

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	1 of 44

DoP version: 18Mar2020

1

UACCESS EDOC NUMBER (FOR PROJECTS REQUIRING AN IRB FEE)**PROJECT TITLE:** A Non-Pharmacologic Method For Enhancing Sleep in PTSD**INVESTIGATOR**

Principal Investigator Name, Degree(s): William D. "Scott" Killgore, Ph.D.

Principal Investigator UA netID: killgore

Status/Rank: Professor

Center: _____

Section: _____

Department: Psychiatry

College: College of Medicine

Contact phone: (520) 626-6336

Official University Email: Killgore@psychiatry.arizona.edu

ADVISOR CONTACT INFORMATION (REQUIRED FOR ALL STUDENTS AND RESIDENTS)

Name, Degree(s), UA NetID: N/A

Contact phone: _____

Official University Email: _____

ALTERNATE/COORDINATOR CONTACT INFORMATION

Name, UA NetID: Bryan Clines, bclines

Contact phone: (520) 621-3454

Official University Email: bclines@psychiatry.arizona.edu

2

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	2 of 44

SECTION 1: REQUIRED SIGNATURES**3 1. PRINCIPAL INVESTIGATOR**

4 I will conduct my research according to the University of Arizona HSPP Investigator Manual.

06/30/14

William D. "Scott" Killgore,
Ph.D.

Signature

Date

Print Name

5 2. ADVISOR (FOR ALL STUDENTS AND RESIDENTS ACTING AS THE PI)

6 I will oversee the student researcher according to the University of Arizona HSPP Investigator Manual.

N/A

Signature

Date

Department

8 3. SCIENTIFIC/SCHOLARLY REVIEW (CANNOT BE ASSOCIATED WITH THE PROJECT)

9 I have examined the proposal cited above, and find that the information contained therein is complete and that the scientific or
10 scholarly validity of the project appears appropriate.

06/17/14

Nicholas Breitborde, Ph.D.

Signature

breitbor@email.arizona.edu

Date

Print Name

Official University Email

Phone number

12 4. DEPARTMENT/CENTER/SECTION REVIEW

13 I have reviewed this application and determined that all departmental requirements are met and that the investigator has
14 adequate resources to conduct the Human Research.

06/10/14

Karen Weihs, M.D.

Signature

weihs@email.arizona.edu

Date

Print Name

Official University Email

Phone number

**16 5. RESPONSIBLE PHYSICIAN (PROJECTS INVOLVING MEDICAL PROCEDURES WHICH THE PI IS NOT
17 AUTHORIZED TO CONDUCT)**

18 I am a physician licensed by the State of Arizona (or US license for the SAVAHCS). I will be responsible for ensuring that all
19 procedures that are part of this project and that require the attendance of a licensed physician will have a suitable physician
20 present during the procedures. If at any time this is not possible, I will inform the IRB before any procedures are conducted.

N/A

Signature

Date

Print Name

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	3 of 44

26

27

28 **6. NATIVE AMERICAN OR INTERNATIONAL INDIGENOUS POPULATIONS REVIEW**

29 Signature needed only if research takes place in Indian Country or among international Indigenous populations, actively
30 recruits Native Americans or international Indigenous populations for enrollment, and/or requires stratification of Native
31 Americans or international Indigenous populations as one of the statistical analyses or study aims.

32

33 **Social and Behavioral Projects:** American Indian Studies, (520)621-7108

34 **Biomedical Procedures:** Office of Outreach and Multicultural Affairs, (602)827-2327

35

36 I have examined the proposal cited above and advise that further appropriate tribal/Indigenous approval [] is [] is not
37 necessary.

N/A

38

Signature

Date

Print Name

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	4 of 44

39

SECTION 2: GENERAL INFORMATION

1. Not including this project submission, how many:

- Human Research studies is the PI involved in as key personnel? 4 to be IRB approved for opening, key personnel on 6 studies
- Active subjects are there in the PI's open Human Research study/ies? 15 active subjects at Harvard of 155 enrolled or completed; studies to be transferred to a site PI upon Dr. Killgore's transfer
- Investigators are involved on the PI's open Human Research studies? 3
- Research coordinators are involved on the PI's open Human Research studies? 5

2. What is the expected length of this project? 4 years

3. Retention of study materials before, during, and after completion of the project:

- Where will the original signed consent and PHI Authorization documents be stored (building name and room)? UAHS 7309 or 7310A
- How long will the data/consents be kept after conclusion of the project? 6 years Other:

4. If the Human Research project is funded, identify all sponsoring entity/ies): Department of Defense

5. If funding support is from a federal agency (such as a training grant, infrastructure grant, salary support, project grant, etc.), list federal agency and grant number Department of Defense PT130770

6. Total funding amount **OR** per subject amount: \$3,823,700

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	5 of 44

7. The Principal Investigator hereby affirms that ALL individuals who meet the definition of "investigator" for this project in the current "Policy on Investigator Conflict of Interest in Research" have completed the mandatory Conflict of Interest training Yes (<http://orcr.arizona.edu/coi/training>) and Disclosure of Significant Financial Interests (<https://uavpr.arizona.edu/COI/>).

8. Will this project be registered on ClinicalTrials.gov because ...? Yes No

- the local PI is the sponsor of the clinical trial (including NIH-funded clinical trials where the local PI is the funding recipient OR IND holder);
OR
- The PI has been designated by a sponsor, contractor, grantee, or awardee to register the clinical trial to [ClinicalTrials.gov](#), as the [Responsible Party](#) (responsible for conducting the trial, and has sufficient data rights)

If yes, please check the appropriate box:

[ClinicalTrials.gov](#) "NCT" number for this trial (define): NCT02370173
 Registration pending
 Clinical trial does not require registration (click above to see what studies qualify)

40

SECTION 3. PROJECT NARRATIVE

41

1) Background

42 During the past decade, over 2 million U.S. military personnel have deployed on potentially dangerous
43 missions in support of the wars in Iraq and Afghanistan [1]. Combat duty is inherently hazardous and
44 many deployed Soldiers have experienced intense and personally life-threatening situations or witnessed
45 horrific and traumatic events. The neuroendocrine stress response that is associated with these types of
46 potentially life-threatening experiences prepares the brain and body for survival. As part of this survival
47 response, several brain systems become hyper-responsive and sensitized to potential threat. In particular,
48 exaggerated amygdala responses during stressful experiences enhance the encoding of vivid and indelible
49 emotional memories [2, 3]. For some combat veterans, the intensity and horrific nature of these
50 experiences is perceived as so overwhelming that they continue to have sustained physiological arousal,
51 heightened startle reflexes, and uncontrollable intrusive memories and nightmares that persist for years or
52 even decades after the traumatic experience. If these symptoms are sustained and lead to impairments in
53 daily functioning, the service member may be diagnosed with post-traumatic stress disorder (PTSD).
54 Initial rates of PTSD in Soldiers returning from combat duty in Iraq and Afghanistan were reported to be
55 as high as 17% [4], and subsequent reports have confirmed rates as high as 20% [5], depending on the
56 method of assessment. Furthermore, PTSD often presents as a comorbid disorder with a range of other
57

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	6 of 44

58 psychiatric and/or somatic problems [6-8]. Treatment for PTSD usually involves some combination of
59 cognitive therapy, exposure therapy, and pharmacotherapy. Unfortunately, current therapeutic
60 interventions show variable efficacy and frequent treatment failures [9, 10]. Consequently, alternative
61 approaches or augmentations to existing treatments are needed.

62

Sleep disruption in PTSD

63 Sleep disruption has been labeled the “hallmark of PTSD.” In fact, sleep problems appear to be the most
64 prevalent complaint of individuals with PTSD [11], and may contribute significantly to the persistence
65 and severity of the disorder [12-14]. A recent meta-analysis confirmed the presence of sleep
66 abnormalities in patients with PTSD, including excessive stage 1 sleep, reduced slow wave sleep, and
67 elevated rapid-eye-movement density, when compared to unaffected individuals [15]. Over two-thirds of
68 combat veterans with PTSD endorse problems with sleep, particularly insomnia and nightmares [13, 16,
69 17], with rates of self-reported sleep complaints exceeding 90% in some studies [18]. Neylan and
70 colleagues (1998) found that initial insomnia (difficulty falling asleep) occurred in 44% of combat
71 veterans with PTSD, 6% of veterans without PTSD and 5% of healthy comparison subjects. Moreover,
72 91% of veterans with PTSD reported difficulties maintaining sleep (i.e., staying asleep after initial sleep
73 onset) [19]. In another study, early morning awakening was reported by 43% of individuals with PTSD
74 compared to 13% of individuals without PTSD [20]. Nightmares leading to awakening have been
75 reported to occur frequently in about 50% of combat veterans with PTSD, compared to only 5% of
76 veterans without PTSD and 3% of healthy controls [19]. Moreover, the severity of sleep disturbance
77 correlates with overall PTSD symptom severity [21, 22], even when accounting for the effects of
78 potentially confounding variables such as alcohol use and psychiatric comorbidity [23]. Recent findings
79 suggest that insomnia and sleep problems may actually play a mediating role between combat stressors
80 and the eventual development of psychological symptoms among veterans of the war in Iraq [24].
81 Soldiers who develop insomnia in the months following a combat deployment are more likely to show
82 symptoms of PTSD and depression when re-assessed at one year post-deployment [25], and sleep
83 problems are better predictors of suicide among military personnel than measures of either depression or
84 hopelessness [26]. Thus, sleep may be a leverage point for affecting recovery from PTSD.

85 Research on conditioned fear points to a critical role for sleep in the treatment of PTSD. Indeed,
86 PTSD has been conceptualized as a disorder of fear conditioning, involving hyper-responsive fear
87 reactions via sustained and exaggerated amygdala activation [27]. There is a large animal literature
88 showing that quality sleep facilitates the extinction of conditioned fear [28-31]. Moreover, Pace-Schott
89 and colleagues, recently demonstrated the same effect in humans [32], showing that after a person has
90 been conditioned to fear a particular stimulus and then provided with multiple extinction trials, the
91 extinction response only generalizes to other similar stimuli following a night of undisturbed sleep, but
92 fails to generalize to other similar stimuli if post-learning sleep is prevented. These results suggest that
93 extinction of conditioned fear is facilitated by sleep. Other research shows that sleep disruption amplifies
94 the effects of anxiety on anticipatory brain functioning in the amygdala [33]. By extension, the potential
95 for rapid recovery from PTSD may be hampered by the inability to obtain normal restorative sleep. In
96 other words, the PTSD patient may be locked in a vicious circle whereby one of the major symptoms of
97 the disorder may itself be preventing full recovery and leading to continuation or even exacerbation of
98 symptoms. Therefore, effective treatment and recovery from PTSD may be crucially dependent upon, or

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	7 of 44

100 at the very least facilitated by, direct interventions aimed at improving the quality and duration of the
101 individual's sleep.

102

103 Light Therapy for Sleep Disruption & Implications for PTSD

104 The most common approaches to sleep disturbance involve short-term prescription hypnotic
105 medications, but these can have negative or even dangerous side effects [34]. Therefore, alternative, non-
106 pharmacologic approaches are needed. While psychological or behavioral treatments may be helpful,
107 many service members perceive stigma associated with traditional talk-therapy approaches. An
108 alternative non-pharmacologic approach that shows promise for treating sleep disruption is bright light
109 therapy (BLT), particularly within the short-wavelength (i.e., blue) spectrum [35-40]. Exposure to bright
110 light at certain times of the day has been shown to reset the timing of the sleep and wake cycle [41],
111 enhance subjective and objective measures of alertness [42, 43], increase prefrontal brain activation [44],
112 and to improve overall sleep quality [43]. The effectiveness of BLT is potentially mediated by the
113 entrainment of circadian cycles that regulate sleep and other homeostatic bodily functions [45-48]. Light
114 exposure during the early morning phase-advances the timing of the circadian clock, while exposure
115 during the late evening delays it [49].

116 Sleep-wake cycles and other endogenous circadian rhythms are regulated predominantly by the
117 suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN generates an endogenous rhythm of
118 slightly over 24 hours [50]. This rhythm is entrained or synchronized by environmental cues, most
119 prominently by light exposure cycles that correspond to transitions from night to day. This process is
120 mediated by photoreceptive ganglion cells in the retina (i.e., melanopsin receptors), which appear to be
121 specialized for relaying light/dark information, particularly within the blue wavelengths, to the SCN via
122 the optic nerve [51]. This information is then sent from the SCN to the pineal gland, resulting in the
123 synthesis and release of the hormone melatonin which signals the biological night and prepares the
124 organism to sleep [40, 52, 53].

125 Initial studies on circadian effects of light showed that bright white light effectively suppresses
126 melatonin and shifts both melatonin secretion and circadian rhythms [40, 54-56], resulting in shifts in
127 sleep and wakefulness periods [57, 58]. More recently, it has been found that shorter wavelength light in
128 the blue spectrum (446-477nm) is particularly effective at suppressing melatonin [59], and outperforms
129 longer wavelength red light in terms of melatonin-suppression, circadian phase shifting, antidepressant
130 effects, and increasing alertness [38, 39, 60-65]. Given that the melanopsin receptors appear to be
131 primarily responsive to blue wavelength light [40], and that similar melatonin suppressing effects can be
132 produced with significantly lower light intensities in the blue-wave spectrum, numerous studies have now
133 begun to focus on using this wavelength for improving daytime alertness, subjective sleep quality [43],
134 and phase advancing individuals with delayed sleep phase disorders [39, 48]. BLT is particularly effective
135 for circadian rhythm sleep disorders [66-68], which involve a shift between the individual's sleep pattern
136 and the pattern desired by social norms [69]. BLT also appears to improve the irregular sleep-wake
137 patterns seen in Alzheimers' dementia, which involve periodic sleep disruption and nightly restlessness
138 [69].

139 Bright light therapy has long been recognized as an extremely effective treatment for Seasonal
140 Affective Disorder (SAD)[70]. Evidence for the efficacy BLT in SAD has accumulated over nearly three
141 decades of research investigations, including a number of placebo-controlled trials. Some studies have

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	8 of 44

142 shown that either morning or evening BLT is superior to placebo, while others find greater evidence of
 143 morning light superiority [41]. More recently, BLT has also shown efficacy in nonseasonal Major
 144 Depression, producing net reductions in depression and anxiety symptoms in the range of 12-35%
 145 compared with dim light placebo conditions [71-73], and having potent synergistic effects when used as
 146 an adjunct to medication. BLT also appears to have a mild anxiolytic effect [74], and has recently been
 147 shown to be effective in reducing anxiety and depression in patients with seizure disorders [75]. In
 148 several studies, significant effects on mood were found within 1 week or less of BLT treatment initiation
 149 [73], with increasing benefits seen over several weeks. Recent evidence also suggests blue light
 150 wavelengths may be particularly effective for reducing depressive symptoms and features [61, 76, 77].
 151 Importantly, the effectiveness of BLT in SAD and nonseasonal depression appears comparable to that of
 152 antidepressant medication [78], with the additional advantages of a low side effect profile [79] and
 153 quicker onset of action [73, 80]. Moreover, BLT provides a viable option for patients who resist, refuse,
 154 or do not respond to pharmacological treatment.

155 In summary, there is convincing evidence that BLT has therapeutic
 156 effects on anxiety and depression, and has strong effects on the normal circadian
 157 rhythm of alertness and sleep-wake cycles. These features are all central to the
 158 symptomatology of PTSD, yet no published studies have examined the effects
 159 of BLT on PTSD outcome. One unpublished pilot study at the University of
 160 South Carolina and Dorn VA Medical Center using 10000 Lux BLT (broad
 161 spectrum white light) for 45 minutes per day for two weeks in 9 PTSD patients.
 162 Compared with placebo, BLT was associated with greater percent improvement
 163 in scores on the Clinical Global Impression Scale and the Clinician
 164 Administered PTSD Scale (CAPS-5), with more than 20% improvement found
 165 for BLT, while less than 4% of placebo participants showed improvement
 166 (Youngstedt, Ginsberg, Kline, & Zielinski, unpublished data). These pilot
 167 results suggest that BLT may be an effective treatment for PTSD, though larger
 168 controlled studies are needed to provide confirmation and to examine the effects
 169 of BLT on particular PTSD symptoms. Based on the evidence summarized above, we propose that BLT
 170 in the blue wavelength spectrum will lead to significantly improved sleep, less depression, and less
 171 anxiety among combat veterans and other individuals with PTSD, and that these improvements will lead
 172 to a global improvement in overall PTSD severity relative to control groups with and without combat
 173 exposure. Based on recent evidence suggesting that the effect of light therapy on melatonin, sleep, and
 174 mood is mediated primarily via short wavelength blue light melanopsin receptors in the eye, we propose
 175 to compare an active treatment device with wavelengths peaking at 469 nm (blue) versus an identical
 176 placebo device fitted with amber colored diodes (see Figure 1). Thus, this study will be the first, large
 177 placebo controlled study examining the effectiveness and neuroimaging correlates of BLT in PTSD.

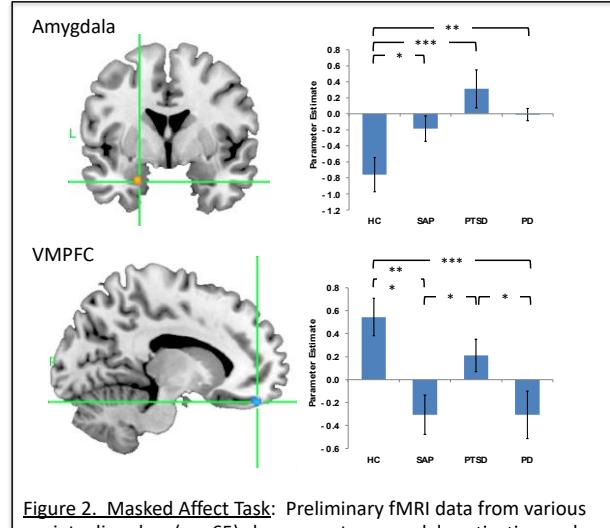
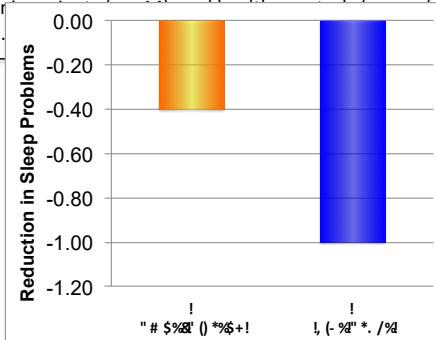


Figure 1. Blue Light (BL) and amber placebo light (PL) devices


178

 179 **A. 3. Preliminary Data**

180 Our group has a long history of using functional
 181 neuroimaging techniques to study PTSD. Using a
 182 paradigm known as the Masked Affect Task (MAT),
 183 our lab reported that combat exposed veterans with
 184 PTSD showed exaggerated amygdala responses to
 185 fear-related facial stimuli perceived below the
 186 threshold of conscious awareness when compared to
 187 combat exposed veterans without PTSD [27]. We
 188 have now collected pilot data on 65 participants,
 189 including 14 individuals with PTSD, 14 individuals
 190 with panic disorder, and 15 participants with simple
 191 phobias using this same paradigm. As evident in the
 192 figure, compared to healthy controls or other anxiety
 193 groups viewing masked fearful faces, patients with
 194 PTSD showed greater activation within the
 195 amygdala, one of the primary brain structures
 196 involved in the assessment of threat. PTSD subjects
 197 also showed reduced activation within the ventromedial prefrontal
 198 cortex relative to healthy controls. This suggests that the
 199 hyperarousal and exaggerated startle reflexes associated with PTSD
 200 may be partly the result of abnormal responses in the amygdala. At
 201 present, no neuroimaging studies have yet examined the role of
 202 sleep in this process. However, recent data from Yoo and
 203 colleagues suggests that loss of normal sleep is associated with
 204 reduced functional connectivity between the VMPFC and the
 205 amygdala, suggesting that sleep loss may reduce the ability of the
 206 prefrontal cortex to regulate the emotional responses of the
 207 amygdala [81]. We have also conducted an fMRI study showing that reduced sleep is associated with
 208 altered functional connectivity between the VMPFC and amygdala, and the strength of such connectivity
 209 is directly related to the severity of symptoms of anxiety, depression, and reduced emotional functioning
 210 [82]. Our preliminary studies of cognitive functioning during sleep deprivation support the prefrontal-
 211 emotional dysregulation model [83-92]. Notably, the anterior cingulate cortex (ACC) and hippocampus
 212 demonstrate abnormalities in neurometabolites such as n-acetylaspartate (NAA), a putative marker of
 213 neuronal integrity, in patients with PTSD (Karl and Werner, 2010).[83-92] Because sleep disruption is
 214 one of the most common symptoms of PTSD, the associated reduction in sleep quantity and quality may
 215 serve to exacerbate the difficulties these patients have regulating emotions, serving to develop a vicious
 216 circle of hyperarousal, decreased sleep, and emotional dysregulation.

Figure 2. Masked Affect Task: Preliminary fMRI data from various anxiety disorders (n = 65) shows greater amygdala activation and reduced VMPFC activation. Note that amygdala activation is greatest among PTSD subjects (n = 14) relative to small animal phobias (n = 15), par

Figure 3. Scores on the Pittsburgh Sleep Quality Index (PSQI) showed greater reduction in sleep problems following 6-weeks of treatment with the active blue light (n = 7) treatment versus amber light (n = 5) placebo.

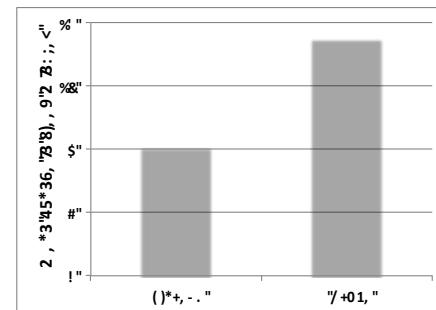
FORM: Application for Human Research
NUMBER

F200

FORM DATE

02/2014

PAGE


10 of 44

217 The proposed investigation will examine changes in sleepiness, neuropsychological functioning,
 218 symptom severity, as well as brain functioning and neurochemistry before and after a 6-week treatment
 219 period with BLT. To this end, we have collected pilot data showing that 6-weeks of daily morning
 220 exposure to BL improves sleep, cognitive performance, brain functioning, and underlying axonal integrity
 221 in concussion patients compared to equivalent exposure to amber placebo light (PL). Our preliminary
 222 findings in a small pilot sample of 12 participants (BL $n = 7$; PL $n = 5$) suggest that BL treatment may be
 223 effective at improving sleep and accelerating recovery. While fully cognizant of the fact that these data
 224 are preliminary, we present the following findings to provide support for the feasibility of the study
 225 design and demonstrate our capacity to collect, process, and analyze relevant data.

226 Subjective Symptom Improvement. Figure 3 depicts subjective sleep quality, as measured with
 227 the Pittsburgh Sleep Quality Index (PSQI) pre- and post-
 228 intervention by group. While there was no change in the Amber
 229 Light Placebo group between pre- and post-treatment assessment,
 230 by trend, PSQI scores were reduced in the Blue Light group ($p =$
 231 .07), suggesting improvement. Of note, in contrast to the Amber
 232 Light group, for which sleep quality remained clinically abnormal
 233 (i.e., PSQI ≥ 5), the post-treatment PSQI mean reflected good sleep
 234 quality for the Blue Light group (i.e., PSQI < 5). These findings
 235 suggest that BL was more effective in improving subjective sleep
 236 quality than the PL treatment.

237 Actigraphic Sleep: Participants were monitored using wrist
 238 actigraphy for the duration of the study (1-week before treatment and throughout the treatment period).
 239 We compared actigraphic sleep between the baseline week and the final week of the study. After removal
 240 of one outlier ($z > 2.5$), participants in the BL group ($n = 6$) showed an increase in the minutes of sleep
 241 objectively measured by wrist actigraphy compared to the PL group ($n = 5$) (see Figure 4). On the whole,
 242 those in the amber placebo group improved by only 8.1 minutes of additional sleep per night, whereas
 243 those in the active BL group gained nearly twice as many minutes of sleep per night on average (i.e., 15.0
 244 minutes). Findings suggest that BL was associated with greater
 245 improvement in objective sleep quantity than PL.

246 Objective Sleepiness/Alertness. On an objective measure of
 247 sleepiness, participants were monitored with
 248 electroencephalography (EEG) while
 249 attempting to sleep for 20 minutes in a
 250 quiet, darkened room. Figure 5 shows
 251 daytime sleepiness, as measured with the
 252 Multiple Sleep Latency Test (MSLT) at
 253 11:50am, 1:50pm and 3:50pm pre- and
 254 post-intervention by group. There was a
 255 significant change in sleep onset latency
 256 between pre- and post-treatment by
 257 group ($p=.02$), with the BL group taking
 258 longer to fall asleep in sleep-conducive

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	11 of 44

259 conditions than the PL group. This indicates greater enhancement of alertness in the BL group following
 260 treatment compared to the PL condition.

261 **Psychomotor Vigilance Test (PVT):** The PVT is a 10-minute computerized measure of sustained
 262 attention and psychomotor vigilance that has been shown to be exquisitely sensitive to sleep deprivation.
 263 The PVT currently serves as the “gold standard” for assessing degradation in alertness and vigilance
 264 following sleep loss. Figure 6 depicts mean
 265 change in response time for correct trials for
 266 one of three PVT administrations. There was
 267 a significant group difference, with the PL
 268 group showing slower mean response times
 269 between pre- and post-treatment assessment.
 270 In addition, there was a significant group
 271 difference on PVT attentional lapses (i.e.,
 272 response time > 500ms) between pre- and
 273 post-treatment assessment, with more
 274 attentional lapses in the PL than the BL
 275 group. This preliminary finding is presented
 276 in Figure 6. Together, these findings suggest
 277 that BL was associated with greater post-
 278 treatment alertness and vigilance compared to PL treatment.

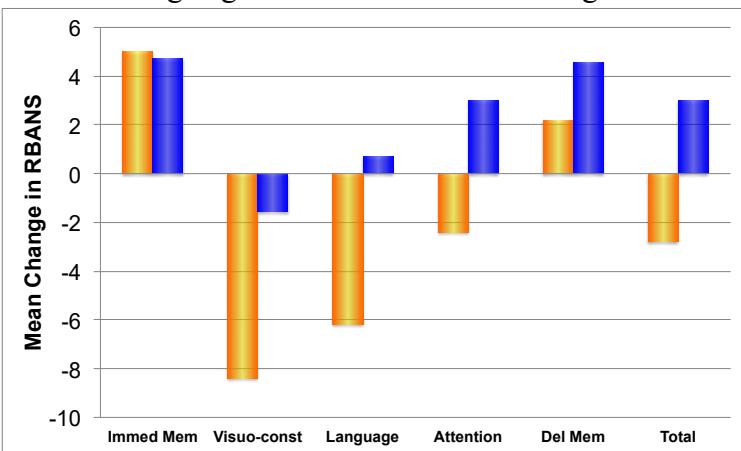
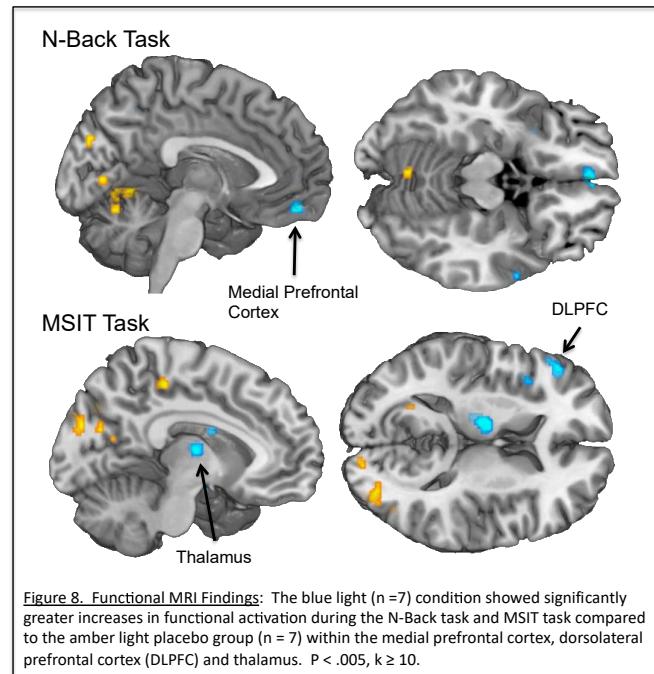



Figure 7 Six-weeks of active blue light (n = 7) treatment resulted in improvements across a number of neurocognitive domains on the Repeatable Battery for Neuropsychological Status relative to the amber light placebo group (n = 5).

279 **d) Neuropsychological Performance Changes:** Figure 7 depicts the change in cognitive
 280 functioning, as measured with the Repeatable Battery for the Assessment of Neuropsychological Status
 281 (RBANS) between pre- and post-intervention assessment by group. Of note, the BL group showed not
 282 only a marked increase in Total test performance, but also a significant improvement on the Attention and
 283 Delayed Memory subscales. In contrast, in the PL group, cognitive performance declined in three of five
 284 subscales (i.e., Visuo-constructional, Language, and Attention) and Total test performance, but not for the
 285 BL group. Importantly, the difference in change between pre- and post-treatment group proved
 286 significant or marginally significant for the Visuo-constructional subscale ($p = .06$), Language subscale (p
 287 = .03) and Total test performance ($p = .04$) between PL and BL groups. This suggests that sleep
 288 improvement in the BL group was paralleled by improvements in cognitive functioning, while such
 289 findings were not observed for the PL group.

290 e) Task-Related Functional MRI: Figure 8
 291 shows functional brain activation for 14 subjects (7
 292 BL, 7 PL) during the n-back working memory task
 293 and the multi-source interference task (MSIT) that
 294 subjects performed in the MRI scanner pre-and
 295 post-treatment (blue = BL > PL; amber = PL > BL).
 296 Specifically, the figure shows increases in medial
 297 prefrontal cortex activation between pre- and post-
 298 assessment for the most difficult task condition (i.e.,
 299 2-back) in the blue light condition. Blue light also
 300 resulted in increased activation within the thalamus
 301 and dorsolateral prefrontal cortex (DLPFC) on the
 302 MSIT following six weeks of BL compared to PL
 303 treatment.

304 f) Resting State Functional Connectivity:
 305 Participants also completed a 6-minute resting state
 306 functional connectivity (rsFC) MRI scan which
 307 allows the identification of intrinsic patterns of
 308 temporal correlation among various regions within
 309 the brain. Based on our prior published work in
 310 healthy controls showing that minor fluctuations in nocturnal sleep, even as little as an hour or two, can
 311 have significant effects on rsFC [93], we hypothesized that improvement in sleep in subjects with mTBI
 312 would also be associated with improved functional connectivity within behavioral control and memory
 313 regions of the brain. As shown in Figure 9, we found that six weeks of BL treatment was associated with
 314 significantly ($p < .05$) greater inter-regional functional connectivity for the prefrontal cortex and
 315 hippocampus with other cortical regions in this very preliminary sample (7 BL, 5 PL). In contrast, those
 316 receiving PL showed greater functional connectivity of the insula with other posterior cortical regions,
 317 suggesting greater emotional/visceral sensory processing in the PL group. Overall, BL treatment was
 318 associated with increased functional connectivity between memory and attention processing regions.

319 g) Diffusion Tensor Imaging:

320 Participants also completed a diffusion
 321 tensor imaging (DTI) scan. These data
 322 were preprocessed in FSL (i.e., eddy current
 323 correction, reconstruction of diffusion
 324 tensors, estimation of diffusion parameters,
 325 registration to anatomical image and
 326 standard space). For demonstration of
 327 feasibility, preliminary data (8 BL, 8 PL)
 328 have been analyzed in FSL, although the
 329 sample is currently too small to conduct
 330 statistical parametric analyses. Pre- to post-
 331 treatment increases in fractional anisotropy
 332 (FA) were seen in key regions implicated in
 333 PTSD, including the rostral and subgenual
 334 anterior cingulate regions for those
 335 receiving BL but not for the amber PL
 336 group. Greater FA is generally considered
 337 to signify better white matter health. These
 338 preliminary data raise the intriguing possibility that improvement in sleep during the six-week treatment
 339 period with BL may lead to an accelerated re-myelination process relative to those in the PL group. We
 340 believe further research into this intriguing and potentially important possibility and its relation to PTSD
 341 symptom change is warranted.

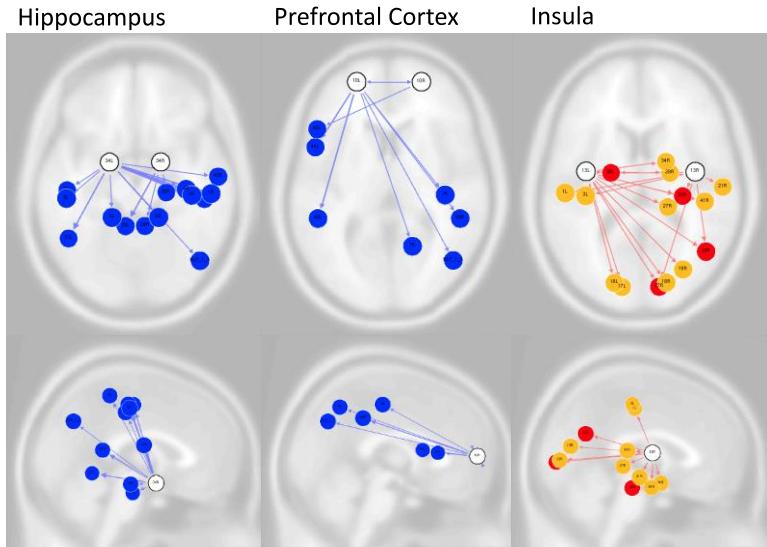


Figure 9. The blue light (n = 7) condition showed significantly greater increases in resting state functional connectivity between the hippocampus and other posterior sensory regions, and increased functional connectivity between the prefrontal cortex and a number of other higher order association regions compared to the amber light placebo group (n = 5), which showed greater post-treatment functional connectivity of the visceral and bodily awareness regions.

342 **Summary.** Our preliminary findings clearly demonstrate that the methods proposed herein are
 343 feasible and that our team can effectively collect, process, and analyze the data, thereby accomplishing the
 344 aims of the study. We have now implemented this paradigm with over 30 brain injured participants, and
 345 all were able to complete the study procedures without difficulty. Furthermore, the case findings we
 346 highlight also provide limited but compelling evidence that the BLT program was associated with
 347 improvement in symptoms, neuropsychological status, and neurocircuitry changes in the hypothesized
 348 direction. Thus, the preliminary data suggest that the protocol we propose is feasible and shows
 349 significant promise for improving sleep and brain functioning.

350

 351 **B. SPECIFIC AIMS/HYPOTHESES**

352 **Project Overview.** Combat veterans and other individuals with PTSD will complete two comprehensive
 353 sessions including neurobehavioral assessments, repeated polysomnographic sleep studies, and
 354 neuroimaging sessions (functional MRI, structural MRI, and proton spectroscopy) separated by 6 weeks
 355 of actigraphically monitored at-home treatment. During the intervening 6 weeks, participants will be
 356 randomly assigned to receive 30 minutes of daily morning blue light therapy (BL) or an amber light
 357 placebo treatment (PL). Sleep quality and quantity will be measured using subjective reports, objective
 358 actigraph readings, and polysomnography. Globally, we hypothesize BL will improve sleep quality and
 359 quantity relative to PL, and these improvements will be associated with improvements in neurocognitive

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	14 of 44

360 function, alterations in proton metabolites in the limbic system and medial prefrontal cortex, and reduced
361 PTSD symptom severity at follow-up assessment. The following are the Specific Aims and Hypotheses:

362 **AIM 1:** Evidence suggests that morning bright light therapy suppresses daytime melatonin and
363 leads to an entrainment of the circadian rhythm that modulates daytime alertness and nighttime sleep.
364 The first objective will be to assess the validity of this effect in PTSD patients.

365 **Hypothesis 1: Six weeks of BLT will improve sleep relative to PL among PTSD subjects.**

366 **1a:** Six weeks of morning blue light therapy (BLT) will improve objective and subjective
367 measures of sleep duration and quality as measured by actigraphy, sleep logs, sleep scales, and
368 polysomnography relative to an amber light placebo therapy (PL) condition.

369 **AIM 2:** If light therapy is successful in entraining the circadian rhythm and improving nighttime
370 sleep in patients with PTSD, this should be associated with improvement in symptoms and cognitive
371 functioning, as sleep has been shown to be critical in the process of extinguishing conditioned fears.
372 Therefore, the second Aim is to evaluate the association between changes in sleep patterns and
373 improvement in symptom expression, emotional wellbeing, and cognitive functioning in patients with
374 PTSD. However, even if Aim 1 is not successful, the present study will provide important cross-sectional
375 data regarding the relationship between measured sleep, cognitive functioning, and fear extinction in
376 individuals with PTSD.

377 **Hypothesis 2: BL will improve cognitive functioning, symptoms of PTSD, and generalization of**
378 **fear extinction relative to PL.**

379 **2a:** Six weeks of BL will improve measures of neurocognitive (i.e., memory and executive
380 functions) and mood functioning relative to PL.

381 **2b:** The PTSD group receiving six weeks of BL will show significant reduction in self-
382 reported symptom scores on the PTSD symptom checklist and CAPS, lower emotional distress on clinical
383 measures, and greater *generalization of conditioned fear extinction* relative to the PTSD group receiving
384 PL.

385 **AIM 3:** At present, there are no known studies that have examined the neurobiological correlates
386 of symptom improvement in patients with PTSD following light exposure therapy. The present study
387 aims to provide clear evidence of functional and neurochemical changes that are associated with changes
388 in sleep, cognition, and PTSD symptoms from pre- to post-treatment. Even if Aim 1 is not supported, the
389 obtained cross sectional data will provide critical insights regarding the association between sleep,
390 neurometabolites, and brain function within patients with PTSD. This correlational information is
391 currently lacking for PTSD and will fill an important knowledge gap regardless of whether the light
392 therapy is successful.

393 **Hypothesis 3: Six weeks of BL will produce reliable changes in brain activation and**
394 **neurochemistry relative to PL, particularly for PTSD subjects.**

395 **3a:** Relative to PL, six weeks of BL will lead to significantly increased ventromedial
396 prefrontal activation and reduced amygdala activation during the backward masked affect fMRI task.

397 **3b:** Relative to PL, six weeks of BL will lead to significantly greater negative functional
398 connectivity between the ventromedial prefrontal cortex and amygdala during resting state fMRI.

399 **3c:** Relative to PL, six weeks of BL will be associated with increased activation of the
400 VMPFC, and reduced activation within the amygdala and dorso-medial prefrontal cortex during the
401 extinction recall scan.

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	15 of 44

402 **3d:** Relative to PL, six weeks of BL will be associated with increased levels of GABA and
403 reduced glutamate in the amygdala-hippocampal complex and anterior cingulate gyrus as measured by
404 proton magnetic resonance spectroscopy (1H MRS).

405 **3e:** Relative to PL, six weeks of BL will produce increased levels of N-acetyl-aspartate
406 (NAA), choline (Cho), and reduced phosphocreatine (Cr) within the amygdala-hippocampal complex and
407 anterior cingulate gyrus.

408 **AIM 4:** The fourth Aim is to demonstrate whether changes in subjective and objective measures
409 of sleep are associated with changes in symptom severity, cognitive functioning, brain activation, and
410 neurochemistry. Regardless of the success of the light therapy approach outcome in Aim 1, the available
411 data will provide some of the first longitudinal data examining changes in sleep patterns over time in
412 individuals with PTSD and their correlation with these other metrics. Thus, useful data will be acquired
413 even if the primary hypothesis of Aim 1 is not supported.

414 **Hypothesis 4: Improvements in sleep noted in Hypothesis 1, will be linearly correlated with
415 improvements in cognitive and symptom functioning in Hypothesis 2 and structural and functional
416 brain changes in Hypothesis 3.**

417 **4a:** Changes in sleep parameters identified in Hypothesis 1 will correlate with
418 improvements in memory, executive functioning, and neuropsychological performance on neurocognitive
419 measures described in Hypothesis 2.

420 **4b:** Changes in sleep parameters identified in Hypothesis 1 will correlate with changes in
421 neurochemistry as outlined in Hypothesis 3d and 3e above.

423 **2) Lay Summary (approximately 400 words)**

424 Sleep disturbance is nearly ubiquitous among individuals suffering from PTSD and is a major problem
425 among service members returning from combat deployments. Recent evidence suggests that adequate
426 restorative sleep may a crucial component in the ability to generalize fear extinction learning, and
427 ultimately may be a key feature in the process of recovery from PTSD. The proposed study aims to test a
428 novel, inexpensive, and easy to use non-pharmacologic approach to improving sleep among service
429 members and other individuals with PTSD. Our approach is based on recent scientific discoveries
430 regarding the role of the photosensitive retinal ganglion cell system in regulating sleep-wake patterns.
431 Moreover, our protocol employs a novel, non-pharmacologic intervention for influencing this system to
432 regulate sleep and cognition. Primary outcome measures will include not only PTSD symptom
433 improvement but also include cutting-edge neuroimaging of brain structure, function, connectivity, and
434 neurochemistry changes. The proposal is firmly **grounded in the emerging scientific literature**
435 regarding sleep, light exposure, brain function, anxiety, and resilience. Prior evidence suggests that blue
436 light therapy is effective for improving mood and fatigue, and our pilot data further suggest that this
437 treatment may be effective for improving daytime sleepiness and brain functioning in brain injured
438 individuals. Thus, this intervention, in our own research and in the work of others, has been shown to
439 affect critical sleep regulatory systems. Improving sleep may be a vital component of recovery in these
440 service members. Our approach would directly address this issue. Our preliminary data have shown that
441 this approach is extremely well tolerated and is effective for improving sleep, mood, cognitive
442 performance, and brain function among individuals with brain injuries. The protocol is actually less

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	16 of 44

443 burdensome than it appears, as over 30 participants have already successfully completed this same
444 protocol in our pilot study of mild traumatic brain injury without any complaints or discontinuations due
445 to excessive burden. Finally, the **potential impact** of this study is high because of the capability of
446 transitioning the research to direct clinical application almost immediately. If the BL treatment is
447 demonstrated as effective, this approach would be readily available for nearly immediate large-scale
448 implementation, as the devices have been widely used for years in other contexts, are already safety
449 tested, and commercially available from several manufacturers for a very low cost. Thus, the impact of
450 this research on treating PTSD would be high and immediate.

451

452 **3) Setting of the Human Research**

453 This study requires three visits including an initial assessment and two testing/scanning sessions
454 separated by six-weeks of daily light exposure treatment at home.

455 For the initial assessment and the baseline testing session, subjects will be seen at the Lab of Dr.
456 Killgore in the University of Arizona Department of Psychiatry. There, subjects will complete personality
457 assessments, a comprehensive cognitive assessment battery, and several tests of motor functioning.

458
459 **Magnetic Resonance Imaging (MRI) Procedures:** The data collection will occur at the research-
460 dedicated University of Arizona scanner facility that houses a new 3 Tesla magnet (see Equipment for
461 description). For functional neuroimaging, audio and visual stimulus presentation equipment is available
462 through the Resonance Technologies headphone/goggle system or high-definition MRI-compatible LCD-
463 display (viewed through a mirror in the head cage). An fMRI compatible EEG system including caps,
464 cabling, and pre-amplifier is integrated with this space (see Equipment for description). Scanner data are
465 transferred securely to a RAID storage system for subsequent transfer to PI laboratories. Offline analysis
466 will take place in the Laboratory of PI Dr. Killgore.

467 In January 2013, the University of Arizona purchased a Siemens Magnetom TIM Skyra 3T that is
468 capable of high-resolution imaging capabilities. This whole-body 3.0T device will be configured with 48
469 receiver channels and up to 204 integrated coil elements. It is capable of integrated parallel acquisition
470 techniques and provides higher signal to noise in the parallel imaging mode than its predecessor, the Trio.
471 The maximum acceleration factor using parallel imaging is 16 using either mSENSE or GRAPPA, and
472 3D scanning can be accelerated in two directions (maximum acceleration factor of 4 in second direction).
473 The gradients of the Skyra have a maximum amplitude of 45 mT/m and a maximum slew rate of 200 T
474 Tm⁻¹s⁻¹, yielding a minimum rise time of 225µs. The vector gradient performance (vector summation of
475 all three gradient axes) results in a maximum effective amplitude of 78 mT/m and a maximal effective
476 slew rate of 346 Tm⁻¹s⁻¹. All three gradient coils are force-compensated to reduce vibration and deliver
477 superior eddy current performance. The water cooled gradient amplifier has a maximum amplitude
478 potential of 2,250 volts and a maximum current output of 750 amps. The instrument has a minimum slice
479 thickness (in two dimensions) of 0.1 mm and a minimum partition thickness (in three dimensions) of 0.05
480 mm. The instrument produces high sensitivity, with main field, or B0, homogeneity of 1.4 ppm VRMS for
481 a 40 cm diameter spherical volume. Single shot EPI sequences for measuring diffusion-weighted data sets
482 with up to 256 directions of diffusion weighting are also a part of this instrument's capability. It provides

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	17 of 44

483 diffusion tensor imaging and parametric maps derived from fractional anisotropy calculated in real time,
484 automatically. Additional sequence options include Arterial Spin Labeling, and susceptibility weighted
485 imaging (SWI) with both fully supported with parametric and phase map reconstructions.

486 All structural and functional MRI studies will be conducted in concert with the University of
487 Arizona Translational Bioimaging Resource. Subjects in this study will be studied in a scanner that has a
488 field strength of 3 Tesla. This field strength has been approved by the FDA for routine clinical use. The
489 three instruments are maintained by GE service engineers and currently meet or exceed manufacturer's
490 specifications on performance. For functional neuroimaging, audio and visual stimulus presentation
491 equipment is available through the Resonance Technologies headphone/goggle system.

492 A research area, Room 1564 (400 square feet), located immediately adjacent to the 3.0 Tesla
493 scanner, is equipped with 3 PC/Linux workstations and sgi O2 for data transfer and storage, image
494 processing, and data manipulation. All workstations are networked through a central hub and are
495 protected against external tampering using firewalls within the UAMC computer network.

496 Functional MRI is mostly done in MR3, a General Electric 3.0T HD Signa Excite scanner. It is
497 equipped with Optimized ACGD Gradients (40mT/m, 150 mT/m/ms slew rate running 12x software). It is
498 a 55cm diameter long bore magnet. This instrument is equipped with a head coil, 8 channel HR brain
499 array, a phased array neurovascular coil, 8 channel phased array spine coil, extremity coils (knee and
500 wrist) and a torso coil. MR3 has multinuclear spectroscopy capability and high order shims.

501 502 **4) Resources available to conduct the Human Research**

503 Dr. Killgore's effort is 100% devoted to research; he does not have clinical or teaching time
504 mandated as part of his FTE. He funds several Research Technicians and Research Assistants and one lab
505 manager.

506 The Department of Psychiatry has staff devoted to research administration, including an upper
507 level administrator and a regulatory coordinator. All have experience with IRB/regulatory matters and
508 grants administration. Business office staff is knowledgeable in grants finance and accounting, and federal
509 work-study students devoted to research are available for data entry and other administrative support.

510 Dr. Killgore's Lab includes computing equipment such as backup drives and external hard drives,
511 backup surge protectors, intercom system, neuroimaging workstations with 6 TB minimum storage each;
512 Actiwatch sleep monitors watches, docks, and software analysis programs; Coulbourne Fear Conditioning
513 Suite, FaceRead + Observer XT System, sleep profiler ambulatory EEG monitoring systems, and other
514 software including EPrime, MatLab, SPSS, and Adobe Captivate.

515 The Department of Psychiatry provides personal computer resources for word processing, email
516 transmission, internet access, and simple statistical analysis for staff, in addition to laser printers, fax
517 machines, scanners and photocopy machines. In addition to these resources, the University of Arizona
518 maintains full computer and data analytic processing components available to all university faculty on a
519 fiber-optic network system, with automatic daily backup available on a secure server. There is full time
520 computer support in the Department of Psychiatry for these resources.

521 This project may use non-FDA-approved devices that are approved for use on the Translational
522 Bioimaging Resource (TBIR) MRI scanner through IRB protocol 1911166043, "Translational

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	18 of 44

523 Bioimaging Resource Umbrella MRI Protocol.” TBIR, a UA Core Facility
524 (<https://ua.ilab.agilent.com/landing/3645#/about>), is housed within the UA Biosciences Research
525 Laboratory (BSRL) building.

526 All study personnel will have up to date CITI training and study protocol training from the PI or PI
527 designee.

528

529 **5) Study Population**

530 The target population is combat-exposed military personnel and other non-military individuals
531 who meet diagnostic criteria for PTSD. Participants in the study will include active duty or recently
532 discharged combat-exposed military personnel from Operation Enduring Freedom/Operation Iraqi
533 Freedom (OEF/OIF) meeting DSM-V diagnostic criteria for PTSD, in addition to some individuals from
534 the general population who meet DSM-V diagnostic criteria for PTSD to achieve a total sample size of 90
535 participants, which we anticipate will require enrolling up to 108 individuals to account for attrition. An

536 age range of 18-50 years has been selected to minimize possible developmental and degenerative
537 effects that could be expected in younger and older subjects and to encompass the age range of the
538 majority of military personnel. Participants will be recruited from several sources. Active duty
539 participants will be recruited according to the guidelines specified by the CDMRP upon award receipt.
540 The PI, a U.S. Army Reserve Research Psychologist (Lieutenant Colonel), already has a number of
541 established relationships and collaborations with leaders in the Army Medical Department (AMEDD), the
542 Pentagon, several major medical treatment facilities (MTFs), and all three of the Army’s primary research
543 laboratories, including the Walter Reed Army Institute of Research (WRAIR), the U.S. Army Institute of
544 Environmental Medicine (USARIEM), and the U.S. Army Aeromedical Research Laboratory
545 (USAARL). It is anticipated that potential recruitment of active duty, Reserve, and National Guard
546 participants will be effectively facilitated according to the guidelines specified by the CDMRP.

547 Participants will be recruited primarily from the Tucson area via IRB approved internet, newspaper, and
548 radio advertisements, and contact with individual units. Facebook advertisements and flyers will also be
549 utilized to recruit subjects, as described in greater detail below.

550

551 **Inclusion Criteria:**

- 552 1) age 18-50 years;
- 553 2) right handedness or right-hand dominance as assessed by the Edinburgh Handedness Inventory (EHS)
(necessary to avoid mixed lateralization on brain imaging);
- 554 3) SCID diagnosis consistent with PTSD

555

556 **Exclusion Criteria:**

- 558 1) History of head injury with loss of consciousness for greater than 30 minutes, or post-traumatic
559 amnesia for >24 hours, or major neurological illness (e.g. epilepsy, multiple sclerosis/MS);
- 560 2) Chronic medical (e.g. heart conditions, cystic fibrosis, diabetes, cancer, HIV/AIDS, HEP C, thyroid
561 problems, high blood sugar) or psychiatric (e.g. bipolar disorder/manic or hypomanic episodes,
562 personality disorders, schizophrenia/other psychotic disorders, severe OCD or ADHD) conditions that
563 would confound interpretation of results;

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	19 of 44

564 3) Left-handedness or left-hand dominance if ambidextrous (could affect brain lateralization and add error
565 variance to scanning);
566 4) Abnormal visual acuity that cannot be corrected by contact lenses (necessary to see stimuli in the
567 magnetic environment of the scanner);
568 5) IQ estimate less than 70;
569 6) Metal within the body, pregnancy, or other contraindication for MRI procedures;
570 7) Ongoing trauma (e.g. currently being in an abusive relationship) or non-qualifying trauma (e.g. index
571 trauma emotional/verbal abuse, children being taken away by the CPS, divorce, natural deaths by age
572 or illness);
573 8) Previous formal treatment with light therapy;
574 9) History of light-induced migraine or epilepsy; medical complications that could elevate the risk of
575 discomfort associated with light-therapy;
576 10) Use of medications that could affect functional neuroimaging results (e.g., beta-blockers, mood
577 stabilizers, atypical antipsychotics, benzodiazepines, hypertension medication, chemotherapy,
578 photosensitive medications etc.). Patients currently taking other psychotropic medications (i.e.,
579 “treatment as usual”) must be stabilized for at least 4-weeks prior to participation. Although
580 participants will not be excluded from participation, detailed history and dosages will be documented
581 and examined as appropriate in statistical analyses.
582 11) Current suicidal intent based on an assessment conducted by a licensed clinical psychologist;
583 12) Currently taking or anticipating the need to take sleep-inducing medications (e.g., zolpidem) or
584 supplements that have known effects on sleep (e.g., melatonin) during the course of the study.
585 a. Patients currently taking other psychotropic medications (i.e., “treatment as usual”) must be
586 stabilized for at least 4-weeks prior to participation. Although participants will not be
587 excluded from participation, detailed history and dosages will be documented and examined as
588 appropriate in statistical analyses. Due to the broad range of sleeping disturbances that are
589 observed with PTSD and the likely difficulty in recruiting sufficient numbers of participants,
590 we will not be excluding any particular sleep disorder, but will collect data regarding these
591 sleep related problems so that it may be possible to statistically control for the effect of the
592 BLT treatment on different forms of sleep problems;
593 13) Index trauma occurring before the participant is 18 years of age;
594 14) Index trauma occurring 10 years or longer prior to participation in the study;
595 15) WRAT4 reading test score indicative of less than a 6th grade level of reading comprehension;
596 16) Drug use: Marijuana use not exclusionary. Past drug dependence (other than marijuana) not
597 exclusionary if individuals have sustained remission (no drug use in the past 12 months).

598 6) Recruitment Methods and Consenting Process

599 Please note: *The Human Research Protection Office (HRPO) with US Army Medical Research and*
600 *Materiel Command must approve any major amendment to this study prior to its implementation.*
601 *Therefore, implementation of any amendment which requires HRPO approval, including use of revised*
602 *consents, will not begin until HRPO approval is received.*

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	20 of 44

604 Participants will be recruited from several sources. Active duty participants will be recruited
605 according to the guidelines specified by the Department of Defense's (DoD's) Congressionally Directed
606 Medical Research Programs (CDMRP) upon award receipt. The PI, a U.S. Army Reserve Research
607 Psychologist (Lieutenant Colonel), already has a number of established relationships and collaborations
608 with leaders in the Army Medical Department (AMEDD), the Pentagon, several major medical treatment
609 facilities (MTFs), and all three of the Army's primary research laboratories, including the Walter Reed
610 Army Institute of Research (WRAIR), the U.S. Army Institute of Environmental Medicine (USARIEM),
611 and the U.S. Army Aeromedical Research Laboratory (USAARL). It is anticipated that recruitment of
612 active duty, Reserve, and National Guard participants will be effectively facilitated and will proceed
613 according to the guidelines specified by the CDMRP. Civilian veterans, Reserve Soldiers, National
614 Guard Soldiers, and nonmilitary combat-exposed civilians will also be recruited primarily from the local
615 Tucson and surrounding area, from clinical programs within the Department of Psychiatry, and local
616 events and advertisements on the web (including our own websites, appropriate sections of community
617 websites and forums [e.g. Craigslist], Facebook or other social media, and reputable clinical trial referral
618 websites [e.g. StudyKik], and similar websites). Our lab will post IRB approved advertising text on
619 similarly themed Facebook groups, which allow for outside posts of this nature. We will adhere to any
620 page specific posting requirements as well as Facebook Terms of Service for appropriate behavior. We
621 may also utilize print, radio advertisements, TV, and UAHS and College of Medicine hallway and lobby
622 monitors and flyers on campus, as well as UA list serves such as 3D memos etc. (ad text will be IRB
623 approved), Residence Halls, and other UA buildings (with the appropriate recruitment site authorization
624 obtained prior).

625 We will make approved screening surveys (e.g., *Recruitment Survey.pdf*) available on UA
626 departmental (e.g., Department of Psychiatry, Department of Psychology) or other UA-affiliated websites
627 (e.g., UAHS Clinical Research Studies website), as well as other online media appropriate for research
628 advertising such as clinical trial referral websites, survey websites (e.g., Qualtrics, Survey Monkey),
629 research data management (e.g., REDCap), and crowdsourcing websites (e.g., Amazon Mechanical Turk
630 [MTurk]). Crowd-sourcing platforms facilitate recruitment of and payment to individuals for their
631 participation in online surveys. When disseminated via this method, our surveys will be restricted to
632 participants who live in Arizona and will be securely hosted in Qualtrics, REDCap, or other such
633 reputable survey-host.

634 In addition, UA Clinics (i.e. CAPS, Campus Health, etc.), and outside clinics/businesses in the
635 greater Tucson area will be utilized to refer patients to the study. Treating physicians at clinics may be
636 informed of the study and the inclusion/exclusion criteria, if they feel they have a patient who qualifies
637 they will provide the patient with a study recruitment flyer and the patient will contact our office if they
638 are interested. Recruitment site authorization will be obtained prior to recruitment occurring at any site;
639 this documentation will be kept within our research files. A trained research assistant will initially screen
640 individuals who respond to these advertisements via telephone interview. Individuals meeting basic
641 eligibility requirements will be scheduled for an intake visit. Participants whose intake visits are
642 scheduled more than six weeks after the date of the initial phone screen will be given a shortened follow-
643 up phone screen prior to the intake visit, in order to ensure that no changes have taken place which may
644 affect their eligibility. Recruitment and advertisement materials will include brief descriptions of the

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	21 of 44

645 purpose of the study, the general procedures of the study, important inclusion and exclusion criteria, the
646 amount of compensation, and the phone number or email address to contact if interested.

647 To encourage full participation and minimal subject discontinuation, subject compensation will
648 follow the prorated schedule as seen in Section 12.

649
650 Subjects will be made aware via the Informed Consent Form that if they are active duty military
651 personnel, they are not eligible to receive compensation for time spent completing assessments unless
652 they are on official military leave status in accordance with Title 24 United States Code 30. Therefore,
653 any active duty military personnel not on leave status will not receive compensation for time spent
654 completing assessments as attested to by all subjects as part of the informed consent process.
655 We will request that subjects attest to their understanding of this by initialing the following:
656

657 *Participants who are active duty cannot be compensated for any of the research activities while they
658 are “on-duty”. It will be the volunteer’s responsibility to ensure they have taken leave and obtained
659 the right permissions, if required, in order to receive compensation for this study.*

660 _____ Please initial to indicate you acknowledge this requirement.

661
662 **If you are active duty military personnel**, you are not eligible to receive compensation for time
663 spent completing assessments while you are “on duty.” In accordance with Title 24 United States
664 Code 30, active duty military personnel must be on leave status during each of the three assessment
665 sessions in order to be compensated. If you are on active duty, **it is your responsibility** to ensure that
666 you have completed the appropriate paperwork for leave and obtained the necessary permissions to
667 allow you to participate in this study. If you are on leave status, you will be compensated for the 3
668 assessment sessions according to the schedule listed above.

669 **Screening Procedures:**

670 Potential subjects will be screened over the phone by a clinically trained research assistant to
671 verify that subjects meet all inclusion criteria and do not meet any of the exclusionary criteria.
672 Information collected during screening will not be used as a part of the research data. Subjects who meet
673 basic eligibility requirements will be scheduled for an intake visit. Informed consent will be obtained prior
674 to initiating any further screening procedures. After informed consent has been determined, a supervised
675 Research Technician who has been trained and meets predetermined qualifications to administer a
676 Structured Clinical Interview by doctoral level clinical psychologists with training and experience
677 administering these instruments will conduct a structured clinical interview to screen for any psychiatric
678 diagnoses. Once eligibility for the study has been confirmed or rejected, the subject will be placed into the
679 appropriate experimental group, or excluded from the study if any information yielded from this visit is
680 consistent with the exclusionary criteria.

681

682 **Informed Consent Process:**

683 • Either the PI or a trained research assistant will be responsible for explaining the study, answering
684 questions, and obtaining written informed consent from participants.

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	22 of 44

- Initial description of the study will be provided during the telephone screening process. The actual consent process will occur during the in-person intake visit. The consent process is the first part of the visit, and will take place in a private office. The participant will have the opportunity to read the consent form, and each section will be explained in detail by the research assistant. The participant will have a chance to ask questions and have them answered fully before making a decision to participate. All volunteers will receive a copy of the signed consent form once they and the study staff member obtaining consent have signed the form.
- Only adult participants with normal intellectual capacity (IQ≥70) will be included in the study. Any evidence of altered mental status or capacity, due to substances, medications, cognitive status, or injury will result in discontinuation of the consent process.
- Participants will be consented in a private office, but may be accompanied by anyone of their choosing. There will be no time pressure and potential volunteers may discuss possible participation with anyone and may choose to suspend the consent process and return on another occasion, as long as they have not been disqualified or the study has terminated.
- Participants will be monitored closely by study staff and queried about continued participation after completion of each major component of the study (i.e., neurocognitive testing, functional imaging, sleep study, etc.) and if there are visible signs that the participant may be having difficulty tolerating the procedures.
- We will not enroll subjects who cannot provide written informed consent; therefore plans to consent the subject's Legally Authorized Representative are not applicable.
- Because the study requires the ability to read many self-report instruments and complete several written tasks, we will not be enrolling anyone that cannot read with at least 6th grade proficiency, as indicated by the WRAT 4 Reading test. Because the study requires the ability to comprehend a variety of self-report instruments that are only available in English, we will not be enrolling participants whose primary language is not English. No waiver of consent is being sought for this study.
- All participants will be adults (age 18 to 50), thus issues regarding assent from minors are not relevant.

7) Procedures involved in the Human Research

General Procedure: Over a 4-year period, 108 participants between the ages of 18 and 50 will be recruited to participate (to reach a final n of 90 subjects, assuming 20% attrition). Participants will comprise active duty, Reserve, National Guard, or recently discharged combat-exposed military personnel or DoD contractors from Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) meeting DSM-V diagnostic criteria for PTSD, in addition to some non-military individuals who meet the DSM-V diagnostic criteria for PTSD. Combat-exposed individuals within 10 years of return from OIF/OEF will be eligible. An age range of 18-50 years has been selected to minimize possible developmental and degenerative effects that could be expected in younger and older subjects and to encompass the age range of the majority of military personnel.

FORM: Application for Human Research
NUMBER
FORM DATE
PAGE

F200

02/2014

23 of 44

724 Prior to data analysis, subjects who consent will have a follow-up phone call where they will be
 725 administered the PCL-5, PHQ-9, and be asked about general sleep problems using the ESS and ISI.
 726

727 The procedures will essentially be identical to those used successfully in our pilot study of patients
 728 with mTBI. Participants will attend three laboratory sessions (see Figure 10 below). Visit 1 involves
 729 informed consent, demographic data collection, and basic psychiatric assessment. Participants will be
 730 provided with a wrist actigraph sleep monitor. After a week of at home monitoring, each participant will
 731 return for Visit 2, which is involves comprehensive neurocognitive assessment, neuroimaging, fear
 732 conditioning testing, objective sleepiness monitoring and heart rate monitoring. Then participants will be
 733 randomly assigned to one of two light therapy conditions (n = 45 per group) differing only in the
 734 wavelength emitted by each light therapy device. Participants will be randomly assigned to either the BL
 735 condition or the PL condition, using computerized permuted block randomization to match groups by
 736 gender. Participants assigned to the active treatment condition will undergo 6-weeks of at-home treatment
 737 with a light device fitted with blue light (BL) diodes, while those assigned to the Placebo (PL) condition
 738 will undergo 6-weeks of identical treatment with a device fitted with amber light diodes. To objectively
 739 monitor sleep, participants will wear a wrist actigraph for the duration of the study. During the 6 weeks
 740 of treatment, participants will use the light device for 30-minutes each morning, within 2-hours of
 741 awakening (verified via light sensor built into the wrist actigraph, daily time stamped electronic sleep
 742 diary, and compliance as measured by wattage usage/time meter). After 6-weeks, participants return for
 743 Visit 3 and undergo a follow-up neurocognitive assessment, neuroimaging, fear conditioning, objective
 744 sleepiness monitoring, and heart rate monitoring. These procedures have been extremely successful and
 well tolerated in our pilot study.

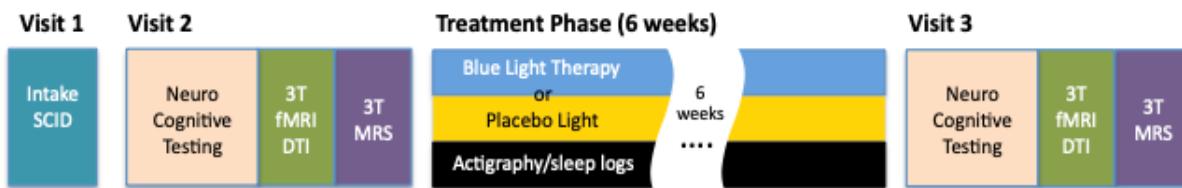


Figure 10. Study Design: Participants attend 3 separate sessions. Visit 1 is simply an intake session that includes consent forms and SCID assessment. Visit 2 and 3 are identical, and include a comprehensive neurocognitive test battery, and neuroimaging. Visit 2 and 3 are separated by a 6-week treatment period with either Blue Light Therapy or Amber Placebo Light Treatment.

745
 746 **Subject Screening:** Participants whose intake visits are scheduled more than six weeks after the date of
 747 the initial phone screen will be given a shortened follow-up phone screen prior to the intake visit, in order
 748 to ensure that no changes have taken place which may affect their eligibility.
 749

Intake Visit (Visit 1): Participants will be given a full description of the study, have the opportunity to
 750 ask questions, and will provide written informed consent, and will be evaluated for PTSD severity using
 751 the Structured Clinical Interview for DSM-V (SCID). The Morningness Eveningness Questionnaire
 752 (MEQ) will be administered to assess circadian rhythm disturbances prior to light treatment. The combat
 753 exposure scale (CES) will also be administered to participants with combat-related PTSD to inform us of
 754 the extent and nature of combat exposure in military participants. The Weschler Abbreviated Scale of
 755 Intelligence (WASI-II) will be administered to control for variation in intelligence levels amongst
 756 participants. The AUDIT and MUSE questionnaires will also be given to determine the degree and extent
 757 of alcohol and marijuana use, though neither of these scales will be utilized as a means to determine

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	24 of 44

758 exclusion from the study. The Rivermead Post-Concussive Symptoms Questionnaire (RPCSQ) will be
759 administered to confirm that any participants who may have experienced concussion during their
760 traumatic event did not lose consciousness or experience post-traumatic amnesia. Research Technicians
761 who have been trained and meet predetermined qualifications to administer a Structured Clinical
762 Interview by doctoral level clinical psychologists with training and experience with these instruments will
763 administer the SCID. All SCID administrations will be reviewed via supervision by a qualified doctoral
764 level clinical psychologist immediately following the participant's interview. Female participants will
765 also provide information about their menstrual cycle (length of cycle and time since last menses) because
766 this is critical in the interpretation of brain metabolite levels during magnetic resonance spectroscopic
767 imaging. We do not know if MRI scanning presents a risk to unborn fetuses, so we will ask all female
768 participants of childbearing potential to complete a urine pregnancy test immediately prior to the scan.
769 Female participants must have a negative pregnancy test before the MRI scan can be initiated. This
770 pregnancy test will be performed in the Department of Psychiatry. All subjects will wear a heart rate
771 monitor for the duration of this visit. Selection criteria for all subjects are as follows:

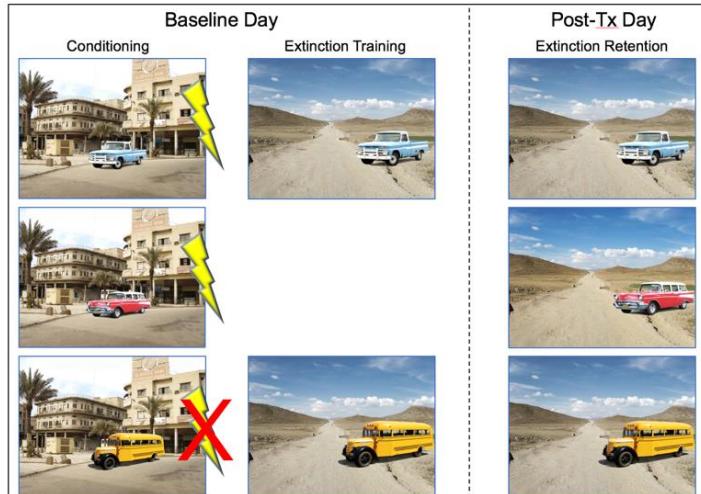
772 During Visit 1, participants will be fitted with a wrist-worn actigraph to monitor sleep/wake
773 patterns. This device will also log exposure to light in three wavelengths (red, green, blue) to measure
774 compliance with the protocol. Participants will also be introduced to the online sleep diary collection
775 system and will be given an automated email each morning reminding them to log in and complete the
776 sleep diary.

777 **Visits 2 and 3: Assessment/Scanning Visits:** One week after Visit 1, participants will return for
778 Visit 2. Participants will complete a detailed demographic (Day of Scan Questionnaire (DSIQ)) and health
779 questionnaire and will be fitted for a heart rate monitor to be worn for the duration of the visit, save for
780 the MRI scan where heart rate will be measured by MRI safe leads as part of the MRI scanner. Subjects
781 will complete a comprehensive baseline assessment of neurocognitive and emotional functioning, coping
782 capacity, and resilience. Participants will also undergo a validated *de novo* fear conditioning and
783 extinction procedure [98-101], and a series of functional neuroimaging and neurochemistry scans.
784 Additionally, participants will complete subjective and objective measures of sleepiness and alertness
785 throughout the day. The following specific tasks and procedures will be administered during the
786 assessment session:

787 **Emotional Functioning/Coping/Symptom Severity:** PTSD severity will be assessed using the
788 20-item National Center for PTSD Checklist, Military Version (PCL-5), Patient Health Questionnaire
789 (PHQ-9), and Clinician Administered PTSD Scale-5 (CAPS-5). Further assessment of psychopathology
790 will be made via administration of the Beck Depression Inventory (BDI-II); Beck Anxiety Inventory
791 (BAI); and Spielberger State-Trait Anxiety Inventory (STA). Participants will also complete measures
792 of resilience (Connor-Davidson Resilience Scale (CD-RISC)), Evaluation of Risks (EVAR), the Satisfaction
793 with Life Scale (SWLS) and the Gratitude Questionnaire (GQ6). The Balloon Analogue Risk Test
794 (BART) will be done to measure risk taking.

795 **Subjective Sleep Measures:** To assess general sleep quality, daytime sleepiness, and
796 parasomnias, participants will complete the Pittsburgh Sleep Quality Index (PSQI)[102], the Epworth
797 Sleepiness Scale (ESS) [103], the Insomnia Severity Index (ISI)[104], and the Disturbing Dream and
798 Nightmare Severity Index (DDNSI) [22]. The Stanford Sleepiness Scale (SSS) [105] will be completed at

FORM: Application for Human Research


NUMBER	FORM DATE	PAGE
F200	02/2014	25 of 44

799 three times during the assessment day. The Functional Outcome of Sleep Questionnaire (FOSQ) and
 800 Sleep Diaries A & B will also be done.

801 **Neurocognitive Assessment:** All participants will complete a comprehensive neurocognitive
 802 assessment battery to include:

803 1. Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The
 804 RBANS is a brief battery of well-normed neuropsychological tests with two alternate forms (RBANS A
 805 and RBANS B) to permit repeated testing. The test provides several index scores, including: Total Score,
 806 Immediate Memory, Visuospatial/Constructional, Language, Attention, and Delayed Memory. This brief
 807 battery will be administered to assess change in cognitive performance in each group following treatment.
 808 Subject responses will be recorded via recording device for the Semantic Fluency portion of the RBANS
 809 assessment in order to ensure that their complete responses are captured given that they may respond
 810 faster than the study team may otherwise be able to record. No identifiers will be used and these recording
 811 will be assigned to the subject ID number only. Recordings will be listened to the same day they are
 812 created and compared to the initial response collection to ensure the study team captured the subject's
 813 complete response, anything missed will be transcribed onto the RBANS form. The recording will then be
 814 deleted.

815 2. Fear Conditioning Paradigm. Our group has developed a fear-conditioning/fear extinction
 816 paradigm that is highly effective at discriminating individuals with PTSD from healthy controls [98-101].
 817 The protocol consists of 4 experimental phases: Habituation, Conditioning, Extinction and Extinction
 818 Recall. Subjects first choose a level of mild
 819 electric shock that is "highly annoying but not
 820 painful" while being administered shocks of
 821 increasing intensities through electrodes
 822 connected to two fingers. For this paradigm, the
 823 conditioned stimuli (CSs) consist of digital
 824 photographs of three differently colored vehicles
 825 (blue, red or yellow) displayed on a computer
 826 screen within the image of two different
 827 photographic environments (contexts), a
 828 "conditioning context" in which the
 829 unconditioned (shock) stimulus (US)
 830 accompanies certain CSs (CS+s) during
 831 Conditioning and an "extinction context" in
 832 which CS+s occur without USs during the Extinction and Extinction Recall phases. Before each
 833 experimental phase except Habituation, subjects are told they "may or may not be shocked." During
 834 Conditioning, 16 CS+'s (8 each of 2 different colors) are presented in the conditioning context and a 0.5-
 835 sec US (shock) immediately follows the offset of 10 of 16 CS+ presentations (5 of the 8 of each CS+
 836 color). Sixteen randomly interspersed presentations of the third vehicle color (CS-s) are never paired with
 837 the US. During the Extinction phase, one CS+ color (CS+E) appears 16 times in the extinction context,
 838 along with 16 interspersed CS-s and no USs. The other CS+ color (CS+U) does not appear and therefore
 839 remains un-extinguished. During the Extinction Recall phase, the 8 CS+Es and 8 CS+Us are presented in
 840 the extinction context with 16 interspersed CS-s and no USs. The measurement of conditioned fear is

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	26 of 44

841 palm-recorded skin conductance response (SCR), a reliable index of sympathetic activation. Participants
842 will be conditioned and undergo extinction prior to entry into the scanner. During scanning, participants
843 will again be confronted with the previously extinguished stimuli to evaluate extinction recall, a hallmark
844 deficit of PTSD. It is expected that improved sleep due to the BL condition will lead to improved
845 generalization of the extinction response and extinction recall.

846 **Modified Sleep Latency Test (MSLT):** Participants will undergo 3 MSLT procedures with
847 polysomnographic (PSG) recording over the course of the assessment day. A trained technician will fit
848 each participant with a standard electrode montage for PSG recording. Standard PSG will be recorded
849 using the Polysmith 11.0 system that is installed in our sleep laboratory facilities. During each MSLT, the
850 participant will be given up to 20 minutes to fall asleep in a private, darkened, sound-attenuated bedroom.
851 PSG recordings will be scored by a trained technician to determine the latency to fall sleep. The mean
852 latency to sleep is taken as an indication of objective sleepiness.

853 **Psychomotor Vigilance Test (PVT):** The PVT is a 10-minute computerized measure of
854 sustained attention and psychomotor vigilance that has been shown to be exquisitely sensitive to sleep
855 deprivation. The PVT currently serves as the “gold standard” for assessing degradation in alertness and
856 vigilance following sleep loss.

857 **Functional Neuroimaging:** Subjects will be screened for any contraindications to MRI and magnetic
858 materials. The investigator or MRI Technologist will explain the MRI system and the scan that they are
859 about to take part in. The subject will be asked to lie down on the scanner bed. Some part of the subject's
860 body may be covered or enclosed within an FDA or UA HSPP approved MRI coil. The subject may be
861 asked to interact with a peripheral system such as a button, joystick, or TV system before, during, or after
862 the scan.

863 Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) will
864 be collected at the University of Arizona Translational Bioimaging Resource. The MRI hardware and
865 procedures immediately to follow are approved by the FDA. A Siemens Skyra 3T whole body high-speed
866 imaging device equipped for echo planar imaging (EPI) (Siemens Medical Systems, Iselin, NJ) will be
867 used. Head movement will be restricted using expandable foam cushions. After an automated scout
868 image is acquired and shimming procedures performed to optimize field homogeneity, high-resolution 3D
869 MPRAGE sequences (TR/TE/flip angle=7.25ms/3ms/7°) with an in-plane resolution of 1.3 mm, and 1
870 mm slice thickness, will be collected for spatial normalization, positioning the slice prescription, and for
871 subsequent morphometric analysis. Then a T1-weighted (TR/TE/flip angle=8sec/39msec/90°) and a T2-
872 weighted (TR/TE/flip angle=10sec/48ms/120°) sequence will be used to gather sets of images to assist in
873 registration of the functional data to the high-resolution anatomical scan. Functional MRI images (blood
874 oxygenation level dependent or BOLD; Kwong et al 1992) will be acquired using a gradient echo T2*-
875 weighted sequence (TR/TE/flip angle=2 sec/40msec/90°). Prior to each scan, four images are acquired
876 and discarded to allow longitudinal magnetization to reach equilibrium. The T1, T2, and gradient-echo
877 functional images will be collected in the same plane (whole brain acquisition; axonal slices angled
878 perpendicular to the AC-PC line) with the same slice thickness (3.125 mm, skip 1mm; voxel size 3.125 x
879 3.125 x 3.125 mm), excitation order (descending) and phase encoding (head-to-foot). During fMRI,
880 participants will complete four functional tasks:

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	27 of 44

881 1. Masked Affect Task (MAT): This task, first developed by our group back in the mid-1990's
 882 [110], presents a series of facial expressions displaying happiness or fear, each for only 16 msec and
 883 masked immediately by a neutral image from a different poser for 184 msec (Figure 14). At this rate of
 884 presentation, the "masked" affective expression is not consciously perceived, yet is still processed via an
 885 extrastriate pathway to the amygdala that bypasses normal cortical processing. This task has been shown
 886 to selectively activate the amygdala in healthy participants. Moreover, in our laboratory, exaggerated
 887 amygdala response has been found on this task in patients with PTSD [27]. Our laboratory has extensive
 888 experience using this task with patients with PTSD and anxiety disorders [27, 111-115], and healthy
 889 adults and children [116-118].

890 2. Extinction Recall (ER): This task measures the
 891 retention of the extinction memory established during the
 892 previous fear conditioning session. While undergoing fMRI,
 893 participants will view the previously conditioned images from
 894 the Fear Conditioning and Extinction Task. Here, 8 CS+E, 8
 895 CS+U, and 16 CS- trials will be presented (without any
 896 shocks). Skin conductance responses will also be collected
 897 while participants are undergoing the scan. During this task,
 898 the contrast of interest will be CS+E vs. CS+U, permitting the
 899 isolation of psychophysiological and brain responses that are
 900 specific to extinction recall.

901 3. Resting State Scan (RS): Emerging evidence suggests
 902 that the brain shows stable patterns of functional connectivity
 903 during the resting state and that these patterns may be
 904 particularly useful in elucidating specific networks [119-122].
 905 Therefore, in addition to the probe tasks described above subjects will also be scanned for 10 minutes
 906 with eyes closed and instructed to let their "mind wander." Functional connectivity will be evaluated
 907 from pre- to post-treatment for the two conditions.

908 4. Anticipation Task: The Emotional Anticipation Task was adapted on the basis of Aupperle et al.'s
 909 (2013) study design and lasts a total of 7 min and 8 seconds. Two version of the anticipation tasks will be
 910 used, in order to have two different versions of the tasks for the baseline and follow up visit. Participants
 911 are presented with a grey background with a black arrow alternating randomly in its direction from left to
 912 right (Baseline). Participants are instructed to indicate via button press which direction the arrow was
 913 pointing in. Participants are told that when the screen turns yellow, a negative picture will soon appear
 914 (Negative Anticipation (NA)). If the screen turns blue, a positive picture will soon appear (Positive
 915 Anticipation (PA)), and if the screen turns green a positive *or* a negative picture will soon appear
 916 (Uncertain Anticipation (UA)). The picture stimuli consist of positive and negative pictures from the
 917 International Affective Picture System (IAPS). The most unpleasant (e.g., mutilated bodies) as well as the
 918 most pleasant (e.g., animals) pictures were chosen from the picture set. The aim of this task is to
 919 investigate whether the intervention changes neural responses during anticipation of negative stimuli.

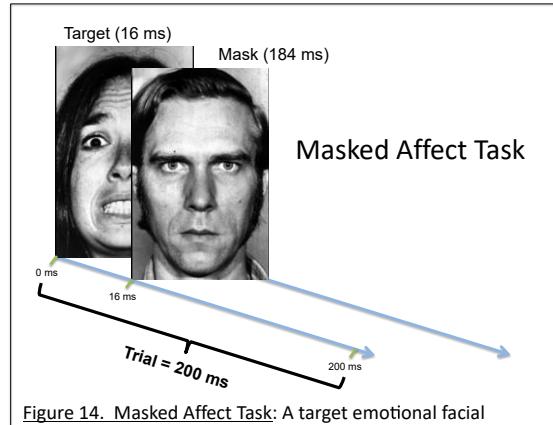


Figure 14. Masked Affect Task: A target emotional facial expression is presented for 16 ms and masked immediately by a neutral face for a longer duration (184 ms). This effectively prevents awareness of the target emotional expression, although it is perceived at a non-conscious level.

NUMBER	FORM DATE	PAGE
F200	02/2014	28 of 44

Spectroscopic Neuroimaging: While all MRI

hardware used during this study is FDA-approved, as part of the MRI session, one MRI sequence will be conducted that uses investigational software that enables collection of unique spectroscopic data. This scan, referred to as the MEGA-PRESS sequence, uses Proton Magnetic Resonance Spectroscopy (MRS) to measure chemicals in the brain, specifically, cerebral metabolites and neurotransmitter concentrations. It is very similar to other FDA-approved MRS sequences, but it does a better job at quantifying certain metabolites, namely, GABA. Per the Master Research Agreement (MRA) between Siemens and the University of Arizona, as a Works in Progress (WIP), the MEGA-PRESS sequence complies with all FDA guidelines for magnetic resonance imaging (<https://www.fda.gov/regulatory-information/search-fda-guidance-documents/criteria-significant-risk-investigations-magnetic-resonance-diagnostic-devices-guidance-industry-and>) and is suitable for testing in a clinical

environment. Because of this, the MEGA-PRESS sequences does not increase the risk to subjects.

A key element of the proposed project involves assessment of changes in brain neurochemistry as a function of 6-weeks of light therapy treatment and associated changes in sleep quality. Growing evidence suggests that some of the deficits in memory and emotional regulation that occur for patients with PTSD are related to alterations in neurochemistry within key regions of the hippocampus and ACC (Karl & Werner, 2010). In particular, patients with PTSD show decreased NAA in the hippocampus and ACC, as well as reduced concentrations of choline in the hippocampus and increased levels in the ACC. These are often compared directly as ratios relative to creatine (Cr). Assuming that improved sleep leads to improvement in emotional functioning, this will permit us to identify a potential mechanism for this improvement. Presently, for ¹H MRS imaging, two voxels will be placed, one encompassing the dorsal anterior cingulate cortex just anterior to the genu of the corpus callosum and another placed at the amygdala-hippocampal complex within the mesial temporal lobe (see figure 15). All ¹H MRS measurements will be performed using a Siemens TIM Trio 3T whole body high-speed imaging device (Siemens Medical Systems, Iselin, NJ) and a 32-channel single-tuned (170.3 MHz) "birdcage" coil for radiofrequency (RF) transmission and signal reception, both of which are approved by the FDA. The following brain metabolites will be collected and analyzed: alanine (Ala), aspartate (Asp), choline (Cho), Gamma Amino Butyric Acid (GABA), Glutamate (Glu), Glutamine (Gln), glutathione (GSH), glycine (Gly), myo-I, N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), creatine (Cr), phosphocreatine (PCr), scyllo-inositol (Scy), taurine (Tau) and lactate (Lac).

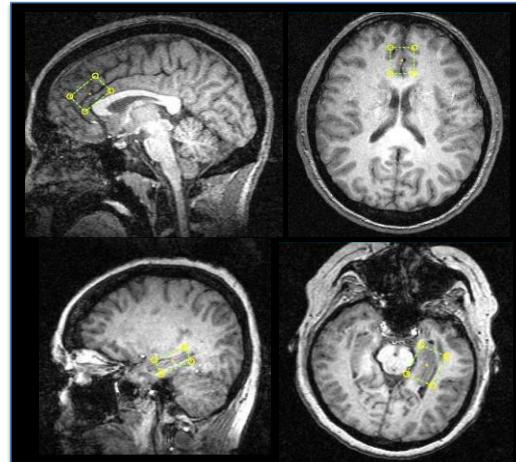
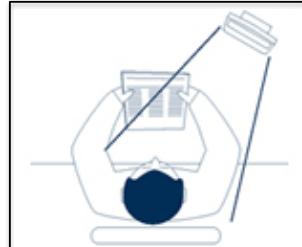
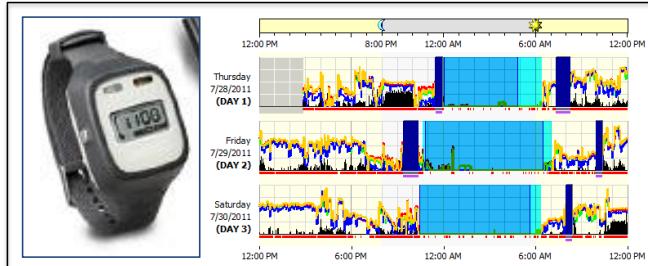


Figure 15. MRS Spectroscopy: Placement of voxels within the dorsal ACC and left hippocampus.

FORM: Application for Human Research


NUMBER	FORM DATE	PAGE
F200	02/2014	29 of 44

At Home Six-Week Light Exposure Treatment:


At the conclusion of Visit 2, participants will be randomly assigned to either the BL condition or the PL condition, using computerized permuted block randomization to match groups by gender. All participants will be given a goLITE® unit to take home and provided with detailed training and instruction on its use. Depending on the light condition assigned, the goLITE will include either blue or amber LEDs. The goLITE BLU is commercially available and has a narrow bandwidth, peaking at $\lambda = 469$ nm, at 214 Lux, and panel irradiance $\text{mW/cm}^2 = 1.23$ at 20 cm. A similar appearing amber LED system (goLITE AMBER) will be employed for the PL devices, but will peak at $\lambda = 578$ nm, at 188 Lux, and total irradiance $(\text{mW/cm}^2) = 0.35$. Both of these devices have undergone extensive ocular safety testing (Sliney, 2009) and have been used successfully without incident in our prior study. Each participant will be instructed to use the unit each morning (within 2 hours of awakening and prior to 10:30 am) for 30 minutes per day over the next 6 weeks. Participants are permitted to engage in sedentary activities (e.g., read, watch TV, surf the internet, eat, engage in daily hygiene) while the unit is activated, as long as the light is within arm's reach and projecting to the eyes from within a 45-degree angle to either side (see Figure 14). A wattage use meter will be connected to the goLITE device to measure participant compliance in terms of duration, timing, and intensity of light exposure. They will be asked to record this via the Sleep Diaries A & B. This same procedure has been used in our prior work and has been well tolerated by participants, allowing them considerable flexibility to choose whether to use the light immediately upon arising, or after morning hygiene, meals, drive, etc., but while still ensuring that all treatment occur in the morning hours.

Safety and efficacy of the device itself is not being tested, rather, the effects of specific wavelengths of light on human performance; the device is simply used as a convenient method to deliver the light in a controlled and reliable way in order to assure the scientific validity of the results.

Actigraphic Sleep Measurement: Daily sleep, activity, and light exposure will be collected via the Respiromics Actiwatch Spectrum®. This actigraphic wrist-watch device uses a built-in accelerometer to unobtrusively measure and record ambulatory activity levels and sleep 24 hours a day. This data can then be analyzed via sleep analysis software (Actiware 5®) that includes algorithms that transform activity data into probable sleep periods. The Actiwatch Spectrum also includes three-color light sensors that provide irradiance and luminous lux recordings in three-color bands of the visible spectrum, including red, green, and blue (Figure 17). The light sensor will be used to verify that subjects are in fact undergoing the daily light treatment and will permit covariation of other daily light sources in the statistical analyses. The device also records periods of off-wrist time to determine compliance. Data

Figure 16. Participants will maintain the device at arms length within the peripheral vision for 30 minutes each morning.

Figure 17. Actiwatch Spectrum and Actigram: The device collects wrist activity data (black bars) that are translated into sleep/wake periods (white/red bars at bottom of graph), as well as minute by minute light exposure (yellow = total light; blue = blue light; green = green light; red = red light).

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	30 of 44

997 will be scored by the Actiware 5® program, checked for validity, and summary indices of total sleep time,
 998 sleep efficiency, sleep onset latency, wake after sleep onset (WASO), and fragmentation index will be
 999 calculated for each day and averaged across the study period.

1000 **Compliance Monitoring:** Compliance with the study requirements will be monitored in
 1001 several ways. First, participants are required to log into the internet each day to complete the sleep diary
 1002 and report timing of light usage. This is an effective means for monitoring general compliance. On-line
 1003 compliance will be monitored, and participants will be contacted by phone and/or email if they have not
 1004 logged in for more than 48 hours. Second, use of the lights will be monitored by a recording device built
 1005 into the light device that records a time stamp each time the light is engaged. Third, participants are
 1006 required to wear the wrist actigraph at all times. This device includes a light monitor that is sensitive to
 1007 various wavelengths of light. This light data will be evaluated at the conclusion of the study to identify
 1008 whether there is a detectable change in blue/red light during the period of reported light exposure.

1009 **Post-Treatment Assessment and Scan:** At the completion of 6-weeks of BL or PL, participants
 1010 will return to the imaging center for Visit 3 to complete an
 1011 identical series of assessment and neuroimaging tasks as in
 1012 Visit 2, as well as a repeated administration of the CAPS.
 1013 Participants will return wrist actigraphs and the goLITE
 1014 device.

1015 Please note that subjects will be offered and required
 1016 to wear earplugs and/or earphones to minimize the scanner
 1017 noise. Subjects will be able to converse with a staff member
 1018 via a microphone and speaker system at all times during the
 1019 scanning session. Subjects will be provided with an
 1020 emergency button to indicate an immediate concern.
 1021 Subjects may ask to have a scan stopped and discontinue
 1022 participation in the study at any time.

1023 **Follow-Up.** After subjects complete the study, prior
 1024 to data analysis, subjects will be sent an email (*Follow-up*
 1025 *Script.doc*) with a link to an online ICF Addendum
 1026 (*PTSD_ICF_addendum.doc*) and, if they agree, subjects
 1027 will complete a 10- to 15-minute follow-up online survey,
 1028 where they will be administered the PCL-5, PHQ-9, and be
 1029 asked about general sleep problems using the ESS and ISI.
 1030 If subjects cannot complete this follow-up online, follow-up
 1031 assessments will be administered over the phone.

D. DATA ANALYSIS

1034 **Global Statistical Analysis Approach:** Behavioral
 1035 data from the neurocognitive, sleep, and symptom measures
 1036 will be evaluated for clinical severity and transformed into change metrics from baseline to post-treatment
 1037 sessions. Baseline characteristics between subject groups will be examined using analysis of variance
 1038 (ANOVA) and chi-square tests, as appropriate, and randomization will be stratified by severity of PTSD

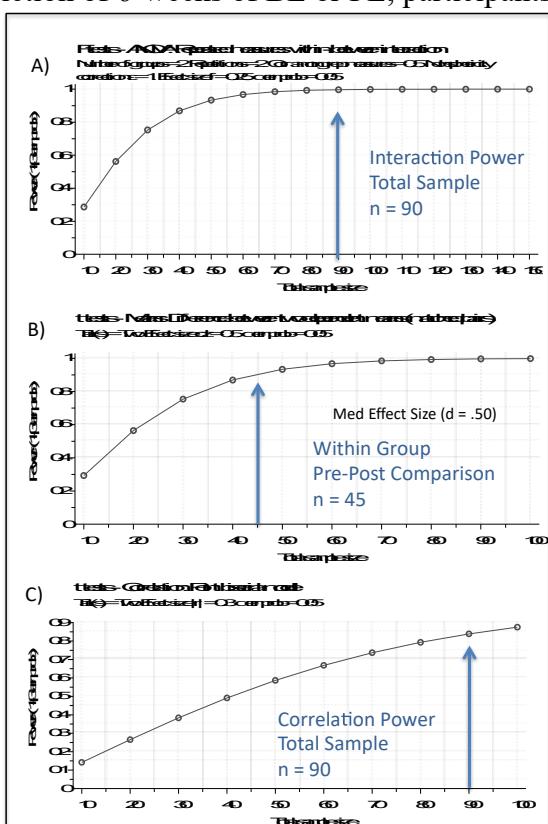


Figure 18. Power analyses show that the proposed sample size should be adequate to address the primary hypotheses.

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	31 of 44

1039 and gender. Randomization will consist of permuted blocks to achieve balance over time. Repeated
1040 measures analysis of variance (ANOVA) and linear mixed-model approaches will be used for the primary
1041 analyses examining the efficacy of light treatment condition on measures of mood and sleep. Between
1042 group factors will correspond to the two light conditions (BL vs PL) and will control for any baseline
1043 differences in demographic variables and severity scores as appropriate. Based on specific hypotheses,
1044 separate ANOVAs will be performed for each type of dependent variable (e.g., subjective sleep scores,
1045 CAPS-2 symptom scores, mood scores, MRS metabolites). The relationship between these change
1046 indices and sleep variables will be analyzed using correlation and linear regression models in SPSS. Tests
1047 for normality will be conducted for all variables. In the case on non-normality, appropriate data
1048 transformation or non-parametric techniques will be employed (e.g., Kruskal-Wallis or Friedman tests for
1049 ANOVA; Mann-Whitney U or Wilcoxon for 2-group comparisons). Inflation of Type I error will be
1050 controlled first through the use of planned comparisons based on the hypotheses and the use of protected
1051 omnibus F-tests. Post-hoc analyses will be undertaken with protected comparisons (e.g., Tukey) or
1052 Bonferroni adjustment. Functional MRI data will be analyzed using statistical parametric mapping
1053 (SPM8) software, implementing the general linear model to compare pre- to post-therapy changes in
1054 functional responses between the active and placebo groups and across diagnostic groups, and sleep
1055 variables will be tested as covariates in the models. Finally, proton spectroscopy data for each of the
1056 metabolites will be quantified and compared for pre- to post-therapy changes in metabolite concentrations
1057 between the active and placebo treatment groups and across diagnostic groups. Type I error during
1058 neuroimaging will be controlled via whole brain False Discovery Rate (FDR) correction or small volume
1059 corrections using Family Wise Error (FWE) rate within *a priori* specified regions of interest. To handle
1060 missing data, we will first determine the potential cause of the data loss. Statistically, missing data can be
1061 considered as falling into three types: 1) missing completely at random, 2) missing at random, or 3)
1062 missing not at random. The type of missing data will dictate the approach. Assuming type 1, and that the
1063 number of missing values is low, we will use a standard listwise deletion procedure. However, assuming
1064 that a larger number of values is missing, and data are not missing completely at random, we will be able
1065 to apply missing data imputation methods.

1066 **Power Analysis:** A power analysis based on a proposed sample size of 90 subjects suggested that
1067 with an omnibus 2 between-groups (BL vs. PL) x 2 within-subjects (pre- vs post-treatment) mixed design,
1068 assuming a moderate effect size ($f = .25$), and $\alpha = .05$, there should provide be adequate power to detect
1069 most effects. First, the primary hypotheses of the study focus on interaction effects across groups (i.e.,
1070 treatment x session interactions), which will have exceptional power ($1-\beta = 0.99$) to detect a moderate
1071 effect size at $\alpha = .05$ (see Figure 18A). Paired comparisons within each group of will also have excellent
1072 power of .91 to detect moderate effect size changes ($d = .50$), with 2-tailed tests (see Figure 18B).
1073 Without regard to group differences, a sample size of 90 would yield power = 0.84 to detect a moderate
1074 linear association (i.e., $r \geq .30$) between a predictor variable (e.g., average sleep; change in sleep
1075 parameters, PTSD symptom severity; neurocognitive performance; etc.) and an outcome variable (e.g.,
1076 fMRI signal intensity changes; spectroscopic metabolite changes; etc.), with a two-tailed test at $\alpha = .05$
1077 (see Figure 16). Thus, the proposed sample size of $n = 45$ per group appears to provide adequate power
1078 for testing the major hypotheses of the proposed study.

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	32 of 44

1079 **Functional Image Pre-Processing:** Functional neuroimaging data will be preprocessed in SPM8
1080 [123]. Following standard algorithms, functional images will be slice-time corrected, co-registered to
1081 their anatomical T1-weighted images, realigned, unwarped to correct for field inhomogeneity, normalized
1082 to the standard three-dimensional space of the Montreal Neurological Institute (MNI), spatially smoothed
1083 using an isotropic Gaussian kernel (full width half maximum [FWHM] = 6 mm), and resliced to 2x2x2
1084 mm isotropic voxels using sinc interpolation. Depending on the specific task, functional data will be
1085 convolved to an event-related or boxcar waveform based on the experimental design and the canonical
1086 hemodynamic response function. Artifact detection will be conducted with the Artifact Detection Tool
1087 (ART) program. Images with global intensities exceeding 3 standard deviations or scan-to-scan
1088 movement exceeding 1mm will be statistically regressed out of the design matrix. For event related
1089 analyses, individual subject motion parameters will also be included as nuisance regressors in the design
1090 matrix

FMRI Statistical Analysis: At the first stage, activation during the conditions of interest will be fitted using the general linear model in SPM8 for each subject individually. This procedure yields a statistical parametric map that isolates the activity unique to the condition of interest (e.g., masked affect) relative to the activity associated with the control condition (e.g., simple perception of neutral facial expressions). Thus, for each subject, a “contrast image” will be produced that reflects the pattern of BOLD signal change due to the independent variable for each task. At the second stage, subject specific contrast images will be entered as the dependent variables in a series of random effects analyses in SPM8 [124]. Functional data will be analyzed from two approaches, including region of interest (ROI) analyses and whole brain exploratory analyses.

1. ROI Analyses. First, a series of region of interest (ROI) analyses will be performed. The primary hypotheses for the MAT involve changes in the amygdala, anterior cingulate gyrus, and ventromedial prefrontal cortex for the MAT, whereas the ACC and dorsolateral prefrontal cortex are hypothesized to differ across groups for the MSIT. Consequently, ROIs will be placed in these regions, defined according to the boundaries of the published anatomical atlas of Tzourio-Mazoyer and colleagues [125] and PickAtlas Utility [126]. These ROI analyses will be carried out at an FDR small volume corrected threshold of $p = .05$, k (extent) = 10. Each of the probe tasks has been selected because of its prior involvement in the neurocircuitry of PTSD.

1108 2. Whole Brain Exploratory Analyses. Furthermore, whole brain analyses will be undertaken to
1109 examine global patterns of activation for each of the previously described analyses. Because these
1110 analyses will be exploratory in nature, they will be evaluated at a stringent correction for multiple
1111 comparisons using a whole brain family-wise error (FWE) correction of $p < .05$, $k = 10$.

3. Resting State Functional Connectivity Analysis: Preprocessed resting state data will be analyzed using the fMRI Functional Connectivity Toolbox (CONN). Physiological and other noise sources are reduced through the implementation of a CompCor strategy implemented within the toolbox. For each subject, gray and white matter masks will be created from the previously segmented images in SPM8 and entered as nuisance covariates in the analyses, as will subject specific motion parameters. Regions of Interest (ROIs) will be created from the Automated Anatomical Labeling Atlas [125]. ROI to ROI and seed-to-voxel analyses will be run individually at the first level and then imported into a second level random effects group analysis. Primary seed regions for connectivity analyses will include the

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	33 of 44

1120 subgenual and rostral ACC, VMPFC, and amygdala. Data will be analyzed at an FDR corrected
1121 significance level of $p < 0.05$.

1122 **MRS Analyses:** The goal will be to determine whether BL treatment is more effective than PL at
1123 altering brain metabolites that are associated with alertness, cognitive processing, and inhibitory capacity.
1124 All MRS processing will be carried-out in a fully automated fashion using methods previously published
1125 by our group [127]. Metabolite ratios will be derived as a ratio of each raw metabolite integral to the total
1126 sum of the creatine and phosphocreatine integrals, and will be T1-corrected using values previously
1127 reported in the literature. Our primary endpoints of interest are Glu (excitatory neurotransmitter), GABA
1128 (inhibitory neurotransmitter), and NAA (marker of neuronal energy production). Standard linear and
1129 mixed model approaches will be employed for comparing metabolite ratios between the active BL and
1130 placebo light conditions within the dorsal ACC and amygdala-hippocampal complex. As described
1131 above, all analyses will be undertaken with $\alpha = .05$, employing corrections for multiple comparisons (e.g.,
1132 Tukey post-hoc corrections; Bonferroni corrections) as appropriate. We expect that the active BL
1133 condition will lead to increased levels of GABA, N-acetyl-aspartate (NAA), and choline (Cho), and
1134 reduced glutamate and phosphocreatine (Cr) in the amygdala-hippocampal complex and anterior cingulate
1135 gyrus compared to the PL condition. Furthermore, it is expected that these changes will be linearly
1136 related to changes in sleep parameters and cognitive/symptom score changes from pre- to post-
1137 assessment.

1138 8) Risks to subjects

1139 Participation in this study may involve some risks or discomforts, which are described below.
1140

1141 During the study visits, subjects may be asked some questions during the brief clinical interview
1142 and on the questionnaires that deal with personal or emotional matters. These questions might cause
1143 psychological discomfort. Subjects may refuse to answer any questions that make them uncomfortable. If
1144 they reveal during these sessions that they are currently or have recently had thoughts of self-harm or
1145 suicide, appropriate follow-up evaluation and referral for care will be ensured. Results of the clinical
1146 evaluation will be kept in a locked cabinet and identified using only subject unique study identification
1147 number.

1148 Subjects may find the sensation of the electric shock used in the picture-viewing task to be
1149 uncomfortable. However, they will be able to choose their own level of shock, which should be strong
1150 enough to annoying or uncomfortable, but not painful. The apparatus that provides the shock is powered
1151 by a 9-volt electric battery, identical to those used in toy electronics. These mild shocks are not dangerous
1152 or harmful, but may be annoying.

1153 Unlike X-rays or CAT scans, magnetic resonance (MR) technology does not use ionizing
1154 radiation. Instead, it uses strong magnetic fields and radio waves to collect the images and data. With the
1155 exception of one sequence (MEGA-PRESS spectroscopy work-in-progress (WIP) pulse sequence), all
1156 MRI procedures involved are standard. The radio frequency exposure, magnetic fields and gradients, and
1157 noise levels produced by the MRI sequences used in this study are no greater than or fall below the FDA's
1158 limits, so subjects are exposed to no greater risk than those of routine MRI scans (see *MEGA-PRESS*
1159 *Sequence Manual.pdf* and *Request allowance for running MEGA-PRESS WIP* (Rouse, Trouard, et al,

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	34 of 44

1160 2019). During the scan, subjects will wear a birdcage coil around their heads; this is an FDA-cleared
1161 device and its use in this study will be as approved by FDA.

1162
1163 The four risks the FDA associates with MRI scanning are: 1) tissue heating due to RF fields, 2)
1164 peripheral nerve stimulation due to quick changes in magnetic field, 3) hearing damage due to acoustic
1165 noise, and 4) force and torque on magnetic materials in or on a participant. That said, the FDA lists "MRI
1166 Devices within FDA specified parameters" as non-significant risk devices. The research scanner in the
1167 TBIR fits within this description. With regard to tissue heating and peripheral nerve stimulation, the
1168 Siemens scanner is not capable of running a sequence that is outside the FDA safety guidelines. With
1169 regard to hearing damage, volunteers wear ear protection when in the scanner. In addition, any non-FDA
1170 approved sequence conducted is within FDA parameters for tissue heating, peripheral nerve stimulation,
1171 and hearing damage.

1172
1173 With regard to force and torque on magnetic materials, anyone entering the magnet room must remove
1174 all metal objects from their body. In addition, significant risks may exist for people with:

1175
1176 • Cardiac pacemakers
1177 • Metal clips on blood vessels (also called stents)
1178 • Artificial heart valves
1179 • Artificial arms, hands, legs, etc.
1180 • Brain stimulator devices
1181 • Implanted drug pumps
1182 • Ear implants
1183 • Eye implants or known metal fragments in eyes
1184 • Exposure to shrapnel or metal filings (wounded in military combat, sheet metal workers, welders, and
1185 others)
1186 • Other metallic surgical hardware in vital areas
1187 • Certain tattoos with metallic ink
1188 • Certain transdermal (skin) patches such as NicoDerm (nicotine for tobacco dependence), Transderm
1189 Scop (scopolamine for motion sickness), or Ortho Evra (birth control)

1190
1191 Volunteers are screened before entering the magnet to be sure they do not have any of these items. If
1192 subjects are unsure whether they have any of these items in their body, they will be informed that most
1193 would have been implanted as part of a surgical procedure, and that trying to remember past operations
1194 may help them remember if they have any implanted devices or history of exposure to shrapnel or metal
1195 filings, and, if so, they will not be able to participate in this study.

1196
1197 Significant risks also can arise if certain materials (many types of metal objects) are brought into the
1198 scanning area, as they can be pulled into the magnet at great speed, which might cause serious injury.
1199 Therefore, these types of items are not permitted in the scanning area. Subjects will not be allowed to
1200 bring anything with them into the scanning room.

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	35 of 44

1202 The MR exams are painless, and except for pulsating sounds or vibrations, subjects will not be aware that
1203 scanning is taking place.

1204
1205 The scans will take place on a 3T scanner, which are approved by the FDA for routine clinical studies in
1206 children and adults. However, as part of the MRI session, subjects will receive an MRI scan that measures
1207 chemicals in the brain, the MEGA-PRESS sequence, that is not FDA approved, though it does comply
1208 with the same FDA guidelines used for routine FDA approved MRI scans. Therefore, all MRI scans used
1209 in this study do not expose subjects to any more risk than a routine MRI exam.

1210
1211 Although there are no known risks from these scans, there could be adverse effects that are delayed or
1212 very mild, such that they have not yet been recognized. Most people experience no ill effects from these
1213 scans, but some people do report claustrophobia (fear of being in enclosed small spaces), dizziness, mild
1214 nausea, headaches, and a metallic taste in their mouth, double vision, or the sensation of flashing lights.
1215 Some subjects also experience feelings of panic and/or anxiety. These symptoms are rare, and if present,
1216 disappear shortly after leaving the scanner. **In addition to these physical risks, the MRI system can be**
1217 **psychologically unsettling to some volunteers that are bothered by loud noises or small spaces.**

1218
1219 Volunteers can ask to be removed from the scanner at any point during the procedure without any
1220 repercussions.

1221
1222 Steps taken to minimize risk:

1223
1224 For the first three MRI risks described above, all sequences operate within the FDA limits of non-
1225 significant risk. For the fourth risk, force/torque on magnetic materials, all volunteers are checked
1226 multiple times for these materials before entering the magnetic field. In addition, volunteers can ask to be
1227 removed from the scanner at any point during the procedure without any repercussions.

1228 Subjects will be screened for any contraindications to MRI and magnetic materials. The investigator or
1229 MRI Technologist will explain the MRI system and the scan that they are about to take part in. The
1230 volunteer will be asked to lie down on the scanner bed. Some part of the volunteer's body may be covered
1231 or enclosed within an FDA or UofA HSPP approved MRI coil. The volunteer may be asked to interact
1232 with a peripheral system such as a button, joystick, or TV system before, during, or after the scan.

1233
1234 Although both light devices (placebo [PL] and blue light [BLT]) are safe to use (Sliney, 2009,
1235 2006; Apollo Health, 2009), we will minimize unnecessary direct exposure to the bright lights to reduce
1236 the possibility of discomfort or persistent visual symptoms. Although looking directly at the LEDs for
1237 brief periods is not known to be harmful, it is unnecessary and may lead to glare, eyestrain, or other
1238 irritating visual sensations that can be easily avoided by keeping the panel at an angle in the peripheral
1239 vision. It is sufficient that the light reaches the eyes indirectly from the side. Looking directly at the LEDs
1240 does not provide any additional benefit. Prolonged staring at the LEDs could lead to significant eye
1241 irritation, lingering afterimages, or other symptoms such as headaches. Although the light emissions of
1242 the device are well within safe limits and no problems have ever been reported, we want to minimize any
1243 risks or discomforts. While extremely unlikely, it is possible that prolonged continuous staring at the

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	36 of 44

1244 LEDs could lead to more severe changes in vision such as photoretinitis, a condition that is most
1245 commonly associated with looking for too long at very bright light sources such as snow on a bright
1246 sunny day or looking at the sun during an eclipse. Such a condition could lead to temporary or long-term
1247 vision problems. As individuals may differ in sensitivity to light, some subjects may experience eye
1248 fatigue or irritation during the use of the light exposure device. If subjects notice any unusual sensations
1249 or discomforts, they are advised to discontinue use and to contact the Principal Investigator immediately.
1250

1251 Thus, to minimize risk, subjects will be instructed via the following for the goLITE Blu:
1252

1253 **NOTE: DO NOT STARE DIRECTLY AT THE LIGHTS ON THE LED PANEL.**
1254 **IT IS SUFFICIENT THAT THE LIGHT REACHES YOUR EYES DIRECTLY FROM THE**
1255 **SIDE.**

1256 There is the potential for skin irritation due to the heart rate monitor leads or wearing the
1257 actiwatch. This can be alleviated with use of lotions and/or creams.
1258

1260 **9) Potential benefits to subjects and/or society**

1261 It is not anticipated that subjects will derive direct benefit from participation in the proposed
1262 study. However, it is anticipated that findings from this study will help to advance scientific and medical
1263 understanding of treatment of PTSD and sleep disorders. The study will provide basic scientific
1264 information about the effects of short wavelength light on sleep patterns and potential treatment of PTSD.
1265 Such information may improve the ability to treat sleep disorders and cognitive performance among
1266 patients with PTSD.
1267

1268 Incidental MRI findings:

1269 Study assessments (labs, MRI scans, psychological assessments, etc.) are not intended to provide medical
1270 benefit. Personnel involved conducting this study may not be trained or licensed to clinically review lab
1271 findings, MRI images, etc. If study personnel notice something irregular in subjects' study information,
1272 the investigator may provide de-identified reports or images to a licensed physician, radiologists, or other
1273 qualified practitioner for further review. In the unlikely case that such a qualified clinician determines a
1274 finding to be an irregularity, subjects will be advised to consult their primary care physician. Subjects
1275 may be provided copies of their study information or MRI images for this purpose, but this medical
1276 consultation will be on subjects' own time and at their cost. If subjects are provided a copy of their study
1277 information, we make no promises as to the clinical value of the data. The University of Arizona and its
1278 employees have no funds set aside for the payment of treatment expenses that may arise from subjects
1279 volunteering for an MRI scan.

1280 There may be instances in which an abnormality exists but is not identified in our analyses. Our
1281 team is not trained in clinically diagnosing issues pertaining to abnormalities found in the collected data.
1282 Further, our data analyses are not intended to treat, diagnose, or replace the expertise of a medical doctor
1283 or a medical diagnosis. As such, the University of Arizona and its employees are not responsible for

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	37 of 44

1284 abnormalities that go undetected through participation in these research activities and subjects will be told
1285 that they should not rely on our data or analyses to reveal abnormalities.
1286

1287 **10) Provisions to protect the privacy of subjects and the confidentiality of data**

1288 Collected data are computerized. A unique study-specific ID number is assigned to each subject
1289 and used for identification purposes. A separate password-protected data file, stored on a stand-alone PC,
1290 maintains the ID number and identifying information for each participant. Only the PI and Project
1291 Coordinator have access to that file.

1292 Data collected will be entered into REDCap in de-identified format. Subjects' identities will be linked
1293 via a coded/subject ID. REDCap requires authorized users to enter a username and password unique to
1294 each study staff member.

1295 Study data will be maintained on secure servers maintained by University of Arizona College of
1296 Medicine IT, accessible only through secure UA networks by UA-affiliated computers. Only authorized
1297 researchers associated with this project will be given access via a unique medadmin username and
1298 password.

1299 All information regarding experimental subjects are kept in a locked file cabinet in the University
1300 of Arizona Department of Psychiatry. The signed consent forms are stored separately from the research
1301 data in a locked file cabinet in the Department of Psychiatry. Any study forms that contain personally
1302 identifying information for our participants (e.g., signed consent forms, payment information) are kept
1303 separately from research records and data in separate locked filing cabinets in the Department of
1304 Psychiatry. All subject voice recordings will be used to verify that the study team collected complete
1305 responses and will be verified and deleted the same day they are collected. These recordings will only be
1306 linked to subject IDs during that period.

1307 The Imaging Center will be provided with Subject ID numbers only. MRI Records are kept in a
1308 locked office. Subject identifiable information is not used for research data. HIPAA requirements will be
1309 followed to protect subject confidentiality.

1310 For subjects who agree, their information will be saved for future use to allow possible contact for
1311 other studies conducted by the PI.

1312 A final study report will be made available to the sponsor, the Department of Defense (DoD). Only
1313 non-identifiable data will be shared. DoD maintains a secure file transfer system, "DoD SAFE," which
1314 can be used to securely transfer study information to the sponsor.

1315 Research data will be stored in a secure area for a period of 6 years following the conclusion of the
1316 study. All data and links will be destroyed as soon as possible.

1317 **11) Cost to subjects**

1318 There are no costs to subjects, except for their time.
1319

1320 **12) Subject compensation**

1321 Potential subjects who complete pre-screening surveys (*Recruitment Survey.pdf*) through
1322 crowdsourcing websites will be compensated in line with the specific site's payment policy (e.g., Amazon

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	38 of 44

1323 Mechanical Turk will pay \$0.60 after the survey is completed, a rate of \$0.12 per min in compliance with
1324 research guidelines for fair wages within the MTurk community, with a predetermined 5-minute effort
1325 allotted).

1326 Subjects will receive \$1200 for completion of all three study sessions, successful adherence to
1327 daily light exposure treatment, and compliance with all study procedures and proper use of all study
1328 equipment. This payment is also intended to cover all transportation expenses to and from the study site.

1329 If subjects choose to withdraw from the study prematurely or are disqualified for any reason,
1330 subjects will be compensated according to the following schedule for the time subjects were undergoing
1331 scanning and testing:

- 1333 • Discontinuation during or following the initial intake visit: \$75 (\$25/hour, 3 hours max for day),
1334 following return and adherence of all study-related tasks and equipment.
- 1335 • Discontinuation before the end of second visit: \$17.05/hour, up to a maximum of 8.5 hours and
1336 \$145 for the day (i.e., max = \$220 total for both days), following return and adherence of all
1337 study-related tasks and equipment.
- 1338 • Discontinuation any time during the 6-week light exposure period: \$220 maximum total payment,
1339 following return and adherence to all study-related tasks and equipment.
- 1340 • Fully compliant participants will receive \$980 for completion of all light exposure sessions, proper
1341 use of light meter, and completion of all research activities during the final visit. Payment to
1342 participants who discontinue their participation between the second visit and the final visit is
1343 variable depending on days of light exposure missed:

- 1344 ○ 1 day missed: Maximum total payment \$1200
- 1345 ○ 2 days missed: Maximum total payment of \$1195
- 1346 ○ 3 days missed: Maximum total payment of \$1190
- 1347 ○ 4 days missed: Maximum total payment of \$1180
- 1348 ○ 5 days missed: Maximum total payment of \$1160
- 1349 ○ 6 days missed: Maximum total payment of \$1120
- 1350 ○ 7 days missed: Maximum total payment of \$1040
- 1351 ○ 8 days missed: Maximum total payment of \$880
- 1352 ○ 9 days missed: Maximum total payment of \$560
- 1353 ○ More than 9 days missed: \$220 maximum from completion of first 2 visits

1354
1355 Payment cannot be rendered until all study-related equipment has been returned. In order to be
1356 compensated for participation in this study, subjects must be a U.S. citizen or other person legally entitled
1357 to earn money in the U.S. By law, payments to subjects may be considered taxable income.

1358
1359 **If the participant is an active duty military personnel**, the participant is not eligible to receive
1360 compensation for time spent completing assessments while they are "on duty". In accordance with Title
1361 24 United States Code 30, active duty military personnel must be on leave status during each of the three
1362 assessment sessions in order to be compensated. If the participant is on active duty, **it is their**
1363 **responsibility** to ensure that they have completed the appropriate paperwork for leave and obtained the

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	39 of 44

1364 necessary permissions to allow them to participate in this study. If the participant is on leave status, they
1365 will be compensated for the 3 assessment sessions according to the schedule listed above.

1366
1367 The necessary information to capture receipt of subject payment will be collected via the Subject
1368 Payment Form.

1369 Method of payment: Participants will be paid in cash or check. Patients may need to complete a W-9
1370 (IRS Request for Taxpayer Identification Number and Certification) in the Psychiatry business office
1371 depending on the amount of compensation being provided for this study and their extent of involvement.

1372
1373
1374 **13) Medical care and compensation for injury**

1375 Subjects will be offered the care needed to treat any injury that directly results from taking part in
1376 this research study. We reserve the right to bill their insurance company or other third parties, if
1377 appropriate, for the care they get for the injury. We will try to have these costs paid for, but subjects may
1378 be responsible for some of them.

1379 Injuries sometimes happen in research even when no one is at fault. There are no plans to pay
1380 subjects or give them other compensation for an injury, should one occur. However, they are not giving
1381 up any of their legal rights by signing this form.

1382 If subjects think they have been injured or have experienced a medical problem as a result of
1383 taking part in this research study, they are to tell the person in charge of this study as soon as possible.

1384 Siemens will pay for the actual cost of reasonable and necessary medical treatment if a study subject
1385 is injured during the Trial, to the extent the injury is a direct result of the proper performance of study
1386 procedures that:

1387
1388
1389
1390
1391
1392

- are pursuant to the study plan,
- are not standard of care, unless included in the study plan,
- would not otherwise have been performed but for a subject's participation in the study,
- are not a result of the negligence or willful misconduct of UA personnel, and
- are not the result of normal progression of a study subject's underlying disease.

1393
1394 **14) Monitoring the data for subject safety**

1395 The principal investigator will oversee the collection, maintenance, and analysis of all data. The
1396 UA HSPP will be contacted immediately in the case of unexpected adverse events. This is not a treatment
1397 trial. Sai Parthasarathy, MD, is director of the sleep laboratory and oversees collection of sleep PSG and
1398 actigraphy data. Patricia Haynes, PhD, is an expert in PTSD and contributes to the design, development,
1399 analysis and interpretation of data. In addition to Dr. Haynes, in the event a subject should report suicidal
1400 ideation and she is not available for consultation/assessment, Michael Grandner PhD, or another qualified
1401 clinician, will provide assessment to promote the well-being of the subject. Ted Trouard, PhD, is an
expert in the development and application of novel MRI technologies and will assist with collection of

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	40 of 44

1402 magnetic resonance spectroscopy imaging, analysis strategies, and statistical analysis of MRS and DTI
1403 data.

1404 Subjects may refuse to answer any questions that make them uncomfortable. In addition, subjects
1405 may terminate their participation in the study at any time. If significant psychopathology (e.g., threat of
1406 harm to self or others) is discovered at any time during or after a subject's visit, we will contact one of the
1407 psychiatrists on staff to determine the level of risk and establish a contract for safety. If the subject does
1408 not already have an established relationship with a psychiatrist, we will provide the appropriate referrals
1409 for psychiatric evaluation.

1410 Assessment of MRI scanning-related safety issues will occur at every scanning session by the
1411 study staff. Risks to subjects will be minimized by following standard MRI procedures. Individual scans
1412 will be aborted if any safety parameters are breached. If the safety issue involves the patient that cannot
1413 be eliminated within the time course of the study, their involvement in the study will be terminated. If the
1414 safety issue involves the scanner or the scanning environment, no further scans will be conducted from
1415 that point, until assurances are made that all safety parameters have returned to allowable limits.

1416 Female participants must have a negative pregnancy test before the MRI scan can be initiated. If
1417 the results of the pregnancy test are positive, one of the clinically trained study investigators will explain
1418 why the scan cannot be completed.

1419 No long-lasting physical or economic harm is anticipated during scanning. Every effort will be
1420 made to reassure the patient and minimize any such discomforts while scanning. Subjects will be offered
1421 and required to wear earplugs and/or earphones to minimize the scanner noise. Subjects will be able to
1422 converse with a staff member via a microphone and speaker system at all times during the scanning
1423 session. Subjects will be provided with an emergency button to indicate an immediate concern. Subjects
1424 may ask to have a scan stopped and discontinue participation in the study at any time.

1425 In case of an adverse event, the principal investigator will evaluate and report such events to the
1426 UA HSPP per UA HSPP guidelines as well as report to HRPO per federal guidelines.

1427 The diagnostic assessment, MRI, and heart rate measures may reveal previously unidentified
1428 psychiatric disorders and/or brain or heart abnormalities the subject didn't know they had. If any
1429 abnormalities are identified, they will be provided with information about the finding and encouraged to
1430 follow up with their primary care physician. Subjects will be made aware that we are not providing
1431 psychiatric, neuroradiological, or other clinical services; only that we will let them know in the event that
1432 anything abnormal is noticed by the study team. We are unable to assume responsibility or offer
1433 compensation for related medical costs that they make as a result of being informed of an abnormal
1434 finding.

1435 There may be instances in which an abnormality exists but is not identified in our analyses. Our team
1436 is not trained in clinically diagnosing issues pertaining to abnormalities found in the collected data.
1437 Further, our data analyses are not intended to treat, diagnose, or replace the expertise of a medical doctor
1438 or a medical diagnosis. Thus, subjects will be aware that they should not rely on our analyses to reveal
1439 abnormalities in their data, and our lab claims no responsibility for abnormalities that go undetected
1440 during participation in any research related activities.

1441
1442

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	41 of 44

1443 15) Withdrawal of subjects

1444 If any disqualifying condition is discovered during the study or if it becomes evident that the
1445 participant is unable or unwilling to comply with study procedures, research study staff may withdraw
1446 that individual from the study.

1447 Subjects can voluntarily withdraw from the study at any time by speaking with the PI or study
1448 team. The study will then ensure the subject withdraws from the study safely and will provide any
1449 necessary follow-up care.

1450 In order to protect subjects, study resources and the integrity of study data, the Principal
1451 Investigator reserves the right to remove any subject at his discretion from the study. This will be
1452 communicated to prospective subjects during the consent process.

1453 If a subject chooses to withdraw from the study or his/her participation is ended prematurely, any
1454 information collected up to that point will be kept.

1455

1456 16) Sharing of results with subjects

1457 Subjects will be informed of any new information that pertains to their rights or safety
1458 immediately.

1459 Subjects have the right to see and get a copy of their health information that is used or shared for
1460 treatment or for payment. To ask for this information, subjects will contact the person in charge of this
1461 research study. Subjects may only get such information after the research is finished.

SECTION 4: LIST OF ATTACHMENTS FOR THIS SUBMISSION

Document Name	Version Date
1. F107	1. 06/10/14
2. Informed Consent Form	2. 07/14/14
3. UAMC SRA Approval Letter	3. 06/05/14
4. Grant Award/Notice of Funding	4. 04/25/14
5. PI CV	5. N/A
6. goLITE Blu Pamphlet	6. 2013
7. Edinburgh Handedness Inventory	7. N/A
8. PHQ-9	8. 1999
9. CAPS-5	9. N/A
10. BDI -II	10. N/A
11. BAI	11. N/A
12. STAI	12. N/A
13. CD-RISC	13. 09/21/11
14. PSQI	14. 1989
15. ESS	15. N/A
16. DDNSI	16. Unk
17. SSS	17. N/A

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	42 of 44

18. RBANS	18. 1998
19. Polysmith 11.0	19. N/A
20. Watch & Light Subject Guide, v.2	20. N/A
21. Subject Payment Form (BL PTSD)	21. 07/14/14
22. Training Face Image Pairs Set A	22. N/A
23. Training Face Image Pairs Set A	23. N/A
24. ISI	24. N/A
25. Light Device/Watts up Pro instructions	25. N/A
26. Note to File	26. N/A
27. Shock Expectation Questionnaire	27. N/A
28. DSIQ-Baseline visit	28. N/A
29. DSIQ-Post treatment visit	29. N/A
30. PCL 5-Criterion A	30. N/A
31. SCID-V	31. Unk
32. Watt's up PRO/Light Device agreement	32. Unk
33. Compensation schedule handout	33. N/A
34. Actiwatch Spectrum Pro instruction guide	34. N/A
35. Sleep Diary A	35. N/A
36. Sleep Diary B	36. N/A
37. Phone Screen—BL PTSD	37. N/A
38. Phone Script	38. 06.15.15
39. Combat Exposure Scale (CES)	39. 06.15.15
40. WRAT4 Reading Comprehension Test	40. N/A
41. Rivermead Post Concussion Symptoms Questionnaire (RPCSQ)	41. N/A
42. Alcohol Use Disorders Identification Test (AUDIT)	42. N/A
43. Marijuana Use Questionnaire (MUSE)	43. N/A
44. BL PTSD Recruitment flyer	44. 06.02.15
45. BL PTSD Recruitment flyer version B (for non-military)	45. 06.02.15
46. BL PTSD recruitment handout	46. 06.02.15
47. Satisfaction With Life Scale (SWLS)	47.

1462

1463

1464 Submission List for F200: Application for Human Research

1465

Required items for all F200 submissions:

- F107: Verification of Training Form
- Current PI/Co-PI CVs or biosketch, if not included with copy of grant application

1469

Other Items as applicable:

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	43 of 44

- **Biosafety Review letter** (for UA - Institutional Biosafety Committee)
- **Certificate of Confidentiality**
- **Compressed Gases Review letter** (for UA – Research Instrumentation)
- **Contract** – complete or draft copy of contract including budget
- **Data Collection Tools** – surveys, questionnaires, diaries not included in the protocol, data abstraction form for records review
- **Data Monitoring Charter and Plan**
- **Drug/Device information** – Investigator's Brochure, drug product sheet, device manual, user's manual, instructions for use, package insert, IND/IDE documentation, FDA 1572 form, 510k indication, FDA exemption, sponsor determination of device risk, etc.
- **Export Control Review**
- **Grant Application(s)** – complete copy of grant, regardless of home institution or funding agency, and a copy of the Notice of Grant Award
- **Informed Consent/Permission/Assent Form(s)** – including study specific release of information documents, DHHS approved sample consent forms. If consent will not be documented in writing, a script of information to be provided orally to subjects
- Other Approval letters (e.g., school districts, Tribal, other IRB approvals)
- **Participant Materials** – All written materials to be provided to or meant to be seen or heard by subjects (e.g. study newsletter, physician to participant letter, wallet cards, incentive items, holiday/birthday cards, certificates, instructional videos/written guides, calendars, certification of achievement, etc.)
- **PHI Authorization Form(s)**
- **Protocol** – including all amendments/revisions, sub- or extension-studies
- **Radiation Safety Review letter**
- **Recruitment Materials** – telephone scripts, flyers, brochures, websites, email texts, radio/television spots, newspaper advertisements, press releases, etc.
- **Scientific Review Committee** letter (for cancer related projects – AZCC SRC; other units as applicable if the unit has a scientific review committee)
- **Site Authorizations** for research purposes and/or access to administrative records/samples
 - External sites (such as schools, other hospitals or campuses, etc.)
 - UAHN University Campus, South Campus and clinics Site Review Authority (SRA) approval
- **Supplemental site information** (for sites engaged in research where the UA is the IRB of record)
 - Copy of any approvals granted from that site (including determinations if this site has an IRB of its own)
 - Site-specific F107
 - Copy of the site's human subjects training policy
 - CV and medical license (if applicable) of site PI
- **Travel Authorization documentation** (for UA – Office of Global Initiatives)
- **Use of retrospective research samples and/or data** – IRB approval letter, original consent under which samples/data were collected, letter allowing access to samples

FORM: Application for Human Research

NUMBER	FORM DATE	PAGE
F200	02/2014	44 of 44

1511

1512 Submitting documents to the IRB

1513 All materials must be typed and submitted electronically. Maintain electronic copies of all information
1514 submitted to the HSPP office in case revisions are required. It is recommended that version dates be used
1515 while naming documents.

- 1516 1. Documents must be submitted to the VPR-IRB@email.arizona.edu account and not to individual
1517 staff email accounts. After contact by a staff member future correspondence may be
1518 communicated directly to the staff member concerning the submission.
- 1519 2. **If acknowledgement of receipt is needed, please request a "Read Receipt" through your
1520 email server.** If you use Microsoft Outlook 2007, this is accomplished by clicking "Options" and
1521 choosing the "Request a Read Receipt" checkbox in a new email.
- 1522 3. One submission request per email (e.g. one new project submission, one continuing review plus
1523 attachments, or one modification request).
- 1524 4. All submissions must have signatures. An email acknowledgement in place of a signature will not
1525 be acceptable. If electronic signatures are not available for use, the signature pages may be signed
1526 and scanned as a separate Adobe PDF document and attached to the submission email.
- 1527 5. **Microsoft Word documents are REQUIRED** for (applications, consents, recruitment materials,
1528 and data collection instruments (if available). PDFs may be submitted for documents that
1529 typically are not revised by the IRB (e.g. Investigator Brochures, sponsor protocols).
- 1530 6. The email subject line must include: IRB # (if assigned one), PI Last Name, and type of
1531 submission (Modification, New Project, Continuing Review, Reportable Item, etc.).
- 1532 7. The email must provide a list of the documents submitted for review. While the documents
1533 attached do not have to adhere to a specific naming scheme, it is requested that each document be
1534 named to clearly reflect what is inside.

1535 **Submissions not following these guidelines will be returned without review**