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Introduction 

Unruptured intracranial aneurysms (UIAs) are incidentally detected at an increasing rate, mostly owing to the rise in 

availability of non-invasive cranial imaging.1 Decision-making in UIAs is complex and requires consideration of many 

risk factors for aneurysm growth and rupture to balance the benefits and risks of treatment versus observation. This is 

due to: 1)  the high morbidity and case fatality inherent to aneurysmal subarachnoid hemorrhage (SAH) 2) the 

relatively low rupture rate of unruptured aneurysms; 3) the potential morbidity and mortality rate associated with 

either microsurgical or endovascular treatment.2–8 

 

Some consistent risk factors for rupture have been identified, including involvement of the posterior circulation, larger 

diameter, higher age, and some specific populations such as Japanese and Finnish patients.9 Many other risk factors 

have been suggested based on varying levels of evidence.3,5,8 However, it is difficult to integrate this considerable 

number of factors into a single risk assessment and to present a clear clinical decision making algorithm to patients. 

A range of scoring systems have been developed and validated to approximate the risk of rupture (PHASES)5 and 

growth (ELAPSS)2,  or to balance the risks and benefits of microsurgical treatment versus follow-up imaging directly 

(UIATS)3 by integrating some of these risk factors.10 Still, these scores are focused on predicting rupture events instead 

of neurological outcome. In addition, they usually are focused on solely one outcome, instead of providing a wide 

range of objective predictive analytics that may then improve shared decision-making.11  

 

Machine learning (ML) methods have been extraordinarily effective at integrating many clinical patient variables into 

one holistic risk prediction tailored to each patient. We have conducted a pilot study to assess the feasibility of 

predicting surgical outcomes after surgery for UIAs 12 in a small single-center sample. We found that prediction was 

feasible with good performance metrics, and also identified the most important factors to be included in such models. 

To the authors’ best knowledge, a robust, multicenter, externally validated prediction model or predictive score for 

surgical outcome after microsurgery for UIAs does not yet exist. 
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Accurate preoperative identification of patients at high risk for adverse outcomes would be clinically advantageous, 

as it would allow enhanced resource preparation, better surgical decision-making, enhanced patient education and 

informed consent, and potentially even modification of certain modifiable risk factors. The aim of the Prediction of 

adverse events after microsurgery for intracranial unruptured aneurysms (PRAEMIUM) study is therefore to develop 

and externally validate a clinically applicable, robust ML-based prediction tool based on multicenter data from a range 

of international centers.  

 

Methods 

Overview  

Data will be collected by a range of international centers. Overall, the model will be built and publication will be 

compiled according to the transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis (TRIPOD) guidelines.13 

The University Hospital Zurich (USZ) center is the sponsor of the PRAEMIUM study. 

(Sponsor: Prof. Dr. Luca Regli; Principal Investigators: PD Dr. med. G. Esposito, Victor Staartjes) 

 

Ethical Considerations 

Each center will be responsible for their own ethics board / institutional review board (IRB) approval. They must gain 

approval for retrospective or prospective data collection and sharing of the completely anonymized data with the 

sponsor. They must also organize a data use agreement to the sponsor institution. The sponsor can aid by providing 

said protocol and data use agreement, which will also be registered online on ClinicalTrials.gov.  

 

Inclusion and Exclusion Criteria 

We will include all adult patients (18 years or older) undergoing microsurgical treatment for UIAs. No specific 

exclusion criteria will be set. Patients with prior SAH may only be included when surgical treatment occurred at least 

4 weeks after ictus. Only patients treated from January 1st 2010 onwards can be included in this study. 

 

Authorship 

Each center must contribute data from at least 100 patients to be included. Each eligible institution designates 1 

primary author per center who will be included in the primary author list. Each eligible center may also designate 2 

additional secondary authors, who will be included in the author list as part of the PRAEMIUM study group, and who 
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will be fully indexed in PubMed as contributing authors. The sponsor institution is entitled to 3 primary authors and 

to 4 secondary authors. 

 

Data Collection 

Each center will collect their data either retrospectively, or from a prospective registry, or from a prospective registry 

supplemented by retrospectively collected variables. Data from patients operated from January 1st 2010 and onwards 

will be eligible for inclusion. Data collection should be completed, and anonymized data should be sent to the 

sponsor institution (praemium@usz.ch) by 1st of August 2021. 

A standardized Excel spreadsheet will be provided by the sponsor. The data will be entered in standardized and 

anonymized form. This spreadsheet will only contain a study-specific patient number. The data set is anonymized 

source data that includes clinical data extracted from electronic health records (retrospectively or from a prospective 

registry of already existing data). The data will be anonymized upon entering them into the PRAEMIUM Excel 

spreadsheet, after which the patients will be numbered consecutively and there will be no way to trace the data back 

to individual patients. No identifiable data such as date of birth will be included. Whenever the PRAEMIUM Excel 

spreadsheet is transferred, it will be encrypted using a password and sent through a secure institutional e-mail server 

to PRAEMIUM@usz.ch. The password will be sent in a separate e-mail. Some missing data is acceptable, but should 

be kept to a minimum (i.e. must be < 10%) 

 

Endpoint Definitions 

Models will be developed for the following three endpoints at discharge: Poor neurological outcome (1), as well as 

presence of (2) new sensorimotor neurological deficits and (3) any complications (surgical or non-surgical). 

Neurological outcome was assessed by the modified Rankin scale (mRS), and a favorable neurological outcome was 

defined as mRS 0, 1, or 2.14 Complications will be assessed using the modified 2009 Clavien-Dindo grading (CDG), 

and occurrence of a complication was defined as any deviation from CDG 0.15 The Clavien-Dindo grading system is 

a classification of surgical complications: Grad 0 signifying no complication, Grade I identifying complications with 

any deviation from the normal intra- or postoperative course requiring medical treatment, and so forth. Detailed 

definitions are provided in the Excel spreadsheet. Surgery-related as well as none-surgery-related complications are 

counted. In case of multiple complications, only the complication with the highest CDG was counted per patient. 

 

Input Feature Definitions 

All features are measured preoperatively. Recorded baseline variables will include age, gender, maximum aneurysm 

diameter, anatomical location (artery), total number of aneurysms per patient, if multiple aneurysms were treated 

mailto:praemium@usz.ch
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during the index session, calcification of the aneurysm wall or neck, aneurysm morphology (saccular, dissecting, 

fusiform, or other), involvement of critical perforating or branch vessels, and intraluminal thrombosis. 

We will also capture prior SAH, mRS at admission, prior aneurysm treatment, presence of anticoagulation/antiplatelet 

therapy preoperatively, and hypertension,  as well as American Society of Anesthesiologists (ASA) grading, the 

PHASES5, ELAPSS2, and UIATS3 scores including the UIATS “pro-repair” and “pro-conservative treatment” 

subscores. The unruptured intracranial aneurysm treatment score (UIATS) consists of two subscores: One that 

represents the strength of recommendation for invasive repair of an unruptured aneurysm, and one that represents the 

strength of recommendation for conservative management of an unruptured aneurysm. The final overall UIATS score 

is subsequently calculated as the difference between the two subscores. Also included was the surgical approach: 

minimally invasive or standard approach, and whether a bypass was performed.16,19,23 

 

Sample Size 

While even the largest cohort with millions of patients is not guaranteed to result in a robust clinical prediction model 

if no relevant input variables are included (“garbage in, garbage out” – do not expect to predict the future from age, 

gender, and body mass index), the relationship among predictive performance and sample size is certainly directly 

proportional, especially for some data-hungry ML algorithms. To ensure generalizability of the clinical prediction 

model, the sample size should be both representative enough of the patient population, and should take the complexity 

of the algorithm into account. For instance, a deep neural network – as an example of a highly complex model – will 

often require thousands of patients to converge, while a logistic regression model may achieve stable results with only 

a few hundreds of patients. In addition, the number of input variables plays a role. Roughly, it can be said that a bare 

minimum of 10 positive cases are required per included input variable to model the relationships. Often, erratic 

behavior of the models and high variance in performance among splits is observed when sample sizes are smaller than 

calculated with this rule of thumb. Of central importance is also the proportion of patients who experience the outcome. 

For very rare events, a much larger total sample size is consequentially needed. For instance, a prediction based on 10 

input features for an outcome occurring in only 10% of cases would require at least 1000 patients including at least 

100 who experienced the outcome, according to the above rule of thumb. In general and from personal experience, we 

do not recommend developing ML models on cohorts with less than 100 positive cases and reasonably more cases in 

total, regardless of the rarity of the outcome. Also, one might consider the available literature on risk factors for the 

outcome of interest: If epidemiological studies find only weak associations with the outcome, it is likely that one will 

require more patients to arrive at a model with good predictive performance, as opposed to an outcome which has 

several highly associated risk factors, which may be easier to predict. Larger sample sizes also allow for more generous 

evaluation through a larger amount of patient data dedicated to training or validation, and usually results in better 

calibration measures. 

 

For this study, based on our expertise and on the rules of thumb mentioned above, we estimate that a minimum of 250 

patients with positive outcome are required to extract generalizable features. With an incidence of these outcomes of 
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around 10%12 that means that a minimum of 2500 patients are required for training. For adequate evaluation of 

calibration at external validation, we estimate that – as a bare minimum – another 1500 patients (thus, approximately 

150 with positive outcomes) will be required. Thus, in total, we estimate that 4000 patients are necessary to arrive at 

a robust model. More data will likely lead to greater performance and better calibration.  

 

Predictive Modeling 

A KNN imputer will be co-trained to impute any missing data that may occur in future application of the model. If 

there is missing data in the training set, it will be imputed using said KNN imputer.24 Features or patients with a 

missingness greater than 25% will be excluded. Data will be standardized and one-hot-encoded. In case of major class 

imbalance – which is expected for the abovementioned endpoint – random upsampling or synthetic minority 

oversampling (SMOTE) will be applied to the training set.25,26 All features will initially be provided to the model for 

training. If necessary, we will apply recursive feature elimination (RFE) to select input features on the training data.27 

We will trial the following algorithms for binary classification: Generalized linear model (GLM), generalized additive 

model (GAM), stochastic gradient boosting machine (GBM), naïve Bayes classifier, artificial neural network, support 

vector machine (SVM), and random forest. Each model will be fully trained and hyperparameter tuned where 

applicable. The final model will be selected based upon AUC, sensitivity, and specificity, as well as calibration metrics 

on the resampled training performance. Training will occur in repeated 5-fold cross-validation with 10 repeats. 

The one final model will then be assessed on the external validation data only once. 95% confidence intervals for 

external validation metrics will be derived using the bootstrap. 

The threshold for binary classification will be identified on the training data alone using the AUC-based “closest-to-

(0,1)-criterion” or Youden’s index to optimize both sensitivity and specificity.28 All analyses will be carried out in R 

Version 3.6.2.29 

 

Evaluation 

The performance of classification models can roughly be judged along two dimensions: Model discrimination and 

calibration.30 The term discrimination denotes the ability of a prediction model to correctly classify whether a certain 

patient is going to or is not going to experience a certain outcome. Thus, discrimination described the accuracy of a 

binary prediction – yes or no. Calibration, however, describes the degree to which a model’s predicted probabilities 

(ranging from 0% to 100%) correspond to the actually observed incidence of the binary endpoint (true posterior). 

Many publications do not report calibration metrics, although these are of central importance, as a well-calibrated 

predicted probability (e.g. your predicted probability of experiencing a complication is 18%) is often much more 

valuable to clinicians – and patients! – than a binary prediction (e.g. you are likely not going to experience a 

complication).30 
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Resampled training performance as well as performance on the external validation set will be assessed for 

discrimination and calibration. In terms of discrimination, we will evaluate AUC, accuracy, sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and F1 Score. In terms of calibration, we will assess 

the Brier score, expected-observed (E/O)-ratio, calibration slope and intercept, the Hosmer-Lemeshow goodness-of-

fit test, as well as visual inspection of calibration plots for both datasets, which will also be included in the publication.  

Interpretability 

The degree and choice of methods for interpretability will depend on the finally chosen algorithm. Some algorithms 

can natively provide explanations as to which factors influence the outcome in what way. Thus, in case e.g. a GLM, 

GAM, or naïve Bayes classifier is chosen, the parameters / partial dependence values will be provided. For simple 

decision trees, diagrams of the decision-making process can be provided. Other models with higher degrees of 

complexity, such as neural networks or stochastic gradient boosting machines cannot natively provide such 

explanations. In that case, we will provide both AUC-based variable importance as well as model-agnostic local 

interpretations of variable importance using the LIME principle.31 

 

Expected Results 

We expect to arrive at a generalizable model based on multicenter international data that is likely to predict the 

abovementioned binary outcomes consistently with an AUC of at least 0.70 (more realistically 0.8 or greater) and that 

is well-calibrated.30 A web-based prediction tool will also be created for each of the two models using the shiny  32 

environment, much akin to e.g. https://neurosurgery.shinyapps.io/impairment. This web-based app will be available 

for free on any internet-capable device (mobile or desktop), and should be stable on most devices due to the server-

based computing. The costs for maintaining the server will be carried by the sponsor. 

The collected data will be stored by the sponsor for 10 years. The large dataset will be open to further analysis and 

will be provided to any of the contributing centers at reasonable request and after approval by all other centers. The 

goal is to enable other analyses using the collected dataset. If any additional analyses lead to publication, all 

contributors will be included as co-authors and all co-authors will have the opportunity to review said manuscript 

beforehand. Any contributing study center has the right to veto publication of any subsequent analyses that includes 

their data. 

 

 

 

 

https://neurosurgery.shinyapps.io/impairment
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