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STUDY SYNOPSIS

Protocol Title

Cardiac Amyloidosis Discovery Trial (CAD-Trial)

Protocol Number

7.0

Design

This is a single center, diagnostic clinical trial in which we aim to
prospectively validate a deep learning model that identifies patients
with features suggestive of cardiac amyloidosis, including transthyretin
cardiac amyloidosis (ATTR-CA). Cardiac Amyloidosis is an age-related
infiltrative cardiomyopathy that causes heart failure and death that is
frequently unrecognized and underdiagnosed. We have developed a
deep learning model that identifies patients with features of ATTR-CA
and other types of cardiac amyloidosis, including echocardiographic,
ECG, and clinical factors. By applying this model to the entire Columbia
University Irving Medical Center’s patient population, we will identify a
list of patients at highest predicted risk for having undiagnosed cardiac
amyloidosis. We will then invite these patients for further testing to
diagnose cardiac amyloidosis with the goal of recruiting 100 total
patients.

Consented eligible patients will be evaluated for the presence and
clinical manifestations of cardiac amyloidosis. Patients will undergo a
single study visit, using amyloid nuclear scintigraphy, monoclonal
protein testing and a physical examination. Those who meet criteria for
the disease will be given the diagnosis of cardiac amyloidosis. Patients
will be counseled on the results of their test findings and appropriate
referrals made for further care.

Study Sites

This study is to be conducted at NYP Milstein Hospital and 21 Audubon
Clinical Cardiovascular Research Laboratory for the Elderly location.

Time on Study

The duration of patient participation in this study is 1 day.

Primary Objective

To prospectively validate a deep learning model to diagnose cardiac
amyloidosis, an underdiagnosed, lethal, and treatable cause of heart
failure.

Target Sample Size

100 patients

Inclusion and
Exclusion Criteria

Every participant must meet all of the following inclusion criteria to be
eligible for enrollment in this study:

1. High predicted probability of having cardiac amyloidosis as
determined by deep learning model

2. Age 250years

3. Electronically stored ECG and echocardiogram within 5 years of
study start date




4.

Ability for the patient or health care proxy to understand and
sign the informed consent after the study has been explained.

Exclusion criteria

1.
2.
3.

6
7
8.
9

10.

Primary amyloidosis (AL) or secondary amyloidosis (AA).
Prior liver or heart transplantation.

Active malignancy or non-amyloid disease with expected survival
of less than 1 year.

Previous testing for cardiac amyloidosis such as amyloid nuclear
scintigraphy, cardiac, or fat pad biopsy

Impairment from stroke, injury or other medical disorder that
precludes participation in the study.

Disabling dementia or other mental or behavioral disease.
Enrollment in a clinical trial not approved for co-enroliment.
Inability or unwillingness to comply with the study requirements.
Nursing home resident.

Other reason that would make the subject inappropriate for
entry into this study.

Aims The specific aims of this investigation include:

1. To prospectively validate that deep learning models can detect
undiagnosed cardiac amyloidosis in large populations of patients
who have undergone cardiac testing.

2. To incorporate additional data to improve the deep learning
model’s detection of cardiac amyloidosis.

Safety The safety of study participants will be evaluated by:
Assessments 1. Assessment of adverse events (AEs), including serious adverse
events (SAEs).

2. Vital sign measurements (blood pressure, pulse rate, and
respiratory rate).

3. 12-Lead electrocardiogram (ECG).

4. Physical examinations

5. Echocardiography




LIST OF ABBREVIATIONS AND DEFINITIONS OF TERMS

Abbreviation or Specialist Term

Explanation

99MmTc-PYP 99mTechnetium pyrophosphate

99MmTc-HMDP 99mTechnetium hydroxymethylene
diphosphonate

AE Adverse event

Al Artificial Intelligence

TTR Transthyretin

AL-CA Light chain cardiac amyloidosis

ATTRm Mutant Transthyretin amyloidosis

ATTRwt Wild-type Transthyretin amyloidosis

ATTR-CA Transthyretin cardiac amyloidosis




1. INTRODUCTION

4.12. Heart failure is a leading cause of death, morbidity, and health care spending in the United
States.

Heart failure is common disease with 6.5 million adults in the United States having a diagnosis of
heart failure and accounting for 1in 8 deaths.>? Heart failure is a highly morbid disorder, with patients
having low quality of life and frequent hospitalizations.* It is a leading cause of health care spending
with an estimated $30.7 billion spent in 2012 for medications, the cost of health care services, and
lost income from missing days of work.! Heart failure is subdivided by left ventricular ejection fraction
into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection
fraction (HFpEF). HFrEF has a broad array of therapies that have been shown to improve outcomes,
whereas there are no treatments which have been proven to reduce mortality in unselected
populations with HFpEF. The emerging paradigm of HFpEF is that it is a clinical syndrome with a
diverse set of underlying pathophysiologies and multitude of etiologies which require specific and
varying treatments.

1.2. Amyloidosis is a leading cause for heart failure and heart rhythm disturbance

Systemic amyloidosis results from deposition of amyloid fibrils in tissues throughout the body,
including the heart, nerves, lungs, gastrointestinal tract, and skin. Cardiac amyloidosis is the clinical
syndrome that results from amyloid fibril deposition in the heart. Patients most commonly present
with a heart failure syndrome with marked LV wall thickening and preserved ejection fraction on
imaging. The two most common types of cardiac amyloidosis are transthyretin cardiac amyloidosis
(ATTR-CA) and light chain cardiac amyloidosis (AL-CA). Both of these entities were previously thought
to be rare, but it has been increasingly recognized that ATTR-CA is far more common than previously
thought and may be present in up to 13% of hospitalized patients with HFpEF and an increased wall
thickness over the age of 60 years.> Misdiagnosis is common, with studies consistently finding
significant delays in diagnosis of cardiac amyloidosis.®®

1.3. Biology and pathophysiology

The pathophysiology of cardiac amyloidosis is highly dependent on the type of fibril involved. ATTR-
CA results from deposition of misfolded transthyretin (TTR) monomers. In vivo, TTR is primarily
synthesized in the liver and forms a tetrameric protein with each subunit containing 127 amino acids.
This tetrameric protein is often referred to as “prealbumin” and serves as a carrier for thyroid
hormone and part of the complex that carries vitamin A. The TTR tetramer can dissociate into
monomers, and in some cases these monomers can become misfolded into an insoluble fibril and
irreversibly deposit into tissues. ATTR is divided into two types: wild-type TTR (ATTRwt) and mutated
(ATTRm). ATTRwt is predominantly a disease of the elderly and is characterized by high rates of
cardiac involvement (ATTRwt-CA).° In ATTRm, patients have specific mutations in the TTR gene which



leads to increased rates of tetramer dissociation which subsequently deposit as amyloid fibrils into
tissues as in the heart (ATTRm-CA) or nerves. More than 130 genetic mutations have been
recognized, with Val122lle being particularly common in the United States with an estimated 1.3
million African Americans affected.?

1.4. Therapy for ATTR-CA is available

Historically, treatment of ATTR-CA was limited to supportive care and organ transplantation.
However, recent work has led to the development of amyloid-targeted therapy. Possible treatment
strategies for ATTR involve preventing production of the transthyretin protein, stabilizing the TTR
tetramer, and removing fibrils from tissues. In 2019, tafamidis (VYNDAMAX™), a small molecule TTR
tetramer stabilizer, was found to improve the prognosis of patients with ATTR-CA and became FDA
approved as the first therapy targeted for ATTR-CA.1! Strategies to prevent TTR production using
small interfering RNA (patisiran) and antisense oligonucleotides (inotersen) have been shown to

12,13 and trials are ongoing to study their use

improve outcomes in ATTRm hereditary polyneuropathy,
or similar compounds in ATTR-CA. Because these treatments prevent progression of the disease
rather than reversing fibril deposition that has already occurred, there has been a drive to diagnose

patients in the early stage of disease prior to the development of severe end-organ dysfunction.

1.5. Non-invasive nuclear imaging can accurately diagnose ATTR-CA

The diagnosis of ATTR-CA could historically only be made by

HICI=1.73

endomyocardial biopsy, a test that is invasive, expensive,
and often only available in tertiary care transplant centers.
Cardiac imaging with echocardiography and cardiac
magnetic resonance imaging can be suggestive of the

diagnosis, but the hallmark features of LV thickening are .
5,0525mm2 5,110/ mm?

nonspecific. Work over the last decade has shown that bone
seeking radiopharmaceuticals such as technetium-99m | Figure 1: PYP scan. This figure

pyrophosphate (99mTc-PYP), 99mTc-labeled 3,3-diphos- | démonstrates a grade 3 99mTc-PYP scan
with H:CL ratio of 1.73 which is consistent

phono-1,2-propanodicarboxylic acid (99mTc-DPD), or 99mTc- ) ) )
with a diaanosis of ATTR-CA.

hydroxymethylene diphosphonate (99mTc-HMDP) are
specific for ATTR-CA.* Non-invasive testing pathways which combine these nuclear scans with
monoclonal protein testing to rule out AL-CA have been shown to accurately diagnose ATTR-CA when
compared to endomyocardial biopsy. These scans are graded using a semiquantitative scale from 0-
3 using visual appearance compared to ribs with planar scans with grade 2 and 3 scans thought to be
consistent with ATTR-CA, with grade 0 having no myocardial uptake, grade 1 having some cardiac
uptake but less than ribs, grade 2 having cardiac uptake equal to ribs, and grade 3 having cardiac



uptake greater than ribs with decreased bone uptake (Figure 1). In addition to visual scoring,
guantitative methods can be used by measuring the heart to contralateral chest ratio (H:CL) which
measures counts over the heart and comparing it to an equal sized area of interest measured over
the contralateral chest. Further refinements of 99mTc-PYP scanning have included the incorporation
of single photon emission computed tomography (SPECT) imaging to improve test accuracy. Likely a
result of the increasing awareness of ATTR-CA and the availability of non-invasive diagnostic testing,
testing volume has increased yearly and as of 2019 more than 130 99mTc-PYP scans are conducted
at our center each year with a positive test rate greater than 30%.

1.6. Artificial intelligence

Artificial intelligence (Al) is a general term for computing techniques which seek to simulate human
thinking. Historically, these techniques used rule-based algorithms to solve simple problems.
Advances in computer power and development of more complex algorithms have allowed Al
techniques to be applied to a broad range of problems. Machine learning approaches, which allow
for algorithms to be trained using data sets without explicit instruction from humans, have had the
most widespread success. Deep learning, a subset of machine learning, has been particularly useful
in tasks related to interpreting images. Deep learning takes many layers of mathematical equations
to try and interpret some input, such as the color of a pixel. The sum of these layers is often called a
neural network due to the model being inspired by the way that neurons are interconnected in the
human brain. When trained on large, feature rich datasets in focused problems, the accuracy of deep
learning neural networks can outstrip even expert human observers. The success of such neural
networks has been demonstrated in the reading of mammograms,® ECG algorithms which predict a
patient’s risk of hypertrophic cardiomyopathy based on a 12-lead ECG,® and diagnosis of diabetic
retinopathy based on retinal images.'’ The laboratory of Dr. Adler Perotte, a close collaborator in this
study, has expertise in computational statistics and artificial intelligence as it applies to electronic
health data.

1.7. Informatics pipeline

Over the past 18 months, our group has been working to build an informatics pipeline of patients
undergoing cardiovascular testing at Columbia University Irving Medical Center. We have abstracted
more than 2 million ECGs, over 200,000 echocardiograms, and more than 750 99mTc-PYP scans and
are working to add other cardiovascular and radiologic tests. This database includes ECG physician
reports, raw ECG waveforms, ECG reading-software abstracted metadata like QRS voltage and QRS
length, echocardiogram reports, chest x-ray images, and 99mTc-PYP scan clinical reports, planar and
SPECT images, and concurrently obtained chest CT scans. This interlinked database is a large, feature-
rich dataset which is well-suited for using deep learning to answer complex clinical questions such as
using the results of a more common testing modality (i.e. echocardiography and electrocardiography)
to predict the outcome of a less common one (99mTc-PYP scanning).



2. STUDY OBIJECTIVES & STUDY DESIGN

2.1 Aim1:

To prospectively validate that deep learning models can detect undiagnosed cardiac amyloidosis
in large populations of patients undergoing cardiac testing

2.2 Rationale

This study aims to create an automated, end-to-end pathway which can accurately identify patients
at high probability of having cardiac amyloidosis who are currently undetected. The specific analytical
objectives of this aim include the following: (1) use a deep learning model to identify 100 patients at
high probability of having undiagnosed cardiac amyloidosis and invite them for diagnostic testing with
the hypothesis that > 20% will be found to have cardiac amyloidosis. A positive detection rate of this
amount could likely allow for effective active case surveillance in at-risk populations and result in
adoption of the technology at other institutions, potentially leading to thousands of additional
diagnoses being made each year.

2.3. Database Structure:
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we identified 212 patients with | database has three significant inputs (ECG, abstracted clinical
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criteria and 455 patients with no CA, typically as diagnosed by 99mTc-PYP scanning).

cardiac amyloidosis.?®* 1 A

information, and echocardiography) which are used in our deep
learning model to predict one output (presence or absence of ATTR-

manuscript analyzing these patients in detail is in revisions. Additional lists of patients with AL-CA
and ATTR-CA were obtained from department records. The ECG database includes over 2 million
ECGs. At Columbia University Irving Medical Center, ECGs are stored and analyzed digitally using the
MUSE Cardiology Information System (GE Healthcare, Chicago, IL, United States). For each individual
ECG, the MUSE database stores high level, quantitative data in a matrix format for all 12 ECG leads in
addition to the physician text-based report. Quantitative data includes interval length (such as PR,




QRS, and QT intervals) and peak wave amplitude (such as P, Q, R, S, and T wave amplitude), and each
lead can be analyzed individually or as a sum of all 12 leads. The echocardiogram database includes
over 200,000 echocardiograms in more than 100,000 patients. At CUIMC, echocardiograms are stored
digitally and analyzed using the Syngo system (Siemens Healthineers, Erlangen, Germany). Our
echocardiogram database contains abstracted information from the clinician report, including
interventricular septal thickness, LV posterior wall thickness, LV ejection fraction, LV end-diastolic
dimension, left atrial volume indexed for body surface area, and aortic root dimensions. With the
combination of these three databases, we are able to rapidly conduct experiments to identify ECG,
echocardiographic, demographic, and clinical features which distinguish ATTR-CA cases from normal
controls.

4.12. Traditional statistical modeling:

The dataset used to create the traditional statistical model has nearly 1,000 variables per individual
case. To ensure all cases are included, they must have <10% of data missing including no missing data
in variables considered most critical (LV ejection fraction, interventricular septal thickness, posterior
wall thickness, age, gender, ECG paced versus unpaced). From there, multiple imputation by chained
equations (MICE) is conducted to ensure all cases are included. Data is then separated into training
(70%), development (15%), and test (15%) data sets on a per-patient level. Due to limited size of the
dataset, 5-fold cross-validation will be utilized. To deal with the high dimensionality of the data, both
logit and probit regression models are generated. To minimize overfitting we prefer the use of L1
regularization over L2.

4.12. Deep learning model development

The above methods are utilized to create the same train, development, test dataset with patients
identically coded into those groups to allow for direct comparison. The first set of models generated
utilize only tabular data and are based off of neural accumulators (NAC) and neural arithmetic logic
units (NALU).2° NACs/NALUs are neural layers designed to learn functions comprised of arithmetic
expressions such as addition, subtraction, multiplication, and division. The most promising aspect of
NAC/NALU is that by learning generalizable numerical representations, there is hope to build neural
networks that are explainable with simple and sparse arithmetic of raw input features. This
architecture’s inductive bias is dependent upon learning a set of weights which, after some internal
operations, yield values near -1, 0, or 1. We have developed a modification of NAC/NALU to decrease
overfitting and improve sparsity, believing this would lead to the model to output a simpler equation
utilizing fewer features and less variance. To encourage this behavior, we appropriately
parameterized Laplace priors on our weights. We refer to these layers as Laplacian-regularized NAC
and NALU (LR-NAC, LR-NALU). From there, we plan to include the raw ECG waveform data in the
NAC/NALU models as well as develop a convolutional neural network (CNN) model based primarily
of the waveform data as discussed in Aim 2. The CNN model will be developed similarly using the



same train/dev/test splits. We will utilize the Adam optimizer and binary cross entropy as the loss
function. We will assess convolutions across a single lead as well as a pooled convolution across all
leads. We will then evaluate performance characteristics of the model with probability thresholds of
1%, 5%, 10%, 20%, 50%, and 75%.

2.6. Anticipated problems and strategies: Limited subject recruitment: We will continue to
recruit patients until we have been able to successfully enroll 100 patients. We believe the
recruitment pool of over 100,000 patients receiving an echocardiogram in the past eight years will

allow for successful recruitment . False positive or negative amyloid scintigraphy scanning with planar

imaging: 99mTc-PYP scanning has been found to have high levels of accuracy compared to biopsy in
a large multicenter study which included patients seen at CUIMC.!* Additionally, we will use SPECT
imaging which further reduces the risk of false positive testing.?! Identification of other types of

amyloidosis: Every patient enrolled will undergo monoclonal protein testing to rule out AL
amyloidosis and will have a clinical evaluation of assess for the risk of rare types of amyloidosis.

Age
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to improve the ability of deep learning models
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Carpal tunnel syndrome
Spinal stenosis
Joint replacement

2.8. Rationale: Because current therapy for ] Tendon rupture
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to predict cardiac amyloidosis

ATTR-CA only prevent disease progression
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Predictive temporal symptom patterns?

However, because the symptoms and structural
changes of cardiac amyloidosis are more

Figure 4: Aim 2. With the addition of raw ECG
waveforms electronic health record information to pre-

apparent in late stage disease, it is far more | existing data in our pipeline, we aim to improve the
common for the diagnosis to be made inits later | predictive capacity of our model and potentially identify

stages. In its current form, our deep learning | novel clinical associations for ATTR-CA.

model works incorporates many markers of
advanced disease like decreased ECG voltage and increased LV wall thickness. As a result, in the same
manner that diagnosis of ATTR-CA is easier with a more extreme phenotype in traditional clinical care,
it is likely that our current model will have this same weakness. We believe the incorporation of
additional clinical data and raw ECG waveform may improve the ability to detect patients at earlier
stages of the disease and with less pronounced cardiac manifestations.



2.9. Orthopedic manifestations: Previous work has shown that the orthopedic manifestations

22 gpinal stenosis,®> 2% and hip and knee osteoarthritis requiring

of carpal tunnel syndrome,
arthroplasty?> can precede the diagnosis of cardiac amyloidosis by up to 5-7 years.
Pathophysiologically, the carpal tunnel and multiple areas in the spine are small, compressed spaces.
As a result, relatively little amyloid deposition can lead to significant symptoms, and nerve
involvement may accentuate pain syndromes. The period of time when patients have symptomatic
carpal tunnel syndrome, spinal stenosis, or osteoarthritis but before they have developed
symptomatic heart disease could be an ideal time to diagnose systemic amyloidosis and initiate
treatment. Preliminary work at our institution using manual chart abstraction has demonstrated that
these orthopedic manifestations are more common in ATTR-CA patients than in controls (to be
presented at International Society of Amyloidosis 2020 meeting). In order to incorporate these
features in our model, we will collect electronic health record data on orthopedic manifestations as
documented by Diagnosis Related Group codes, past medical and surgical history, and problem lists
all patients seen in the CUIMC system. We will then incorporate this data into our deep learning
models with two significant goals: (1) assess improvement in model’s capacity to detect ATTR-CA, and
(2) determine if it is possible to develop a model which prioritizes detection of patients with earlier
cardiac involvement.

2.10. Electrocardiogram waveform analysis: Our current deep learning model uses tabular
ECG data from the MUSE system documenting stored voltages and deflections. We believe that
improvements to the ECG portion of this model are possible by adding raw waveform data. The
waveforms on a 12 lead ECG are feature-rich with ~50,000 discrete data points as opposed to ~700
data points that are stored in the tabular data. Prior work has shown that deep learning analysis of
12 lead ECGs can identify significant pathology that would be essentially invisible to a human
interpreter.'® We plan to include the raw ECG waveform data in the NAC/NALU models as well as
develop a convolutional neural network (CNN) model based primarily of the waveform data. The CNN
model will be developed similarly using the same train/development/test splits previously discussed.
We will utilize the Adam optimizer and binary cross entropy as the loss function. We will assess
convolutions across a single lead as well as a pooled convolution across all leads. We will then
evaluate performance characteristics of the model with probability thresholds of 1%, 5%, 10%, 20%,
50%, and 75%. By adding raw waveforms data, we aim to increase the AUC of our model to >0.90.

2.11. Testing for novel clinical associations by using deep learning: The most promising
aspect of NAC/NALU-based deep learning models is that by learning generalizable numerical
representations, there is hope to build neural networks that are explainable with simple and sparse
arithmetic of raw input features. Compared to other deep learning models, the output is more
interpretable and is essentially an equation. The addition of a Laplacian-regularized filter pushes the
model to make valuables more binary, either including them entirely or not at all. Instead of finely
tuning hundreds of knobs, the model is asked to flip on switches of fewer input variables that matter.



While this may sacrifice some overall performance, it pushes the model towards simplicity which we
believe limits overfitting, improves generalizability, and most importantly points out fewer variables
that actually matter. To be used in real clinical settings and also derive insight on novel clinical
associations, a model incorporation thousands of variables is unlikely to be successful. With such
restrictions in place, we seek to determine if there is at least one novel clinical association that is
found to be important in detecting ATTR-CA that is not currently known in the scientific community.

2.12. Future Directions: (1) Clinical trial to detect early stage amyloidosis: Our initial clinical trial
(Aim 1) will likely result in identification of patients with later stage cardiac amyloidosis. By adding

the orthopedic manifestations and ECG waveform data and tuning the model for earlier stage disease
(Aim 2), we hope to be able to repeat this clinical trial but target patients with earlier stage disease

(2) Deployment of the model at additional centers: The use of ECG, echocardiographic, demographic
data, and clinical diagnoses to identify cardiac amyloidosis is generalizable to other medical centers.
We anticipate that this model could be used at other centers to identify further cohorts of patients
with cardiac amyloidosis. (3) Application of this research model to other diseases: The use of artificial

intelligence analysis of pre-existing clinical data to identify undiagnosed disease has significant
potential outside of the study of amyloidosis. It is possible that training similar models targeted at
other diseases could have success in increasing identification of rare disease such as primary
pulmonary hypertension or diseases that have a latency period that allows for improved treatment
with earlier initiation such as cancer.

2.3  Overview of Study Design

We will undertake a prospective cohort study among subjects with heart failure seen at one of two
sites: (1) Columbia University Irving Medical Center and affiliated ColumbiaDoctors sites and (2) Allen
Hospital of NY Presbyterian. Patients identified as having a high probability of having undiagnosed
cardiac amyloidosis will undergo comprehensive cardiovascular examinations including: (1) complete
medical history documenting the presence of HF and any symptoms that could be associated with
cardiac amyloidosis, as well as any additional co-morbid conditions or symptoms, (2) targeted physical
exams including orthostatic blood pressure measurements, assessment for gallops and volume status
(e.g.JVP, rales, edema) and determination of functional class, (3) standard 12 lead electrocardiogram,
(4) full two-dimensional and three-dimensional echocardiograms with Doppler flow assessment and
tissue Doppler and speckle tracking (See procedures for details), (5) cardiac amyloid scintigraphy, and
(6) blood testing for monoclonal protein testing.

2.3.1 Patient Recruitment

The CAD-Trial study is designed to identify a sufficient number of cases to prospectively validate that
deep learning models can detect undiagnosed cardiac amyloidosis in large populations of patients
undergoing cardiac testing. To accomplish this objective, we will undertake an approach to cohort



identification and selection is used that deliberately selects for subjects who are at increased risk for
cardiac amyloidosis.

Patient Recruitment: To accomplish the above objectives, the cohort will be identified by examination
of all patients who had an ECG and echocardiogram at CUIMC within the last 5 years (Figure 3). The
deep learning model will be applied to this dataset of patients to create a list of patients at highest
probability of having cardiac amyloidosis. The medical records of these patients will be evaluated for
inclusion and exclusion criteria, and the 100 highest probability patients who agree to take partin the
study will be enrolled.

Selection criteria: 100 patients will be enrolled

> 2 million patients seen at CUIMC within the last 5 years

> 100,000 patients underwent echocardiography and
ECG within the last 5 years

Deep learning algorithm incorporating echocardiography,
. . ECG, and d hi lied to th >100,000
to understand and sign the informed consent S T i

in this protocol. Inclusion criteria will include age

> 50 vyears, electronically stored ECG and
echocardiogram within 5 years of study start

date, ability for the patient or health care proxy

after the study has been explained. Exclusion |

List of candidate patients at highest probability of having
undiagnosed ATTR-CA is generated and ranked

criteria include a previous diagnosis of ATTR, AL,

or AA amyloidosis, previous testing for cardiac |

amyloidosis such as a prior cardiac amyloid
scintigraphy, cardiac, or fat pad biopsy, prior
organ transplantation, active malignancy, or
non-amyloid heart disease with an expected
survival of less than one year.

Study procedures: Eligible patients will be
identified in the manner above and invited to

Medical records reviewed for inclusion and exclusion
criteria and patients at highest risk invited to participate
until a total of 100 patients are enrolled

A total of 100 patients undergo a clinical examination,
99mTe-PYP scan, and echocardiogram

Patients excluded if
expired, younger than
50, estimated survival
less than 1 year, or
carry previous
amyloidosis diagnosis

Figure 3: Study Flow. This diagram demonstrates the
analysis of patients and data with the goal of performing
99mTc-PYP scanning on 100 patients identified by our
deep learning model to be at high probability of having

participate in the study by phone call. During undiagnosed ATTR-CA.

this phone call, they will be assessed for eligibility and undergo an informed consent process. A study
visit will then be scheduled. At the study visit, they will undergo a history and physical examination
by a physician, 12 lead electrocardiogram, transthoracic echocardiogram, blood testing for
monoclonal proteins, blood biobanking, and cardiac amyloid scintigraphy. They may be offered TTR
genetic testing by blood or saliva sample if preliminary testing is concerning for amyloidosis,
counseling on that decision, and given the choice of whether to have genetic testing without it
affecting their ability to participate in the other study procedures. Patients will be given a $100 debit
card for their participation in the study and will be provided a car service if needed and feasible for
transport to and from the study site. After completion of all testing, patients will be counseled on the
findings of their testing and appropriate referrals for follow-up or further testing will be made. For
the purposes of the study, a diagnosis of cardiac amyloidosis will be made in the following settings:



e ATTR-CA diagnosis: A diagnosis of ATTR-CA will be made according to consensus guidelines by
an amyloidosis expert.’® 1° These includes imaging criteria with requires that a patient’s
cardiac amyloid scintigraphy SPECT scan shows myocardial uptake and follow-up monoclonal
protein testing shows no evidence of AL amyloidosis or pathologic criteria with a biopsy
showing ATTR.

e AL-CA diagnosis: A clinical diagnosis of AL-CA will be by an amyloidosis expert according to
society guidelines. These includes a diagnosis made in one of the following settings: (1) cardiac
biopsy showing AL deposition and (2) extra-cardiac biopsy showing AL deposition with typical
cardiac features on imaging including echocardiography or cardiac magnetic resonance
imaging.

2.3.2 Study Procedures

The timing of all procedures in this study is outlined in Table 4. Eligible patients will be identified.
Patients who are interested in the study will have a screening visit to evaluate for eligibility and obtain
informed consent. If patients qualify for study and do consent they will have their study visit within
4 weeks of screening. At that visit they will have all of the following testing done.

Table 4. Study Procedures

Screening Phone
Procedure Baseline wrap-up
(phone visit) visit

Informed Consent X

Inclusion and Exclusion Criteria X

Baseline History

Height and Weight?

Vitals Signs

Medications

Clinical Examination

x| X| X| X| X| X

Adverse Events Review

Blood draw for monoclonal protein testing,
genetic testing, and biobanking

>

Electrocardiogram

Echocardiogram

99MTc-PYP administration

99MTc-PYP Scintigraphy

x| X| X| X| X

Patient compensation - $100 debit card

Phone Call Follow-Up X




Appropriate referral for follow-up in the event
of ATTR-CA diagnosis or discovery of other X
serious pathology

2.3.2.1 Clinical Examination
A detailed health investigation will be performed in all patients by a provider experienced in the care
of patients with HF. This will include a medical history focused on the presence of HF as defined by
standard clinical criteria (NHANES?® and European Society of Cardiology?’ for HFpEF), etiology of HF,
and co-morbid conditions; physical examination including vital signs, volume status, cardiopulmonary
examinations and neurologic examination with focus on neuropathic findings. Exams will take ~45
minutes.

2.3.2.2 Cardiac amyloid scintigraphy

A nuclear medicine technologist will perform planar cardiac imaging of the chest using dual-headed
gamma cameras equipped with low energy, high resolution collimators. 10-25 mCi of **™Tc-PYP or
10-20 mCi of 99mTc-HMDP will be administered intravenously and imaging will be performed after
approximately 3 hours. The anterior and lateral planar views centered on the heart will be obtained
simultaneously for a total of at least 750K counts/view (approx. 3-8 min of imaging). Cardiac retention
will be assessed by both a semi-quantitative visual score (range: 0 [no uptake] to 3 [uptake greater
than rib]) and a quantitative heart-to-contralateral (H/CL) ratio of total counts in a region of interest
(ROI) over the heart divided by background counts in an identical size ROl over the contralateral chest
including soft tissue, ribs, and blood pool. A visual score 2 or greater and/or calculated H/CL ratio 1.3
or greater, with myocardial retention of tracer confirmed in all cases by SPECT imaging with or
without a CT scan for image registration, will be required to indicate TTR-CA according to prior
published data.?® The details of the imaging procedures for cardiac amyloid scintigraphy imaging are
shown in Table 5. Each cardiac amyloid scintigraphy scan will be read by a board-certified nuclear
cardiologist blinded to clinical information.

Table 5 Position Supine

Imaging procedures Parameter Energy window 140 keV, 15-20%

Preparation No specific preparation. No Collimators Low energy, high resolution
fasting required. Matrix 64 x 64 minimum

Scan Rest scan

Dose of 2°mTc-PYP 10-25 mCi intravenously

Dose of 2°mTc-HMDP 10-20 mCi intravenously

Time between 3-hour planar and optional SPECT

injection and

acquisition Pixel size 3.5-6.5 mm

Imaging parameters Planar imaging specific parameter

Field of view Recommended: cardiac or chest; Number of views* Anterior, lateral, and left anterior
Optional: whole body planar oblique

Image type Recommended: cardiac or chest Detector 90 degrees
SPECT and planar imaging configuration




Image duration 750,000 counts ECG gating Off; nongated imaging
(count based) Number of 40

Magnification 1.46 views/detector

SPECT imaging specific parameters Time per stop 30 seconds

Angular range 360 degrees Magnification 1.0

Detector 180 degrees

configuration

2.3.2.3 Two- Dimensional Echocardiography with Complete Doppler Analysis

A complete two-dimensional (2D) echo will be performed utilizing a commercially available GE Vivid-
9 or Philips iU33 Echocardiography System. A standard imaging protocol will be performed. The
following linear echocardiographic measurements will be obtained (by 2D or M-mode) in both end-
diastole and end-systole: left ventricular (LV) internal dimension, septal wall thickness (SWT), and
posterior wall thickness (PWT). Quantification of LV mass will be derived by the formula of Devereux
RB et al?? and by three dimensional-guided modified biplane Simpson’s rule3% 31, LV and left atrial (LA)
volumes (systolic and diastolic) will be measured by the biplane method of discs (modified Simpson’s
rule). LV ejection fraction and LA function will be calculated from these volume measurements.

2.3.2.4 Electrocardiogram

A standard 12 lead electrocardiogram will be performed with standard instrument sensitivity of 10
mm =1 mV. A sum of precordial voltage (sum of S wave in lead V1 plus R wave in lead Vs or Vs [SVI +
RVs or Vg]) will be calculated for all electrocardiograms. This sum will be used to compare data from
patients with myocardial retention of >>™Tc-PYP from controls. LVH will be defined when this sum is
greater than 35 mm. When the sum was less than 15 mm, low voltage in the precordial leads is
present. Additional criteria to define low voltage only in the limb leads include no QRS deflection
greater than 5 mm in any limb lead and low voltage in all leads is present when the average voltage
in the three limb leads is <5 mm, and the average voltage in the chest leads is <10 mm.?’ Finally, the
mass: voltage ratio will be calculated using the LV mass divided by the sum of S wave in lead VI plus
R wave in lead V5 or V6 [SV1 + RV5 or V6]. The ECG tracings will be scanned and uploaded in
electronically.

2.3.2.5 Blood and saliva testing

During the study visit, subjects will undergo a blood draw with no more than 25 cc of blood drawn
and a cheek swab or saliva swab. This blood will be sent for testing for serum kappa and lambda free
light chains and serum protein electrophoresis with immunofixation. These tests will assess for the
substrate for light chain amyloidosis which can mimic ATTR-CA. If patients are found to have a
monoclonal gammopathy, they will be referred for further management by a physician outside the
study. In addition, a sample may be drawn for biobanking and TTR genetic testing at the investigator’s
discretion if preliminary testing is concerning for cardiac amyloidosis.



2.3.2.6 Follow-Up Protocol
Participants will be called after the completion of testing by an investigator to counsel them on the
results of their testing. In the event that they are diagnosed with cardiac amyloidosis or are found to
have other serious pathology, the following steps will be taken:

e The patient will be told the results of their testing and an appropriate referral for
follow-up made. If the patient has a treating physician, they will be instructed to go to
their physician for further care as needed. In the event of an amyloidosis diagnosis,
the patient will be referred to the Columbia University Amyloidosis Center for further
care. If they do not have a treating physician, they will be given an appropriate referral
for further care.

e A letter will be generated and mailed to the patient and uploaded to the patient's
medical record. This letter will state the results of their testing and recommend that
the patient see a physician for further care.

2.3.3 Hypotheses

Specific Aim 1: To prospectively validate that deep learning models can detect undiagnosed cardiac
amyloidosis in large populations of patients undergoing cardiac testing

The specific hypothesis is that by applying an cardiac amyloidosis deep learning detection model to
the entire Columbia database of patients, we will identify a group of patients at highest likelihood of
having undiagnosed cardiac amyloidosis. We will validate the model by prospectively scanning 100
subjects with cardiac amyloid scintigraphy with > 20% being diagnosed with cardiac amyloidosis, a
percentage that would potentially allow a cost-effective, wide-scale screening approach. The
prevalence of cardiac amyloidosis in an unselected population of older adults who have undergone
cardiac testing with an echocardiogram and ECG is unknown but is likely significantly less than 15%
based on studies of more selected populations such as older adults with heart failure®> and aortic
stenosis.3® Based on our model’s ability to accurately distinguish between cardiac amyloidosis cases
and normal patients in a cohort of patients undergoing cardiac amyloid scintigraphy scanning, we
predict that > 20% of patients identified by the model at being of high probability of having cardiac
amyloidosis will be diagnosed with cardiac amyloidosis.

Specific Aim 2: To incorporate additional data to improve the deep learning model’s detection of

cardiac amyloidosis.

Hypothesis 1: Incorporating raw ECG waveform data and clinical variables such as orthopedic
manifestations, e.g. carpal tunnel syndrome and spinal stenosis, associated with ATTR-CA, will
improve the model’s predictive capacity by 5% compared to currently used data in Aim 1.

Hypothesis 2: These deep learning models will allow identification of at least one key variable
not currently associated with ATTR-CA that can inform future amyloidosis research.
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