



## UVA CENTER FOR DIABETES TECHNOLOGY

---

# Adaptive Motif-Based Control (AMBC): Pilot 1 – Neural Net Implementation of Automated Insulin Delivery

Running Title: Neural Net Artificial Pancreas  
(NAP)

Protocol Principal Investigator

Sue A. Brown, MD

University of Virginia  
Center for Diabetes Technology

NCT#05876273

Version Number: v1.3

19-Jun-2023

# CLINICAL PROTOCOL



## KEY ROLES

| Key Roles                              |                      |                                                                 |
|----------------------------------------|----------------------|-----------------------------------------------------------------|
|                                        | Name, degree         | Institution Name                                                |
| <b>Protocol Principal Investigator</b> | Sue Brown, MD        | University of Virginia Division of Endocrinology and Metabolism |
| <b>Study Sponsor</b>                   | Boris Kovatchev, PhD | University of Virginia Center for Diabetes Technology           |

# CLINICAL PROTOCOL



## PROTOCOL VERSION HISTORY

| Version Number | Author(s)       | Approver  | Effective Date | Revision Description                                                                                                                                                                                                                                     |
|----------------|-----------------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0            | Boris Kovatchev | Sue Brown | 20-Feb-2023    | Original Protocol                                                                                                                                                                                                                                        |
| 1.1            | Mary Oliveri    | Sue Brown | 08-Mar-2023    | FSDA Modifications                                                                                                                                                                                                                                       |
| 1.2            | Sue Brown       | Sue Brown | 07-Apr-2023    | Study team mods                                                                                                                                                                                                                                          |
| 1.3            | Mary Oliveri    | Sue Brown | 19-Jun-2023    | Study team mods <ul style="list-style-type: none"><li>Revised Risk of Device Reuse section to identify equipment that may be reused during the trial after cleaning (section 9.1.6)</li><li>Added Device Cleaning Instructions (section 9.1.7)</li></ul> |

# CLINICAL PROTOCOL

---

## SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

---

Protocol Title: Adaptive Motif-Based Control (AMBC): Pilot 1 – Neural Net Implementation of Automated Insulin Delivery

Running Title: Neural Net Artificial Pancreas (NAP)

Protocol Version/Date: v1.3 19-Jun-2023

I have read the protocol specified above. In my formal capacity as a Principal Investigator, my duties include ensuring the safety of the study participants enrolled under my supervision. It is understood that all information pertaining to the study will be held strictly confidential and that this confidentiality requirement applies to all study staff at this site.

This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as required by the following: United States (US) Code of Federal Regulations (CFR) applicable to clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21 CFR Part 812).

As the Principal Investigator, I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the sponsor and documented approval from the Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary to eliminate an immediate hazard(s) to the trial participants.

All key personnel (all individuals responsible for the design and conduct of this trial) have completed Human Participants Protection Training and Good Clinical Practice Training. Further, I agree to ensure that all staff members involved in the conduct of this study are informed about their obligations in meeting the above commitments.

Investigator's Signature \_\_\_\_\_ Date: \_\_\_\_ / \_\_\_\_ / \_\_\_\_

Investigator's Name: \_\_\_\_\_

Site Name: University of Virginia

# CLINICAL PROTOCOL

## LIST OF ABBREVIATIONS

| Abbreviation | Definition                                                        |
|--------------|-------------------------------------------------------------------|
| ADE          | Adverse Device Effect                                             |
| AE           | Adverse Event                                                     |
| AID          | Automated Insulin Delivery                                        |
| AMBC         | Adaptive Motif-Based Control                                      |
| AP           | Artificial Pancreas                                               |
| BG           | Blood Glucose                                                     |
| CDCES        | Certified Diabetes Care and Education Specialist                  |
| CDT          | Center for Diabetes Technology                                    |
| CF           | Correction Factor                                                 |
| CGM          | Continuous Glucose Monitoring                                     |
| CIQ          | Control-IQ AP system, Tandem Diabetes Care, San Diego, CA         |
| CSII         | Continuous Subcutaneous Insulin Injection                         |
| DCCT         | Diabetes Control and Complications Trial                          |
| DiAs         | Diabetes Assistant – the UVA algorithm prototyping system         |
| DKA          | Diabetic Ketoacidosis                                             |
| FDA          | Food and Drug Administration                                      |
| GCP          | Good Clinical Practice                                            |
| HbA1c        | Hemoglobin A1c                                                    |
| ICR          | Insulin-to-carbohydrate ratio                                     |
| iDCL         | International Diabetes Closed-Loop trial                          |
| IDE          | Investigational Device Exemption                                  |
| IRB          | Institutional Review Board                                        |
| NAP          | Neural Net Artificial Pancreas                                    |
| NIDDK        | National Institute for Diabetes and Digestive and Kidney Diseases |
| NIH          | National Institutes of Health                                     |
| PI           | Principal Investigator                                            |
| POC          | Point-of-Care                                                     |
| SAE          | Serious Adverse Event                                             |
| T1D          | Type 1 Diabetes                                                   |
| TAR          | Time above range, above 180 mg/dL                                 |
| TBR          | Time below range, below 70 mg/dL                                  |
| TIR          | Time within the range 70-180 mg/dL                                |
| UMPC         | UVA's Model-Predictive Control Algorithm                          |
| UADE         | Unanticipated Adverse Device Effect                               |
| UVA          | University of Virginia                                            |

# CLINICAL PROTOCOL



## PROTOCOL SUMMARY

| PROTOCOL SECTION                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Title</b>                      | Adaptive Motif-Based Control (AMBC): Pilot 1 – Neural Net Implementation of Automated Insulin Delivery                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Investigational Devices</b>    | Neural Net Artificial Pancreas (NAP) implementation of the UVA model predictive control algorithm (UMPC); <b>Both NAP and UMPC are investigational devices.</b>                                                                                                                                                                                                                                                                                                                                                               |
| <b>Objectives</b>                 | The purpose of this study is to test the safety and feasibility of a neural net implementation of an established AP controller, known as UMPC, previously approved by IDE G200206, and tested in the following randomized controlled clinical trials: ClinicalTrials.gov NCT04545567, NCT04877730, and NCT05528770.                                                                                                                                                                                                           |
| <b>Study Design</b>               | A randomized cross-over trial assessing glycemic control on NAP, compared to the original UMPC algorithm, which includes two sessions studied in a supervised hotel setting:<br>1) using NAP – a neural net implementation of UMPC, and<br>2) using the original UMPC without modifications (see IDE G200206).                                                                                                                                                                                                                |
| <b>Number of Sites</b>            | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Endpoint</b>                   | The primary outcome will be time in range 70-180 mg/dL for an 18-hour period, 6 PM to 12 PM on the next day, including dinner and breakfast meals.                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Population</b>                 | Key Inclusion Criteria <ul style="list-style-type: none"><li>• Age <math>\geq</math>18 years of age</li><li>• Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least 1 year</li><li>• Currently using insulin for at least six months</li><li>• Currently using the Control-IQ (CIQ) automated insulin delivery (AID) system.</li></ul>                                                                                                                                                        |
| <b>Sample Size</b>                | Up to 20 participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Treatment Groups</b>           | Randomized crossover: Participants will be randomized to two groups differing by the order of controller use: Group A: NAP first followed by UMPC; Group B: UMPC followed by NAP.                                                                                                                                                                                                                                                                                                                                             |
| <b>Participant Duration</b>       | Up to 6 weeks: Participants will be studied at a local hotel or rental house to test two algorithms, approximately 20 hours per each test. Prior to each hotel session, participants will passively collect CIQ data for a week. The two hotel sessions can be performed sequentially during the same hotel stay or in two hotel stays separated up to 28 days.                                                                                                                                                               |
| <b>Protocol Overview/Synopsis</b> | Following enrollment, 1 week of AID data will be downloaded from the participants' pumps or t:connect accounts and will be used to establish a baseline and initialize the control algorithms. Participants will be then studied at a hotel for 20 hours, including an 18-hour experiment, randomly receiving either NAP or UMPC. Participants will then receive the opposite intervention either sequentially during the same hotel stay, or in a second hotel stay up to 28 days following the first hotel stay (Figure 1). |

# CLINICAL PROTOCOL



## STUDY VISITS AND PROCEDURES SCHEDULE

|                                             | Screening           | Hotel Session 1      |                     |                        | Hotel Session 2        |                     |                       |
|---------------------------------------------|---------------------|----------------------|---------------------|------------------------|------------------------|---------------------|-----------------------|
|                                             |                     | Pre-Session Check-In | Hotel Session 1     | Post-Session Check-In* | Pre-Session Check-In** | Hotel Session 2     | Post-Session Check-In |
| Location                                    | In person or Remote | Phone/ Email/ Text   | Hotel/ Rental House | Phone/ Email/ Text     | Phone/ Email/ Text     | Hotel/ Rental House | Phone/ Email/ Text    |
| Visit                                       | 1                   | 2                    | 3                   | 4                      | 5                      | 6                   | 7                     |
| Informed Consent                            | X                   |                      |                     |                        |                        |                     |                       |
| Eligibility Assessment                      | X                   |                      |                     |                        |                        |                     |                       |
| Medical History                             | X                   |                      |                     |                        |                        |                     |                       |
| HbA1c                                       | X                   |                      |                     |                        |                        |                     |                       |
| Pregnancy test (if applicable)              |                     |                      | X                   |                        |                        | X***                |                       |
| Physical Exam                               | X                   |                      |                     |                        |                        |                     |                       |
| Vital Signs (height/weight)                 | X                   |                      | X                   |                        |                        | X***                |                       |
| Demographic Survey                          | X                   |                      |                     |                        |                        |                     |                       |
| Baseline data download (1 week of AID data) | X                   |                      |                     |                        |                        |                     |                       |
| Randomization                               | X                   |                      |                     |                        |                        |                     |                       |
| NAP / UMPC use                              |                     |                      | X                   |                        |                        | X                   |                       |
| Review diabetes management and AEs          |                     | X                    |                     | X                      | X                      |                     | X                     |

\* Post-session check-in Visit 4 will not occur, if the two hotel sessions are done sequentially

\*\* Pre-session check-in Visit 5 will not occur, if the two hotel sessions are done sequentially

\*\*\* Pregnancy test and vital signs recheck will not occur during Hotel Session 2 if the two hotel sessions are done sequentially.

---

## 1 TABLE OF CONTENTS

|    |                                                                              |           |
|----|------------------------------------------------------------------------------|-----------|
| 2  | <b>Chapter 1 Background and Synopsis.....</b>                                | <b>10</b> |
| 3  | 1.1 Introduction.....                                                        | 10        |
| 4  | 1.2 Objective and Primary Outcome.....                                       | 11        |
| 5  | 1.3 Study Design.....                                                        | 11        |
| 6  | 1.4 Study Hardware/Software.....                                             | 12        |
| 7  | 1.5 Hotel Sessions.....                                                      | 12        |
| 8  | 1.6 Device Download.....                                                     | 12        |
| 9  | 1.7 Potential Study System Issues.....                                       | 12        |
| 10 | <b>Chapter 2 Study Devices .....</b>                                         | <b>14</b> |
| 11 | 2.1 Insulin Pump .....                                                       | 14        |
| 12 | 2.2 Continuous Glucose Monitor .....                                         | 14        |
| 13 | 2.3 Blood Glucose Meter and Strips .....                                     | 14        |
| 14 | 2.4 Ketone Meter and Strips .....                                            | 14        |
| 15 | 2.5 Study Devices Accountability Procedures .....                            | 14        |
| 16 | <b>Chapter 3 Screening .....</b>                                             | <b>15</b> |
| 17 | 3.1 Clinical Sites .....                                                     | 15        |
| 18 | 3.2 Participant Recruitment and Enrollment.....                              | 15        |
| 19 | 3.3 Prescreening Procedures .....                                            | 15        |
| 20 | 3.4 Informed Consent and Authorization Procedures .....                      | 15        |
| 21 | 3.5 Inclusion Criteria.....                                                  | 15        |
| 22 | 3.6 Exclusion Criteria.....                                                  | 16        |
| 23 | 3.7 Screening Procedures .....                                               | 17        |
| 24 | 3.8 Demographic Data Survey .....                                            | 18        |
| 25 | <b>Chapter 4 Randomization .....</b>                                         | <b>20</b> |
| 26 | <b>Chapter 5 Pre-Hotel Schedule .....</b>                                    | <b>21</b> |
| 27 | 5.1 Pre-Hotel Check-In .....                                                 | 21        |
| 28 | 5.2 Other Issues.....                                                        | 21        |
| 29 | <b>Chapter 6 Hotel Session.....</b>                                          | <b>22</b> |
| 30 | 6.1 Qualifications and Role of the Staff.....                                | 22        |
| 31 | 6.2 Session Check-In.....                                                    | 22        |
| 32 | 6.3 Glycemic Treatment Guidelines during the Hotel Portion of the Study..... | 23        |
| 33 | 6.4 Study Meals.....                                                         | 24        |
| 34 | 6.5 Hotel Activities .....                                                   | 24        |
| 35 | 6.6 Hotel Discharge.....                                                     | 24        |
| 36 | 6.7 Post Hotel Check-In Visit .....                                          | 24        |
| 37 | <b>Chapter 7 Medical Monitor Review.....</b>                                 | <b>26</b> |
| 38 | <b>Chapter 8 Testing Procedures .....</b>                                    | <b>27</b> |
| 39 | 8.1 HbA1c .....                                                              | 27        |

# CLINICAL PROTOCOL

|    |                                                                          |           |
|----|--------------------------------------------------------------------------|-----------|
| 40 | 8.2 Pregnancy Test.....                                                  | 27        |
| 41 | <b>Chapter 9 Risks Associated with Clinical Trial .....</b>              | <b>28</b> |
| 42 | 9.1 Potential Risks and Benefits .....                                   | 28        |
| 43 | 9.2 General Considerations .....                                         | 31        |
| 44 | <b>Chapter 10 Adverse Events, Device Issues, and Stopping Rules.....</b> | <b>32</b> |
| 45 | 10.1 Definitions.....                                                    | 32        |
| 46 | 10.2 Reportable Events .....                                             | 33        |
| 47 | 10.3 Relationship of AE to Study Device .....                            | 34        |
| 48 | 10.4 Intensity of AE .....                                               | 34        |
| 49 | 10.5 Coding of AEs.....                                                  | 35        |
| 50 | 10.6 Outcome of AEs.....                                                 | 35        |
| 51 | 10.7 Reportable Device Issues .....                                      | 36        |
| 52 | 10.8 Timing of Event Reporting .....                                     | 36        |
| 53 | 10.9 Stopping Criteria .....                                             | 37        |
| 54 | 10.10 Independent Safety Oversight.....                                  | 37        |
| 55 | 10.11 Definition of a Data Breach .....                                  | 37        |
| 56 | <b>Chapter 11 Miscellaneous Considerations.....</b>                      | <b>38</b> |
| 57 | 11.1 Prohibited Medications, Treatments, and Procedures.....             | 38        |
| 58 | 11.2 Participant Withdrawal.....                                         | 38        |
| 59 | 11.3 Confidentiality .....                                               | 38        |
| 60 | <b>Chapter 12 Statistical Consideration .....</b>                        | <b>39</b> |
| 61 | 12.1 Design and Randomization .....                                      | 39        |
| 62 | 12.2 Sample Size.....                                                    | 39        |
| 63 | 12.3 Outcome Measures.....                                               | 39        |
| 64 | 12.4 Criteria for Success .....                                          | 40        |
| 65 | 12.5 CGM data treatment.....                                             | 40        |
| 66 | 12.6 Safety Analyses and Participant Feedback .....                      | 40        |
| 67 | 12.7 Baseline Descriptive Statistics .....                               | 40        |
| 68 | <b>Chapter 13 Data Collection and Monitoring.....</b>                    | <b>42</b> |
| 69 | 13.1 Case Report Forms and Device Data .....                             | 42        |
| 70 | 13.2 Study Records Retention.....                                        | 42        |
| 71 | 13.3 Protocol Deviations .....                                           | 42        |
| 72 | <b>Chapter 14 Ethics/Protection of Human Participants.....</b>           | <b>43</b> |
| 73 | 14.1 Ethics Standard.....                                                | 43        |
| 74 | 14.2 Institutional Review Boards.....                                    | 43        |
| 75 | 14.3 Informed Consent Process .....                                      | 43        |
| 76 | <b>Chapter 15 References.....</b>                                        | <b>45</b> |
| 77 |                                                                          |           |
| 78 |                                                                          |           |

# CLINICAL PROTOCOL

## 79 Chapter 1 Background and Synopsis

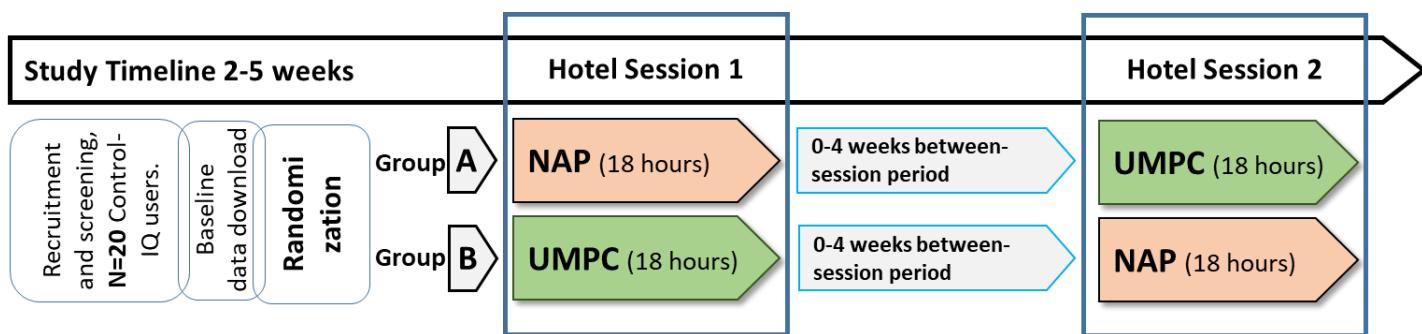
### 80 1.1 Introduction

81 The National Institutes of Health’s Strategic Plan for Fiscal Years 2021–2025 “outlines NIH’s  
82 vision for biomedical research direction, capacity, and stewardship, by articulating the highest  
83 priorities of NIH over the next 5 years.”<sup>1</sup> The Plan also highlights key accomplishments in the past  
84 5 years. On page 13, under the heading “Giving the Right Treatment to the Right Patient at the  
85 Right Time,” the Plan recognized the UVA CDT (Center for Diabetes Technology) for its research  
86 resulting in the clinical translation of innovative automated insulin delivery (AID) technology.<sup>1</sup>  
87 Indeed, the blueprint of the UVA-AID was created by our team over a decade ago<sup>2–5</sup> and, after a  
88 number of clinical trials, culminated in two large studies, part of the International Diabetes Closed-  
89 Loop (iDCL) Trial, grant UC4DK108483, led by our team and published in the *New England*  
90 *Journal of Medicine*.<sup>6,7</sup> As a result, FDA cleared Control-IQ (Tandem Inc.), derived from the  
91 UVA-AID, as “the first inter-operable, automated insulin dosing controller designed to allow more  
92 choices for patients looking to customize their individual diabetes management device system.”<sup>8</sup>  
93 Control-IQ is now launched in over 24 countries and has over 400,000 users worldwide.

94 With the first-generation UVA-AID translated to routine clinical practice, we have developed a  
95 next-generation controller – University of Virginia’s model-predictive control algorithm (UMPC)  
96 – which was approved by the FDA for investigational use with IDE G200206<sup>38</sup> and was then tested  
97 successfully in a randomized controlled clinical trial (NCT04545567), published in *Diabetes Care*.<sup>9</sup>  
98 Two other pilot studies tested glycemic disturbance anticipation (IDE #G210051<sup>39</sup>,  
99 NCT04877730) and automated priming bolus (IDE #G220204,<sup>40</sup> NCT05528770). Most recently,  
100 in a grant application funded by the NIDDK (RO1 DK 133148-01, corresponding PI Kovatchev),  
101 we proposed using the data and experience amassed in our previous studies to design and test a  
102 new class of AID algorithms – Adaptive Motif-Based Control (AMBC), which blends Data  
103 Science methods with artificial pancreas (AP) control engineering.

104 The concept of AMBC is to enable a pathway towards adaptive AP algorithms which are capable  
105 of learning from a person’s CGM and insulin delivery patterns, and from the patterns of others  
106 stored in databases. The first step towards this concept of the future, is translating a well-  
107 established AP control algorithm, e.g., UMPC into a Data Science “environment,” i.e., creating a  
108 Neural Net adaptation of a model-predictive controller. This protocol intends to test such an  
109 adaptation – a Neural Net AP (NAP) – in a brief study in a well-controlled environment. Studies  
110 to follow will expand this concept further and will add elements of controller adaptation based on  
111 data accumulated in databases, labelled by prefixed “motifs” – a recently established structure of  
112 daily CGM profiles.<sup>10</sup> The latter would allow a finite table-lookup approach to real-time AP control  
113 adaptation; but, this is a subject of future studies. Now we focus on the first step only – translating  
114 a controller into a neural-net environment.

## CLINICAL PROTOCOL


115 *Thus, the only new AID algorithm tested in this study is NAP – a neural-net implementation of the*  
 116 *UMPC – which produces insulin adjustment commands identical (within a small tolerance) to the*  
 117 *original UMPC (see Appendix A-1: Algorithm Description). We should also emphasize that the*  
 118 *two experimental algorithms used in this study, UMPC and NAP, modulate only the basal rate of*  
 119 *insulin delivery. The other components, the Adaptive Bolus Priming System, the Hyperglycemia*  
 120 *Mitigation System, and the Safety System Module dedicated to prevention of hypoglycemia –*  
 121 *remain unchanged from previous studies and are described in IDE # G220204. In particular, the*  
 122 *Safety System has been reviewed by the Agency in virtually all IDEs in the reference list.<sup>15-36</sup> The*  
 123 *Safety System Module has also been tested for its ability to prevent hypoglycemia in pivotal trials*  
 124 *[IDE#G180053 and IDE#G180053] and in millions of days of routine home use, as part of the*  
 125 *commercial Control-IQ AID device system.<sup>37</sup>*

### 1.2 Objective and Primary Outcome

127 Pilot test the safety and feasibility of a NAP implementation of an established AP controller –  
 128 UMPC – in a crossover study. The primary outcome is percent TIR (70 to 180 mg/dL) on NAP vs  
 129 UMPC. Secondary outcomes include frequency of hypoglycemia (TBR) and hyperglycemia  
 130 (TAR), as well as other safety and control metrics. We will analyze non-inferiority of NAP  
 131 compared to UMPC, but *this pilot feasibility study is not powered to formally test noninferiority.*

### 1.3 Study Design

133 We will consent up to 20 participants, ages  $\geq 18.0$ , with a goal to have 15 participants complete the  
 134 trial. The study randomized crossover design is presented in Figure 1 below, and includes  
 135 screening, randomization, and two 18-hour hotel/rental house study sessions (heretofore referred  
 136 to as “hotel”). The first hotel session will be preceded by a download of 1-week AID data:



137  
 138 Figure 1: Timeline and randomized order of the hotel sessions. Group A will proceed  
 139 with NAP first; Group B will use UMPC first; then the two groups will cross over after  
 140 0-4 week time period. In particular, the two hotel sessions can be combined into one,  
 141 with two 18-hour periods alternating NAP vs UMPC.

## CLINICAL PROTOCOL

### 142 **1.4 Study Hardware/Software**

143 The study will involve CIQ users who will continue to use their CIQ systems, except during the  
144 hotel sessions, which will use the DiAs prototyping platform (described in device master file MAF  
145 2109), connected to a Tandem t:AP research pump and a Dexcom G6 sensor, and implementing  
146 NAP or UMPC. The study sensor will be the same sensor used by CIQ – it will be disconnected  
147 from CIQ and connected to DiAs.

### 148 **1.5 Hotel Sessions**

149 The participants will arrive to hotel and the experimental system will be set up and started within  
150 approximately two hours before dinner: participant's CIQ will be replaced by a Tandem research  
151 pump connected to the DiAs platform and their Dexcom G6 Transmitter will be linked with DiAs.  
152 The research pump will be programmed based on the individual's usual insulin parameters. Once  
153 started, the participants will have their blood sugar managed through this system during 18 hours  
154 of the time at hotel. A pre-meal bolus using the participant's normal insulin-to-carbohydrate ratio  
155 (ICR) will occur for dinner and breakfast after initiating the experimental system. Each participant  
156 will have two of these sessions: one on NAP and one on UMPC, in random order, separated by 0-  
157 28 days. In particular, the two hotel sessions can be combined into one, with two 18-hour periods  
158 alternating NAP vs UMPC. (see Figure 1).

159 During these 18-hour hotel sessions participants will be followed to compare blood glucose control  
160 on NAP vs. UMPC. The study meals and activities will be kept the same between study sessions.  
161 Study staff who will be present will include nursing and technical staff; a study physician/nurse  
162 practitioner/physician's assistant will be available either on-site or nearby off-site. Hyperglycemia  
163 and hypoglycemia treatment protocols will be followed per guidelines. UVa CDT study staff will  
164 monitor CGM output continuously and manage glucose control issues. At the end of the hotel stay,  
165 the participant will return to their home insulin management.

### 166 **1.6 Device Download**

167 Baseline data will be downloaded from the participants' CIQ pump or t:connect account. Before  
168 discharge from the hotel, DiAs will be turned in to study staff for device download, and the  
169 participants will return to their usual CIQ diabetes management. If the two hotel sessions are  
170 separated, a second CIQ pump or t:connect download will occur during Hotel Session 2.

### 171 **1.7 Potential Study System Issues**

172 If the CGM signal becomes unavailable for more than 20 minutes consecutively, closed loop will  
173 not operate to automatically adjust insulin. If the CGM is not connected, the system will revert to  
174 usual function of the pump and deliver insulin with the insulin dosing parameters programmed in  
175 the system for that individual. Resumption of closed-loop control will occur automatically once  
176 CGM signal is available again. If the study system is unable to maintain pump connectivity, the

## CLINICAL PROTOCOL



177 pump will automatically revert to pre-programmed basal insulin delivery after 30 minutes without  
178 any need for instruction from the user.

## CLINICAL PROTOCOL

---

### 179 **Chapter 2 Study Devices**

#### 180 **2.1 Insulin Pump**

181 The study systems will utilize the Tandem t:AP research pump connected to the UVa DiAs system  
182 run on a dedicated external smart phone, running NAP or UMPC.

#### 183 **2.2 Continuous Glucose Monitor**

184 A study Dexcom G6 CGM may be provided to study participants. . The study staff will remind the  
185 participant approximately 2-3 days before the hotel session to replace the sensor with a new one,  
186 so appropriate sensor warmup can occur prior to hotel session. If required, participants may use  
187 their personal CGM during the study session. The Dexcom G6 sensor is viable for up to 10 days.

#### 188 **2.3 Blood Glucose Meter and Strips**

189 Blood glucose levels will be measured during the hotel sessions with the use of a Bayer Contour  
190 Next meter. The CGM device will be calibrated, if needed, using the study glucometer and strips  
191 in accordance with the manufacturer's labelling.

#### 192 **2.4 Ketone Meter and Strips**

193 Blood ketone levels will be measured during the hotel session with the use of the Abbott Precision  
194 Xtra meters or Keto mojo meters and strips in accordance with the manufacturer's labelling. The  
195 blood glucose meter component of the ketone devices will not be used.

#### 196 **2.5 Study Devices Accountability Procedures**

197 Device serial numbers will be recorded, and use of equipment will be tracked.

# CLINICAL PROTOCOL

## 198 **Chapter 3 Screening**

### 199 **3.1 Clinical Sites**

200 The study will be performed at the University of Virginia, with screening procedures taking place  
201 either virtually, at the Clinical Research Unit, or at local hotel.

### 202 **3.2 Participant Recruitment and Enrollment**

203 Enrollment in the study will proceed with the goal of completing up to 15 participants. Up to 20  
204 participants may sign the consent form.

205 Recruitment, screening, and enrollment may be performed as an office visit, or via  
206 telecommunication.

### 207 **3.3 Prescreening Procedures**

208 Before informed consent, potential participants may be pre-screened by phone for eligibility.  
209 During pre-screening, potential subjects will be asked the Inclusion/Exclusion Questionnaire by  
210 study staff.

### 211 **3.4 Informed Consent and Authorization Procedures**

212 Before completing any procedures or collecting any data that are not part of usual care, written  
213 informed consent as described in section 14.3.1 will be obtained. Potential eligibility may be  
214 assessed as part of a routine-care examination.

215 A participant is considered enrolled when the informed consent form has been signed by the  
216 participant and the study team.

217 Consenting procedures and documentation are defined in section 14.3.

### 218 **3.5 Inclusion Criteria**

219 The participants must meet all of the following inclusion criteria in order to be eligible to  
220 participate in the study.

- 221 1. Age  $\geq 18.0$  at time of consent
- 222 2. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year
- 223 3. Currently using insulin for at least six months
- 224 4. Currently using the CIQ automated insulin delivery system for at least one month
- 225 5. Hemoglobin A1c  $\leq 9\%$
- 226 6. Using insulin parameters such as ICR and CF consistently in order to dose insulin for meals  
227 or corrections
- 228 7. Access to internet and willingness to upload data during the study as needed

## CLINICAL PROTOCOL

229 8. If female of childbearing potential and sexually active, must agree to use a form of  
230 contraception to prevent pregnancy while a participant in the study. A negative serum or  
231 urine pregnancy test will be required for all females of childbearing potential within 24 hours  
232 prior to initiating the experimental algorithms. Participants who become pregnant will be  
233 discontinued from the study. Also, participants who during the study develop and express  
234 the intention to become pregnant within the timespan of the study will be discontinued.

235 9. Willingness to use the UVa DiAs system throughout study session

236 10. Willingness to use personal lispro (Humalog) or aspart (Novolog) during the study session.

237 11. Willingness not to start any new non-insulin glucose-lowering agent during the course of the  
238 trial (including SGLT2 inhibitors, metformin/biguanides, GLP-1 receptor agonists,  
239 pramlintide, DPP-4 inhibitors, sulfonylureas and naturaceuticals)

240 12. Willingness to reschedule the hotel portion of the study if placed on systemic steroids (e.g.  
241 IV, IM, intra-articular or oral routes)

242 13. An understanding and willingness to follow the protocol and signed informed consent

### 3.6 Exclusion Criteria

244 The participant must not have any exclusion criteria in order to be eligible for the study.

245 1. History of diabetic ketoacidosis (DKA) in the 12 months prior to enrollment

246 2. Severe hypoglycemia resulting in seizure or loss of consciousness in the 12 months prior to  
247 enrollment

248 3. Currently pregnant or intent to become pregnant during the trial

249 4. Currently breastfeeding

250 5. Currently being treated for a seizure disorder

251 6. Treatment with meglitinides/sulfonylureas at the time of hotel study.

252 7. Use of metformin/biguanides, GLP-1 agonists, pramlintide, DPP-4 inhibitors, SGLT-2  
253 inhibitors, or naturaceuticals intended for glycemic control with a change in dose in the past  
254 month.

255 8. History of significant cardiac arrhythmia (except for benign premature atrial contractions and  
256 benign premature ventricular contractions which are permitted or previous ablation of  
257 arrhythmia without recurrence which may be permitted) or active cardiovascular disease

258 9. A known medical condition that in the judgment of the investigator might interfere with the  
259 completion of the protocol such as the following examples:

260 a. Inpatient psychiatric treatment in the past 6 months

261 b. Presence of a known adrenal disorder

262 c. Uncontrolled thyroid disease (e.g. persistently abnormal TSH with hyperthyroid or  
263 hypothyroid symptoms in participants with known thyroid disease). Stable TSH  
264 suppression for prior thyroid cancer history for example could be enrolled.

265 d. End-Stage Renal Disease (e.g. CKD Stage 4 or 5)

## CLINICAL PROTOCOL

266 10. A known medical condition that in the judgment of the investigator might interfere with the  
267 completion of the protocol.

### 268 **3.7 Screening Procedures**

269 After informed consent has been signed, a potential participant will be evaluated for study  
270 eligibility through the elicitation of a medical history, performance of a physical examination  
271 by licensed personnel to screen for exclusionary medical conditions. A physical exam documented  
272 in the prior 9 months can suffice for the physical exam but will not serve as an exclusionary  
273 criterion if not available.

274 Up to 3 months of historical data from the participant's CIQ system may be downloaded or  
275 recorded. This data may be obtained through the commercial applications (e.g. t:connect).

276 Screening procedures will last approximately 1-2 hours. The visit may occur in-person or by  
277 telecommunication. The following procedures may be performed/data collected/eligibility criteria  
278 checked and documented:

279 1. Inclusion and Exclusion criteria assessed

280 2. Demographics, including:

281 a. Date of birth

282 b. Gender

283 c. Race

284 d. Ethnicity

285 3. Medical History, including diabetes history

286 a. Duration of disease (number of years)

287 b. Current insulin pump model

288 c. History of CGM use

289 d. Current treatment

290 e. Severe hypoglycemia history

291 f. Severe hyperglycemia history

292 g. History of seizures

293 h. Loss of consciousness

294 i. Pregnancy query

295 4. Basal rates

296 5. Carbohydrate ratios

297 6. Insulin sensitivity factors

298 7. Target glucose

299 8. Average daily insulin

300 9. Surgical history

301 10. Allergies

302 11. Concomitant medications

## CLINICAL PROTOCOL

303 12. Physical Examination – A historical history and physical report within 9 months of  
304 screening appointments may be used but is not required for eligibility. If vitals are not  
305 available, may include self-reported values.  
306 a. Weight (may be self-reported)  
307 b. Height (may be self-reported)  
308 c. Blood pressure  
309 d. Temperature (if available)  
310 e. Heart Rate

311 13. Labs  
312 a. Hemoglobin A1c, (not an eligibility criteria) and can be obtained within two weeks  
313 prior to screening and up until the start of the hotel sessions.

314 If needed based on medical history, investigators may include baseline chemistry panel to obtain  
315 creatinine/eGFR to determine stage of kidney disease and thyroid stimulating hormone (lab results  
316 within one year of screening appointment may be used).

317 Any labs required may be obtained at a local laboratory (e.g. LabCorp) convenient to the  
318 participant.

319 This study is not meant to find out if the participant has any other disease or problem. The study  
320 leaders will alert the participant if any of the research results are important to his/her health during  
321 the study. The participant may have a copy of the screening tests to discuss with the personal  
322 physician. When the blood tests are completed, any blood left over will be thrown away. It will  
323 not be stored for any future testing.

324 The study physician or physician designee will have the discretion to repeat screening tests. The  
325 participant may request a copy of any of the results from the screening evaluation to review with  
326 their primary care provider.

327 If an exclusionary condition is identified, the study participant will be excluded from participation  
328 with follow up and referral to their primary care physician as needed.

329 Participants may be re-screened at a later date if their clinical situation changes as determined by  
330 the study physician.

331 **3.8 Demographic Data Survey**

332 Research in diabetes technology has revealed significant disparities in minoritized population's  
333 representation in clinical trials and access to devices that improve diabetes outcomes. Collection  
334 of detailed demographic data regarding participants in technology trials has become essential. This  
335 includes data on race/ethnicity, income levels and insurance status, as well as education and other  
336 variables that describe the study population.

337 The Demographic Data Survey will be electronically administered once eligibility has been met.

338 a. Gender

---

- 339        b. Race
- 340        c. Ethnicity
- 341        d. Marital status
- 342        e. Level of education
- 343        f. Employment status
- 344        g. Household income
- 345        h. Health insurance status
- 346        i. Monthly insulin costs

### 347 **Chapter 4 Randomization**

348 Participants will receive the two different experimental conditions (NAP and UMPC) in random  
349 order. Once eligibility is met and screening procedures are completed, the participant may continue  
350 to randomization. Screening failures and dropout participants may be replaced.

## 351 **Chapter 5 Pre-Hotel Schedule**

### 352 **Visit 2 and 4**

#### 353 **5.1 Pre-Hotel Check-In**

354 Participants will be contacted by the study team approximately 1-3 days prior to each hotel session  
355 if most recent contact with the study participant exceeds 10 days. The study team will verify the  
356 following information:

- 357 • Inquire about any changes to the participant's medical history
- 358 • Remind the participants to place a new sensor for proper warm-up prior to session
- 359 • Verify with the subject that the goal CGM reading at time of arrival is between 80-250  
360 mg/dL; this may require contact with the study physician prior to arrival on the day of  
361 the study visit
- 362 • Should any concerns regarding medical history, pump information, or unforeseen  
363 issues arise, the session will be cancelled for that participant at the discretion of the  
364 investigator.

#### 365 **5.2 Other Issues**

366 Data-driven optimization of pump settings can occur any time prior to the hotel sessions,  
367 particularly if the participant contacts the study physician due to concerns about their pump  
368 settings due to recurring hypo- or hyperglycemia. No pump settings changes can occur during  
369 NAP or UMPC algorithm testing.

# CLINICAL PROTOCOL

## 370 **Chapter 6 Hotel Session**

### 371 **Visit 3 and 5**

372 Each participant will have two hotel sessions. Each session will be of approximately 20 hours  
373 duration (see Figure 1). The sessions may occur sequentially within the same hotel stay or within  
374 28 days of each other. If the hotel sessions are sequential, it is not required that the initial hotel  
375 check-procedures procedures be repeated.

### 376 **6.1 Qualifications and Role of the Staff**

377 There will be at least two study staff present at all times at the study site, at least one of whom will  
378 be clinical (e.g. nurse, physician, nurse practitioner, physician assistant). There will be a physician  
379 at the hotel or nearby on call during the study. In addition, at least one engineer will be on call  
380 during the entire session. Participants will be remotely monitored by at least one study team  
381 member using a web-based remote monitoring system that has been previously established for  
382 DiAs. The web-based remote monitoring system will display real-time insulin delivery, CGM and  
383 other system information to allow for patient safety monitoring. Study team members will be  
384 trained in all protocol and glycemic treatment guideline procedures.

385 The study team will be responsible for monitoring and managing the study insulin pump during  
386 the hotel sessions. The participants may be provided a quick overview on its functionality to  
387 understand the equipment. The study team will assist the participant in study pump infusion site  
388 initiation and will start the participant on the study pump. The study pump will be programmed  
389 with the participant's usual basal rates and pump parameters.

390 The participant will be instructed on charging the pump, navigation through menus, bolus  
391 procedures including stopping a bolus, etc. The participant will be instructed to notify study staff  
392 if they experience any issues with the study devices during the hotel session. If insulin is delivered  
393 by any means other than the study pump (e.g. injection of subcutaneous insulin via syringe in the  
394 event of infusion site failure), the study team will be instructed to turn off closed-loop mode for  
395 approximately four hours.

396 The participant will also be asked to alert the study staff for technical issues with the Tandem  
397 research pump and/or the DiAs system, including component disconnections.

398 A glucagon emergency kit will be available at the hotel once the investigational system is in place.

399 Glycemic Treatment Guidelines will be available for staff use during the study sessions.

### 400 **6.2 Session Check-In**

401 Participants will arrive at the hotel around 4PM, approximately 2 hours before dinner. The study  
402 team will perform vital signs and inquire about any changes to the participant's medical history.  
403 Any changes to medical history will be communicated to the medical physician to ensure  
404 continued eligibility and participation.

## CLINICAL PROTOCOL

405 A urine pregnancy test will be collected for female participants of childbearing age. The test must  
406 be negative for the participant to continue with the study.

407 The subject's CGM reading, and ketone concentration will be recorded. In the event that the  
408 participant's CGM reading is not between 80-250 mg/dL or ketone concentration is  $>0.6$  mmol/L  
409 prior to initiation of DiAs, the study physician may recommend additional insulin dosing according  
410 to the participants' usual doses or glycemic treatments prior to initiating DiAs. Study physician  
411 may elect to cancel participant's participation in the hotel session if concerned about their medical  
412 safety. This participant will not be replaced but could be rescheduled for a later hotel session per  
413 investigator determination in the event of a modifiable factor that occurs early in the hotel session  
414 (e.g. severe migraine at the start of the hotel session).

415 The participant's CIQ will be discontinued, and the DiAs will be initiated. The study team will  
416 ensure the proper function of the CGM and insulin pump.

417 The CGM used in the study is FDA-approved for the non-adjunctive measurement of blood  
418 glucose (i.e. the CGM reading can be used for insulin dosing decisions). The CGM readings will  
419 be the primary source of blood glucose values. There are no protocol fingerstick blood glucose  
420 measurements other than at times of CGM calibration (if necessary) and if directed by the study  
421 team. Fingerstick blood glucose measurements may be taken whenever participants experience  
422 symptoms, if the CGM glucose is suspected to be erroneous, or any time the participant would like  
423 to be reassured.

### 424 **6.3 Glycemic Treatment Guidelines during the Hotel Portion of the Study**

425 The study physician will suggest appropriate treatment if the participant's CGM is  $<80$  mg/dL or  
426  $>250$  mg/dL, or ketone test is  $>0.6$  mmol/L at the start of the hotel session prior to the initiation of  
427 DiAs. The study subject may be initiated on DiAs at the start of the hotel study once CGM is  
428 between 80-250 mg /dL and ketone concentration is  $\leq 0.6$  mmol/L. Once DiAs is initiated, if CGM  
429  $<60$  mg/dL at any time, subjects will be given approximately 8-16 grams of fast-acting rescue  
430 carbohydrates. Study team will monitor CGM rise and will consider treating again if CGM  $<80$   
431 mg/dL after approximately 15-20 minutes. Hypoglycemic treatments can occur at any time per  
432 study physician request. Glucagon will be available at the study site and will be administered in  
433 the event of loss of consciousness or seizure related to hypoglycemia.

434 The study team may request fingersticks as needed. Any fingerstick readings obtained will be  
435 addressed the same way as the CGM values.

436 Once DiAs is initiated, if CGM is  $>250$  mg/dL for more than 3 hours or  $>400$  mg/dL at any time,  
437 study physician will be notified, and ketones will be checked. If ketone concentration is  $>0.6$   
438 mmol/L, the study team will notify the study physician and check the insulin pump infusion site  
439 and correction insulin will be administered via the subject's insulin pump or subcutaneous as  
440 needed. If subcutaneous injection is administered, closed-loop control will be stopped for up to 4  
441 hours. The study team will monitor CGM changes and ketones will be checked every 60 minutes

## CLINICAL PROTOCOL

442 until ketone concentration is  $\leq 0.6$  mmol/L. Closed-loop control using DiAs will be re-initiated  
443 once the participant's CGM reading is  $< 250$  mg/dL and ketones are  $< 0.6$  mmol/L. If ketone  
444 concentration is  $> 1.0$  mmol/L with significant symptoms, the study physician will recommend the  
445 appropriate medical treatment and the participant will be withdrawn from that portion of the study  
446 (the participant may possibly reinitiate the hotel portion of the study at a later date if a reversible  
447 cause)

448 **6.4 Study Meals**

449 Participants will eat dinner and breakfast during the session, with approximately the same amount  
450 of carbohydrate, protein, and fat for Sessions 1 and 2. Snacks with carbohydrates will not be  
451 allowed unless for the treatment of low blood sugars. Non-carbohydrates snacks may be allowed  
452 throughout the protocol per investigator discretion. Study staff will assist with bolusing decisions  
453 prior to all meals.

454 **6.5 Hotel Activities**

455 Generally, the daily routine of the participant will follow their usual daily routine as close as  
456 possible. Exercise will be permitted, to the extent it is typical for the participant and feasible for  
457 study staff to remotely monitor (e.g. would not allow a run outside).

458 If the hotel sessions are sequential within the same hotel stay, then the system algorithm will be  
459 changed by study staff to the second randomized condition at approximately 1 pm on the second  
460 day and the check-in procedures in section 6.2 do not need to be repeated. The hotel activities  
461 during the second session will be the same as the first (i.e. identical timing and content of meals,  
462 identical timing of activities).

463 **6.6 Hotel Discharge**

464 Discharge will be at approximately 1 pm. Discharge criteria is CGM value between 80-250 mg/dL  
465 with stable trend and ketones  $\leq 0.6$  mmol/L. If the CGM values are above 250 mg/dL and ketone  
466 values are  $> 0.6$  mmol/L, the study team will check the insulin pump infusion site and correction  
467 insulin will be administered per study physician judgement via the subject's insulin pump. The  
468 participant will not be able to be discharged from the study until the discharge criteria are met. The  
469 participant's CIQ will be reactivated and a qualified clinical study team member (e.g. MD, NP,  
470 PA, CDCES/RN) will assess and discuss the transition back to usual care.

471 Participants will be asked to continue monitoring ketone levels for 24-48 hours after the hotel  
472 session if ketones were  $> 0.6$  mmol/L within 12 hours prior to discharge. Urine ketone supplies  
473 may be provided for this testing. All study equipment will be returned at the time of study end.

474 **6.7 Post Hotel Check-In Visit**

475 **Visit 5**

## CLINICAL PROTOCOL



476    Approximately 24-48 hours after the hotel session, the study team will contact the participant via phone/email/text to assess adverse events, adverse device effects, and device issues.

477

### 478 **Chapter 7 Medical Monitor Review**

479 The Medical Monitor will review compiled safety data at the conclusion of the trial. In addition,  
480 the Medical Monitor will review all DKA and severe hypoglycemia irrespective of relatedness to  
481 study device use, and all serious events (including UADEs) related to study device use as soon as  
482 possible to the time of occurrence. The Medical Monitor also will be informed of any ADEs not  
483 meeting criteria for a UADE if the Study PI requests the Medical Monitor review. The Medical  
484 Monitor can request modifications to the study protocol or suspension or stoppage of the study if  
485 deemed necessary based on the totality of safety data available. Details regarding the Medical  
486 Monitor review will be documented in a separate document.

## 487 **Chapter 8 Testing Procedures**

### 488 **8.1 HbA1c**

489 A blood sample will be obtained to obtain a baseline hemoglobin A1c level by the start of the hotel  
490 visit. A blood test obtained within 2 weeks prior to enrollment may be used.

491 HbA1c level may be measured by study team using the DCA2000, or another comparable point of  
492 care device, at time of screening or by the start of the hotel visit.

493 Labs may be obtained at a local laboratory (e.g. LabCorp) convenient to the participant.

### 494 **8.2 Pregnancy Test**

495 A urine pregnancy test will be required for women of childbearing potential within 24 hours prior  
496 to initiating the experimental algorithms during the hotel stay. Test must be negative to continue  
497 participation in the study.

## CLINICAL PROTOCOL

### 498 **Chapter 9 Risks Associated with Clinical Trial**

#### 499 **9.1 Potential Risks and Benefits**

500 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data are  
501 handled to minimize this risk. Hypoglycemia, hyperglycemia, and ketone formation are always a  
502 risk in participants with type 1 diabetes and participants will be monitored for these symptoms.

#### 503 **9.1.1 Venipuncture Risks**

504 A hollow needle/plastic tube may be placed in the arm for taking blood samples (e.g. external  
505 HbA1c measurements for inclusion criteria). Blood draws can cause some common reactions like  
506 pain, bruising, or redness at the sampling site. Less common reactions include bleeding, formation  
507 of a small blood clot or swelling of the vein and surrounding tissues, and fainting.

#### 508 **9.1.2 Fingerstick Risks**

509 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes  
510 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory  
511 tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount of bleeding  
512 under the skin will produce a bruise. A small scar may persist for several weeks. The risk of local  
513 infection is less than 1 in 1000. This should not be a significant contributor to risks in this study  
514 as finger sticks are part of the usual care for people with diabetes.

#### 515 **9.1.3 Subcutaneous Needle Risks (CGM)**

516 Participants using the CGM will be at low risk for developing a local skin infection at the site of  
517 the sensor needle placement. If a needle is left under the skin for more than 24 hours, it is possible  
518 to get an infection where it goes into the skin, with swelling, redness, and pain. There may be  
519 bleeding where the needle is inserted and bleeding under the skin causes a bruise (1 in 10 risk).

520 Study staff should verbally alert the participant that on rare occasions, the CGM may break and  
521 leave a small portion of the needle under the skin that may cause redness, swelling, or pain. The  
522 participants will be instructed to notify the study coordinator immediately if this occurs.

#### 523 **9.1.4 Risks of Hypoglycemia**

524 As with any person having type 1 diabetes and using insulin, there is a risk of having a low blood  
525 sugar (hypoglycemia). The frequency of hypoglycemia should be no more and possibly less than  
526 it would be as part of daily living. Symptoms of hypoglycemia can include sweating, jitteriness,  
527 and not feeling well. Just as at home, there is the possibility of fainting or seizures (convulsions)  
528 and that for a few days the participant may not be as aware of symptoms of hypoglycemia. A CGM  
529 functioning poorly and significantly over-reading glucose values could lead to inappropriate  
530 insulin delivery.

## CLINICAL PROTOCOL

### 531 9.1.5 Risks of Hyperglycemia

532 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an  
533 extended period, e.g. if the pump or infusion set is not working properly, or a CGM functioning  
534 poorly significantly under-estimates glucose values.

### 535 9.1.6 Risks of Device Reuse

536 Participant will be informed that FDA or relevant national authorities have approved the insulin  
537 pump, CGM, glucometer and ketone meter for single use and that by using them among multiple  
538 patients, bloodborne pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

539 The study CGM system is labelled for single use only. The sensor (the component of the system  
540 that enters the skin) will be single use only. The transmitter and receiver may be reused during the  
541 study after cleaning the device using a hospital-approved cleaning procedure. The transmitter is  
542 attached to the sensor but does not enter the skin and the receiver, if used, is a handheld device.

543 The study insulin pumps are labelled for single-patient use. During the study, this device may be  
544 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set  
545 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.).

546 The study blood ketone meter is labelled for single-patient use. During the study, these devices  
547 may be reused after cleaning adhering to a hospital-approved cleaning procedure.

### 548 9.1.7 Device Cleaning Instructions

549 CGM cleaning instructions are provided in the Dexcom G4 Platinum (Professional) Cleaning and  
550 Disinfection manual (current edition) and a similar approach will be applied for the G6 version  
551 used in this study. The transmitter should be cleaned with Clorox Healthcare® Bleach Germicidal  
552 Cleaner or any disinfectant product in a spray bottle containing a bleach solution of 6500 parts per  
553 million with the EPA registration number 56392-7. The transmitter will be submerged in this  
554 solution and then placed on an absorbent wipe or clean surface. Two sprays will be dispensed from  
555 the Clorox cleaner onto each side of the transmitter. A nylon brush will be used to scrub the  
556 transmitter on all sides for 30 seconds. The transmitter will be placed in the Clorox Cleaner  
557 solution for one minute. Transmitter is then rinsed under flowing tap water for ten seconds. The  
558 transmitter will then be disinfected using a disinfectant product with EPA registration number  
559 56392-7 using similar procedures as the cleaning process.

560 Per the pump manufacturer, the insulin pump will be cleaned with a damp lint-free cloth. Use of  
561 household or industrial cleaners, solvents, bleach, scouring pads, chemicals, or sharp instruments  
562 are prohibited. The pump should never be submerged in water. If needed, use only a very mild  
563 detergent, such as a bit of liquid soap with warm water. A soft towel will be used to dry the pump.

## CLINICAL PROTOCOL

564 The glucometer is cleaned and disinfected with two separate Super Sani-Cloths (EPA number  
565 9480-4). The entire surface will be cleaned, making sure the surface stays wet for 2 minutes. This  
566 step is repeated with a clean cloth for disinfecting the device.

567 The Precision Xtra User's Guide suggests that healthcare professionals use 10% bleach, 70%  
568 alcohol or 10% ammonia to clean the device.

569 Equipment that touches intact skin will be cleaned with ethyl or isopropyl alcohol (70-90%),  
570 quaternary ammonium germicidal detergent (i.e. Cavicide, EPA number 46781) or household  
571 bleach. The contact time on the surface depends on the method used to clean the equipment.  
572 Cavicide requires three minutes on the surface of the equipment. Clorox Germicidal Bleach Wipes  
573 require two minutes on the equipment. The surface should remain wet (i.e. slightly damp) with the  
574 disinfectant to be considered effective though not wet enough to leave drops of liquid.

575 In the event a manufacturer updates cleaning procedures for their device, the study team will  
576 adhere to the most current recommendations.

577 There is the risk of blood sampling collection and contamination from sampling techniques. Hand  
578 washing with either soap & water or waterless hand sanitizer will be used prior to caring for the  
579 study subject. Gloves will be worn during blood sample collection and processing. Medical  
580 personnel will continue to practice hygiene for the subject's protection (i.e. hand washing,  
581 changing gloves frequently, disposing needles properly). Gloves will be removed, and hands  
582 washed or sanitized prior to leaving and upon return to the subject's room. Soiled linen will be  
583 changed to minimize the transfer of pathogenic organisms.

### 584       **9.1.8 Risk of Exercise**

585 While there are risks associated with physical activity, during the trial the participants will engage  
586 only in activities that are typical for them. No extra risks are added by the study protocol.

### 587       **9.1.9 Other Risks**

588 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure  
589 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.  
590 If these reactions occur, different adhesives or "under-taping" (such as with IV 3000, Tegaderm,  
591 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other  
592 medication may be required.

593 Whenever the skin is broken there is the possibility of an infection. The CGM and pump infusion  
594 sites are inserted under the skin. It is possible that any part that is inserted under the skin may  
595 cause an infection. These occur very infrequently, but, if an infection was to occur, oral and/or  
596 topical antibiotics can be used. The risk of skin problems could be greater if a sensor is used for  
597 longer than it is supposed to be used. Therefore, participants will be carefully instructed about  
598 proper use of the sensor.

## CLINICAL PROTOCOL

599 Data downloaded from the CGM, pump, glucometer, and ketone meter will be collected for the  
600 study as measures of diabetes self-management behaviors. Some people may be uncomfortable  
601 with the researchers' having such detailed information about their daily diabetes habits.

602 **9.1.10 Known Potential Benefits**

603 It is expected that this protocol will yield increased knowledge about using a new neural-net based  
604 automated closed-loop system to control glucose levels. The individual participant may not benefit  
605 from study participation.

606 **9.1.11 Risk Assessment**

607 The risk to participants in this study are no higher than the risks associated with type 1 diabetes  
608 and the use of CIQ under normal outpatient conditions. This assessment is based on the following  
609 facts: (1) adults with diabetes experience mild hypoglycemia and hyperglycemia frequently as a  
610 consequence of the disease and its management, (2) the study intervention involves automated  
611 insulin dosing that may increase the likelihood of hypoglycemia, and automated attenuation of  
612 insulin delivery that may increase the likelihood of hyperglycemia, (3) however, mitigations are  
613 in place that limit the likelihood of excessive insulin dosing or prolonged withdrawal of insulin,  
614 and (4) rapid reversal of hypoglycemia and hyperglycemia can be achieved.

615 **9.2 General Considerations**

616 The study is being conducted in compliance with the policies described in the study policies  
617 document, with the ethical principles that have their origin in the Declaration of Helsinki, with the  
618 protocol described herein, and with the standards of Good Clinical Practice (GCP).

619 Whenever possible, data will be directly collected in electronic case report forms, which will be  
620 considered the source data.

621 The protocol is considered a significant risk device study, due to the fact that the NAP and UMPC  
622 systems are experimental. Therefore, an investigational device exemption (IDE) from the U.S.  
623 Food and Drug Administration (FDA) is required to conduct the study.

624 The study team will adhere to any CDC and local guidelines in effect at the time of the study.

## Chapter 10 Adverse Events, Device Issues, and Stopping Rules

### 10.1 Definitions

#### 10.1.1 Adverse Events (AE)

Any untoward medical occurrence in a study participant, irrespective of the relationship between the adverse event and the device(s) under investigation (section 10.2) for reportable adverse events for this protocol).

Positive pregnancy test will not be considered an adverse event.

#### 10.1.2 Serious Adverse Event (SAE)

Any untoward medical occurrence that:

- Results in death.
- Is life-threatening; (a non-life-threatening event which, had it been more severe, might have become life-threatening, is not necessarily considered a serious adverse event).
- Requires inpatient hospitalization or prolongation of existing hospitalization.
- Results in persistent or significant disability/incapacity or substantial disruption of the ability to conduct normal life functions (life threatening).
- Is a congenital anomaly or birth defect.
- Is considered a significant medical event by the investigator based on medical judgment (e.g., may jeopardize the participant or may require medical/surgical intervention to prevent one of the outcomes listed above).

#### 10.1.3 Unanticipated Adverse Device Effect (UADE)

Any serious adverse effect on health or safety or any life-threatening problem or death caused by, or associated with, a device, if that effect, problem, or death was not previously identified in nature, severity, or degree of incidence in the investigational plan or application (including a supplementary plan or application), or any other unanticipated serious problem associated with a device that relates to the rights, safety, or welfare of participants (21 CFR 812.3(s)).

#### 10.1.4 Adverse Device Effect (ADE)

Any untoward medical occurrence in a study participant which the device may have caused or to which the device may have contributed.

#### 10.1.5 Device Complaints and Malfunctions

A device complication or complaint is something that happens to a device or related to device performance, whereas an adverse event happens to a participant. A device complaint may occur independently from an AE, or along with an AE. An AE may occur without a device complaint or there may be an AE related to a device complaint. A device malfunction is any failure of a device

## CLINICAL PROTOCOL

658 to meet its performance specifications or otherwise work as intended. Performance specifications  
659 include all claims made in the labelling for the device. The intended performance of a device  
660 refers to the intended use for which the device is labelled or marketed. (21 CFR 803.3).

### 661 **10.2 Reportable Events**

662 For this protocol, a reportable adverse event includes any untoward medical occurrence that meets  
663 one of the following criteria:

- 664 • A SAE, as defined in section 10.1.2
- 665 • An ADE, as defined in section 10.1.4, unless excluded from reporting in section 10.7
- 666 • An AE, as defined in section 10.1.1 occurring in association with a study procedure
- 667 • An AE, as defined in section 10.1.1 which leads to discontinuation of a study device  
668 for 2 or more hours
- 669 • Hypoglycemia meeting the definition of severe hypoglycemia as defined in section  
670 10.2.1
- 671 • DKA, as defined in section 10.2.2 or in the absence of DKA, a hyperglycemic or ketosis  
672 event meeting the criteria below

673 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse  
674 events unless associated with an ADE. Skin reactions from sensor placement are only reportable  
675 if severe and/or requiring treatment.

#### 676 **10.2.1 Hypoglycemia Event**

677 Hypoglycemia not associated with an ADE is only reportable as an AE when the following  
678 definition for severe hypoglycemia is met:

- 679 • The event required assistance of another person due to altered consciousness, and  
680 required another person to actively administer carbohydrate, glucagon, or other  
681 resuscitative actions
- 682 • Impaired cognitively to the point that he/she was unable to treat himself/herself, was  
683 unable to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or  
684 experienced seizure or coma. These episodes may be associated with sufficient  
685 neuroglycopenia to induce seizure or coma
- 686 • If plasma glucose measurements are not available during such an event, neurological  
687 recovery attributable to the restoration of plasma glucose to normal is considered  
688 sufficient evidence that the event was induced by a low plasma glucose concentration

#### 689 **10.2.2 Hyperglycemia Events/Diabetes Ketoacidosis**

690 Hyperglycemia not associated with an ADE is only reportable as an AE when one of the following  
691 criteria is met:

- 692 • The event involved DKA, as defined by the DCCT and described below

## CLINICAL PROTOCOL

- Treatment was obtained at a health care provider facility for an acute event involving hyperglycemia or ketosis

695 Blood ketone level  $\geq 1.0$  mmol/L at any time during the study Hyperglycemic events are classified  
696 as DKA if the following are present:

- Symptoms such as polyuria, polydipsia, nausea, or vomiting
- Serum ketones  $\geq 1.5$  mmol/L or large/moderate urine ketones
- Either arterial blood pH  $<7.30$  or venous pH  $<7.24$  or serum bicarbonate  $<15$  mmol/L
- Treatment provided in a health care facility

701 All reportable AEs—whether volunteered by the participant, discovered by study personnel during  
702 questioning, or detected through physical examination, laboratory test, or other means—will be  
703 reported on an AE form online. Each AE form is reviewed by the study investigator to verify the  
704 coding and the reporting that is required.

### 705 10.3 Relationship of AE to Study Device

706 The study investigator will assess whether any AE is related or unrelated by determining if there  
707 is a reasonable possibility that the adverse event may have been caused by the study device.

708 To ensure consistency of adverse event causality assessments, investigators should apply the  
709 following general guideline when determining whether an adverse event is:

- Related: There is a plausible temporal relationship between the onset of the adverse event and the study intervention, and the adverse event cannot be readily explained by the participant's clinical state, intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern of response to the study intervention; and/or the adverse event abates or resolves upon discontinuation of the study intervention or dose reduction and, if applicable, reappears upon rechallenge.
- Unrelated: Evidence exists that the adverse event has an etiology other than the study intervention (e.g., pre-existing medical condition, underlying disease, intercurrent illness, or concomitant medication); and/or the adverse event has no plausible temporal relationship to study intervention.

720 10.4 Intensity of AE

721 The intensity of an AE will be rated on a three-point scale: (1) mild, (2) moderate, or (3) severe. It  
722 is emphasized that the term severe is a measure of intensity: thus, a severe AE is not necessarily  
723 serious. For example, itching for several days may be severe, but may not be clinically serious.

724 • MILD: Usually transient, requires no special treatment, and does not interfere with the  
725 participant's daily activities.

## CLINICAL PROTOCOL

726        • MODERATE: Usually causes a low level of inconvenience or concern to the  
727           participant and may interfere with daily activities but is ameliorated by simple  
728           therapeutic measures.  
729        • SEVERE: Interrupts a participant's usual daily activities and generally requires  
730           systemic drug therapy or other treatment.

### 731 **10.5 Coding of AEs**

732        AEs will be coded per the UVA IRB website instructions (i.e. mild, moderate, severe). AEs that  
733           continue after the participant's discontinuation or completion of the study will be followed until  
734           their medical outcome is determined or until no further change in the condition is expected.

### 735 **10.6 Outcome of AEs**

736        The outcome of each reportable AE will be classified by the investigator as follows:

737        • RECOVERED/RESOLVED – The participant recovered from the AE/SAE without  
738           sequelae. Record the AE/SAE stop date.  
739        • RECOVERED/RESOLVED WITH SEQUELAE – The event persisted and had  
740           stabilized without change in the event anticipated. Record the AE/SAE stop date.  
741        • FATAL – A fatal outcome is defined as SAE resulting in death. Only the event that  
742           was the cause of death should be reported as fatal. AEs/SAEs that were ongoing prior  
743           to death, however, were not the cause of death, will be recorded as “resolved” at the  
744           time of death.  
745        • NOT RECOVERED/NOT RESOLVED (ONGOING) – An ongoing AE/SAE is  
746           defined as the event was ongoing with an undetermined outcome.  
747        • An ongoing outcome will require follow-up by the site in order to determine the final  
748           outcome of the AE/SAE.  
749        • The outcome of an ongoing event at the time of death that was not the cause of death,  
750           will be updated and recorded as “resolved” with the date of death recorded as the stop  
751           date.  
752        • UNKNOWN – An unknown outcome is defined as an inability to access the participant  
753           or the participant's records to determine outcome (e.g., a participant lost to follow-up).

754        All clinically significant abnormalities of clinical laboratory measurements or AEs occurring  
755           during the study and continuing at study termination should be followed by the participant's  
756           physician and evaluated with additional tests (if necessary) until diagnosis of the underlying cause,  
757           or resolution. Follow-up information should be recorded on source documents.

758        If any reported AEs are present when a participant completes the study, or if a participant is  
759           withdrawn from the study due to an AE, the participant will be contacted for re-evaluation within  
760           2 weeks. If the AE has not resolved, additional follow-up will be performed as appropriate. Every  
761           effort should be made to contact the participant until the AE has resolved or stabilized.

## CLINICAL PROTOCOL

### 762 **10.7 Reportable Device Issues**

763 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of  
764 whether an AE occurred, except in the following circumstances.

765 The following device issues are anticipated and will not be reported but will be reported as an AE  
766 if the criteria for AE reporting described above are met:

- 767 • Component disconnections
- 768 • CGM sensors lasting fewer than the number of days expected per CGM labelling
- 769 • CGM tape adherence issues
- 770 • Pump infusion set occlusion not leading to ketosis
- 771 • Battery lifespan deficiency due to inadequate charging or extensive wireless  
772 communication
- 773 • Intermittent device component disconnections/communication failures not leading to  
774 system replacement
- 775 • Device issues clearly addressed in the user guide manual that do not require additional  
776 troubleshooting
- 777 • Skin reactions from CGM sensor placement or pump infusion set placement that do not  
778 meet criteria for AE reporting.

### 779 **10.8 Timing of Event Reporting**

- 780 • UADEs must be reported within 10 working days to the FDA after the sponsor first  
781 receives notice of the adverse effect.
- 782 • Other reportable AEs, device malfunctions (with or without an AE) and device  
783 complaints should be reported promptly, but there is no formal required reporting  
784 period.
- 785 • The IDE Sponsor will investigate the UADE and if indicated, report the results of the  
786 investigation to the Medical Monitor, IRBs, and FDA within 10 working days of the  
787 study team becoming aware of the UADE per 21CFR 812.46(b) (2).
- 788 • The Medical Monitor will determine if the UADE presents an unreasonable risk to  
789 participants. If so, the Sponsor must ensure that all investigations, or parts of  
790 investigations presenting that risk, are terminated as soon as possible but no later than  
791 5 working days after the Medical Monitor makes this determination and no later than  
792 15 working days after first receipt notice of the UADE.
- 793 • In the case of a device system component malfunction (e.g. pump, CGM, control  
794 algorithm), information will be forwarded to the responsible manufacturer by the study  
795 personnel.

## CLINICAL PROTOCOL

### 796 **10.9 Stopping Criteria**

#### 797 **10.9.1 Participant Discontinuation**

798 Rules for discontinuing investigational device use are described below.

- 799 • The investigator believes it is unsafe for the participant to continue the intervention.  
800 This could be due to the development of a new medical condition or worsening of an  
801 existing condition; or participant behavior contrary to the indications for use of the  
802 device that imposes on the participant's safety.
- 803 • The participant requests that the treatment be stopped.
- 804 • The participant tests positive for COVID-19 within 14 days of a hotel session.
- 805 • Any diagnosis of DKA meeting the definition in section 10.2.2 of the protocol.
- 806 • Any severe hypoglycemia event meeting the definition in section 10.2.1 of the protocol.
- 807 • Any ketone level  $>1.0$  mmol/L with significant symptoms (e.g. nausea, vomiting,  
808 abdominal pain). The participant may be studied at a later date if due to a reversible  
809 cause (e.g. infusion site failure)

#### 810 **10.9.2 Suspending/Stopping Overall Study**

811 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe  
812 hyperglycemia event (as defined in section 10.2.2), use of the study device system will be  
813 suspended while the problem is diagnosed.

814 In the event that two distinct episodes of DKA, two distinct severe hypoglycemia events, or one  
815 distinct DKA episode and one distinct severe hypoglycemia episode, as defined in section 10.2  
816 occur, the overall study would be suspended while the underlying conditions are determined.

817 In addition, study activities could be similarly suspended if the manufacturer of any constituent  
818 study device requires stoppage of device use for safety reasons (e.g. product recall). The affected  
819 study activities may resume if the underlying problem can be corrected by a protocol or system  
820 modification that will not invalidate the results obtained prior to suspension. The Medical Monitor  
821 may request suspension of study activities or stoppage of the study if deemed necessary based on  
822 the safety data available.

### 823 **10.10 Independent Safety Oversight**

824 Detailed in Chapter 7.

### 825 **10.11 Definition of a Data Breach**

826 A data breach is defined in the HITECH Act (43 USC 17932) as an unauthorized acquisition,  
827 access, or use of protected health information (PHI) that compromises the security or privacy of  
828 such information.

829

## 830 **Chapter 11 Miscellaneous Considerations**

### 831 **11.1 Prohibited Medications, Treatments, and Procedures**

832 Participants using insulins other than lispro and aspart at the time of enrollment will be asked to  
833 contact their personal physician to change their prescribed personal insulin to lispro or aspart for  
834 the hotel sessions of the trial.

835 The study devices (study insulin pump, study CGM) must be removed before Magnetic Resonance  
836 Imaging (MRI), Computed Tomography (CT) or diathermy treatment. Participants may continue  
837 in the trial after temporarily discontinuing use if requiring one of the treatments above.

### 838 **11.2 Participant Withdrawal**

839 Participation in the study is voluntary. Participant may withdraw at any time. For participants who  
840 do withdraw from the study, the study team will determine if their data will be used in analysis.

### 841 **11.3 Confidentiality**

842 For security and confidentiality purposes, subjects will be assigned an identifier that will be used  
843 instead of their name. De-identified subject information may also be provided to collaborators  
844 involved in the study after the appropriate research agreement has been executed.

## 845 Chapter 12 Statistical Consideration

### 846 12.1 Design and Randomization

847 This is an early study intending to pilot test the safety and feasibility of a NAP implementation of  
848 an established AP controller – UMPC – in a crossover design (Figure 1).

849 The randomization list will use a sequence of computer-generated pseudorandom Bernoulli trials  
850 and will aim to balance age/gender and match groups by baseline HbA1c. The two groups will  
851 follow two different sequences of AID approaches: NAP followed by UMPC or UMPC followed  
852 by NAP.

### 853 12.2 Sample Size

854 We use pilot trials to introduce new technologies, test system component interoperability, and  
855 support regulatory approval of larger subsequent studies. Depending on the traceability of the  
856 system to previous established technology or components, the pilots can range from a small 5-  
857 person 3-day trial, such as the one we used to enable the pivotal trial of Control-IQ,<sup>11</sup> to a multi-  
858 center test of pump configurations.<sup>12</sup> In this study, NAP is directly traceable to UMPC in terms of  
859 its functionality; however, its implementation is qualitatively new. Thus, based on our experience,  
860 we estimate that the completion of N=15 (and recruitment of up to 20) CIQ users who will test  
861 NAP vs UMPC during two 18-hour hotel sessions, will be feasible, in terms of first regulatory  
862 approval, and sufficient to test the translation of the existing UMPC into neural-net framework.

### 863 12.3 Outcome Measures

864 The main purpose of this trial is initial system testing and receiving feedback from the participants  
865 regarding system functionality. Thus, we will observe, record, and tabulate any NAP errors that  
866 would inform us whether system fixes would be needed prior to deployment in a subsequent larger  
867 study. We will tabulate technical performance metrics including:

- 868 • Malfunctions requiring study team contact and other reported device issues;
- 869 • Percent time in closed-loop and any other relevant operational modes;
- 870 • Rate of relevant NAP and UMPC failure events and alarms per 24 hours;

871 In addition, descriptive glycemic analyses for certain efficacy measures recommended by a review  
872 written by the sponsor of this study<sup>13</sup> and by the International Consensus on Time-in-Range (TIR),  
873 to which we contributed,<sup>14</sup> will be tabulated for each subject based on CGM data, including:

- 874 • TIR, 70-180 mg/dL (primary outcome)
- 875 • percentage of readings in other ranges, including TBR, TAR, and 70-140 mg/dl;
- 876 • mean glucose; glucose variability measured by coefficient of variation;
- 877 • percentage of readings <54 mg/dl (i.e., level 2 hypoglycemia<sup>14</sup>)
- 878 • percentage of readings >250 and >300 mg/dl (i.e., level 2 hyperglycemia<sup>14</sup>)

## CLINICAL PROTOCOL

879 The technical performance, errors, and glycemic analyses will be also split by time of the day:  
880 daytime vs. night-time.

### 881 **12.4 Criteria for Success**

882 The success criteria will include no critical system errors and the following performance criteria,  
883 which factor in likely inter-day variability for each participant and are consistent with the  
884 recommendations of the International Consensus on TIR:

- 885 • Difference in TIR between NAP and UMPC < 8 percentage points;
- 886 • Difference in TBR between NAP and UMPC < 3 percentage points;
- 887 • Difference in TAR between NAP and UMPC < 8 percentage points;

888 Formal power analysis is not applicable to this pilot study – 5-percent noninferiority hypothesis of  
889 NAP vs UMPC will be tested, but with this sample size a statistically significant result is not  
890 expected. The point of the study is to show feasibility of a neural-net implementation of an  
891 automated insulin delivery algorithm which, if shown, will open possibilities for control strategies  
892 based on machine-learning and artificial intelligence methods.

### 893 **12.5 CGM data treatment**

- 894 • Saturated CGM values “High” and “Low” will be replaced by 401mg/dL and 39mg/dL  
895 respectively.
- 896 • CGM data during recorded occlusion event will be removed from analysis as follows:  
897 any measurement less than 2h before or after the time of record will be removed.
- 898 • CGM data following a pump/DiAs communication interruption >1h but less than 2h  
899 will be removed.

### 900 **12.6 Safety Analyses and Participant Feedback**

901 We will assess NAP functionality, including the ability of the system to run its code without error  
902 (deliver insulin safely, as planned), as well as its ability to avoid hypo- and hyperglycemia.  
903 Participants feedback will be informal, in the format of contrasting their experience with the  
904 commercial CIQ vs. the experimental NAP and UMPC.

### 905 **12.7 Baseline Descriptive Statistics**

906 Baseline demographic and clinical characteristics of the cohort of all randomized participants will  
907 be summarized in a table using summary statistics appropriate to the distribution of each variable.  
908 The following descriptive statistics will be displayed overall and by treatment group:

- 909 • Age
- 910 • HbA1c
- 911 • Gender
- 912 • Race/ethnicity
- 913 • Diabetes duration

## CLINICAL PROTOCOL



---

914            • BMI  
915            • Total Daily Insulin

## 916 **Chapter 13 Data Collection and Monitoring**

### 917 **13.1 Case Report Forms and Device Data**

918 Data is collected through a combination of case report forms (electronic and paper) and electronic  
919 device data files obtained from the software and individual hardware components. These electronic  
920 device files and electronic CRFs are considered the primary source documentation. Records will  
921 be maintained in accordance with ICH E6 and institutional regulatory requirements for the  
922 protection of confidentiality of participants.

### 923 **13.2 Study Records Retention**

924 Study documents should be retained for a minimum of 6 years after the study completion, or until  
925 at least 2 years have elapsed since the formal discontinuation of development of the investigational  
926 product. Documents should be retained for a longer period, if required by local regulations. No  
927 records will be destroyed without the written consent of the sponsor. It is the responsibility of the  
928 sponsor to inform the investigator when these documents no longer need to be retained.

### 929 **13.3 Protocol Deviations**

930 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure  
931 requirements. The noncompliance may be either on the part of the participant, the investigator, or  
932 the study staff. In response to protocol deviations, corrective actions may be required and  
933 implemented as appropriate. Major deviations will be reported to the IRB within 7 calendar days  
934 of when the study team becomes aware of the event.

## 935 **Chapter 14 Ethics/Protection of Human Participants**

### 936 **14.1 Ethics Standard**

937 The investigator will ensure that this study is conducted in full conformity with Regulations for  
938 the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50, 21  
939 CFR Part 56, and/or the ICH E6.

### 940 **14.2 Institutional Review Boards**

941 The protocol, informed consent form(s), recruitment materials, and all participant materials will  
942 be submitted to the IRB for review and approval. Approval of both the protocol and the consent  
943 form must be obtained before any participant is enrolled. Any amendment to the protocol will  
944 require review and approval by the IRB before the changes are implemented to the study. All  
945 changes to the consent form will be IRB approved; a determination will be made regarding whether  
946 previously consented participants need to be re-consented.

### 947 **14.3 Informed Consent Process**

#### 948 **14.3.1 Consent Procedures and Documentation**

949 Informed consent is a process that is initiated prior to an individual's agreement to participate in  
950 the study and continues throughout the individual's study participation. Consent forms will be IRB  
951 approved, and the participant will be asked to read and review the document. The investigator or  
952 delegate will explain the study to the participant and answer any questions that may arise. All  
953 participants will receive verbal explanation in terms suited to their comprehension of the purposes,  
954 procedures, and potential risks of the study and of their rights as research participants. Extensive  
955 discussion of risks and possible benefits of participation will be provided. The participant will sign  
956 the informed consent document prior to any procedures being done specifically for the study.

957 The potential participant will be provided a short overview of the study including its study goals,  
958 study procedures, and study timeline. If the potential participant remains interested, they will be  
959 asked permission to review inclusion/exclusion criteria to assess if they are eligible to participate  
960 in the study. If permission is granted, the study team will review the Inclusion/Exclusion  
961 Questionnaire. If eligible, the study team member will provide a copy of the informed consent  
962 form (e.g. in person, email, fax, or mail) to the potential participant for their review. Potential  
963 participants may also elect to review the informed consent form prior to discussing pre-screening  
964 questions.

965 The consenting process will involve discussing the study at length in a phone call/HIPAA  
966 compliant telecommunication method for consenting that is not face to face. The potential  
967 participant will be given an opportunity to ask the study team questions or may speak directly with  
968 the study physician. The potential participant's understanding of the information, presented in the  
969 process of consent will be assessed by asking open-ended questions.

## CLINICAL PROTOCOL

970 The consent form may be signed electronically with the use of the Part 11 compliant version of  
971 DocuSign for both in-person and telecommunication screening visits. Note: For potential  
972 participants who are not able to use DocuSign, email, fax, or mail will be an option for receipt of  
973 the signed consent. A HIPAA compliant video conferencing tool will be utilized during the  
974 consenting process of the telecommunication screening visit to facilitate the FDA part 11  
975 compliant process of verification of reviewing two forms of identification if signing electronically  
976 off site. A copy of the informed consent document will be given to the participant for their records.  
977 Study procedures may begin once the consent has been signed by the participant and a member of  
978 the study team.

979 The rights and welfare of the participants will be protected by emphasizing to them that the quality  
980 of their medical care will not be adversely affected if they decline to participate in this study.

### 981           **14.3.2 Participant and Data Confidentiality**

982 The study monitor, representatives of the IRB or device company supplying study product may  
983 inspect all documents and records required to be maintained by the investigator, including but not  
984 limited to, medical records (office, clinic, or hospital) for the participants in this study.

985 The study participant's contact information will be securely stored at the clinical site for internal  
986 use during the study. At the end of the study, all records will continue to be kept in a secure location  
987 for as long a period as dictated by local IRB and Institutional regulations.

988 Participants' research data, which is for the purposes of statistical analysis and scientific reporting,  
989 will be transmitted to and stored at the UVA CDT. The study data entry and study management  
990 systems used by research staff will be secured and password protected. At the end of the study,  
991 all study databases may be de-identified and archived at the UVA CDT.

## Chapter 15 References

1. <https://www.nih.gov/about-nih/nih-wide-strategic-plan>
2. Kovatchev BP, Patek SD, Dassau E, Doyle FJ III, Magni L, De Nicolao G, Cobelli C. Control-to-range for diabetes: functionality and modular architecture. *J Diabetes Sci Technol.* 2009; 3: 1058-1065. PMCID: PMC2769910
3. Hughes CS, Patek SD, Breton MD, Kovatchev BP. Hypoglycemia prevention via pump attenuation and red-yellow-green “traffic” lights using continuous glucose monitoring and insulin pump data. *J Diabetes Sci Technol.* 2010; 4: 1146-1155. PMCID: PMC2956822
4. Patek SD, Magni L, Dassau E, Karvetski CH, Toffanin C, DeNicolao G, Del Favero S, Breton M, Dalla Man C, Renard E, Zisser H, Doyle FJ III, Cobelli C, Kovatchev BP. Modular closed-loop control of diabetes. *Transactions on Biomedical Engineering.* 2012; 29: 2986-99. PMCID: PMC4607512
5. Keith Hynes P, Guerlain S, Mize LB, Hughes Karvetski C, Khan M, McElwee Malloy M, Kovatchev BP. DiAs user interface: a patient-centric interface for mobile artificial pancreas systems. *J Diabetes Sci Technol.* 2013; 7: 1416–1426. PMCID: PMC3876320
6. Brown SA, Kovatchev BP, Raghinaru D, et al, for the iDCL Trial Research Group. 6-month randomized multicenter trial of closed-loop control in type 1 diabetes. *N Engl J Med.* 2019; 381: 1707-17. PMID: 31618560 PMCID: PMC7076915
7. Breton MD, Kanapka LG, Beck RW, et al, for the iDCL Trial Research Group. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. *N Engl J Med.* 2020; 383:836-845. PMID: 32846062; PMCID: PMC7920146.
8. U.S. Food & Drug Administration: FDA authorizes first interoperable, automated insulin dosing controller designed to allow more choices for patients looking to customize their individual diabetes management device system. <https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-interoperable-automated-insulin-dosing-controller-designed-allow-more-choices>.
9. Garcia-Tirado J, Diaz JL, Esquivel-Zuniga R, Koravi CLK, Corbett JP, Dawson M, Wakeman C, Barnett CL, Oliveri MC, Myers H, Krauthause K, Breton MD, DeBoer MD. Advanced Closed-Loop Control System Improves Postprandial Glycemic Control Compared With a Hybrid Closed-Loop System Following Unannounced Meal. *Diabetes Care.* 2021 Aug 15:dc210932. doi: 10.2337/dc21-0932. Epub ahead of print. PMID: 34400480.
10. Lobo B, Farhy L, Shafiei M, Kovatchev B. A data-driven approach to classifying daily continuous glucose monitoring (CGM) time series. *IEEE Trans Biomed Eng.* 2021 Aug

## CLINICAL PROTOCOL

1027 10;PP. doi: 10.1109/TBME.2021.3103127. Epub ahead of print. PMID: 34375274.

1028 11. Brown S, Raghinaru D, Emory E, Kovatchev BP. First look at control-IQ: a new-  
1029 generation automated insulin delivery system. *Diabetes Care*. 2018 Oct 10. pii:  
1030 dc181249, PMID: 30305346; PMCID: PMC6245207

1031 12. Anderson SM, Dassau E, Raghinaru D, Lum J, Brown SA, Pinsker JE, Church MM,  
1032 Levy C, Lam D, Kudva YC, Buckingham B, Forlenza GP, Wadwa RP, Laffel L, Doyle  
1033 FJ 3rd, DeVries JH, Renard E, Cobelli C, Boscarini F, Del Favero S, Kovatchev BP. The  
1034 international diabetes closed-loop study: testing artificial pancreas component  
1035 interoperability. *Diabetes Technol Ther*. 2019; 21: 73-80. PMCID: PMC6354594

1036 13. Kovatchev BP. Metrics for glycaemic control: from HbA1c to continuous glucose  
1037 monitoring. *Nature Reviews Endocrinology*. 2017; 13: 425-436. PMID: 28304392

1038 14. Battelino T, Danne T, Bergenstal RM, Amiel SA, et al. for the International Time-in-  
1039 Range Consensus. Clinical targets for continuous glucose monitoring data interpretation:  
1040 recommendations from the international consensus on time in range. *Diabetes Care*.  
1041 2019; 42: 1593-1603. PMID: 31177185.

1042 15. IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate  
1043 monitoring as an exercise marker, approved 10/08/2011.

1044 16. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012.

1045 17. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012.

1046 18. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013.

1047 19. IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in  
1048 adolescents; 6/19/2013; 05/01/13.

1049 20. IDE# G130142: Closed loop control in adolescents using heart rate as exercise indicator;  
1050 7/16/2013.

1051 21. IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of  
1052 type 1 diabetes; 7/19/2013.

1053 22. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/2014.

1054 23. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor  
1055 augmented pump therapy overnight in type 1 diabetes; 5/14/2014.

1056 24. IDE #G140119: Outpatient control-to-range: Safety and efficacy with day-and-night in-  
1057 home use; 6/6/2014.

1058 25. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor  
1059 Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes;  
1060 10/3/2014.

## CLINICAL PROTOCOL

1061 26. IDE #G150221: Reducing risks and improving glucose control during extended exercise  
1062 in youth with T1DM: The AP Ski Camp; 11/09/2015.

1063 27. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24  
1064 hr closed loop control; 11/12/2015.

1065 28. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform;  
1066 03/29/2016.

1067 29. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes  
1068 Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/2016.

1069 30. IDE#G160181: PROTOCOL 1 for “Clinical Acceptance of the Artificial Pancreas: The  
1070 International Diabetes Closed Loop (iDCL) Trial; 09/21/2017.

1071 31. IDE#G170255: Protocol 3 for “Pilot Trial of t:slim X2 with Control-IQ  
1072 Technology”; 11/16/17 and IDE#G170255/S001 Protocol 3 for “Training Study of t:slim  
1073 X2 with Control-IQ Technology”; 11/16/2017.

1074 32. IDE#G170267 : “Real-Time Monitoring and Glucose Control During Winter-Sport  
1075 Exercise in Youth with Type 1 Diabetes: The AP Ski Camp Continued”; Three 48-hour  
1076 winter ski camps trial T1D participants; one site enrolled 13-18 years old participants in  
1077 January 2018. The other two sites enrolled participants aged 6-12 years old. At the  
1078 conclusion of these ski camps, subjects continued with the study device for 72 hours use  
1079 at home; 11/21/17 & 01/10/18.

1080 33. IDE#150240/S008: Project Nightlight: Efficacy and system acceptance of dinner/night  
1081 vs. 24 hr closed loop control (Tandem t:slim insulin pump with Control-IQ Technology);  
1082 02/02/2018.

1083 34. IDE#G180279: “Safety and Efficacy of Initializing the Control-IQ Artificial Pancreas  
1084 System Using Total Daily Insulin.” A safety and efficacy of using the Control-IQ  
1085 artificial pancreas system using MyTDI in a randomized controlled trial; 12/19/2018.

1086 35. IDE#G190205: “Safety of the Tandem t:slim X2 with Control-IQ Automated Insulin  
1087 Delivery System in Preschoolers, age 2-6 Years Old”; 09/06/2019.

1088 36. IDE#G190250: “SGLT2 Inhibitor Adjunctive Therapy to Closed Loop Control in Type 1  
1089 Diabetes”; 10/02/2019.

1090 37. Kovatchev BP, Singh H, Mueller L, Gonder-Frederick LA. Biobehavioral Changes  
1091 Following Transition to Automated Insulin Delivery: A Large Real-life Database  
1092 Analysis. Diabetes Care. 2022 Nov 1;45(11):2636-2643. doi: 10.2337/dc22-1217. PMID:  
1093 36126177.

1094 38. IDE # G200206: Fully Automated Closed Loop Control in Adolescents with Type 1  
1095 Diabetes (RocketAP). 08/20/2020.

## CLINICAL PROTOCOL

1096 39. IDE#210051: "Diabetes Closed-Loop Project 6 (DCLP6): Fully Automated Closed-Loop  
1097 Control in Type 1 Diabetes Using Meal Anticipation", 03/18/2021.

1098 40. IDE#220204: "Evaluation of The Postprandial Impact of Automated Priming Bolus for  
1099 Full Closed Loop Insulin Delivery", 08/29/2022.