

1 **Official Title**

2 **Influenza Vaccination Effectiveness of a Quadrivalent Inactivated Vaccine in**
3 **Pregnant Women and Young Infants (Aged 6 months and Below) During**
4 **Influenza Season 2019-2020**

5

6 **Unique Protocol ID: 16708**

7 **6 May 2021**

8

9

10

11

12

13

14

15

16

17

18

19

20 **Statistical analysis**

21 Women were excluded from the statistical analysis for the following reasons that
22 occurred before the onset of influenza season: decision to withdraw from the study,
23 loss to follow-up, post-partum influenza vaccination (cocooning), pregnancy
24 discontinuation, spontaneous abortion, perinatal death. Women were followed for the
25 entire influenza season, regardless of onset of influenza or ILI. The analysis was
26 restricted to the influenza season. The primary outcome of the study was influenza
27 onset in pregnant women. Secondary outcomes were the onset of influenza in their
28 infants and the onset of ILI, ARI, febrile episode, pneumonia, healthcare seeking,
29 hospitalization, use antibiotics and use of antivirals in pregnant women and their
30 infants. Categorical and continuous variables were compared between vaccinated and
31 unvaccinated groups using the χ^2 test and T-test, respectively. Logistic regression
32 analysis was conducted in order to identify factors significantly associated with a
33 history of influenza vaccination in 2019-2020. Odds ratio (OR) and confidence
34 intervals (CIs) were estimated. We have used a Bayesian model selection for logistic
35 regression models with random intercept. The primary outcome of interest was to
36 estimate the average rate of influenza for each group (vaccinated versus unvaccinated
37 group). Our data was a 2 by 2 cross-tabulated data arising from two binary variables
38 with possible values 0 or 1. The first variable was whether a pregnant woman has
39 been vaccinated (value =1) or not (value =0). The second variable was the age group
40 of the pregnant woman. The first group consisted of pregnant women aged less than
41 32 years (value =0) or not (value=1). We compared the vaccinated pregnant women
42 group with the group of non-vaccinated pregnant women to model the proportion of
43 effectiveness that is the event that a pregnant woman had influenza. We used the
44 Bayesian beta-binomial model due to data heterogeneity because of a large number of

45 zeros were observed. Given this heterogeneity assumption, a Bayesian hierarchical
46 random-effects model was used to analyze the data. The assumption of our model
47 was that the number of individuals y_j responding to influenza vaccination is
48 binomially distributed as:

49 $y_j \sim \text{Binomial}(p_j, n_j)$,

50 where the success rate (p_j) was the probability of influenza onset in mothers and n_j
51 was the number of individuals in the j th group. We note that there are only 2 groups
52 ($j=1,2$): the vaccinated and the not vaccinated groups. The probability (p_j) itself
53 follows a beta distribution with parameters (a_j, b_j). Non-informative distributions
54 priors distributions were placed on the parameters of the beta distributions. P-values
55 of 0.05 or less were considered statistically significant. IVE against influenza was
56 estimated as follows: $[1 - (\text{incidence rate of influenza in vaccinated women} / \text{incidence rate of influenza in unvaccinated women})] \times 100$ [11]. The statistical analysis was
57 conducted using R 3.6 (R Foundation for Statistical Computing).
58

59

60

61 **Results**

62 A total of 949 pregnant women were enrolled in the study (Figure 1). Of them, 94
63 women were excluded from the analysis because of the following reasons: lost to
64 follow-up or decision to withdraw from the study (65 women), post-partum influenza
65 vaccination (cocooning) (25 women), spontaneous abortion (3 women), and perinatal
66 death (1 woman). Therefore, 855 pregnant women were included in the analysis.
67 Their mean age was 32.9 years (range: 18-45 years) and their mean gestational age at
68 enrollment was 23.3 weeks (range: 3-39 weeks).

69 Of the 855 pregnant women, 525 (61.4%) were vaccinated against influenza and 330
70 (38.6%) refused vaccination. No serious adverse event occurred. Pregnant women
71 with a history of influenza vaccination the past (2018-2019) season were more likely
72 to get vaccinated against influenza in 2019-2020 compared to women with no history
73 of vaccination (91.8% versus 55.1%, p-value<0.001). In the logistic regression
74 analysis the following variables were significantly associated with a history of
75 influenza vaccination in 2019-2020: lower gestational age (OR: 0.998; CI: 0.998-
76 0.999), influenza vaccination the past season (OR: 8.8; CI: 4.7-16.2), and no smoking
77 during pregnancy (OR: 0.6; CI: 0.4-0.9).

78 ***Estimation of IVE in pregnant women***

79 Of the 855 pregnant women included in the analysis, 636 women were still pregnant
80 during the 2019-2020 influenza season and comprised the study group for the
81 estimation of IVE in pregnancy. Of them, 406 women (63.8%) were vaccinated
82 against influenza and 230 (36.2%) refused vaccination. Table 1 shows their
83 characteristics by influenza vaccination status.

84 Twelve of the 636 pregnant women tested positive for influenza (8 cases of influenza
85 A/H3N2, 2 cases of A/H1N1 and 2 cases of influenza B). Table 2 summarizes their
86 morbidity by influenza vaccination status. The incidence of influenza differed
87 between vaccinated women (6/406; 1.47%) and unvaccinated women (6/230; 2.6%),
88 however the difference was not statistically significant. Similarly, higher rates of
89 febrile episode, ILI, pneumonia, healthcare seeking, hospitalization, use of antibiotics
90 and antivirals were noted in the unvaccinated group compared to the vaccinated
91 group, however none of these differences reached statistical significance (Table 2).
92 The IVE of QIV against influenza was 43.5% for pregnant women during 2019-2020
93 in Greece. The IVE of QIV against influenza was 43.5% (95% CI: 28.4%-55.6%) for
94 pregnant women during 2019-2020 in Greece.

95 According to the regression model the age was not a predictor of influenza onset in
96 the sample of pregnant women. Influenza vaccination of pregnant women reduced
97 their logit to develop influenza by -4.2 (95% CI -3,7 -4,7), which indicates that
98 influenza vaccination added a statistically significant protection to pregnant women.

99 ***Estimation of IVE in infants***

100 A total of 474 infants were born before or during the 2019-2020 influenza season and
101 constituted the group for the estimation of IVE in infants. Their mean birth weight
102 was 3189 g (range: 630-4650 g) and their mean gestational age was 39.1 weeks
103 (range: 28-42 weeks). There were 281 (59.3%) infants whose mothers were
104 vaccinated during pregnancy and 193 (40.7%) infants of unvaccinated mothers. The
105 unvaccinated mothers had a mean gestational age of 31.2 weeks at enrollment
106 compared to a mean gestational age of 28.3 weeks of vaccinated mothers (p-value

107 <0.001); no other significant difference was noted between the two groups (data not
108 shown).

109 Overall, 8 of the 474 infants tested positive for influenza (5 cases of influenza
110 A/H3N2, 2 cases of influenza A/H1N1 and 1 of influenza B). Table 3 summarizes
111 their morbidity by maternal influenza vaccination status. Infants of unvaccinated
112 mothers more often developed influenza, febrile episodes, ILI, ARI, AOM and
113 pneumonia and had increased rates of healthcare seeking, hospitalization, use of
114 antibiotics and use of antiviral agents compared to infants whose mothers were
115 vaccinated, however these differences reached statistical significance only for ARI
116 and use of antiviral agents (p-values=0.012 and 0.036, respectively). The IVE against
117 influenza for infants was estimated at 31.4% in 2019-2020. The IVE against influenza
118 for infants was estimated at 31.4% (95% CI: 4%-51%) in 2019-2020.

119 According to the regression model the age of pregnant women was not a predictor of
120 influenza onset in the sample of young infants. Additionally the influenza vaccination
121 of pregnant women reduced the logit of their infants to develop influenza by -4.2
122 (95% CI -3.6, -4.9), which indicates that influenza vaccination during pregnancy
123 added a statistically significant protection to young infants.

124

125

126

127

128

129 **Table 1. Characteristics of pregnant women (n=636) by influenza vaccination status**130 **Characteristic** **Vaccinated** **Unvaccinated** **P-value**131 **n=406 (%)** **n=230 (%)**

132 _____

133 Mean age, years (range) 33.1 (21-45) 32.3 (18-45) 0.055

134 Mean gestational age, weeks (range) 19.3 (3-39) 21.6 (3-39) 0.003

135 Underlying disease 49 (12.2) 32 (14.0) 0.512

136 Influenza vaccination the past season 94 (23.2) 14 (6.1) <0.001

137 Mean no. of cohabitants (range) 1.7 (0-8) 1.8 (0-8) 0.147

138 Children <5 years 161 (39.8) 79 (34.5) 0.190

139 Mean no. of children <5 years (range) 0.5 (0-3) 0.4 (0-3) 0.325

140 No smoking during pregnancy 350 (93.1) 173 (84.0) 0.001

141 142 Smoking during pregnancy 26 (6.9) 33 (16.0)

143 _____

144

145

146

147

148

149

150

151 **Table 2. Morbidity (%) of pregnant women (n=636) by influenza vaccination status**

152	Type of morbidity	Vaccinated	Unvaccinated	P-value
153		n = 406 (%)	n = 230 (%)	
154	Influenza*	6 (1.5)	6 (2.6)	0.314
155	Febrile episode	17 (4.2)	13 (5.7)	0.402
156	ARI	115 (28.3)	50 (21.7)	0.069
157	ILI	11 (2.7)	11 (4.8)	0.169
158	Pneumonia	2 (0.5)	4 (1.7)	0.118
159	Healthcare seeking	5 (1.2)	5 (2.2)	0.359
160	Hospitalization	0 (0.0)	1 (0.4)	0.184
161	Use of antibiotics	11 (2.7)	7 (3.0)	0.807
162	Use of antivirals	3 (0.7)	4 (1.7)	0.245

163

164 * laboratory-confirmed influenza

165 ARI: acute respiratory infection; ILI: influenza-like illness

166

167

168

169

170 **Table 3. Morbidity (%) of infants (n=474) by maternal influenza vaccination status**

171	Type of morbidity	Vaccinated	Unvaccinated	P-value
172		n = 281 (%)	n = 193 (%)	
173	Influenza*	4 (1.4)	4 (2.1)	0.59
174	Febrile episode	7 (2.5)	8 (4.1)	0.312
175	ARI	17 (6.0)	27 (14.0)	0.012
176	ILI	6 (2.1)	6 (3.1)	0.507
177	AOM	1 (0.3)	2 (1.0)	0.358
178	Pneumonia	0 (0.0)	1 (0.5)	0.227
179	Healthcare seeking	6 (2.1)	10 (5.2)	0.144
180	Hospitalization	0 (0.0)	1 (0.5)	0.277
181	Use of antibiotics	4 (1.4)	5 (2.6)	0.360
182	Use of antivirals	0 (0.0)	3 (1.6)	0.036

183

184 * laboratory-confirmed influenza

185 ARI: acute respiratory infection; ILI: influenza-like illness; AOM: acute otitis media

186

187

188

189

190