
- 327 3. Details of the diabetes history: duration of disease (number of years), diagnosis details, current
328 insulin pump model, history of CGM use, current treatment (including basal rates,
329 carbohydrate ratios, insulin sensitivity factors, target glucose, average daily insulin, history
330 of diabetic ketoacidosis, history of severe hypoglycemia, history of seizures or loss of
331 consciousness, and average number of blood tests performed daily).
- 332 4. Surgical history
- 333 5. Allergies
- 334 6. Medications and supplements
- 335 7. Short Physical examination – A historical history and physical report within 52 weeks of
336 screening appointment may be used
- 337 8. Weight and height
- 338 9. Vital signs
- 339 10. Hemoglobin HbA1c assessment (blood draw or point of care per study physician discretion)
340 – A historical lab value dated within the last 30 days from screening date may be used
- 341 11. Use of Dexcom G6 for at least 11 out of the last 14 days

CLINICAL PROTOCOL

343 Once all results of the screening evaluations are available, a decision will be made to determine
344 the subject's eligibility for the study or if one or more parts of the screening will have to be
345 repeated. If at the first screening or repeat screening an exclusionary condition is identified, the
346 study subject will be excluded from participation in the study. The participants will be referred to
347 their primary care physician as needed. Subjects may be re-screened at a later date if their clinical
348 situation changes at the discretion of the study physician during an acceptable timeline.

349 Parent/guardian(s) will be instructed to contact the study team in the event of a febrile illness
350 anytime during the study.

351 **Chapter 3: STUDY DEVICES**

352 **3.1 Insulin Pump**

353 The study system will include the Tandem t:slim X2 with Control-IQ technology.

354 **3.2 Continuous Glucose Monitoring**

355 The study CGM will include Dexcom G6 transmitter and sensors. The CGM sensor is viable for
356 10 days.

357 **3.3 Blood Glucose Meter and Strips**

358 Blood glucose levels will be measured using the Accu-Chek Guide blood glucose meter
359 (glucometer). The CGM device will be calibrated, if needed, using the study glucometer and strips
360 in accordance with the manufacturer's labeling.

361 **3.4 Ketone Meter and Strips**

362 Blood ketone levels will be measured using the Abbott Precision Xtra meter and strips in
363 accordance with the manufacturer's labeling. The blood glucose meter component of the Precision
364 Xtra device will not be used.

365 **3.5 Study Device Accountability Procedures**

366 Device serial numbers will be recorded and use of equipment will be tracked.

367 **Chapter 4: STUDY EQUIPMENT TRAINING**

368 Equipment training may begin immediately after screening eligibility has been met or may be
369 deferred for a maximum of 14 days but should not be less than 48 hours prior to the start of the
370 study to allow for a CGM warmup period. The purpose of this training is to introduce the study
371 insulin pump and study CGM to the parent/guardian(s) and child participant.

372 The subject's insulin parameters will be programmed into their Tandem t:slim X2 with Control-
373 IQ pump by two research staff. Subjects will then switch to the study insulin pump. The subject's
374 personal pump and infusion site will be removed.

375 At the conclusion of the study equipment training session, the child participant will use the system
376 in pump only (open loop) configuration where no closed loop algorithms are activated until the
377 start of the Hotel Admission.

378 Child participants will have the insulin pump and sensor on them at all times. Parent/guardian(s)
379 will monitor their child using the Dexcom App. Parent/guardian(s) will also be required to carry
380 the study glucometer and ketone meter with them at all times and must be within BLE connection
381 distance of their child (same room) or equip the child with a Clarity enabled cellphone. Study
382 supplied phones will be available upon request.

383 **4.1 Insulin Pump Training**

384 Insulin pump training will include:

- 385 • The parent/guardian(s) will be fully instructed on the study insulin pump. A qualified
386 system trainer will conduct the training and in particular discuss differences from their
387 home pump in important aspects such as calculation of insulin on board and correction
388 boluses. Additional topics not limited to but may include: infusion site initiation,
389 cartridge/priming procedures, setting up the pump, charging the pump, navigation through
390 menus, bolus procedures including stopping a bolus, etc.
- 391 • The study team will assist the parent/guardian(s) in study pump infusion site initiation and
392 will start the participant on the study pump. The study pump will be programmed with the
393 child participant's usual basal rates and pump parameters. The child participant's personal
394 pump will be removed.
- 395 • The parent/guardian(s) will be supervised with the study pump during at least one meal or
396 snack bolus to ensure participant understanding of the pump features.
- 397 • The parent/guardian(s) will be encouraged to review the literature provided with the pump
398 and infusion sets after the training is completed. Infusion sets manufactured by Tandem
399 will be provided to the study subject and a sample list is below and may be provided in
400 different cannula lengths (e.g. 6mm or 9mm) and tubing lengths (e.g. 23 or 43 inch):
 - 401 ❖ Tandem Autosoft Line (e.g. Autosoft 30, Autosoft 90, Autosoft XC)
 - 402 ❖ Tandem Varisoft
 - 403 ❖ Tandem TruSteel

CLINICAL PROTOCOL

404 Insulin pump training specific to the Control-IQ Technology functions will include:

405 • How to turn on and off Control-IQ technology

406 • How to understand when Control-IQ is increasing or decreasing basal rates

407 • How to administer a meal or correction bolus on the t:slim X2 with Control-IQ system

408 • How to enable the sleep function and set the sleep schedule

409 • The participant will be assessed for understanding of the system interface and how to react

410 to safety/alert messages

411 • The participant will be given a User Guide as a reference

412 **4.1.1 Closed Loop Training**

413 The parent/guardian(s) will be instructed to how to use the system if insulin is delivered by any

414 means other than the study pump (e.g. injection of subcutaneous insulin via syringe in the event

415 of infusion site failure). If insulin is delivered by any means other than the study pump, the

416 parent/guardian(s) will be instructed to turn off Control-IQ for approximately four hours.

417 The parent/guardian(s) will be provided with contact information and will be asked to call the

418 study clinical staff during periods of illness with an elevated temperature >101.5 degrees

419 Fahrenheit (38.6 degrees Celsius), periods of significant illness, or during periods of use of

420 medications such as epinephrine for the emergency treatment of a severe allergic reaction or

421 asthma attack in addition to use of oral or injectable glucocorticoids to determine if closed-loop

422 use should be temporarily discontinued.

423 The parent/guardian(s) will also be asked to call the study clinical staff for technical issues with

424 t:slim X2 with Control-IQ. The study pump without Control-IQ activated and study CGM (open

425 loop mode) during periods of component disconnections or technical difficulties. Study staff

426 contact information will be provided to parent/guardian(s) to ask any questions they may have

427 during the study.

428 Upon completion of the t:slim X2 with Control-IQ training, study staff will document, using a

429 checklist, that the participant is familiar with the function/feature and/or capable of performing

430 each of the tasks specified.

431 Parents/legal guardian(s) will be provided Glycemic Treatment Guidelines (section 7.2) to use at

432 home.

433 **4.2 CGM Training**

434 A study CGM will be provided to all child participants at the training session. The

435 parent/guardian(s) will be provided with CGM equipment and instructed to use the study CGM on

436 a daily basis. Child participants have prior use of the CGM so re-training will be specific to the

437 individual. Training may include review of study CGM in real-time to make management

438 decisions and how to review the data after an upload (if needed) for retrospective review.

CLINICAL PROTOCOL

439 The child's personal CGM will be discontinued. The parent/guardian(s) will be observed placing
440 the sensor and will learn/review how to access the CGM trace via the t:slim X2 with Control-IQ
441 user interface. The parent/guardian(s) will be instructed to perform a fingerstick blood glucose
442 measurement prior to meal time for the first open-loop day. The parent/guardian(s) will be asked
443 to perform fingerstick blood glucose measurements (if needed) in accordance with the labeling of
444 the study CGM device.

445 The study CGM user's guide will be provided for the parent/guardian(s) to take home. The study
446 team will be sure that the parent/guardian(s) will leave the clinic knowing how to use proper use
447 the CGM. The study team will be available for any questions.

448 The use of Dexcom Apps on personal devices to monitor the child participant's CGM values and
449 alerts in real-time may be used.

450 Participants will have the option of using their personal smartphone or receive a study smartphone
451 to use in order to collect the data from the devices.

452 **4.3 Blood Glucose and Ketone Testing**

453 **4.3.1 Blood glucose testing**

454 Parent/guardian(s) will be provided with a study blood glucose meter and test strips to be used at
455 home per manufacturer guidelines.

456 All study blood glucose meters will be QC tested by study staff with at least two different
457 concentrations of control solution, if available. A tested meter will not be used in a study if it does
458 not read within the target range at each concentration per manufacturer labeling.

459 Parent/guardian(s) will be reminded to use the study blood glucose meter for all fingerstick BGs
460 during the study.

461 **4.3.2 Blood ketone testing**

462 Parent/guardian(s) will be provided with a study blood ketone meter and test strips to be used at
463 home per manufacturer guidelines.

464 All study blood ketone meters will be QC tested by study staff with at least two different
465 concentrations of control solution, if available. A tested meter will not be used in a study if it does
466 not read within the target range at each concentration per manufacturer labeling.

467 Parents/legal guardian(s) will be instructed to perform blood ketone testing as described in
468 Glycemic Treatment Guidelines (section 7.2). A home glucagon emergency kit will be required.
469 Participants who currently do not have one will be given a prescription for the glucagon emergency
470 kit.

471 **4.4 Optimization of Insulin Pump Settings**

472 Data-driven optimization of pump settings can occur any time during the study, particularly if the
473 parent/guardian(s) contacts the study physician due to concerns about their pump settings due to
474 recurring hypo- or hyperglycemia.

475 **Chapter 5: HOTEL ADMISSION PROCEDURES**

476 **5.1 General Admission Instructions**

477 The Hotel Admission will take place in a hotel or research house for approximately 48 hours.
478 Alternately, the clinical trial may occur at a house.

479 The CGM used in the study is FDA-approved for the non-adjunctive measurement of blood
480 glucose (i.e. the CGM reading can be used for insulin dosing decisions). The CGM readings will
481 be the primary source of blood glucose levels. There are no protocol fingerstick blood glucose
482 measurements other than at times of CGM calibration (if necessary) and if directed by the study
483 team. Glycemic Treatment Guidelines to be used during the hotel admission are defined in section
484 7.1.

485 **5.2 Hotel Staffing Qualifications**

486 There will be at least one physician, advanced practice provider, registered nurse, and/or other
487 medical personnel who are specifically trained in diabetes management and trained technicians
488 supervising the Hotel Admission. Certification of their skill is supervised by the clinical site PI.
489 All medical personnel who will have direct contact with the child participants will have current
490 certification in Basic Life Support including CPR. Study personnel, trained in the use and
491 maintenance of the Tandem t:slim X2 with Control-IQ Technology, will be monitoring the system
492 during the entire trial.

493 There will be a team of at least 3 experienced study personnel in attendance during the day (7 p.m.
494 - 7 a.m.) and one study staff member during the overnight hours of 7 p.m. – 7 a.m. during the hotel
495 admission. These staff members will be proficient with devices, the study protocol and its
496 procedures, including the glycemic safety protocols.

497 Glucagon for the emergency treatment of hypoglycemia will be available on-site.

498 **5.3 Pre-Admission Check-in Visit**

499 The parent/guardian(s) will be contacted by the study team approximately 48-72 hours prior to the
500 hotel admission to verify the following information:

501 • Inquire about any changes to the child participant's health (e.g. illness, medications, etc...)

502 • Inquire about current use of the study equipment

503 • Remind parent/guardian(s) to bring all current medications for use during the study.

504 • Determine what pump profile(s) the subject uses on certain days

505 • Verify that a new CGM sensor will be placed approximately 48 hours prior to the admission
506 for proper warm up

507 • Verify with the subject that the goal CGM reading at time of arrival is less than 250 mg/dL

508 Should any concerns regarding medical history, pump information, or unforeseen issues arise, the
509 admission may be cancelled for that participant at the discretion of the investigator.

CLINICAL PROTOCOL

510 Additional phone contact(s) can occur at the study team's discretion.

511 **5.4 Admission Check-In (times are approximate)**

512 On day 1 of the admission, parent/guardian(s) and child participants will arrive to the hotel at
513 approximately 3-5 pm. The study team will perform vital signs and inquire about any changes to
514 the participant's medical history. The study team will confirm that the child participant has
515 brought his/her insulin and regular medications. Any changes to medical history will be
516 communicated to the medical physician to ensure continued eligibility and participation. The study
517 team will ensure the proper function of the CGM and insulin pump. Insulin parameters will be
518 reviewed by the study medical team

519 A SMBG and a ketone value will be collected on the study equipment. In the event that the child
520 participant's CGM reading is not between 80 – 300 mg/dL or ketone concentration is ≤ 0.6 mmol/L
521 prior to the Control-IQ initiation, the study physician may recommend corrective action as outlined
522 in the Hotel Admission Glycemic Guidelines (section 7.1). Study physician may elect to cancel
523 participant's participation in the hotel admission if concerned about their medical safety.

524 Data from subjects' insulin pumps will be reviewed and/or downloaded for a review of pump
525 settings and average of daily insulin delivery.

526 **5.5 Study Procedures**

527 Parent/guardian(s) will be retrained on the study equipment as needed. During system use, subjects
528 will be remotely monitored and will have immediate access to medical personnel and technical
529 personnel. Child participants will be accompanied by at least one parent/guardian during the
530 supervised stay and trained on the Control-IQ System. A trained parent/caregiver or study team
531 member must remain in the immediate vicinity of the subjects as long as the AP system is active.

532 The parent/guardian(s) will be primarily responsible for using the system at this time, with the
533 study team serving as a back-up when needed. Re-education will be provided as needed. Study
534 staff will be available at all times to assure proper use of all study equipment.

535 CGM sensors last up to 10 days; therefore, there should be no need to change CGM sensors. All
536 sensor changes during camp will be handled by the study team, but caregivers of subjects will be
537 trained on how to change sensors in case of sensor failure during the 72 hours home use.

538 **5.6 Hotel Admission Schedule (times are approximate)**

539 Parent/guardian(s) and child participants will be provided dinner at approximately 6 – 7 p.m.
540 Parent/guardian(s) and child participants will be permitted to retire to their personal rooms after
541 dinner, if desired. Bedtime for the child participant is encouraged to be no later than 9 p.m. Devices
542 should be charged overnight while subjects are sleeping.

543 On day 2 of the admission, breakfast will be provided at approximately 7 – 8 a.m. Group activities
544 will occur from approximately 9 – 11 a.m. An optional snack will be available at approximately
545 10 a.m.

CLINICAL PROTOCOL

546 Lunch will be provided at approximately 11:30 – 12:30 p.m. Parent/guardian(s) and child
547 participants will retire to their personal rooms for quiet time. An optional snack will be available
548 at approximately 3 p.m. Group activities will occur from approximately 3:30 – 5:30 p.m.

549 Parent/guardian(s) and child participants will be provided dinner at approximately 6-7 p.m.
550 Parent/guardian(s) and child participants will be permitted to retire to their personal rooms after
551 dinner, if desired. Bedtime for the child participant is encouraged to be no later than 9 p.m. Devices
552 should be charged overnight while subjects are sleeping.

553 On day 3 of the admission, breakfast will be provided at approximately 7 – 8 a.m. Group activities
554 will occur from approximately 9 – 11 a.m. An optional snack will be available at approximately
555 10 a.m. Lunch will be provided at approximately 11:30 – 12:30 p.m.

556 Discharge will occur after lunch.

5.7 Bolus Treatment

558 Use of a temporary basal rate will be permitted during the hotel admission.

5.8 Meal Boluses

560 The time and size of the meal bolus will be determined by parent/guardian(s) and will be
561 supervised by the study team.

5.9 Group Activities

563 Planned group activities may be managed by the study team or a specialized service provider (e.g.
564 preschool professionals) with study staff supervision. These activities may include transporting
565 parent/guardian(s) and child participants to off-site locations (e.g. museums, amusement parks,
566 etc...). One medical personnel per car will be required. Parents and their children are expected to
567 participate in all activities of the supervised phase, unless excused by the study team.

5.10 Procedures Related to Discharge

568 Parent/guardian(s) will show proficiency of using the system before leaving for the home portion
569 of the trial.

571 Parent/guardian(s) will show proficiency on how to change CGM before leaving for the home use
572 portion of the trial.

573 The child participant's SMBG value needs to be between 70-300 mg/dL and ketone concentration
574 is ≤ 0.6 mmol/L prior to discharge. The parent/guardian(s) and child will be offered a snack prior
575 to discharge. The study team will verify that parent/guardian(s) have study team's contact
576 information.

577 **Chapter 6: CONTROL-IQ AT HOME**

578 **6.1 At-Home Use**

579 Child participants will continue to use the Control-IQ System for another 72 hours at home under
580 parental/legal guardian(s) supervision. The study team will continue remote monitoring as
581 described in section 8.2. Study staff will be available 24/7 by phone to answer any questions or
582 concerns or to help resolve any technical problems.

583 At the conclusion of 72 hours, the parent/guardian(s) will remove the study equipment under the
584 supervision of a study physician which may occur at home or in the presence of study staff.
585 Participants who discontinue use of the study devices at home will return study devices by standard
586 shipping (e.g. FedEx) provided by the research team.

587 Parent/guardian(s) will be asked to download the child participant's personal pump to ensure the
588 child's personal equipment is working properly.

589 **6.2 Meal Bolus**

590 Child participants may consume meals and snacks of their own choice with no restrictions. Meal
591 size will be estimated by the parent/guardian(s). The timing of the bolus will be per each child
592 participant's typical dosing routine.

593 **6.3 Blood Glucose Checks**

594 Parent/guardian(s) will be advised to obtain their child's fingerstick blood glucose value prior to
595 bedtime each night of at-home use.

596 **6.4 Activity**

597 The child should refrain from activity (e.g. sports) if their CGM value is below 90 mg/dL.

598 **6.5 Caregivers**

599 In the event that the child is in the care of someone other than the parent/guardian(s), the child
600 must be routinely cared for by this individual (i.e. more than once per week for more than one
601 month). This individual must be trained on the use of the study devices and safety guidelines by
602 study staff prior to the child using the device at home.

603 **6.6 Post-Study Check-in Visit**

604 Approximately 48 hours after the home use of the equipment, the study team will contact the
605 parent/guardian(s) via phone/email/text to assess:

606

- 607 • adverse events, adverse device effects, and device issues
- 608 • blood glucose values <60 mg/dL and >300 mg/dL
- 609 • verify collection of ketone measurement data
- answer any questions related to device use

CLINICAL PROTOCOL

610 • unscheduled calls during the study period may be recommended for additional device
611 training or other unanticipated needs

612 **6.7 Questionnaire**

613 Parent/Guardian(s) will be asked to complete a Technology Acceptance Questionnaire (Parent
614 Version) asking them their perceptions and feeling about the technology used during the Hotel
615 Admission.

616 **Chapter 7: GLYCEMIC TREATMENT GUIDELINES**

617 **7.1 Hotel Admission Glycemic Guidelines**

618 Upon arrival, the subject will be asked to check the CGM reading and ketone concentration using
619 the study ketone meter. If CGM is <70 mg/dL or >300 mg/dL, or ketone test is >0.6 mmol/L, the
620 study physician will suggest appropriate treatment. The study team may request fingersticks as
621 needed. The study subject may continue participation in the trial once CGM is between 70-300 mg
622 /dL and ketone concentration is ≤ 0.6 mmol/L.

623 If CGM < 80 mg/dL during the day, the patient will be treated until CGM reads >80 mg/dL. If
624 CGM < 70 mg/dL during the night, hypoglycemia treatment will be provided until CGM reads $>$
625 80 mg/dL. SMBG may be performed if the MD on-call deems it necessary.

626 If CGM >300 mg/dL for more than 60 minutes, SMBG will be performed every 60 minutes. If
627 SMBG >300 mg/dL, the Glycemic Treatment Guidelines will be applied.

628 If CGM <80 mg/dL at any time, subjects will be given approximately 16 grams of fast-acting
629 rescue carbohydrates. Study team will monitor CGM rise and will consider treating again if CGM
630 <80 mg/dL after approximately 20 minutes. Hypoglycemic treatments can occur at any time per
631 study physician request.

632 Parent/guardian(s) will be asked to respond to both hypoglycemia and hyperglycemia alarms
633 during the Hotel Admission. If they do not respond to the alarms within 10 minutes, study
634 personnel will assist as per the Glycemic Treatment Guidelines.

635 Medical personnel and emergency supplies (e.g. glucagon) will be available on site.

636 **7.2 At-Home Glycemic Guidelines**

637 **7.2.1 CGM Measurements**

638 CGM values are updated every 5 minutes and parents will be able to see it on the pump and
639 Dexcom App.

640 CGM alarms on the study team controlled Dexcom App will be set at 70 mg/dL for 30 minutes and
641 300 mg/dL for 60 minutes.

642 If CGM < 80 mg/dL during the day, the patient will be treated until CGM reads >80 mg/dL. If
643 CGM < 70 mg/dL during the night. Hypoglycemia treatment will be provided until CGM reads $>$
644 80 mg/dL. SMBG may be performed if the MD on-call deems it necessary.

645 If CGM >300 mg/dL for more than 60 minutes, SMBG will be performed every 60 minutes. If
646 SMBG >300 mg/dL, the Glycemic Treatment Guidelines will be applied.

647 A study team member will contact the family if either of the above conditions is triggered and
648 confirm treatment per provided guidelines.

649 **7.2.2 Ketone Measurements**

650 Parent/guardian(s) will be advised to test for ketones any time the CGM is above 300 mg/dL for
651 more than 2 hours.

652 If ketones are 0.6-3.0 mmol/L, the following guidelines should be followed until SMBG < 250
653 mg/dL.

- 654 • Notify MD as soon as possible
- 655 • Consider taking correction dose of insulin by syringe or pen
- 656 • Change insulin in reservoir and tubing and change pump site
- 657 • Drink sugar-free beverages
- 658 • Once BG is 100-250 mg/dL, restart pump treatment in appropriate mode. Record the
659 amount of insulin that was given when prompted

660 If ketones are >3.0 mmol/L, the following guidelines should occur:

- 661 • The participant will stop the study
- 662 • Notify MD as soon as possible
- 663 • Disconnect the STUDY insulin pump and start HOME insulin pump once instructed by
664 MD
- 665 • Take correction dose of insulin by syringe or pen
- 666 • Drink sugar-free beverages

667 **Chapter 8: REMOTE MONITORING**

668 **8.1 Hotel Admission Monitoring**

669 Parent/guardian(s) will remotely monitor the subjects in real-time using the DexCom G6 App
670 capabilities provided by Dexcom® Inc. during the Hotel Admission.

671 Staff will remotely monitor the subjects in real-time using the DexCom G6 capabilities provided
672 by Dexcom® Inc. . Notification will be set for CGM readings below 80mg/dl during the day and
673 70mg/dl at night or above 250mg/dl to alert study staff of the need treatment or SMBG
674 confirmation. In case of remote monitoring failure, CGM alarms will be activated at low=70
675 mg/dL and high=250 mg/dL for the study personnel to act if alarms are set off.

676 **8.2 Home Monitoring**

677 Parent/guardian(s) will remotely monitor the subjects in real-time using the DexCom G6 App
678 capabilities provided by Dexcom® Inc. Alerts will be setup for values below 70mg/dL and above
679 250mg/dL; families may choose to use more conservative thresholds (i.e. higher than 70 and/or
680 lower than 250) as well as supplemental alerts.

681 Additionally, a smart phone with the Dexcom Share app will always be in the vicinity of the child
682 during the home study. This app may be on a parent's phone or the study team will provide a
683 phone that will be used with parents or caretakers.

684 In addition, the study staff will include the staff remote monitoring for threshold alerts but with
685 alerts adapted to the existence of a first tier remote monitor (parent/legal guardian(s)) and the fact
686 that they are not one site. Therefore, the study staff (Tier 2) alerts will be <70mg/dL for more than
687 15 minutes and >300 mg/dL for more than 60 minutes.

688 **Chapter 9: TESTING PROCEDURES**

689 **9.1 Laboratory / Point of Care Testing**

690 **9.1.1 HbA1c**

691 • Performed locally at the Screening visit. Blood test may be obtained within 30 days prior
692 to enrollment.

693 • HbA1c level will be measured using the DCA Vantage Analyzer, a comparable point of
694 care device or local laboratory

695

696 **Chapter 10: RISKS ASSOCIATED WITH CLINICAL TRIAL**

697 **10.1 Potential Risks and Benefits of the Investigational Device**

698 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data are
699 handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are always a
700 risk in participants with type 1 diabetes and participants will be monitored for these symptoms.

701 **10.1.1 Known Potential Risks**

702 **10.1.1.1 Venipuncture Risks**

703 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws can
704 cause some common reactions like pain, bruising, or redness at the sampling site. Less common
705 reactions include bleeding from the sampling site, formation of a small blood clot or swelling of
706 the vein and surrounding tissues, and fainting.

707 **10.1.1.2 Fingerstick Risks**

708 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes
709 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory
710 tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of bleeding
711 under the skin will produce a bruise. A small scar may persist for several weeks. The risk of local
712 infection is less than 1 in 1000. This should not be a significant contributor to risks in this study
713 as finger sticks are part of the usual care for people with diabetes.

714 **10.1.1.3 Subcutaneous Catheter Risks (CGM)**

715 Participants using the CGM will be at low risk for developing a local skin infection at the site of
716 the sensor needle placement. If a catheter is left under the skin for more than 24 hours it is possible
717 to get an infection where it goes into the skin, with swelling, redness and pain. There may be
718 bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10 risk).

719 Study staff should verbally alert the participant that on rare occasions, the CGM may break and
720 leave a small portion of the sensor under the skin that may cause redness, swelling, or pain at the
721 insertion site. The participant should be further instructed to notify the study coordinator
722 immediately if this occurs.

723 **10.1.1.4 Risk of Hypoglycemia**

724 As with any person having type 1 diabetes and using insulin, there is always a risk of having a low
725 blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less
726 than it would be as part of daily living. Symptoms of hypoglycemia can include sweating,
727 jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or seizures
728 (convulsions) and that for a few days the participant may not be as aware of symptoms of
729 hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values could
730 lead to inappropriate insulin delivery.

731 **10.1.1.5 Risk of Hyperglycemia**

732 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an
733 extended period or if the pump or infusion set is not working properly. A CGM functioning poorly
734 and significantly under-reading glucose values could lead to inappropriate suspension of insulin
735 delivery.

736 **10.1.1.6 Risk of Device Reuse**

737 The study CGM system is labeled for single use only. The sensor (the component of the system
738 that enters the skin) will be single use only. The transmitter and receiver may be reused during the
739 study after cleaning the device using a hospital-approved cleaning procedure. The transmitter is
740 attached to the sensor but does not enter the skin and the receiver, if used, is a hand held device.
741 Participants will be informed that FDA or relevant national authorities have approved these devices
742 for single use and that by using them among multiple patients, bloodborne pathogens (i.e. Hepatitis
743 B) may be spread through the use of multiple users.

744 The study insulin pump is labeled for single-patient use. During the study, this device may be
745 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set
746 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)
747 Participants will be informed that FDA or relevant national authorities typically approve the insulin
748 pump device for single use and that by using them among multiple patients, bloodborne pathogens
749 (i.e. Hepatitis B) may be spread through the use of multiple users.

750 The study blood glucose meter and blood ketone meter are labeled for single-patient use.
751 During the study, these devices may be reused after cleaning adhering to a hospital-approved
752 cleaning procedure. Participants will be informed that FDA or relevant national authorities
753 typically approve the glucose and ketone meters for single use and that by using them among
754 multiple patients, bloodborne pathogens (i.e. Hepatitis B) may be spread through the use of
755 multiple users.

756 **10.1.1.7 Device Cleaning Instructions**

757 CGM cleaning instructions are provided in the Dexcom G4 PLATINUM (Professional) Cleaning
758 and Disinfection manual (current edition). The transmitter should be cleaned with Clorox
759 Healthcare® Bleach Germicidal Cleaner or any disinfectant product in a spray bottle containing a
760 bleach solution of 6500 parts per million with the EPA registration number 56392-7. The
761 transmitter will be submerged in this solution and then placed on an absorbent wipe or clean
762 surface. Two sprays will be dispensed from the Clorox cleaner onto each side of the transmitter.
763 A nylon brush will be used to scrub the transmitter on all sides for 30 seconds. The transmitter
764 will be placed in the Clorox Cleaner solution for one minute. Transmitter is then rinsed under
765 flowing tap water for ten seconds. The transmitter will then be disinfected using a disinfectant
766 product with EPA registration number 56392-7 using similar procedures as the cleaning process.

767 Per the pump manufacturer, the insulin pump will be cleaned with a damp lint-free cloth. Use of
768 household or industrial cleaners, solvents, bleach, scouring pads, chemicals, or sharp instruments
769 are prohibited. The pump should never be submerged in water. If needed, use only a very mild
770 detergent, such as a bit of liquid soap with warm water. A soft towel will be used to dry the pump.

CLINICAL PROTOCOL

771 The outside of the transmitter will be wiped with a damp lint-free cloth or isopropyl alcohol wipe
772 between uses.

773 The Accu-Chek Guide glucometer is cleaned and disinfected with two separate Super Sani-Cloths
774 (EPA number 9480-4). The entire surface will be cleaned, making sure the surface stays wet for 2
775 minutes. This step is repeated with a clean cloth for disinfecting the device.

776 The Precision Xtra User's Guide suggests that healthcare professionals use 10% bleach, 70%
777 alcohol or 10% ammonia to clean the device.

778 Equipment that touches intact skin will be cleaned with ethyl or isopropyl alcohol (70-90%),
779 quaternary ammonium germicidal detergent (i.e. Cavicide, EPA number 46781) or household
780 bleach. The contact time on the surface depends on the method used to clean the equipment.
781 Cavicide requires three minutes on the surface of the equipment. Clorox Germicidal Bleach Wipes
782 require two minutes on the equipment. The surface should remain wet (i.e. slightly damp) with the
783 disinfectant to be considered effective though not wet enough to leave drops of liquid.

784 In the event a manufacturer updates cleaning procedures for their device, the study team will
785 adhere to the most current recommendations.

786 There is the risk of blood sampling collection and contamination from sampling techniques. Hand
787 washing with either soap & water or waterless hand sanitizer will be used prior to caring for the
788 study subject. Gloves will be worn during blood sample collection and processing. Medical
789 personnel will continue to practice hygiene for the subject's protection (i.e. hand washing,
790 changing gloves frequently, disposing needles properly). Gloves will be removed and hands
791 washed prior to leaving and upon return to the subject's room. Soiled linen will be changed to
792 minimize the transfer of pathogenic organisms.

793 **10.1.1.8 Hb1Ac Risk**

794 An NGSP Point of Care analyzer (i.e. DCA Vantage Analyzer) will be utilized at the research site
795 to obtain the subject's HbA1c level.

796 **10.1.1.9 Questionnaire**

797 As part of the study, parent/guardian(s) will complete a Technology Acceptance Questionnaire
798 which includes questions about their private attitudes, feelings and behavior related to t:slim X2
799 with Control-IQ. It is possible that some people may find these questionnaires to be mildly
800 upsetting. Similar questionnaires have been used in previous research and these types of reactions
801 have been uncommon.

802 **10.1.1.10 Other Risks**

803 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure
804 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.
805 If these reactions occur, different adhesives or "under-taping" (such as with IV 3000, Tegaderm,
806 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other
807 medication may be required.

CLINICAL PROTOCOL

808 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion
809 sites are inserted under the skin. It is possible that any part that is inserted under the skin may
810 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or
811 topical antibiotics can be used. The risk of skin problems could be greater if you use a sensor for
812 longer than it is supposed to be used. Therefore, participants will be carefully instructed about
813 proper use of the sensor.

814 Data downloaded from the CGM, pump, and glucose and ketone meter will be collected for the
815 study as measures of diabetes self-management behaviors. Some people may be uncomfortable
816 with the researchers' having such detailed information about their daily diabetes habits.

817 The Hotel Admission will have other parents and child participants in attendance. The loss of
818 privacy and confidentiality is a likely risk as the study team is not able to restrict other
819 participants from sharing photographs (i.e. social media). Photographs taken by the study team
820 may be shared at conference presentations, study brochures, or potential research donors.

821 **10.1.2 Known Potential Benefits**

822 It is expected that this protocol will yield increased knowledge about using an automated
823 closed-loop system with anticipatory action to control glucose levels. The individual participant
824 may not benefit from study participation.

825 **10.1.3 Risk Assessment**

826 Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia and
827 hyperglycemia frequently as a consequence of the disease and its management, (2) the study
828 intervention involves periodic automated insulin dosing that may increase the likelihood of
829 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
830 likelihood of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies
831 using the investigational device system in the home setting, that limit the likelihood of excessive
832 insulin dosing or prolonged withdrawal of insulin, and (4) rapid reversal of hypoglycemia and
833 hyperglycemia can be achieved, it is the assessment of the investigators that this protocol falls
834 under DHHS 46.405 which is a minor increase over minimal risk. In addition, it is the belief of the
835 investigators that this study also presents prospect of direct benefit to the participants and general
836 benefit to others with diabetes.

837 **10.2 Potential Risks and Benefits of the Investigational Device**

838 Risks and benefits are detailed below. Loss of confidentiality is a potential risk; however, data are
839 handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are always a
840 risk in participants with type 1 diabetes and participants will be monitored for these events.

841 **10.3 General Considerations**

842 The study is being conducted in compliance with the policies described in the study policies
843 document, with the ethical principles that have their origin in the Declaration of Helsinki, with the
844 protocol described herein, and with the standards of Good Clinical Practice (GCP).

CLINICAL PROTOCOL

845 Whenever possible, data will be directly collected in electronic case report forms, which will be
846 considered the source data.

847 The protocol is considered a significant risk device study, due to the fact that the closed loop
848 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S. Food
849 and Drug Administration (FDA) is required to conduct the study.

850 **Chapter 11: ADVERSE EVENTS, DEVICE ISSUES, AND STOPPING RULES**

851 **11.1 Adverse Events**

852 **11.1.1 Definitions**

853 Adverse Event (AE): Any untoward medical occurrence in a study participant, irrespective of the
854 relationship between the adverse event and the device(s) under investigation (section 11.1.2) for
855 reportable adverse events for this protocol).

856 Serious Adverse Event (SAE): Any untoward medical occurrence that:

- 857 • Results in death.
- 858 • Is life-threatening; (a non-life-threatening event which, had it been more severe, might
859 have become life-threatening, is not necessarily considered a serious adverse event).
- 860 • Requires inpatient hospitalization or prolongation of existing hospitalization.
- 861 • Results in persistent or significant disability/incapacity or substantial disruption of the
862 ability to conduct normal life functions (sight threatening).
- 863 • Is a congenital anomaly or birth defect.
- 864 • Is considered a significant medical event by the investigator based on medical judgment
865 (e.g., may jeopardize the participant or may require medical/surgical intervention to
866 prevent one of the outcomes listed above).

867 Unanticipated Adverse Device Effect (UADE): Any serious adverse effect on health or safety or
868 any life-threatening problem or death caused by, or associated with, a device, if that effect,
869 problem, or death was not previously identified in nature, severity, or degree of incidence in the
870 investigational plan or application (including a supplementary plan or application), or any other
871 unanticipated serious problem associated with a device that relates to the rights, safety, or welfare
872 of participants (21 CFR 812.3(s)).

873 Adverse Device Effect (ADE): Any untoward medical occurrence in a study participant which the
874 device may have caused or to which the device may have contributed (Note that an Adverse Event
875 Form is to be completed in addition to a Device Deficiency or Issue Form).

876 Device Complaints and Malfunctions: A device complication or complaint is something that
877 happens to a device or related to device performance, whereas an adverse event happens to a
878 participant. A device complaint may occur independently from an AE, or along with an AE.
879 An AE may occur without a device complaint or there may be an AE related to a device complaint.
880 A device malfunction is any failure of a device to meet its performance specifications or otherwise
881 perform as intended. Performance specifications include all claims made in the labeling for the
882 device. The intended performance of a device refers to the intended use for which the device is
883 labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, sites will not be asked to
884 distinguish between device complaints and malfunctions.

CLINICAL PROTOCOL

885 **11.1.2 Reportable Adverse Events**

886 For this protocol, a reportable adverse event includes any untoward medical occurrence that meets
887 one of the following criteria:

- 888 a. A serious adverse event
- 889 b. An Adverse Device Effect as defined in section 11.1, unless excluded from reporting in
890 section 11.2
- 891 c. An Adverse Event occurring in association with a study procedure
- 892 d. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
- 893 e. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, a hyperglycemic
894 or ketosis event meeting the criteria defined below

895 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
896 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement are
897 only reportable if severe and/or required treatment.

898 **11.1.2.1 Hypoglycemic Events**

899 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse event
900 when the following definition for severe hypoglycemia is met: the event required assistance of
901 another person due to altered consciousness, and required another person to actively administer
902 carbohydrate, glucagon, or other resuscitative actions. This means that the participant was
903 impaired cognitively to the point that he/she was unable to treat himself/herself, was unable to
904 verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure or
905 coma. These episodes may be associated with sufficient neuroglycopenia to induce seizure or
906 coma. If plasma glucose measurements are not available during such an event, neurological
907 recovery attributable to the restoration of plasma glucose to normal is considered sufficient
908 evidence that the event was induced by a low plasma glucose concentration.

909 **11.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis**

910 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse
911 event when one of the following 4 criteria is met:

- 912 • the event involved DKA, as defined by the Diabetes Control and Complications Trial
913 (DCCT) and described below
- 914 • evaluation or treatment was obtained at a health care provider facility for an acute event
915 involving hyperglycemia or ketosis
- 916 • blood ketone level ≥ 1.5 mmol/L and communication occurred with a health care provider
917 at the time of the event
- 918 • blood ketone level ≥ 3.0 mmol/L, even if there was no communication with a health care
919 provider

920 Hyperglycemic events are classified as DKA if the following are present:

CLINICAL PROTOCOL

921 • Symptoms such as polyuria, polydipsia, nausea, or vomiting;
922 • Serum ketones ≥ 1.5 mmol/L or large/moderate urine ketones;
923 • Either arterial blood pH < 7.30 or venous pH < 7.24 or serum bicarbonate < 15 ; and
924 • Treatment provided in a health care facility

925 All reportable Adverse Events—whether volunteered by the participant, discovered by study
926 personnel during questioning, or detected through physical examination, laboratory test, or other
927 means—will be reported on an adverse event form online. Each adverse event form is reviewed
928 by the Medical Monitor to verify the coding and the reporting that is required.

929 **11.1.3 Relationship of Adverse Event to Study Device**

930 The study investigator will assess the relationship of any adverse event to be related or unrelated
931 by determining if there is a reasonable possibility that the adverse event may have been caused by
932 the study device.

933 To ensure consistency of adverse event causality assessments, investigators should apply the
934 following general guideline when determining whether an adverse event is related:

935 Yes

936 There is a plausible temporal relationship between the onset of the adverse event and the study
937 intervention, and the adverse event cannot be readily explained by the participant's clinical state,
938 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of
939 response to the study intervention; and/or the adverse event abates or resolves upon discontinuation
940 of the study intervention or dose reduction and, if applicable, reappears upon re-challenge.

941 No

942 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
943 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
944 medication); and/or the adverse event has no plausible temporal relationship to study intervention.

945 **11.1.4 Intensity of Adverse Event**

946 The intensity of an adverse event will be rated on a three-point scale: (1) mild, (2) moderate, or (3)
947 severe. It is emphasized that the term severe is a measure of intensity: thus, a severe adverse event
948 is not necessarily serious. For example, itching for several days may be rated as severe, but may
949 not be clinically serious.

950 • MILD: Usually transient, requires no special treatment, and does not interfere with the
951 participant's daily activities.

952 • MODERATE: Usually causes a low level of inconvenience or concern to the participant
953 and may interfere with daily activities, but is usually ameliorated by simple therapeutic
954 measures.

CLINICAL PROTOCOL

955 • SEVERE: Interrupts a participant's usual daily activities and generally requires systemic
956 drug therapy or other treatment.

957 **11.1.5 Coding of Adverse Events**

958 The Medical Monitor will review the investigator's assessment of causality and may agree or
959 disagree. Both the investigator's and Medical Monitor's assessments will be recorded. The
960 Medical Monitor will have the final say in determining the causality.

961 Adverse events that continue after the participant's discontinuation or completion of the study will
962 be followed until their medical outcome is determined or until no further change in the condition
963 is expected.

964 **11.1.6 Outcome of Adverse Event**

965 The outcome of each reportable adverse event will be classified by the investigator as follows:

- 966 • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without
967 sequelae. Record the AE/SAE stop date.
- 968 • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had stabilized
969 without change in the event anticipated. Record the AE/SAE stop date.
- 970 • FATAL – A fatal outcome is defined as the SAE that resulted in death. Only the event that
971 was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the
972 time of death; however, were not the cause of death, will be recorded as "resolved" at the
973 time of death.
- 974 • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is defined
975 as the event was ongoing with an undetermined outcome.
- 976 • An ongoing outcome will require follow-up by the site in order to determine the final
977 outcome of the AE/SAE.
- 978 • The outcome of an ongoing event at the time of death that was not the cause of death, will
979 be updated and recorded as "resolved" with the date of death recorded as the stop date.
- 980 • UNKNOWN – An unknown outcome is defined as an inability to access the participant or
981 the participant's records to determine the outcome (for example, a participant that was lost
982 to follow-up).

983 All clinically significant abnormalities of clinical laboratory measurements or adverse events
984 occurring during the study and continuing at study termination should be followed by the
985 participant's physician and evaluated with additional tests (if necessary) until diagnosis of the
986 underlying cause, or resolution. Follow-up information should be recorded on source documents.

987 If any reported adverse events are present when a participant completes the study, or if a participant
988 is withdrawn from the study due to an adverse event, the participant will be contacted for re-
989 evaluation within 2 weeks. If the adverse event has not resolved, additional follow-up will be
990 performed as appropriate. Every effort should be made by the Investigator or delegate to contact
991 the participant until the adverse event has resolved or stabilized.

992 **11.2 Reportable Device Issues**

993 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of
994 whether an adverse event occurred, except in the following circumstances.

995 The following device issues are anticipated and will not be reported on a Device Issue Form but
996 will be reported as an Adverse Event if the criteria for AE reporting described above are met:

- 997 • Component disconnections
- 998 • CGM sensors lasting fewer than the number of days expected per CGM labeling
- 999 • CGM tape adherence issues
- 1000 • Pump infusion set occlusion not leading to ketosis
- 1001 • Battery lifespan deficiency due to inadequate charging or extensive wireless
1002 communication
- 1003 • Intermittent device component disconnections/communication failures not leading to
1004 system replacement
- 1005 • Device issues clearly addressed in the user guide manual that do not require additional
1006 troubleshooting
- 1007 • Skin reactions from CGM sensor placement or pump infusion set placement that do not
1008 meet criteria for AE reporting

1009 **11.3 Timing of Event Reporting**

1010 UADEs must be reported to the FDA by the IDE Sponsor within 10 working days of the study
1011 team being notified of the event.

1012 Other reportable adverse events, device malfunctions (with or without an adverse event), and
1013 device complaints should be reported promptly by completion of an electronic case report form,
1014 but there is no formal required reporting period.

1015 Clinical sites will notify the IDE Sponsor of any adverse event that is serious, related, and
1016 unexpected. Notification will be made within 10 days after becoming aware of the event in order
1017 to adhere to FDA regulations.

1018 Each principal investigator is responsible for reporting serious study-related adverse events and
1019 abiding by any other reporting requirements specific to his/her Institutional Review Board or
1020 Ethics Committee.

1021 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report
1022 the results of the investigation to the sites' IRBs, and the FDA within 10 working days of the
1023 Sponsor becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must
1024 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor
1025 must ensure that all investigations, or parts of investigations presenting that risk, are terminated as
1026 soon as possible but no later than 5 working days after the Medical Monitor makes this
1027 determination and no later than 15 working days after first receipt notice of the UADE.

CLINICAL PROTOCOL

1028 In the case of a device system component malfunction (e.g. pump, CGM, control algorithm),
1029 information will be forwarded to the responsible company by the site personnel, to be handled
1030 by its complaint management system.

1031 **11.4 Stopping Criteria**

1032 **11.4.1 Participant Discontinuation of Study Device**

1033 Rules for discontinuing study device use are described below.

- 1034 • The investigator believes it is unsafe for the participant to continue on the intervention.
1035 This could be due to the development of a new medical condition or worsening of an
1036 existing condition; or participant behavior contrary to the indications for use of the device
1037 that imposes on the participant's safety
- 1038 • The participant requests that the treatment be stopped
- 1039 • One distinct episode of DKA
- 1040 • One distinct severe hypoglycemia event as defined in section 11.1.2.1

1041 **11.4.2 Criteria for Suspending or Stopping Overall Study**

1042 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
1043 hyperglycemia event (as defined in section 11.1.2.2), use of the study device system will be
1044 suspended while the problem is diagnosed.

1045 If more than 1 serious hypoglycemia or more than 1 DKA event occurs, the study may be paused
1046 to determine a root cause prior to continuation of the study.

1047 In addition, study activities could be similarly suspended if the manufacturer of any constituent
1048 study device requires stoppage of device use for safety reasons (e.g. product recall). The affected
1049 study activities may resume if the underlying problem can be corrected by a protocol or system
1050 modification that will not invalidate the results obtained prior to suspension. The study Medical
1051 Monitor will review all adverse events and adverse device events that are reported during the study
1052 and will review compiled safety data at periodic intervals (generally timed to the review of
1053 compiled safety data by the DSMB). The Medical Monitor may request suspension of study
1054 activities or stoppage of the study if deemed necessary based on the totality of safety data available.

1055 **11.5 Independent Safety Oversight**

1056 A Medical Monitor will review all DKA and severe hypoglycemia irrespective of relatedness to
1057 study device use, and all serious events (including UADEs) related to study device use at the time
1058 of occurrence. The Medical Monitor also will be informed of any ADEs not meeting criteria for a
1059 UADE.

1060 **Chapter 12: MISCELLANEOUS CONSIDERATIONS**

1061 **12.1 Prohibited Medications, Treatments, and Procedures**

1062 Child participants using glulisine at the time of enrollment will be asked to contact their personal
1063 physician to change their prescribed personal insulin to lispro or aspart for the duration of the trial.

1064 The study devices (study insulin pump, study CGM) must be removed before Magnetic Resonance
1065 Imaging (MRI), Computed Tomography (CT) or diathermy treatment. Participants may continue
1066 in the trial after temporarily discontinuing use if requiring one of the treatments above.

1067 **12.2 Participant Withdrawal**

1068 Participation in the study is voluntary, and a participant may withdraw at any time. For participants
1069 who withdraw, their data will be used up until the time of withdrawal.

1070 **12.3 Confidentiality**

1071 For security and confidentiality purposes, subjects will be assigned an identifier that will be used
1072 instead of their name. Protected health information gathered for this study may be shared with the
1073 third party collaborators. De-identified subject information may also be provided to collaborators
1074 involved in the study after the appropriate research agreement has been executed.

1075 **Chapter 13: STATISTICAL CONSIDERATION**

1076 **13.1 Statistical and Analytical Plans**

1077 This trial is single-armed and not powered to detect differences between groups. The study is
1078 designed to obtain a primary safety profile on patients in this age-group.

1079 This study is an early feasibility study that will test the safety of t:slim X2 with Control-IQ
1080 Technology in an outpatient setting. These studies would generate up to 75 days of closed-loop
1081 data. This sample size allows for subject withdrawal.

1082 **13.2 Statistical Hypotheses**

1083 **13.2.1 Primary Outcome**

1084 Number of subject with less than 6% time below 70mg/dL and less than 40% time above
1085 180mg/dL.

1086 **13.2.2 Secondary Outcome**

- 1087 1. % time spent <70 mg/dl, <60mg/dl, <54mg/dL, and <50mg/dL
- 1088 2. % time spent >180mg/dl, and >250mg/dl, >300 mg/dl
- 1089 3. % time spent between 70-180mg/dl
- 1090 4. % time spent between 70-150mg/dl
- 1091 5. Number of hypoglycemia below 70 mg/dL
- 1092 6. Number of carbohydrate treatments, as well as total amount of carbohydrates used for
1093 treatments.
- 1094 7. Time spent in closed loop
- 1095 8. Time with available CGM
- 1096 9. Number of subject with more than 70% time in 70-180mg/dL range with less than 4%
1097 time below 70mg/dL

1098 **13.2.3 Success Criteria / Goal**

1099 As a general rule, a session will be considered useful for data analysis if the subject completes
1100 close to 80% of the active study protocol. Sessions are considered separate: (i) Supervised
1101 Phase=complete at least 38 hours of AP; (ii) at home use=complete at least 56 hours of AP.

1102 *The primary goal will be considered met if the primary outcome is achieved for 65% or more of
1103 the subjects.*

1104 **13.2.4 Statistical Analysis Plan**

1105 Proportions of subject matching primary criteria will be computed and directly compared to 65%
1106 (considered baseline). Further analysis will be performed using a chi² test of goodness of fit. Based
1107 on prior data in 6-12 year olds we anticipate a possible effect size of 0.64, which would allow to
1108 detect a difference with 70% power considering our sample size.

CLINICAL PROTOCOL

1109 Overall outcomes will be compared to the normative data below (values derived from the analysis
1110 of 30 6-12 year old T1D subjects using pumps and CGM and rounded for ease of use):

	Baseline	
	mean	std
% time below 50mg/dL	0.5%	0.5%
% time below 54mg/dL	1%	0.8%
% time below 60mg/dL	2%	1%
% time below 70 mg/dL	4%	2.5%
% time between 70-140mg/dL	40%	9%
% time between 70-180mg/dL	60%	9%
% time above 180mg/dL	35%	9%
% time above 250mg/dL	11%	5%
% time above 300mg/dL	4%	3%
Average CGM [mg/dL]	162.0	15.0

1111 This analysis will be performed using a single group one sided t-test for mean comparison for
1112 outcomes that can be assumed normally distributed and One-Sample Wilcoxon Signed Rank test
1113 for median comparison for the others, this analysis is not powered.

1114 Secondary outcomes will be reported for the entire period and for the supervised and home phases
1115 separately. Outcomes by phase will be compared to each other to assess possible loss of
1116 performances during the transition at home. For this purpose, McNemar's tests will be used to
1117 compare the supervised phase to the home phase for the primary outcome and secondary outcome
1118 # 6, 7, and 8. All other outcomes will be analyzed using repeated measure ANOVA. Significance
1119 of 0.05 will be used.

1120 This analysis is not powered.

1121 **Chapter 14: DATA COLLECTION AND MONITORING**

1122 **14.1 Case Report Forms and Device Data**

1123 The study data are collected through a combination of case report forms (electronic and paper) and
1124 electronic device data files obtained from the software and individual hardware components.
1125 These electronic device files and electronic CRFs are considered the primary source
1126 documentation.

1127 When data are directly collected in electronic case report forms, this will be considered the source
1128 data. Records will be maintained in accordance with ICH E6 and institutional regulatory
1129 requirements for the protection of confidentiality of participants.

1130 **14.2 Study Records Retention**

1131 Study documents should be retained for a minimum of 2 years after the last approval of a marketing
1132 application in an ICH region and until there are no pending or contemplated marketing applications
1133 in an ICH region or until at least 2 years have elapsed since the formal discontinuation of clinical
1134 development of the investigational product. These documents should be retained for a longer
1135 period, however, if required by local regulations. No records will be destroyed without the written
1136 consent of the sponsor, if applicable. It is the responsibility of the sponsor to inform the
1137 investigator when these documents no longer need to be retained.

1138 **14.3 Protocol Deviations**

1139 A protocol deviation is any noncompliance with the clinical trial protocol, Good Clinical Practices
1140 (GCP), or procedure requirements. The noncompliance may be either on the part of the participant,
1141 the investigator, or the study site staff. As a result of deviations, corrective actions may be
1142 developed by the site and implemented as appropriate. Major deviations will be reported to the
1143 IRB-HSR within 7 calendar days of when the study team becomes aware of the event.

1144 **Chapter 15: ETHICS/PROTECTION OF HUMAN PARTICIPANTS**

1145 **15.1 Ethical Standard**

1146 The investigator will ensure that this study is conducted in full conformity with Regulations for
1147 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21
1148 CFR Part 56, and/or the ICH E6.

1149 **15.2 Institutional Review Boards**

1150 The protocol, informed consent form(s), recruitment materials, and all participant materials will
1151 be submitted to the IRB for review and approval. Approval of both the protocol and the consent
1152 form must be obtained before any participant is enrolled. Any amendment to the protocol will
1153 require review and approval by the IRB before the changes are implemented to the study. All
1154 changes to the consent form will be IRB approved; a determination will be made regarding whether
1155 previously consented participants need to be re-consented.

1156 **15.3 Informed Consent Process**

1157 **15.3.1 Consent Procedures and Documentation**

1158 Informed consent is a process that is initiated prior to an individual's agreement to participate in
1159 the study and continues throughout the individual's study participation. Extensive discussion of
1160 risks and possible benefits of participation will be provided. Consent forms will be IRB approved
1161 and the participant will be asked to read and review the document. The investigator or their
1162 delegate will explain the research study to the parent/guardian(s) and answer any questions that
1163 may arise. All participants will receive a verbal explanation in terms suited to their comprehension
1164 of the purposes, procedures, and potential risks of the study and of their rights as research
1165 participants. Parent/guardian(s) will have the opportunity to carefully review the written consent
1166 form and ask questions prior to signing.

1167 The parent/guardian(s) will sign the informed consent document prior to any procedures being
1168 done specifically for the study. The parent/guardian(s) may withdraw their child's consent at any
1169 time throughout the course of the trial. A copy of the informed consent document will be given to
1170 the parent/guardian(s) for their records. The rights and welfare of the participants will be protected
1171 by emphasizing to them that the quality of their medical care will not be adversely affected if they
1172 decline to participate in this study.

1173 A child participant is considered enrolled when the informed consent form has been signed.

1174 **15.3.2 Participant and Data Confidentiality**

1175 The study monitor, representatives of the IRB or device company supplying study product may
1176 inspect all documents and records required to be maintained by the investigator, including but not
1177 limited to, medical records (office, clinic, or hospital) for the participants in this study.

UNIVERSITY OF VIRGINIA

1178 The study participant's contact information will be securely stored at the clinical site for internal
1179 use during the study. At the end of the study, all records will continue to be kept in a secure
1180 location for as long a period as dictated by local IRB and Institutional regulations.

1181 Study participant research data, which is for purposes of statistical analysis and scientific reporting,
1182 will be transmitted to and stored at the University of Virginia Center for Diabetes Technology.
1183 This will not include the participant's contact or identifying information. Rather, individual
1184 participants and their research data will be identified by a unique study identification number. The
1185 study data entry and study management systems used by research staff will be secured and
1186 password protected. At the end of the study, all study databases may be de-identified and archived
1187 at the University of Virginia Center for Diabetes Technology.