

DRCR Retina Network
A Pilot Study Evaluating Photobiomodulation Therapy
for Diabetic Macular Edema
(Protocol AE)
NCT03866473
Statistical Analysis Plan
For Protocol AE Version 4.0

VERSION NUMBER	AUTHOR	APPROVER	EFFECTIVE DATE	REVISION DESCRIPTION
1.0	Danni Liu	Michele Melia	September 20, 2019	Initial version for Protocol version 3.0.
2.0	Kristin Josic	Michele Melia	May 4, 2020	COVID-19 response Analysis window for 4-month primary outcome visit extended by 8 weeks; analysis windows for 6- and 8-month visits extended by 12 and 4 weeks, respectively. Expected dates for 6- and 8-month visits changed to correspond to 2 months and 4 months post-primary outcome, respectively, instead of 6 and 8 months from randomization.
3.0	Kristin Josic	Michele Melia	August 9, 2021	Updated analysis of visual acuity change

1 **1.0 Introduction**

2 This document outlines the statistical analysis plan for the DRCR Retina Network Protocol AE
3 randomized clinical trial evaluating the effect of photobiomodulation (PBM) compared with
4 sham on central subfield thickness in eyes with central-involved diabetic macular edema (DME)
5 and good vision. The photobiomodulation used in this trial is irradiation by light in the far-red to
6 near-infrared region of the spectrum (630-900 nm). The device to be evaluated is the PhotoOptx,
7 LLC (Solon, OH, USA) Retilux Eye Patch.

8 There are two phases of the study. The primary objective of this study is to assess whether a
9 treatment group difference in mean change in central subfield thickness on OCT from baseline at
10 the end of phase 1 (primary outcome) between PBM and sham. Upon the completion of the
11 primary outcome visit, participants originally assigned to active will end device use and
12 participants originally assigned to sham will switch to active for additional 4 months of follow-
13 up. Note this is not a crossover design. In addition to the 2 outcome visits, participants will also
14 have interim visits at 1, 2, 3 and every 2 months for 4 months after the primary outcome. This
15 pilot study is being conducted to determine whether the conduct of a pivotal trial has merit based
16 on an anatomic outcome and provide information on outcome measures needed to design a
17 pivotal trial. This study is not designed to definitively establish the efficacy of PBM in the
18 treatment of DME.

19 Study eyes will be assigned randomly to the two treatment groups in a 1:1 ratio stratified by site
20 and recent (within 4 months) or planned intravitreous treatment in the non-study eye, including
21 intravitreous anti-VEGF and steroid. Participants may have only one study eye enrolled in the
22 randomized trial.

23 **2.0 Efficacy Analysis Plan**

24 **2.1 Primary Outcome Analysis**

25 The primary analysis will consist of a treatment group comparison of mean change in CST from
26 baseline to the primary outcome visit using analysis of covariance, with adjustment for baseline
27 CST and the randomization stratification factor of recent or planned intravitreous treatment in
28 the non-study eye. Given that OCTs can be obtained from either Spectralis or Cirrus images, and
29 that values from these machines cannot be used interchangeably, OCT values will be converted
30 to a common value for reporting and analyses.

31 The primary analysis is an intention-to-treat analysis. All randomized eyes will be included in
32 the primary analysis irrespective of treatment received and will be analyzed according to
33 treatment group assignment at randomization.

34 For the primary analysis, study participants who complete the primary outcome visit without
35 missing data at the primary outcome visit will be considered as the **completer cohort**. Markov
36 chain Monte Carlo (MCMC) multiple imputation with 100 imputations will be used to handle
37 missing data for participants who do not complete the primary outcome visit, i.e., **non-**
38 **completer cohort**. The imputation model will be stratified by treatment group and will include

39 the CST measured at baseline and at all monthly interim visits up to the primary outcome visit
40 along with the randomization stratification factor of recent or planned intravitreous treatment in
41 the non-study eye.

42 For eyes that receive alternative treatment for DME (detailed in Protocol Section 3.6) in Phase 1,
43 data measured after the initiation of the alternative treatment will be considered to be missing
44 before entering the multiple imputation (MI) process, regardless of whether the treatment
45 initiation is per-protocol, and whether the participant completes the primary outcome visit. Then
46 after multiple imputation, the last OCT measurement prior to the initial alternative treatment
47 (LOCF data) will overwrite the MCMC imputed values for all post-treatment visits and will be
48 used for the primary analysis. It is recognized that LOCF does not reflect the uncertainty in
49 outcomes (i.e., underestimates the variances) and is likely to introduce bias (of unknown
50 magnitude) into the primary analysis that favors the PBM group under the alternative hypothesis,
51 as participants may receive alternative treatment for falsely low visual acuity values, and some
52 eyes meeting criteria for and receiving alternative treatment might have recovered if they'd been
53 left untreated. However, the bias is not being increased by the MI since LOCF is applied after
54 MI. Also, in a recent study for a similar cohort, only 2 (<1%) out of 236 eyes in the observation
55 group initiated treatment without meeting pre-specified criteria during 2 years of follow-up,
56 therefore we expect very few eyes (if any) in this study will receive alternative DME treatment
57 against protocol.

58 To limit the influence of extreme data points, change in CST will be truncated at ± 3 SD after
59 imputation and LOCF to improve robustness of the treatment comparison. The cutoff values for
60 data truncation will be calculated using the primary outcome visit data within the completer
61 cohort, combining treatment groups, i.e. the “**completers’ data**”, which will consist of the
62 observed data for completers without alternative DME treatment, and the LOCF data for
63 completers who receive an alternative DME treatment.

64 Therefore, the **primary analysis dataset** will include:

65 • Data from completers without alternative DME treatment,
66 • MCMC imputed data for non-completers without alternative DME treatment,
67 • LOCF data for participants who receive an alternative DME treatment.

68 The *P* value, adjusted treatment group difference, and associated 95% confidence interval will be
69 reported for the treatment group effect with robust variance estimation using the primary analysis
70 dataset. If the *P* value for the test of the treatment effect is less than or equal to .05, then it will
71 be concluded that there is a significant difference for change in CST at the primary outcome
72 visits between the groups. In other words, if $P \leq .05$, the null hypothesis of no treatment effect
73 will be rejected.

74 Multiple imputation assumes that data are missing at random (MAR). In the present study, this
75 would mean that whether follow-up CST measurements are missing or observed may be a
76 function of observed baseline and follow-up characteristics included in the imputation model

77 (baseline CST, follow-up CST, treatment group, recent or planned intravitreous treatment in the
78 non-study eye), but not a function of the unobserved follow-up CST measurements that are being
79 imputed. This assumption cannot be tested since these data are unknown. However, a tipping
80 point analysis will be conducted which will adjust the imputed values for eyes without an
81 alternative DME treatment using a shift parameter and thereby determine how severe the
82 departure from MAR must be in order to change outcome of the primary analysis with respect to
83 rejecting or failing to reject the null hypothesis. A shift parameter will be applied to the imputed
84 values in the PBM group to determine the tipping point at which the results of the primary
85 analysis are nullified. That is, if one group is found to be superior ($P \leq .05$), the tipping point will
86 identify the shift parameter necessary to yield $P > .05$. Conversely, if the null hypothesis is not
87 rejected ($P > .05$), two tipping points will be identified – one that would make PBM superior and
88 one that would make sham superior. In either case, this tipping point(s) will be evaluated to
89 determine if it is plausible. If not, the MAR assumption is reasonable. For example, if the tipping
90 point were 500 microns, this would be evidence that the MAR assumption is reasonable for this
91 analysis.

92 The assumptions of linearity, normality, and homoscedasticity will be verified using graphical
93 methods. Serious violations may be addressed by transformation of dependent and/or
94 independent variables, non-parametric transformation, categorizing continuous covariates, and/or
95 excluding covariates. Transformation of the dependent variable (mean change in CST from
96 baseline) will be used to obtain valid P values while ensuring statistical model assumptions are
97 met. However, mean treatment group differences, rather than results based on transformed
98 outcomes will be reported for clinical interpretation.

99 A plot showing the mean converted level of CST values on OCT by treatment group over time
100 will be constructed using completers' data as defined above. In general, summary statistics (e.g.,
101 within-group means and standard deviations), will be based on completers' data while numbers
102 from statistical models (e.g., treatment group differences, confidence intervals, and P values)
103 will be based on primary analysis data as noted above.

104 **2.1.1 Sensitivity Analyses**

105 Sensitivity analyses for the primary outcome are listed in Table 1. In general, if the sensitivity
106 analysis results differ substantially from the primary analysis results, exploratory analyses will
107 be performed to evaluate factors that may have contributed to the differences.

108

109 **Table 1. Pre-Planned Sensitivity Analyses for the Primary Outcome of Mean Change in**
 110 **CST From Baseline at 4 Months**

Eyes that receive an alternative DME treatment	Eyes that have missing data at primary outcome visit	Additional details	Rationale
Primary Analysis (MI, LOCF, then data truncation)			
<ul style="list-style-type: none"> OCT data after alternative DME treatment will be considered missing for purposes of MI, hence will be imputed in the MI procedure Last OCT measurement prior to alternative DME treatment will then overwrite MI values and will be used for analysis (LOCF). 	<ul style="list-style-type: none"> MCMC multiple imputation for eyes with missing primary outcome data (MI) LOCF values will replace the imputed values for eyes that receive alternative DME treatment 	Data truncation: changes in OCT from baseline will be truncated at ± 3 SD after multiple imputation based on cutoff values calculated from completers' data	There is no ideal way to handle eyes receiving alternative DME treatment in analysis. For the primary analysis, LOCF will be used for these eyes. It is recognized that LOCF will tend to bias results towards a larger treatment effect, assuming a treatment effect exists. Sensitivity analyses will be performed to evaluate possible impact of LOCF on study conclusions (#2, #4, #5 below).
Sensitivity Analysis #1 (Complete-case analysis with LOCF)			
LOCF for eyes receiving alternative DME treatment	Complete-case analysis, i.e., only eyes completing primary outcome visit will be included	Same rule for data truncation with primary analysis	To compare primary results including imputed data to results using observed data only.
Sensitivity Analysis #2 (MI for ALL eyes missing 4-month visit)			
OCT measurement after the alternative DME treatment will be considered missing and will be imputed using multiple imputation	MCMC multiple imputation for all eyes missing the primary outcome visit; imputation model will include an additional covariate indicating whether an eye receives an alternative DME treatment	Same rule for data truncation with primary analysis	To compare if LOCF versus MI for handling eyes receiving alternative DME treatment will produce substantially different results when comparing treatment groups
Sensitivity Analysis #3 (No truncation)			
LOCF (same with primary analysis)	MI, then LOCF for eyes receive alternative DME treatment (same with primary analysis)	No data truncation	To explore if extreme outliers significantly impact the primary analysis results
Sensitivity Analysis #4 (Complete-case analysis with transformation in place of truncation)			

Eyes that receive an alternative DME treatment	Eyes that have missing data at primary outcome visit	Additional details	Rationale
LOCF for eyes receiving alternative DME treatment	Complete-case analysis, i.e., only eyes completing primary outcome visit will be included	Values will be converted to Van der Waerden (Normal) scores for analysis	To examine whether the primary analysis results are robust to: (1) normality assumption; (2) imputation / LOCF of data for those missing the primary outcome visit.
Sensitivity Analysis #5 (Complete case analysis without LOCF)			
Will be excluded from the analysis	Complete-case analysis, i.e., only eyes completing primary outcome visit without alternative DME treatment will be included	<ul style="list-style-type: none"> • Same rule for data truncation with primary analysis • The analysis will only be performed if 6 (10%) or more eyes receive alternative DME treatment in either group 	By excluding eyes meeting criteria for alternative treatment, this analysis is biased towards reduction of treatment effect (assuming a treatment effect exists). Hence, a significant treatment effect in both primary analysis and this analysis would support presence of a true treatment effect. However, a non-significant treatment effect in this analysis cannot be interpreted as evidence for or against a true treatment effect.

111 2.1.2 Per-Protocol Analysis

112 A per-protocol analysis will be conducted to estimate the treatment effect for each treatment
 113 among those who complied with the treatment. This analysis will include observed data (no
 114 imputation) from all randomized eyes that complete the primary outcome visit and 70% or more
 115 of prescribed sessions of treatment, except those that receive an alternative treatment for DME
 116 prior to the primary outcome visit. The intention-to-treat analysis is considered the primary
 117 analysis. If the results of the primary and per-protocol analyses differ substantially, then
 118 exploratory analyses will be performed to evaluate the factors that may have contributed to the
 119 differences. The per-protocol analysis will only be performed if more than 10% of randomized
 120 participants would be excluded by these criteria.

121 2.1.3 Confounding

122 Imbalances between groups in important covariates are not expected to be of sufficient
 123 magnitude to produce confounding in the primary analysis. However, the presence of
 124 confounding in the primary analysis will be evaluated in additional regression models using
 125 completers' data (defined above for the primary outcome) by including baseline participant and
 126 study eye covariates including but not limited to the following: duration of diabetes, hemoglobin
 127 A1c, prior anti-VEGF treatment, visual acuity, DR severity on clinical exam, and fellow eye
 128 DME status.

129 Additional variables associated with the outcome will be included in regression models if there is
 130 an imbalance in the variables between treatment groups. Imbalance by treatment group will not

131 be judged using statistical testing. Instead, imbalance will be judged by whether the size of the
132 imbalance is clinically important, i.e., whether the imbalance is large enough to have a clinically
133 important effect on the primary outcome.

134 **2.1.4 Subgroup Analyses**

135 Subgroup analyses/assessments of effect modification (interaction) will be conducted for the
136 primary outcome. The pre-planned subgroup analyses will repeat the primary analysis while
137 including an interaction term for the baseline subgroup factor by treatment. Only completers'
138 data will be used for these analyses, i.e., the subgroup analyses will only include non-missing
139 data from participants who complete the primary outcome visit without alternative DME
140 treatment and the LOCF data from those who complete the primary outcome visit but receive an
141 alternative DME treatment. It is recognized that analyzing only observed data may be biased, but
142 unlike the imputed analysis, it is not automatically biased in the presence of interaction.

143 Since there is no strong prior rationale for potential subgroup effects, these analyses will be
144 considered exploratory / hypothesis generating, rather than definitive. A forest plot will be
145 created to present the estimated treatment group effect and 95% confidence interval within each
146 level of the subgroup factors, and a test for interaction with treatment will be performed for each
147 subgroup factor. A significant ($P \leq .05$) type III test of the interaction term will be taken as an
148 indication that subgroup effects need to be explored for full interpretation of the trial results. It is
149 recognized that the study is not powered to detect subgroup effects and that lack of significance
150 is not necessarily an indication that subgroup effects do not exist.

151 The following baseline subgroup factors will be evaluated in exploratory analyses:

- 152 • Prior DME treatment: yes vs. no
- 153 • Intravitreous treatment in non-study eye: recent (within 4 months) or planned
- 154 • Lens status: phakic vs. pseudophakic
- 155 • Baseline CST: continuous and categorical (dichotomized based on a clinically relevant
156 cut point or an approximate median value)
- 157 • Hemoglobin A1c: continuous and $<7.5\%$ vs. $\geq 7.5\%$
- 158 • Iris color: blue, brown, or other
- 159 • Sex: female vs. male
- 160 • Race/Ethnicity: White vs. Black/African American vs. Hispanic (exclude all other groups
161 due to anticipated small sample size) and white vs. non-White

162 Interaction P values will be calculated using the continuous and ordinal variables, where
163 possible, in addition to the categorizations described above. The finding of a significant
164 subgroup effect for any of these factors will be interpreted as hypothesis generating only and in
165 need of confirmation from further studies. To increase statistical precision, subgroups will only

166 be analyzed if there are at least 20 eyes in each treatment group for each subgroup. Cutoffs of
167 continuous and ordinal outcomes may be modified to achieve a reasonable number of eyes in
168 each group.

169 **2.1.5 Center Effects**

170 The number of study participants per center is expected to be small for most centers. Therefore,
171 center effects will not be included in the statistical model.

172 **2.1.6 Planned Interim Analyses**

173 There is no formal interim analysis planned for this study. The Data and Safety Monitoring
174 Committee (DSMC) will review tabulated safety and outcome data approximately every 6
175 months while the study is ongoing.

176 **2.2 Secondary Outcome Analyses**

177 Secondary outcome analyses for Phase 1 are summarized in Table 2. The ITT analysis cohort
178 will be used for all secondary outcomes unless otherwise specified. Similar to the primary
179 analysis, eyes that receive alternative treatment for DME (see Protocol Section 3.6) will be
180 considered missing before entering the multiple imputation, and will have the last measurement
181 prior to treatment overwritten the imputed values and will be used for the secondary analysis
182 unless otherwise specified (“MI then LOCF”). Unless otherwise specified, missing data will be
183 imputed with multiple imputation. The imputation model for handling missing data will be
184 stratified by treatment group and include the baseline value of the outcome, the randomization
185 stratification factor, and change in the outcome for the available time points.

186 To ensure that statistical outliers do not have undue impact on analyses of continuous outcomes,
187 change in continuous outcomes from baseline will be truncated to ± 3 standard deviations based
188 on the overall mean and standard deviation at the primary outcome visit from both treatment
189 groups combined. Similar to the primary analysis, the truncation will be applied after multiple
190 imputation and LOCF, and the cutoff values will be calculated from the completers’ data. Binary
191 outcomes will be created from the corresponding continuous outcome measurements, after
192 multiple imputation, LOCF and data truncation.

Table 2. Secondary Outcome Analyses Phase 1 (Baseline to 4 Months).

Outcome	Analysis Technique
Mean change in retinal volume from baseline	Analysis of Covariance
Percentage of eyes with CST below OCT machine and gender-specific threshold for DME	Logistic regression
Percentage of eyes receiving alternative treatment for DME	Descriptive statistics only
Percentage of eyes with a 5-letter loss in visual acuity from baseline	Logistic regression
Mean change in visual acuity from baseline	Analysis of Covariance
Patient compliance	Descriptive statistics only

194 Change in retinal volume from baseline is a continuous variable and will be analyzed using
 195 analysis of covariance. The analysis will include adjustment for baseline CST, baseline retinal
 196 volume, and the randomization stratification factor. The estimated treatment-group difference,
 197 95% confidence interval and 2-sided *P* value will be presented. The assumptions of linearity,
 198 normality, and homoscedasticity will be verified using graphical methods. Serious violations
 199 may be addressed by transformation of dependent and/or independent variables, non-parametric
 200 methods, categorizing continuous covariates, and/or excluding covariates.

201 The percentage of eyes with CST below OCT machine and gender-specific threshold for DME at
 202 the primary outcome visit is a binary variable that will be analyzed with logistic regression with
 203 robust variance estimation. LOCF will be used for eyes receiving alternative DME treatment, but
 204 multiple imputation will not be performed for missing data given the thresholds are machine
 205 specific. Baseline CST and the randomization stratification factor will be included as covariates.
 206 The odds ratio for the treatment group effect, 95% confidence interval, and *P* value will be
 207 presented. In addition, the treatment-group risk difference will be computed as the marginal
 208 probabilities from a counterfactual model, and the 95% confidence interval will be estimated
 209 using bootstrap resampling.

210 The percentage of eyes receiving an alternative treatment for DME before the primary outcome
 211 visit will be reported. Only participants receiving alternative treatment or completing the primary
 212 outcome visit without receiving alternative treatment will be included, although it is recognized
 213 that the percentage with alternative treatment will likely be overestimated with this procedure.
 214 Statistical comparison between treatment groups will not be performed.

215 The percentages of eyes with ≥ 5 -letter decrease from randomization at the primary outcome visit
 216 is a binary variable that will be calculated from the continuous visual acuity letter scores and will
 217 be compared between treatment groups using logistic regression with robust variance estimation.
 218 Baseline visual acuity and randomization stratification factor will be included as covariates. The
 219 odds ratio for the treatment group effect, 95% confidence interval, and *P* value will be presented.
 220 Note the mean change in visual acuity will be imputed and LOCF values will be applied to eyes
 221 with alternative DME treatment, similar to the primary CST outcome. Statistical comparison

222 between treatment groups for the mean change will be performed using analysis of covariance
223 with adjustment for baseline visual acuity and the randomization stratification factor. In
224 addition, the treatment-group risk difference will be computed with the marginal probabilities
225 from a counterfactual model, and the 95% confidence interval will be estimated using bootstrap
226 resampling using a complete case analysis with LOCF applied to eyes with alternative DME
227 treatment (no imputed values).

228 Patient compliance will be reported separately for completers and non-completers, which is
229 defined as the proportion of prescribed treatment sessions completed. For completers, the
230 denominator will be the total prescribed treatment sessions prior to the primary outcome visit;
231 and for non-completers, the denominator will be the total prescribed treatment sessions up to the
232 time when the study device is returned. Note that for both completers and non-completers, if
233 alternative DME treatment is initiated, the denominator will be the total number of sessions
234 prescribed up to the initiation of the alternative treatment. Statistical comparison between
235 treatment groups will not be performed.

236 **3.0 Outcomes Measures Phase 2 (4 Months Post-Outcome)**

237 Upon completion of Phase 1, only eyes that still meet the original protocol major eligibility
238 criteria for VA and OCT at the primary outcome visit will be included in the analysis for Phase
239 2. A separate table for baseline characteristics will be constructed for Phase 2 participants.
240 Within each treatment group, the following outcomes for evaluating post-switch effects on DME
241 from primary outcome to 4 months post outcome will be reported separately. There will be no
242 formal statistical comparisons of treatment groups. Participants originally assigned to the active
243 group will end device use and participants originally assigned to sham will switch to active.
244 Participants who are not using a device during the post-outcome phase but have not received
245 alternative treatment will be given the option to continue study visits or end study participation
246 early.

- 247 • Effect on DME after active treatment is stopped (for the initial treated group only)
 - 248 ○ Mean change in CST between the primary outcome and 4 months post outcome
249 visit
 - 250 ○ Mean change in retinal volume between the primary outcome and 4 months post
251 outcome visit
 - 252 ○ Percentage of eyes with CST below OCT machine and gender-specific threshold
253 for DME at 4 months post outcome
- 254 • Effect on DME in eyes previously receiving sham (for the initial sham group only)
 - 255 ○ Mean change in CST between the primary outcome and 4 months post outcome
256 visit
 - 257 ○ Mean change in retinal volume between the primary outcome and 4 months post
258 outcome visit
 - 259 ○ Percentage of eyes with CST below OCT machine and gender-specific threshold
260 for DME at 4 months post outcome

261 • Patient compliance (for the initial sham group only)

262 ○ Proportion of prescribed treatment sessions completed between the primary

263 outcome and 4 months post outcome visit

264 For continuous outcomes, median and interquartile ranges and/or means and standard deviations

265 will be reported to describe the data. For the assessment of CST and retinal volume outcomes,

266 the analysis will include 4-month post-outcome completers without missing data at both the

267 primary outcome and 4-month post-outcome visit, as well as 4-month post-outcome non-

268 completers who receive alternative DME treatment in Phase 2. Missing data will not be imputed

269 for 4-month post-outcome non-completers who do not receive alternative DME treatment. It is

270 recognized there is bias in handling of the analysis cohort by not including non-completers who

271 do not meet the failure criteria for alternative DME treatment. Exploratory analysis will be

272 conducted within each group to test whether the post-switch change is significantly different

273 from zero. Similar to Phase 1, patient compliance will be reported separately for 4-month post-

274 outcome completers and non-completers.

275 **4.0 Intervention Adherence**

276 For the primary analyses at the end of Phase 1, adherence will be defined as compliance with

277 device use during Phase 1. An exploratory dose-response analysis will be performed to evaluate

278 whether there appears to be an association of compliance (defined as the proportion of total

279 prescribed sessions of the study device use completed during Phase 1) versus magnitude of

280 treatment effect (defined as the change in OCT CST from baseline at the primary outcome visit).

281 The analysis will include all randomized eyes. Eyes that are lost to follow-up or receive an

282 alternative DME treatment will be considered missing for change in OCT CST and compliance,

283 from the time of dropout or initiation of alternative DME treatment. Markov chain Monte Carlo

284 (MCMC) multiple imputation will be used to handle missing data for change in CST and

285 compliance. For eyes receiving alternative DME treatment, after the multiple imputation is

286 performed, the imputed change in CST will be replaced with the last observed CST prior to

287 receiving treatment (i.e. LOCF will be used). The imputation model will be stratified by

288 treatment group and will include the CST measured at baseline and at all monthly interim visits

289 through Phase 1, cumulative compliance (as defined above) through Phase 1, number of days

290 from randomization to the last completed visit (through Phase 1), along with the randomization

291 stratification factor of recent or planned intravitreous treatment in the non-study eye. For eyes

292 that complete the primary outcome visit, the actual visit date will be used for calculating the

293 number of days since randomization, regardless of alternative DME treatment; for eyes that are

294 lost to follow-up, the target visit date will be used. The distribution of the total number of

295 sessions through the primary outcome visit will be described using summary statistics and

296 graphical methods. A scatter plot with a regression line will be constructed to examine for

297 evidence of dose-response, separately for each treatment group.

298 As a dose-response effect is expected only in the active treatment group, and the study is not

299 powered to detect a significant interaction between treatment and compliance, a stratified

300 analysis will be performed using the imputed dataset at the primary outcome visit to evaluate the

301 potential association between compliance and treatment effect separately within each treatment
302 group. The stratified analysis will include adjustment for baseline CST, randomization
303 stratification factor, and number of days from randomization to the primary outcome visit. Model
304 assumptions will be checked, and transformation or categorization of compliance will be used if
305 there is evidence of non-linearity in the dose response. It is recognized that the study may not be
306 adequately powered to detect a definitive dose-response association existing only in the active
307 treatment group, and lack of significance is not necessarily an indication that the association does
308 not exist. It is also recognized that compliance may be affected by both measured and
309 unmeasured post-randomization factors, including efficacy of masking and perceived effects of
310 the treatment; hence, the observed dose-response associations may be biased.

311 If compliance lessens over time during Phase 1, an exploratory analysis will investigate whether
312 there appears to be any association of compliance versus magnitude of treatment effect over
313 those months. A 4-category variable for compliance will be created from the imputed dataset,
314 based on the compliance in the first 2 months and the remainder of Phase 1, using a cutoff at
315 80% compliance for each period. Thus the overall primary outcome compliance will be
316 categorized into: 1) $\geq 80\%$ compliance in both periods, 2) $\geq 80\%$ compliance in the first 2-month
317 period but not the second period, 3) $\geq 80\%$ compliance in the second period but not the first
318 period, and 4) $< 80\%$ compliance in both periods. A box-plot for change in CST at the primary
319 outcome visit by compliance category will be created, and global test will be performed to test
320 the association between compliance and change in CST using ANCOVA adjusting for baseline
321 CST level, number of days from randomization to the primary outcome visit, and randomization
322 stratification factor. Any compliance category with fewer than 20 eyes will be excluded from the
323 ANCOVA analysis. If a significant association is found by the global test, the contrast between
324 categories 1) and 2) will be tested.

325 For Phase 2, adherence will be evaluated in a similar fashion to assess whether compliance
326 affects the post-switch effect within the initial sham group, specifically:

327 • For the initial sham group, whether there is an association between compliance during
328 phase 2 and treatment effect in phase 2, which is defined as the change in CST from the
329 primary outcome to 4 months post outcome visit.

330 Adherence in Phase 2 will be evaluated only among eyes participating in Phase 2. The protocol
331 specifies that if alternative treatment is given during Phase 2, participation in the study will be
332 discontinued following next study visit. Missing data will be handled similarly to the Phase 1
333 analysis.

334 In addition, for each phase the effect of text message reminders on compliance will be evaluated
335 using the imputed dataset. Compliance will be defined as the total number of sessions of the
336 study device use during each phase divided by the total number of possible treatment sessions
337 based on visit completion status and alternative DME treatment as noted above; and only
338 participants who have been randomly assigned to receive or not receive text messages will be
339 included in this analysis. This analysis will consist of a comparison of mean compliance between

340 those receiving texts and those not receiving texts using analysis of covariance, and will include
341 treatment, number of days from randomization to the primary outcome visit for Phase 1 (and
342 number of days from the primary outcome to 4 months post outcome visit for Phase 2), and an
343 interaction between treatment group and text message reminders, given it is possible that the
344 participants who are assigned to the control group are less compliant and more likely to ignore
345 text messages. However, it is also recognized that the power for testing the interaction is low in
346 this study due to the limited sample size. If a significant interaction is not present, the analysis
347 will be conducted combining the two treatment groups. If a significant interaction between
348 treatment and text message reminders is present, a stratified analysis will be performed.

349 **5.0 Safety Analysis**

350 All reportable adverse events will be categorized as study eye or systemic. All events will be
351 tabulated by treatment group in a listing of each reported Medical Dictionary for Regulatory
352 Activities (MedDRA) term and summarized over each MedDRA System Organ Class. All
353 randomized participants will be included in safety analyses.

354 Since there are no known risks of the device, there are no pre-specified safety outcomes of
355 interest. However, the frequency of each ocular adverse event occurring at least once per eye and
356 each systemic event occurring at least once per participant will be calculated.

357 In addition, the following will be tabulated by treatment group:

- 358 • For each MedDRA System Organ Class, percentage of participants with at least one
359 serious event
- 360 • Number of adverse events thought by investigator to be related to treatment

361 No formal statistical comparisons will be performed for reported adverse events.

362 **6.0 Additional Tabulations and Analyses**

363 The following will be tabulated according to treatment group:

- 364 • Baseline demographic and clinical characteristics
 - 365 ○ for overall cohort
 - 366 ○ for Phase 2 participants
- 367 • Visit completion rate for each visit (excluding death)
- 368 • Protocol deviations
- 369 • Number of reported device issues
- 370 • Treatment completion

371 In addition, to evaluate the potential contralateral effect, visual acuity, OCT measurements, and
372 treatment for DME in non-study eyes will be tabulated at primary outcome visit by the treatment
373 group assigned to the study eye. These outcomes will be analyzed and presented similarly to the

374 primary and secondary analyses as specified above for the study eyes, with the exception that no
375 imputation will be performed for missing data. If the study eye receives a treatment for DR or
376 DME, the last non-study eye measurement prior to the study eye treatment will be used for
377 analysis.

378 This pilot study is being conducted to determine whether the conduct of a pivotal trial has merit
379 based on an anatomic outcome and to provide information on outcome measures needed to
380 design a pivotal trial. If the results of this study support proceeding with a pivotal trial after
381 evaluation of all the data and discussion within DRCR, information from this study will
382 contribute to designing the pivotal trial. The standard deviation of the difference in visual acuity
383 will be used in the sample size calculation of the pivotal trial. Patient compliance (for example,
384 the proportion of enrolled participants that are randomized and the proportion of randomized
385 participants who comply with the use of the study device post-randomization) will also aid in the
386 design of the pivotal trial.

387 **7.0 OCT Angiography Ancillary Study**

388 At a subset of sites with OCT angiography capabilities, images will be taken at baseline and
389 primary outcome to explore whether there are changes in any features evident on OCT
390 angiography. The statistical analysis plan will be detailed in a separate document.

391 **8.0 General Principles for Analysis**

392 **8.1 Analysis Cohort**

393 Unless otherwise stated, all treatment comparison analyses will follow the intention-to-treat
394 principle with all randomized eyes included and each eye analyzed according to the randomized
395 treatment assignment, regardless of treatment actually received.

396 **8.2 Visit Windows for Analysis**

397 For common visits, the analysis windows will be defined according to Table 3. For visits falling
398 in more than 1 window, priority will be given to the key outcome visits. Otherwise, the visit will
399 be assigned to the earlier window (e.g., a visit on day 42 would be assigned as the 1-month visit).

400 **Table 3. Analysis Windows for Outcome Visits**

Visit (Protocol Window)	Target	Analysis Window	
1 Month (± 1 week)	4 weeks	14 – 42 days	(2 – 6 weeks)
2 Month (± 1 week)	8 weeks	42 – 70 days	(6 – 10 weeks)
3 Month (± 1 week)	12 weeks	70 – 98 days	(10 – 14 weeks)
4 Month/Primary Outcome * (± 2 week)	16 weeks	84 – 224 days	(12 – 32 weeks)
~6 Month/2-Month Post Outcome (± 2 week)	8 weeks after 4-Month visit	140 – 280 days	(20 – 40 weeks)
~8 Month/4-Month Post Outcome* (± 2 week)	16 weeks after 4-Month visit	168 – 336 days	(24 – 48 weeks)

401 *Key visits

402 **8.3 Missing Data**

403 The strategy for handling missing data generally is included with the description of each
404 individual analysis. Where not otherwise specified, only participants with non-missing data are
405 included in the analysis.

406 **8.4 Outliers**

407 To help ensure that statistical outliers do not have undue impact on analyses of continuous
408 outcomes including visual acuity, OCT central subfield thickness (primary outcome) and retinal
409 volume, change in continuous outcomes will be truncated to ± 3 standard deviations based on the
410 overall mean and standard deviation at the primary outcome visit for primary outcome
411 completers' data, irrespective of treatment group. Visual acuity letter score, change in visual
412 acuity from baseline, OCT central subfield thickness, change in CST from baseline, and change
413 in retinal volume from baseline will be truncated. Truncation will be performed after imputation
414 of missing data and LOCF where applicable (i.e., raw data will be used for imputation).

415 **8.5 Model Assumptions**

416 All model assumptions, including linearity, normality of residuals, and heteroscedasticity, will be
417 verified. If model assumptions are not reasonably satisfied, then covariates may be categorized
418 or excluded, and a nonparametric approach, robust estimation method, or transformation may be
419 considered.

420 **8.6 Type I Error Rate**

421 There is no formal adjustment for multiplicity to compensate for the number of outcomes being
422 compared. All comparisons are conducted at alpha level 0.05 unless otherwise noted. In
423 particular, a number of sensitivity analyses and a non-ITT analysis are proposed along with the
424 primary analysis. The intent of these analyses is to explore the effect of primary analysis
425 assumptions on study conclusions, and if they are different, explain why. These analyses are not
426 a substitute for the primary analysis, and primary conclusion will be based on the pre-specified
427 primary analysis. Only 3 of the secondary outcomes of “primary interest” will be compared

428 statistically. Two of these, change in central subfield volume and percentage of participants
429 below the threshold for DME on OCT, are expected to be correlated with the primary outcome,
430 and are intended to help support and interpret the primary outcome findings and interpretation,
431 not to form the basis for independent conclusions.

432

433 **References**

434 Baker CW, Glassman AR, Beaulieu WT, et al. Effect of Initial Management With Aflibercept vs
435 Laser Photocoagulation vs Observation on Vision Loss Among Patients With Diabetic Macular
436 Edema Involving the Center of the Macula and Good Visual Acuity: A Randomized Clinical
437 Trial. *JAMA*. Published online April 29, 2019. doi:10.1001/jama.2019.5790

438 Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
439 Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B*
(Methodological). 1995;57(1):289-300.

441 Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily
442 computed indirectly from multivariable logistic regression. *J Clin Epidemiol*. 2007;60(9):874-
443 882.

444 Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple imputation be the method of
445 choice for handling missing data in randomized trials? *Stat Methods Med Res*. 2018;27(9):2610-
446 2626.

447 Yuan Y. Sensitivity analysis in multiple imputation for missing data. Paper presented at: SAS
448 Global Forum 2014; Washington DC.